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Abstract

This study uses a concept of interval differentiability, which was recently introduced, to formulate interval initial value problems 
involving linear interval differential equations. Differently from the approaches that use the gH -differentiability, this study does not 
make use of a criterion of choice for switching points in order to obtain solutions for such problems. The method herein presented 
provides solutions in a simple, straightforward, and computationally tractable way. Moreover, these solutions are intuitive because 
they coincide with the solutions given by a differential inclusion method. The efficiency and practicality of our approach are 
illustrated through some examples that have appeared in other articles.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

From [19,21,20], it is clear that interval analysis is an important first step in fuzzy interval analysis. Among the 
topics of fuzzy interval analysis the fuzzy differential equations is one which has a very strong relation with the interval 
differential equations. One of the motivations for this is that the fuzzy differential equations originally proposed in 
[24], whose approach is based on the Hukuhara differentiability, have some disadvantages since their solution does 
not reflect the behavior of the problem initially modeled, see, for example, the radioactivity decay model [13]. In order 
to provide a model whose solutions describe better the behavior of the problem initially modeled, some articles such 
as ([14,17]), present different formalizations to work with fuzzy differential equations. In [18] a new formalization 
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for fuzzy differential equations is presented using the α-levels of the fuzzy terms contained in the studied equation. 
In this sense we consider this work as a first step towards solving fuzzy differential equations since the α-levels of a 
fuzzy number are intervals, and for this reason, we begin with the interval approach.

Differential equation models with interval uncertainties have been studied by many authors, see for example 
[13,2–4,8,7,9,16,23,25]. These articles use differential inclusion methods or the generalized Hukuhara derivative 
(gH -derivative, for short).

The behavior of the solutions generated using the concept of the gH -differentiability is directly associated with 
the concept of switching points. The switching points of a gH -differentiable interval-valued function are the points 
where the gH -derivatives of such function change from type (i) to type (ii) and vice versa (see [25,5,6]). Using 
gH -differentiability and setting in an anticipated way that some points are the switching points of a seeked solution for 
an interval initial value problem, it is possible to construct solutions for periodic boundary value problems involving 
linear differential equations with uncertainty (see [16]) and, in particular, it is possible to construct solutions for 
interval periodic differential equations. On the other hand, since these periodic interval solutions are given through a 
previous choice of switching points, a wrong choice may generate a solution whose behavior does not represent the 
problem initially modeled. Thus, the difficulty which arises is to know how to determine the best criterion of choice 
for the switching points in order to construct a reliable solution. The method developed in this study to obtain interval 
solutions for interval differential equations avoid this kind of mishap since the method provide interval solutions 
without having to use a criterion of choice for switching points. Each one of these solutions is obtained by solving 
only one classical linear differential equation in R2. Therefore, the solutions of the interval initial value problems 
involving linear interval differential equations are obtained in a simple, straightforward, and computationally tractable 
way.

Unlike the interval differential equations methods involving the gH -derivative, to solve interval differential equa-
tions via differential inclusion methods allows us to characterize in the interval space the main properties related to 
ordinary differential equations such as periodicity, stability, bifurcation, among others, in a natural way ([13], [14], 
[23], [15]). However, the differential inclusion methods do not deal directly with a concept of derivative of interval-
valued functions. That is, the interval differential equations are directly interpreted without having a concept of Interval 
derivative involved in the process. The method developed in this study uses a concept of interval derivative with which 
are generated solutions that coincide with the solutions given by a differential inclusion method. Thus our approach 
allows to interpret the interval differential equations by using directly a interval derivative and also it allows us to gen-
eralize in a natural way some properties related to classical differential equations such as those above cited, through 
such interval derivative.

In short, in this research we study interval initial value problems involving linear interval differential equations by 
using the concept of ϕP -differentiability of interval-valued functions, which was recently introduced in [11]. This 
concept of differentiability is equivalent to gH -differentiability. However, using the ϕP -differentiable, we obtain 
solutions for interval initial value problem in a simple, straightforward, and computationally tractable way. Moreover, 
such solutions coincide with the solutions given by a differential inclusion method.

This research is organized as follows: Section 2 recalls the concepts of limit and of ϕ-differentiability of gener-
alized interval-valued functions and some results showing that these concepts are equivalent to the concepts of limit 
and differentiability of vector-valued functions, respectively. In Section 2 is also recalled the concepts of limit and 
of ϕP -differentiability of interval-valued functions. The concept of limit of interval-valued functions is obtained by 
using the concept of limit of generalized interval-valued functions and the ϕP -differentiability is obtained by using 
the concept of limit of interval-valued functions. Moreover, it is recalled the result which shows that on particu-
lar conditions, the existence of ϕ-differentiability of a generalized interval-valued function implies the existence of 
ϕP -differentiability of an interval-valued function and this result plays a key role in the development of our study. 
Section 2 is finished recalling a result which states that the ϕP -differentiability is equivalent to π -differentiability, to 
gH -differentiability, and to Markov-differentiability.

