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Abstract

Kendall’s rank correlation coefficient, also called Kendall’s 7, is an efficient
and robust way for identifying monotone relationships between two data se-
quences. However, when applied to digital data, the high number of ties yields
inconsistent results due to quantization. Here, we propose an extension of
Kendall’s 7 that considers an epistemic view of a sequence of quantized data —
each sample is supposed to be the quantized version of an original value that is
a real number. We come up with an imprecise 7, defined as the interval contain-
ing all 7 values that could have been computed on sequences of original values
before quantization. We propose a very simple and straightforward algorithm
to compute this interval-valued 7. We prove the exactness of the bounds and
propose an experiment that illustrates the need for such an extension.
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1. Introduction

1.1. Correlation in Image Processing

Correlation coefficients are very well-known statistical tools that are exten-
sively used in statistical analysis, pattern recognition, and image processing.
Applications for the latter include comparing two images for the purpose of im-
age registration, object recognition, disparity measurement, motion estimation,
etc., with applications ranging from pattern recognition, surveillance or authen-
tication to video analysis.

The simplest and perhaps oldest correlation coefficient is the Pearson correla-
tion coefficient [12]. Tt is simply the scalar product between the mean-adjusted
and normalized versions of the two concerned sequences. However, the Pear-
son correlation coefficient only measures linear dependence relations. In image
processing, this linearity hypothesis is usually non-valid because of a variety of
factors, such as intensity distortion due to camera gain, offset or saturation [4].
Moreover, this type of correlation is known to be very sensitive to non-stationary
noise and outlier values [11].

On the other hand, Kendall’s correlation coefficient, or simply called Kendall’s 7
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(or just 7), is more suited for use in image processing where stationarity cannot
usually be advocated [9]. Computation of 7 involves comparing the ranking of
pairs of samples in the two sequences. It allows us to identify not only linear de-
pendencies between the sequences, but also any kind of monotonic relationship.
Moreover, being a rank statistic, it is more robust to outliers and non-parametric
hypothesis tests can be derived from it [10].

Like other correlation coefficients, Kendall’s 7 was designed to deal with real-
valued datasets, where ties are uncommon. Yet, pixel values in image processing
are digital, i.e. quantized, values. Thus a set of pixel values is likely to contain
many ties. Very few studies have focused on the effect of data quantization on
Kendall’s correlation coefficient, while using a statistical tool designed for real
data for analyzing quantized data can lead to wrong conclusions [13].

1.2. Definition of Kendall’s T and variants

Kendall’s 7 is defined as the difference between the number of pairs of con-
cordant values and of pairs of discordant values, normalized by the total number
of pairs. Let x = (z1,...,2,) andy = (y1,...,¥yn) be two sequences to compare.
Let A be the set of all pairs of indices, i.e.,

A={Gf) ell,....nyx{l,....,n} | i <j},

and let ny = in(n — 1) denote its cardinal. Let C C A, with cardinal n¢, be
the subset of concordant pairs and D C A, with cardinal np, be the subset of
discordant pairs, with both defined as:

C={(,j) €Al (x; <zj and y; <y;)or (z; >x; and y; > y;)},

D={(i,j) € A| (z; <zj and y; > y;) or (z; > z; and y; < y;)},
Kendall’s rank correlation is then defined as:
no —np

T(x,y) = o~

This coefficient ranges from 1 when ng = na (only concordant pairs) to —1
when np = n4 (only discordant pairs).
One major drawback of this formulation is that pairs which contain an equality
(either z; = z; or y; = y;) are included in neither C' nor D. Hence, ng > np+nc
and the bounds of 7 can never be reached, thus flawing the interpretation of
the coefficient. Two variants of 7 can be considered to deal with this problem:
~ and 7, [15]. They both consist of normalizing the coefficient so that proper
bounds can be reached.

The variant - consists of normalizing the coefficient by nc +np rather than
by the total number of pairs.

ng —np

X,y) = .
(X, ) T

Within this variant, pairs which contain an equality are considered as outliers.



The variant 7, needs to consider two new subsets of A, U and V, which
respectively contain pairs with an equality in the first sequence and those in the
second:

U=A{(i,j) € Al 2 = x5},

V={(,j) € Alvi=uy;}

The variant 7, is then defined as:

Tp(X =
(X, Y \/nA_nU\/nA_nV,

where ny (rsp. ny) is the cardinal of U (rsp. V).

Remark 1. 7 and its variants 7, and 7y are always ordered in the following way:
T< 71 <.
Proof: Let T'C A, with cardinal nt, be the subset of ties:

T={(j)€A|x=uz;ory =y;}

nc +np = na — nr, therefore nc +np < na and thus 7 < «. By definition
UCT, thusng —nyg >nyg —np,and V C T, thus ng — ny > nap — nr.
Therefore 7, < . Naturally, since ng > naq —ny and ng > na —ny, 7 < 7.
O

1.8. Adding imprecision in the Kendall’s correlation coefficient: previous work

In the relevant literature, few authors have considered including imprecision
when computing the Kendall’s correlation coefficient. Two main pathways have
been explored. On one hand, in [1], and then in [14], the problem of a lack
of robustness of v with respect to observation noise when the two observables
have ties is addressed. The new Kendall’s coefficient they propose is based on
a (fuzzy) set-valued modification of the ranking. On the other hand, in [3], the
problem of computing the Kendall’s correlation coefficient when the observations
are imprecise is addressed. This problem is closer to that addressed in this paper.

1.8.1. Fuzzy gamma rank correlation coefficient

Let us consider that the two sequences x = (x1,...,2,) andy = (y1,---,Yn)
have many ties, i.e. np cannot be neglected. Let us suppose that those sequences
have been observed by a noisy sensor providing the observed sequences x° =
(z$,...,22) and y° = (v§,...,y2). Because of the noise, it is likely that many
tied pairs (7, 7) that belong to T', the set of ties in the original data, does not
belong to T°, the set of ties in the observed data. Hence, v°, the y-variant of 7
based on the observed sequences, is likely to be a biased estimation of the true 7,
based on the original sequence. This phenomenon has been thoroughly analyzed
in [14]. These authors show that the observed concordant (rsp. discordant) pairs
C° (rsp. D°) is likely included in the original concordant (rsp. discordant) pairs
C (rsp. D). The robustness of the Kendall’s correlation coefficient towards
outliers and the non-linearity of the relation between the two sequences has the



drawback of a certain degree of sensitivity towards small changes. Replacing
the strict ordering, used in the original Kendall’s correlation coefficient, by a
fuzzy order relation leads to less sensitivity of the obtained rank correlation.
This reduced sensitivity is due to the lower influence of negligible changes in
the observed data, that could likely be explained by the effect of noise in the
ties.

The problem addressed in the above cited papers has little to do with the
problem we address here, since quantized data cannot be considered as noisy
measurements of the original data. Moreover, quantized data are more likely to
have ties than the original sequence.

1.8.2. Kendall’s correlation coefficient for imprecise data

The problem considered here is closer to the one we address in this paper.
Let us suppose that the observation process leads to interval-valued observed
data X = (X1,...,X,) and Y = (Y7,...,Y},), where X; (rsp. Y;) is an interval-
valued observation of x; (rsp. y;). The most general formalization, proposed by
Denceux et al., consists of finding the lower bound (77) and the upper bound
(7) of the set of all Kendall’s 7 that could have been obtained by considering
any pair of sequences x € X and y € Y. Their approach is to consider a par-
tial order over a set of intervals and minimize (resp. maximize) 7. Then there
is simply a problem of finding which linear extension (i.e. complete ordering
compatible with the partial ordering) yields the minimal (resp. maximal) value.
But since the number of linear extensions can possibly grow exponentially with
the size of the dataset, an exhaustive search on the space of linear extensions is
not very feasible because of the high computational expense. They propose a
first alternative in [3] with a branch and bound algorithm which proceeds recur-
sively. This algorithm is certain to reach the optimal bounds, but its complexity
makes it impractical to use when the data exceeds 10 objects. They later [6]
refined their approach by applying Monte-Carlo sampling directly on the space
of all linear extensions. The choice of the Bubbley and Dyer algorithm ensures
uniform sampling on the space and sufficient computational efficiency for 30
objects to be processed at most. As a main drawback, this approach leads to
an overestimation 7, (rsp. underestimation 7*) of the lower (rsp. upper) bound
of the sought after interval [77,77].

Hryniewicz and Szediw investigated Kendall’s correlation for interval data
in the case of autocorrelated data [8]. They proposed a heuristic algorithm to
find an approximation of bounds which has proven efficient on larger datasets
(> 50). However, it offers limited generalization, since the optimization method
relies on the fact that the compared sequences of interval data are actually a
single sequence and its time-shifted version. An algorithm for the general case
was then proposed in [7]. Here the idea is to exploit patterns which are known
to yield maximal or minimal 7 results. After sorting the data to be as close as
possible to one of these patterns, an iteration procedure brings the algorithm
closer to an optimal bound. Although computationally efficient, this algorithm
gives varied results depending on the choice of heuristic.



The problem we address in this paper is more specific. As we will show below,
quantized values can naturally be considered as imprecise observations of real
values but with two main restrictions that make the computational problem
more tractable: 1- imprecise observations can only take a limited number of
values (quantized values), 2- those values form an ordered partition of the whole
range. The solution we propose also leads to an interval-valued estimation of
the correlation coefficient but the bounds are exact and easy to compute.

1.4. The quantization problem

Since the rise of digital technologies, quantized data has become ubiquitous.
Inherently, any sequence of quantized data contains ties and the lower the num-
ber of quantization levels, the higher the number of ties. In image processing,
for example, usual gray-scale images are quantized on 8 bits, hence on 256 dif-
ferent values. Even for small-scale 256 x 256 pixel images, an average of 256
pixels will share the same value. Saturations are also likely to produce many ties.

As noted previously, variants (7, and ) have been introduced in order to
make Kendall’s correlation useable on data containing ties. However, we might
object to the fact that those two variants merely consist of removing the ties of
the analysis. This means that these samples are considered as outliers whereas
they are actually just data that do not fit in a concordant versus discordant
predicate. More exactly, their classification is unknown or imprecise. In image
processing, as well as in many other fields, it is more than likely that the original
sequences (before quantization) contain little or even no ties. Simply removing
samples that cannot be classified means that part of the information is not con-
sidered in computing the correlation. Thus all further reasoning based on this
correlation coefficient would be unsound. The question then becomes, “How
can all information contained in the quantized data be meaningfully utilized?”