Section 3 formalizes the generalized interval initial value problems and through this is also formalized the interval 
initial value problems. Also in Section 3 is presented the method which allows us to obtain solutions of interval 
initial value differential equation problems by solving a simple initial value problem in R2. This is one of our main 
results. Still in the Section 3 is proved that the solutions given by our method coincide with the solutions given by 
a differential inclusion method, and this is another of our main results. Section 4 presents some numerical examples 
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showing in practice the efficiency of the method herein presented. Finally, in the Section 5 final considerations and 
future directions are given.

2. Preliminary results and differentiable interval-valued functions

This section recalls some concepts and the results which are fundamental for the development of this presentation. 
Most of these concepts and results were given in [11].

This presentation uses I (R) and I (R) to denote the family of all proper intervals and the family of all improper 
intervals given, respectively, by

I (R) = {[a1, a2] : a1, a2 ∈R and a1 ≤ a2}
and

I (R) = {[a1, a2] : [a2, a1] ∈ I (R)}.
Furthermore, M := I (R) 

⋃
I (R) denotes the set called set of generalized intervals.

Given [a1, a2], [b1, b2] ∈ M we have that [a1, a2] = [b1, b2] if and only if a1 = b1 and a2 = b2. Lastly, 
ϕ : M −→ R

2 denotes the bijection defined by

ϕ([a1, a2]) = (λ1a1 + λ2a2;β1a1 + β2a2) (1)

with λ1, λ2, β1, β2 ∈ R such that λ1β2 �= λ2β1, where “+” and “·” are the usual algebraic operations in the bidi-
mensional Euclidean vector space. Following [12] M can be equipped with a structure of vector space through the 
bijection ϕ. Thus, the operations +ϕ and ·ϕ are defined, respectively, by [a1, a2] +ϕ [b1, b2] = [a1 + b1, a2 + b2] and 
α ·ϕ [a1, a2] = [α · a1, α · a2]. In [12] it is showed that (1) is an important class for to solve optimization problems. In 
this presentation this class of functions (1) is used because it allows us prove some results such as the characterization 
of derivative of an interval-valued function via derivative of the function extremes of a such interval-valued function, 
in an easier way since, given arbitrarily [a1, a2] ∈ (M, +ϕ, ·ϕ), its opposite element is given by [−a1, −a2] and, the 
neutral element with respect to addition +ϕ is the interval [0, 0].

From [11], by using the isomorphism ϕ : (M, +ϕ, ·ϕ) −→ (R2, +, ·) and a norm ‖·‖ in R2, then M can be equipped 
with the norm || · ||ϕ : M −→ R defined by 

∥∥[a1, a2]
∥∥

ϕ
:= ‖ϕ([a1, a2])‖. Thus the space (M, +ϕ, ·ϕ, ‖ · ‖ϕ), which 

we denote simply by Mϕ , it is a normed vector space. The space Mϕ is called generalized interval space, and a map 
F : U ⊆R −→ Mϕ is called a generalized-interval-valued function.

Given the functions F, G : U ⊆ R −→ Mϕ and λ ∈ R, the notation used for algebraic operations between 
generalized-interval-valued functions are given by (F + G)(t) := F(t)+ϕG(t), (λ · F)(t) := λ ·ϕ F (t), and 
(F − G)(t) = F(t)−ϕG(t) := F(t)+ϕ(−1) ·ϕ G(t).

Next we recall other concepts and results introduced in [11].

Definition 2.1. ([11]) Let F : U ⊆ R −→ Mϕ be a generalized-interval-valued function. Given t0 ∈ U , we say that 
L ∈ M is a limit of F as t → t0 if and only if for every ε > 0 there exists δ > 0 such that

‖F(t) −ϕ L‖ϕ < ε

for all t ∈ U with 0 < ‖t − t0‖ < δ. L is denoted by lim
t→t0

F(t).

The next result shows that the existence of the limit of a generalized-interval-valued function is equivalent to 
existence of the limit of a vector-valued function and real variables.

Theorem 2.1. ([11]) Let F : U ⊆ R −→ Mϕ be a generalized-interval-valued function. Given t0 ∈ U , then L ∈ M is 

the limit of F as t → t0 if and only if L = ϕ−1
(

lim
t→t0

ϕ(F (t))

)
.

Definition 2.2. ([11]) Let F : U −→ Mϕ be a generalized-interval-valued function, where U ⊆ R is an open set. We 

say that F is ϕ-differentiable at t ∈ U if and only if there exist the limit lim
h→0

1

h
·ϕ
(
F(t + h) −ϕ F (t)

)= F ′
ϕ(t). The 

generalized interval F ′
ϕ(t) is called ϕ-derivative of F at t .
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The next result shows that the existence of the ϕ-differentiability of a generalized-interval-valued function is equiv-
alent to existence of the differentiability of a vector function of real variables.

Theorem 2.2. ([11]) Let F : U −→ Mϕ be a generalized-interval-valued function, where U ⊆R is an open set. Then 
F is ϕ-differentiable at t ∈ U if and only if H = ϕ ◦F : U → R

2 is differentiable at t . Moreover, F ′
ϕ(t) = ϕ−1

(
H ′(t)

)
.