2. Imprecisely valued T

2.1. Quantization modelled as intervals

The imprecision introduced by quantization can easily be represented by
an interval. We here adopt an epistemic [2] point of view: a quantization
interval represents the sequence of values that a piece of information could have
taken before quantization. Let p and ¢ be the quantization levels for X and
Y, i.e. quantized values belonging to {1,...p} and {1,...,q}, respectively. Let
x = (z1,...,2,) and y = (y1,...,Yyn) be the original real-valued sequences

(before quantization). Let @} = [¢}, dL[ be the real-valued interval associated

with the k" quantization level, k € {1,...,p} of the first variable. Analogously,
let ®7 = [¢7, ¢7[ be the interval associated with the I-th quantization level of the

second variable, for [ € {1,...,¢}. Inherently ®; N ®}, =0 and &7 N D7 = () as
well, if k # k" and [ # I'. Let x% = (x?, .o, x%) and y9 = (y?, ..,y9) denote



the quantized sequences. Indeed, those le and le are the only samples we have
access to. By construction, Vi € {1,...n}, x? = k (resp. yiQ = 1) is equivalent
to z; € @} (resp. to y; € ®?). Let &1 and ®2 denote the collections of intervals
associated with the p quantized values of the first variable and the ¢ quantized
values of the second one, ie. ®' = {®],...,®]} and &> = {97,..., 9}
Thus to each pair of quantized values (J:ZQ,yZQ) we can associate the pair of
intervals X; = [z;,7;[ € ®' and Y; = [y, 7;[ € ®*. Those intervals represent
our incomplete knowledge about the hypothetic original true values x; and y;.
Therefore, within this epistemic view, dealing with a quantized valued dataset
is equivalent to dealing with a set of disjoint intervals.

Now consider a quantized vector (x?,,ajg) € {1,...,1}", and let the
two sequences of intervals X = (Xq,...,X,,) and Y = (Y3,...,Y,) represent
the collection of all possible sequences x and y before quantization. We can
identify three mutually exclusive cases for any pair (i, j) € A with respect to X:

Q Q

(a) z; <z T <z
(b) 2P >af o w >7;

(c) wQ—xfﬁ(Ezﬁandﬁgxfj)

P =

The above equations are closely related to the “interval dominance” concept

[5]:
[a,b] <ip [c,d[ i b < ec.
The relation <;p is a partial ordering over the set of bounded intervals of
the real line. The above equations can be equivalently written as follows:

33? <.’L‘jQ<:>X,L <ip X]
i

of =29 & (X; £rp X;j and X; #1p X;) (1)

DS

JTQ >1‘?<=>XZ‘ >ID Xj

Interval dominance indicates that two different intervals are incomparable as
soon as they overlap. But let us note that, given the nature of quantization, the
compared intervals are either coincident (X; = X;) or disjoint. Furthermore,
the collection ®° (i = 1,2) does not contain any singleton and therefore the
restriction of <;p to ®’ is a strict total ordering that we can denote <jp.
Therefore, we can write:

Q
K3

Q

%

o <x§2<:>Xi<1DXj

x >CEJQ<:>X1‘ <ip Xj;
° x? = 3;59 < X; = Xj, and similarly
oyl <y e Vi<,

‘y?>yJQ<:>Yi<1DYj



oyl =yl eVvi=Y
We can easily derive the following result:
Lemma 1. The collection of subsets of A, {S?,Lf), U®} defined as follows:
o ST ={(i,j) € Al X; <ip X;} = {(i,§) € A: 2 <2},
° L? ={(i,j) € Al X; >p X;} = {(i,j) € A: x? > x?},
« U9 ={(i,j) € A| Xi = X;} = {(i.)) € Azl =aF},
forms a partition of A. Analogously, the collection {SQQ, L2Q7 V@} defined as:
o 57 ={(.)) € AYi <ip V;} = {(i,5) € A+ 9 <y},
o LY ={(i,4) € A|Y; >1p V;} = {(i,§) € A:y? >y},
« VO={G) €AY =Y} ={(i.j) € Ay =y}
also forms a partition of A.

2.2. Optimal bounds of imprecise T

Let x = (21,...,2,) and y = (y1,...,Yn) be two sequences and suppose
that we only have access to a pair of sequences of intervals (X,Y) representing
our incomplete information about them. Let E(X,Y) denote the set of all of
those feasible pairs of samples, i.e.:

E(X,Y)={(,y)|(z},y)) € X; xY;, i=1,...,n}.

According to this partial information about the initial pair of sequences, their
correlation coefficients 7, v and 7, can be any value inside the respective sets:

T(E(X,Y)) = {r(x",y") [ (x",y') € E(X,Y)}.

V1EX,Y)) = {1, y) | (x,y) e EX,Y)}.

R(EX,Y)) = {n(x,y) | (x,y) € X, Y)}.
We will call the above set the set-valued extension of T, v and 7, respectively.
In this setting, 71 (X,Y) and 77 (X,Y) respectively denote the maximum and

minimum of the set 7(E(X,Y)).
Let us now consider the following subsets of A = {(i,5) € {1,...,n} x

{1,...,n}]i<j}:
e The set of pairs that are necessarily concordant,

09 ={(i,j) € A|[X; <;p X; and Y; <;p Yj], or [X; >;p X; and Y; >1p Y;]}.
(2)



e The set of pairs that are necessarily discordant,

D@ = {(4,7) € A|[Xi >p Xjand Y; <;p Yj], or [X; <;p X, andY; >;p Y;]}.
3)

e The set of pairs that are unordered, or neither necessarily concordant nor
necessarily discordant.

TQ:{(i7j)€A|Xi=onrYi:Yj}:UquQ. (4)

Definition 1. We define the interval-valued Kendall’s 7, 7(x9, y?) = [1(x?, y?),7(x%,y9)],
as:

Nece —Npe —NrQ
r(x9,y9) = -~ ;
—/oQ nce —Npe +nrq
T(x%,y°) = ~

na

The main goal in this section is to prove that the extremes of the interval-
valued 7 do respectively coincide with the minimum and maximum values of
the sets 7(E(X,Y)), v(E(X,Y)) and 7(E(X,Y)), i.e. 7(x9,y?) = 7H(X,Y)
and 7(x%,y%) = 77 (X,Y).

We will solve our problem in two phases. We will first prove that those
extreme points bound the above sets. In a second step, we will prove that those
extreme points are indeed included in the three of them.

2.2.1. Bounds for set-valued extension of Kendall’s T and its variants

In this subsection, we will prove that the three sets 7(E(X,Y)), 7(E(X,Y))
and y(E(X,Y)) are lower (resp. upper) bounded by 7(x%,y?) (resp. by
7(x2,y9)).

Let us consider an arbitrary paired sample (x,y) € E(X,Y) and let C' and
D respectively denote the collection of concordant and discordant pairs in it.
Let T = A\ (CUD) =UUYV denote the rest of the pairs (pairs with a tie in
at least one of the components). Then we can easily check the following result:

Lemma 2. The following relations hold:
o O¢ cC.
e DY C D.

Proof: Let us first remind the reader that, given an arbitrary pair (i, j) € A,
X; = [z;,7;[ is interval dominated by X; = [z;, ;[ (i.e. X; <;p Xj) if and only
if 7; < x;. Therefore, regardless of the specﬁc values of z; € X; = [z;,T;[ and
xj € Xj; [z, 7], the relation X; <;p X; implies the strict inequality z; < z;.
Analogously, Y; <;p Y; implies that y; < y;, for every pair (y;,y;) € Y; x Yj.
From the above implications we deduce that the set of necessarily concordant
pairs:

C9 ={(i,j) € A|[Xi<rp X; and Y; <;p Yj] or [X; >;p X, and Y; >;p Vj]}



is included in the set of concordant pairs
C={(,j) € Allz; <zjand y; <y;] or [x; > z; and y; > y;|}.
Lemma 3. {C%, D? T} forms a partition of A.

Proof: The sets C?, D? and T? can be respectively expressed as follows
in terms of the notation introduced in Lemma 1:

C9 = (57 NSF) U (LY N LF),
D? = (LF n5F)u (ST NLT),
T =U%UuVve. (5)
According to the distributive property, we observe that:
e CONDRC(SYNLY)U(SENLY).
e CRUDR = (SPULY) N (SZULS).

Furthermore, according to Lemma 1, the collections { LY, S, U@} and {L§, ¢,V ?}
respectively partition the set A. Therefore, we have: SlQ N L? = SZQ N L§ =0,
SPULY = (UQ)° and S$ U LY = (VQ)©. Thus, we deduce that

e CONDY =9
e CRUDP =(U?)°N(VQ)°e = (URUV) = (T9)e°,
and we easily derive that {C?, D? T%} forms a partition of A.
Lemma 4. The following relations hold:
(a) CUUUV CCRUTY,
(b) DUUUV C DRUT®,
(c) UUV C TC.
Proof: The above three statements can be derived from the following facts:

e By virtue of Lemma 3, {C%, D9, T?} forms a partition of A, and therefore
CPUT? = (D9, DPUT? = (C%)° and T? = (CQ U DY)e.

e Analogously, {C, D, U, V} forms a partition of A and therefore DUUUV =
C,CuUUV =D¢and UUV = (CUD)".

e According to Lemma 2, C? C C and D? C D, and therefore, C¢ C (C?)¢,
D° C (DR)° and (C' U D)° C (CR U D@)°.

We need an additional auxiliary lemma in order to prove the main result in
this subsection.



Lemma 5. Consider three real numbers a,b, x satisfying the following restric-
tions:

e a<b b>0.
e x> 0.

Then the following inequality holds

a+x
b+x

>

e

Proof: Taking into account the above hypotheses, we deduce that 0 < b+
and therefore:

a—+x a
> > > —a) >
b_'_x_b(:)(a—l—x)b_(b—ka:)a(:)x b>zx-asx(b—a) >0,

which is trivially satisfied, according to the hypotheses.
Let us now prove the main result in this subsection.

Theorem 1. 7(x%,y?) and 7(x9,y?) bound the three sets 7(E(X,Y)), 7(E(X,Y))
and v(E(X,Y)) respectively from below and above.

Proof: According to Remark 1, given an arbitrary sample (x,y) € E(X,Y),
the following inequalities hold: 7 < 7, < . Therefore, we simply have to prove
that 7(x9,y?) < 7(x,y) and that y(x,y) < 7(x9,y?), for every (x,y) €
E(X,Y).

e Let us first prove that 7(x%?,y?) < 7(x,y), for every (x,y) € E(X,Y).
We just have to show that nge — (nye + npe) < ng —np, where ng and
np respectively denote the number of concordant and discordant pairs in
an arbitrary sample (x,y) € E(X,Y). The above inequality is implied by
the pair of inequalities nc, < nc and np < npe +npe. The first one
can be deduced from Lemma 2, and the second one can be derived from
Lemma 4.

e Let us now prove that 7(x9,y?) > ~(x,y), for any (x,y) € E(X,Y).
Let us set an arbitrary (x,y) and let C' and D respectively denote the
collection of concordant and discordant pairs in that sample. In order to
prove the inequality 7(x9,y?) > 7(x,y), let us first take into account
that, according to Lemmas 2, 3 and 4, the following inequalities hold:

—nc+nr <nee +nra.
— npe < np.

— Ng +nNp+Np =nag =ncge +Npe +Nre.

10



According to this last equality, we can write:

F(x2,y@) = (nca +nre) —npe _ (nge +nre) —npe

nege +nre + npe na

Furthermore, taking the first and the second inequalities into account, we
get:

(nc —np)+nr _nc+nr—np < (nce + nre) —npa (©)

(nc +np) +nr na na
Now, from Lemma 5, we can deduce the following inequality:

(n¢ —np) _ (nc —np) +nr
(nc +np) ~ (nc+np)+nr’

(x,y) =

Thus, joining both inequalities (Equations 6 and 7), we get:

nc—np _ (nce +nrae) —npe

< =7(x%,y%). O
nc +np nee +nre + npa

v(x,y) =

2.2.2. Optimality of bounds

Theorem 1 proves that the interval-valued Kendall’s 7 introduced in Defini-
tion 1 contains the set of all the feasible values for 7(x,y) € 7(E(X,Y)), where
(X,Y) represents incomplete information about our original (non-quantized)
sample (x,y).

But we can furthermore guarantee that the extremes of the interval-valued
Kendal 7 are included in the sets 7(E(X,Y)), v(E(X,Y)) and 7,(E(X,Y)). We
will now provide a constructive proof. In order to attain the upper bound 7,
we will find a sample (x,y) € E(X,Y) wrt which all the pairs (i,j) € T% are
concordant pairs. Analogously, the lower bound 7 will be reached by a sample
that turns all pairs in 79 into discordant pairs. This justifies the above formula
where, in case of 7, the contributions of pairs in 79 are counted positively,
whereas in the case of 7 they are counted negatively. These two samples will
not contain any tie, and therefore, the three variants of Kendall’s coefficient, 7,
Ty and v will take the same value for each of them.

We will make use of two auxiliary lemmas. The proof of the first one is
immediate.

Lemma 6. Let i,j,k € {1,...,n} be three indices satisfying the restrictions
i<jandk<j.

e (i,j) € SlQ UU? if and only if (X; <ip X; or X; = X;), or equivalently

iff [z < xj and T; < T

o (k,j) e L? UU® if and only if (X; <rp Xi or X; = Xj), or equivalently
iff [x; < xp and T; < Ty

11



Lemma 7. Consider two open intervals |a, b and e, d| satisfying the additional
restrictions a < d and b > c¢. Then,

Je,d[ N ]a, b # 0.

Proof: According to the above hypothesis, both a and ¢ are strictly lower
than min{b, d}, and therefore max{a, c} is strictly lower than min{b, d}. There-
fore we have x € R satisfying:

max{a, c} < < min{b, d},
which implies that x €]a, b[ and z €]c, d].

Theorem 2. 7(x%,y?) and 7(x%,y?) are respectively the minimum and maz-
imum values of the three sets T(E(X,Y)), (E(X,Y)) and v(E(X,Y)).

Proof: Let us describe how to reach the upper bound 7(x?, y?) (A similar
proof would apply to the lower bound). To do so, we will define a recursive
selection procedure. Considering the two sequences of intervals, this selection
procedure will consist of recursively picking, for each j = 1,...,n, a pair of real
numbers in ]z, Z;[x]y;, ;[ such that in the end all the pairs in 7% correspond
to pairs of vectors ((x7,y;), (z},y;)) which are concordant. Therefore, the three
Kendall’s coefficients 7,7, and - will take the same value for this sample, and
furthermore, the three of them will coincide with 7(x%, y?).

Let us select an arbitrary pair of values (x7,yy) €]@1, T1[x]y1, U1[. Then, for
all j € {2,...,n}, we pick a new scalar pair (z7,y) E}ﬂ,fj[x@,?j[ satisfying
the following conditions with respect to any previously selected (z,y}) for i < j:

max{z} : (i,7) € SCUUN(LY)]} < r; < min{zy : (K, j) € LYUWenLYn

(8)

max{y] : (i,j) € SYUVON(LT)T} <yj <min{yf : (k.5) € L7 V(VINLY)},
(9)
where SiQ , LZQ , T,LQ ,© = 1,2 correspond to the notation introduced in Lemma

1.

We will recursively prove that such a sequence of pairs (w;‘, y;k), je{l,...,n}
can be constructed. In order to prove it, let us set an arbitrary j € {2,...,n}.
Let us assume that, for every j' < j, 2}, belongs to the open interval ]ﬂ VT
and satisfies

max{z} : (i,5') € SPUUCN(VRUSD)]} < &} < min{z} : (k,j') € LEU(UNLE)},
(10)
and let us prove that following statements hold:
(a) xF < T for every (i,7) € ST UUQ N (LY)].
Proof of a.- In fact, this set of pairs is included in S’? UU¥, and therefore,
according to Lemma 6, z; < z;. Furthermore, = < T; for every i < j by
assumption. Therefore, we derive the inequality x; < Zj.
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(b) xj > x; for every k such that (k,j) € LU UeNnLY).
Proof of b.- The proof is very similar to that of Part (a): First, let us
note that the set of pairs LY U (U9 N LY) is included in LY UU®. Thus,
according to Lemma 6, xy > x;. Furthermore, xj > z; by assumption,
and therefore we get z} > ;.

(c) z¥ < a} for every i and k such that (i,7) € S® U[U? N (LY)], and
(k,j) e LY U(UQNLY).
Proof of c.- Note first that, under the above restrictions, we have (i, j) €
SlQ UU® and (k,j) € L? U U®. Therefore, according to Lemma 6, the
following inequalities hold:

z; <z; <z and T <7T; < T

We will divide the rest of the proof of (c) into three cases:

e Case 1: The case where (i,5) € S?. Under this case, T; < and

therefore we get 7 < @; < x; < x5 < .

8

VR

e Case 2: The case where (k,j) € L?. Under this case, z; < , and
therefore we get z; <7 <7; < 1 < xf.

e Case 3: The case where (i,7) € (S?)¢ and (k, ) € (L9)°. According
to the above constraints, the only possibility for this case is that
(i,7) € U N (L) and (k,5) e U N LY.

— The condition (,5) € U and (k,j) € U? implies that X; =
X; = X}, and therefore either (i,k) € U® or (k,i) € U? (de-
pending on whether (i, k) € A or (k,i) € A).

— Otherwise, the fact that (4,j) € (L?)C and (k,j) € Lg implies
that 7; < y; and 7; < yx, and therefore 7; < Y- Therefore,
either ¢ < k and therefore (i,k) € 52Q or k < ¢ and therefore

(k,i) € LY. In any of those cases, we can deduce that z} < x}
from Equation (10).

We can deduce from (a)-(c) that {; < 77, u; > z; and l; < u;, where [; and
u; respectively denote o

l; = max{z? : (i,j) € L2U (U N LY)}
and
u; = min{z} : (i,5) € L2 U U NLS)}.
Therefore, according to Lemma, 7, the intersection (x;,Z;)N(l;,u;) is non-empty.
Thus, we have z} €|z;, Tj[ satisfying Equation (8), i.e. satisfying [; <z} < u;.
A similar constructive proof of that proposed here, in order to check the ex-

istence of (z7,...,z}), would be used to prove the existence of another sequence
(yf,...,y5) € Y1 x ... x Y, satisfying Equation (9) for every j € {2,...,n}.

13



We have proved that there exists a sample (z*,y*) with 2* = (27,...,2}) €
X1 X ... x X, and y* = (yf,...,y)) € Y1 X ... x Y, respectively satisfying
Equations 8 and 9, for every j = 1,...,n. By construction, all the pairs (i, j) €
T are concordant in the constructed sample, and therefore any of the three
Kendall coefficients associated to the sample coincides with 7(x%,y%). O

Remark 2. Note that our proof does not need any assumption on the linearity
of the quantization process —i.e. the ®}, (i = 1,2) can have different spread. The
& simply must not overlap, which is a necessary property for a quantization
process to lead to coherent digital images (signals).

2.2.3. Link with the general interval-valued rank correlation coefficient

In the above results, we assumed that our incomplete information was de-
rived from a quantization process, i.e. the interval valued sequences X and Y
are induced by the quantization of unknown real valued sequences x and y. We
can easily adapt the respective definitions of 7(x%,y%) and 7(x%,y?) in order
to get a similar result for the general case where the components of (X,Y) are
not necessarily disjoint intervals.

Let 7(X,Y) and 7(X,Y) respectively denote:

nNce —Npe — Nt

7(X,Y) = o ,

7(X,Y) = (e Fnre
na

where C® and D@ are in accordance with Equations 2 and 3 and 7'% is defined
as follows:

o U9 ={ij) e Al X; £1p X; and X; #p X;}

o V'?={i,j) € AlY; £1p Yj and Y #1p Y;}

o TR =URUV'Q,

Let us first note that 7(X, Y) and 7(X, Y) respectively coincide with 7(x%, y?)
and 7(x%, y?) in the quantization case, since 7’9 coincides with T'9 in that par-

ticular setting. Thus, the above formulas just generalize Definition 1 by means
of replacing the cardinal of

T9 ={(i,j) € A| X; = X; or Y; = Y}}
by the cardinal of
T’Q = {(Z,]) € A| (Xl %ID Xj and Xi ?AID Xj) or (Y; %ID }/J and )/, ?éID }/j)}

Let us now prove that 7(X,Y) < 77(X,Y) < 77 (X,Y) < 7(X,Y): We can
easily check that the two collections of sets {S?, LY, U'?} and {SS, LS, V'?}
also form partitions of A and therefore the collection {C?, D9 T'?} derived
from them according to Equation 5, also forms a partition of A.
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Figure 1: Example of a configuration where the bounds of 7 are not reached.

Furthermore, given an arbitrary sample (x,y) € E(X,Y), and letting C, D
and T respectively denote the sets of concordant, discordant and tied pairs in
it, we can easily check that the following relations hold:

e CPCC
e D? C D,

and therefore, CRUT'® D CUT and DRUT'® D DUT. A similar proof of that
from Theorem 1 leads us to the fact that the interval 7 = [7(X,Y), 7(X,Y)] cal-
culated in this general setting also contains the three sets 7(E(X,Y)), 7 (E(X,Y))
and v(E(X,Y)) in this general framework. Furthermore, these extreme points
respectively coincide with 7(x%,x?), and 7(x?,x?) in the quantization case.

The fact that, in the general case, the bounds are not optimal, i.e. 77(X,Y) #
7(X,Y) and 77(X,Y) # 7(X,Y), is illustrated in the following example.

Example 1. As we have already discussed, the mazimization (resp. minimiza-
tion) procedure relies on the fact that every pair in T? could be set as concordant
(resp. discordant) independently of the others. The basis for this procedure relies
on the following property:

(i,j) € T9, (j,k) e T? = (i, k) € T.

But this does not necessarily happen when the observed sequences of intervals
contain pairs of non-disjoint intervals.

Consider, for instance, the situation illustrated in Figure 1. According to
the notation in Lemma 1 and according to the above definition of U'?, V'@ and
T'? we have:

o S7={(1,3)},
° L? =0,
e U'? =1{(1,2),(2,3)}, and
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° 52Q =0

o L7 ={(1,2).(1,3).(2.3)},

o V@ =1,

and therefore:

e CQ =19

e D9 ={(1,3)}, and

o T'? ={(1,2),(2,3)}.

Thus, our interval-valued coefficient is T = [—1, %} However, the bound %
is unreachable, since it is impossible to get a sample where both pairs (1,2)
and (2,3) are concordant (i.e., belong to C). This would require the pair (1,3)

to be concordant as well, something that is impossible, since (1,3) € D? (the
collection of “necessarily” discordant pairs).

3. Illustrative experiment

The following illustrative experiment aims to show that the rank correlation
is not robust to quantization, and that using the imprecise 7 we proposed is a
rigorous alternative. In this experiment, we consider the two highly correlated
images depicted in Figures (2.a) and (2.b). Those images were obtained by
filling a Hoffman 2-D brain phantom (Data Spectrum Corporation) with a 99m
technetium solution (148 MBq/L) and placing it on one of the detectors of a
dual-head gamma camera using a low-energy high-resolution parallel-hole colli-
mator (INFINIA, General Electric Healthcare). We obtained those two images
by carrying out 2 acquisitions (acquisition time: 700 seconds; average count per
image: 1000 kcounts). The values were quantized on 12 bits to produce the two
images of Figures (2.a) and (2.b). As the acquisition time was quite long, the
signal-to-noise ratio in the images was quite high.

The two images were highly correlated. As the brain phantom was symmetri-
cal, the right and left part of the brain were also correlated, but slightly less due
to the acquisition conditions. In order to lower the correlation coefficient (oth-
erwise the upper bound of the imprecise 7 would always reach one), we flipped
the second image along the vertical axis (Figures (2.c)). Figure (3) shows the
changes in the images due to quantization. The experiment involved varying
the quantization level and each time comparing variations in the bounds of the
imprecise 7, which are the possible "true” values of the correlation coefficient,
and variations of 7, 7, and v. Figure (4) plots the results of this experiment.

We can see that 7, 7, and ~ yield incoherent results. They exhibit divergent
behavior at low quantization levels, while being computed from quantized im-
ages corresponding to the same underlying real-valued image. Let us suppose
that three experts have to decide whether or not the two images are correlated,
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Figure 2: Two high dynamic images of the Hoffman 2-D brain phantom (a) and (b), image
(b) after being vertically flipped (c).

Figure 3: Different quantizations of the image depicted in Figure (2.a).
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Figure 4: Variations in Kendall’s 7 with respect to the number of bits used to quantize the
images.
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with the first one using -y, the second one 7, and the last one 7. Let us also
suppose that, based on a set of experiments, they both agree that 0.8 can be
considered as a good threshold for making this decision. Then, at a quanti-
zation level of 5, the first one will see a correlation while the second will not.
However, the first and second will both both agree on no correlation when the
quantization level is higher than 7. The last expert will never see a correlation.
The decision of the 7, expert will change according to the quantization level,
although it is based on the same underlying image. This experiment reflects the
arbitrariness of a correlation analysis based on quantized data. This arbitrari-
ness is caused by the fact that quantized data is imprecise and thus a whole set
of correlation values are possible when considering the real-valued digital image
that underlies the quantized valued digital image.

On the other hand, using the above proposed 7 enables us to consider all
possible values of the correlation coefficient computed on the underlying real
valued data. Using this imprecise correlation coefficient is easy. Let us consider
that our expert is faced with the same problem of deciding whether the two un-
derlying real-valued images are correlated or not based on the quantized images
at different quantization levels. Above a quantization level of 7 he/she can con-
clude surely that the sequences are not correlated because the higher bound of 7
is lower than the threshold (given that this threshold is relevant and that there
are no uncertainties other than the data quantization). In that case, the expert’s
decision matches that of all three previous experts. But when the quantization
level is lower, then a careful analyst would simply conclude that, given the state
of the data, no meaningful conclusions can be drawn because, among the real
valued images corresponding to the actual quantized image, some images are
correlated and others are not. Adopting an imprecise point of view therefore
yields much more robust and informed analysis and decisions. It advocates in
favour of the possibility of non-decision, although not always yielding an anal-
ysis which cannot give conclusions. Non-decisions are in this context presented
as a result of a rational analysis and they shall therefore not be considered as
a failure of the expert to correctly interpret the data, but rather as a reflection
of the irreducible uncertainty of the real world.

4. Discussion

The interval-valued 7(x%, y?) we propose aims at providing the exact bounds
of all possible values of any variants of the Kendall’s correlation coefficient of the
set of all feasible pairs (x,y) of samples whose quantized values is the sequence
(x9,y®). Using this kind of coefficient is particularly relevant in image process-
ing where data quantization could have a drastic influence in the final decision.
In fact, comparing two digital images (signals) generally involves comparing the
two original real-valued images (signals). Choosing to compute this correlation
via 79, TbQ or v? amounts to making a particular choice in the set of all fea-
sible pairs defined in Subsection 2.2. Such a choice can lead to an arbitrary
decision based on information that is not conveyed by the data, as illustrated
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in Section 3. Our approach is more cautious. As in [13], we propose to use
this imprecise valued coefficient to make careful decisions. A decision based on
7(x?,y?) induces, as usual, a correlation threshold . Comparing 7(x%,y?)
to a can lead to an undecidability situation if o € 7(x?,y?) because there is at
least one sequence in the feasible pairs providing a correlation coefficient value
that is above a and one sequence in the feasible pairs providing a correlation
coefficient value that is below a.

One can object that the approach proposed by [1] and [14] could be a good
option since it leads to obtaining a better estimation of the correlation coeffi-
cient of two sequences of observations based on their noisy observation. Within
this view of the problem, quantized sequences can be considered as noisy ob-
servations of the original sequences, and thus the fuzzy gamma rank correlation
coefficient 7 they propose could potentially be a better choice for estimating the
rank correlation coefficient than using 7@, 7, 2. We will now show that this
approach to the problem is not relevant. Let (x,y) be the original sequences,
(x9,y?) their quantized observation and (X,Y) the interval valued sequence
induced by the quantization process. Let m, (rsp. m,) be the sequence of
the mid-points of X (rsp. Y), then it is more than likely (and generally rec-
ognized) that the sequences ¢, = (x —m,) and ¢, = (y — m,) are uniformly
distributed. In fact, this approach could be suitable if (x,y) were considered
as noisy observations of (x?,y?), since the latter is more likely to be tied than
the former. Since the observed values are quantized values, this random view
of quantization is not relevant because the quantization is a fully deterministic
observation process.

Moreover, when using 4 to estimate the correlation coefficient can lead to
a biased decision. So let us consider the following example: x? = (1,2,5) and
y? = (1,5,3). In that case, whatever the original feasible pairs (x,y), we have
nc=2np=1nyr=0and ng =3, leadingtor=7=7=7=7= 3.
Now, let us consider the T-E-ordering based on the fuzzy relation E(z,y) =
max(0,1 — 1|z — y|) and the Lukasiewicz t-norm (see [14] page 3) to compute ¥
based on the quantized observations. In that case, if r <1, then y =7 = 1
However, if 7 €]1,2], then fic = 2—§ (with § = 1) and thus 7 = é_;‘s < &. Thus
4 does not correspond to any feasible pair of samples.

The situation considered in this article is a particular from the general case
proposed by Denceux et al. ([3]) focused on situations where data imprecision is
due to quantization. In this more specific case, the partial order over a set of in-
tervals, considered by Denceux et al., is replaced by a strict total order over the
set of intervals associated with the set of quantized levels (see Section 2.1). This
approach leads to a simpler and more tractable problem that entails an easy es-
timation of the interval-valued rank correlation coefficient at low computational
cost. Considering that, in this general case, the interval-valued coefficient [r,7]
we propose always bounds the set of feasible values for 7, this rough approx-
imation can be used to estimate upper and lower bounds for it. In fact, the
Monte-Carlo based estimation proposed in [6] and the heuristic proposed in [7]
provide an inner estimation [r,,7*] of [77, 7] (i.e. 77 < 7, < 7% < 77]). Thus,
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both approaches can be used to compute an imprecise estimate [r, 7] of 7~ and
an imprecise estimate [7*,7] of 7.

5. Conclusion

Here, we have proposed an interval-valued extension of Kendall’s rank corre-

lation, also called Kendall’s 7. The use of intervals is prompted by the epistemic
approach we take on the imprecision conveyed by the use of quantized values.
This modeling assumption allows us to consider the set of all possible values
before quantization without being forced to make any assumptions on the data,
the linearity of the quantization process or on the existence of a probability
distribution. The exactness of these bounds has been proven. An experimental
illustration based on real-life data was proposed, which highlighted the need of
considering the inherent imprecision of quantized data.
The more general case of rank correlation on imprecise data is more problem-
atic and the bounds of our T are only conservative due to the complex ranking
configurations that result from partial overlapping of intervals. No authors have
provided analytical ways of computing those bounds, and probably the best way
to do so is by developing efficient general-purpose optimization methods.
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