Remark 2.1. Since ϕ : (M, +ϕ, ·ϕ) → (R2, +, ·) is an isomorphism, from definition of ‖ · ‖ϕ , it follows that 
ϕ : Mϕ → (R2, +, ·, ‖ · ‖) is a linear homeomorphism. Consequently, ϕ is differentiable and ϕ′(x) = ϕ for all x ∈ Mϕ . 
Thus, considering F : U −→ Mϕ and H = ϕ ◦ F : U → R

2, from Theorem 2.2, it follows that if H is differentiable 
at t then F is ϕ-differentiable at t . Consequently, from the chain rule, it follows that

H ′(t) = ϕ′(F (t)) ◦ F ′
ϕ(t) = ϕ(F ′

ϕ(t)). (2)

On the other hand, since H is differentiable at t , from Theorem 2.2, it follows that

F ′
ϕ(t) = ϕ−1(H ′(t)

)
. (3)

Therefore (2) can be obtained taking ϕ in the both sides of the equality (3).

The next result shows that the existence of the ϕ-differentiability of a generalized-interval-valued function is equiv-
alent to existence of the differentiability of its extremes functions.

Corollary 2.1. ([11]) Let F : U −→ Mϕ be the generalized-interval-valued function given by F(t) = [f1(t), f2(t)], 
where U ⊆R is an open set. Then F is ϕ-differentiable at t ∈ U if and only if f1, f2 : U −→ R are differentiable at t . 
Moreover, F ′

ϕ(t) = [f ′
1(t), f

′
2(t)

]
.

A map F̂ : U ⊆ R −→ I (R) ⊂ Mϕ is called an interval-valued function. Since I (R) ⊂ Mϕ , the concept of limit 
for interval-valued functions can be defined as a particular case of the limit for generalized interval-valued functions. 
However, the limit of a generalized interval-valued function is an element of Mϕ which does may not belong to 
I (R). Thus, to obtain a consistent concept of limit for an interval-valued function is required that the limit of an 
interval-valued function (if exists) be a proper interval.

Definition 2.3. ([11]) Let F̂ : U ⊆ R −→ I (R) ⊂ Mϕ be an interval-valued function. We say that there exist the limit 
of F̂ as t → t0 ∈ U if and only if there is A ∈ I (R) such that lim

t→t0
F̂ (t) = A.

Before to present the concept of ϕP -differentiability of interval-valued functions, we need to present the map 
p : M −→ I (R) which plays a key role in this presentation. This map is called proper function and given by:

p([a1, a2]) = [a1, a2]p =
{ [a1, a2], if [a1, a2] ∈ I (R)

[a2, a1], if [a1, a2] ∈ I (R).

Now, using the proper function and the concept of limit of an interval-valued function, we present the concept of 
ϕP -differentiability of interval-valued functions.

Definition 2.4. ([11]) Let F̂ : U −→ I (R) ⊂ Mϕ be an interval-valued function, where U ⊆ R is an open set. We say 
that F̂ is ϕP -differentiable at t ∈ U if and only if there is F̂ ′

ϕP (t) ∈ I (R) such that

lim
h→0

(
1

h
·ϕ
(
F̂ (t + h) −ϕ F̂ (t)

))
p

= F̂ ′
ϕP (t).

F̂ ′ (t) is called the ϕP -derivative of F̂ at t .
ϕP
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Through the proper function an interval-valued function can be obtained via a generalized interval-valued function 
F : U ⊂ R −→ Mϕ by defining the interval-valued function F̂ : U ⊂ R −→ I (R) ⊂ Mϕ by F̂ (t) = (F (t))p for all 
t ∈ U .

The following result provides a sufficient condition to existence of the ϕP -differentiability of an interval-valued 
function. Moreover, such result provides a relation between the concepts of ϕP -differentiability and ϕ-differen-
tiability.

Theorem 2.3. ([11]) Given an open set U ⊆ R and a generalized-interval-valued function F : U −→ Mϕ , let 
F̂ : U −→ I (R) be the interval-valued function given by F̂ (t) = (F (t))p . If F is ϕ-differentiable at t , then F̂ is 
ϕP -differentiable at t . Moreover, F̂ ′

ϕP (t) = (F ′
ϕ(t)

)
p

.

Example 2.1. Consider the interval-valued function F̂ : R −→ I (R) defined by F̂ (t) = [a, a
] ·g(t), where g :R → R

is a differentiable function and · denotes the standard multiplication (see [22]). Then

F̂ (t) =
{ [

ag(t), ag(t)
]

if g(t) ≥ 0;[
ag(t), ag(t)

]
if g(t) < 0.

Now, if we consider the generalized-interval-valued function F :R −→ Mϕ defined by F(t) = [a, a
] ·ϕ g(t), we have 

F̂ (t) = (F (t))p for all t ∈ R. Since F is ϕ-differentiable then, from Theorem 2.3, it follows that F̂ is ϕP -differentiable 
and

F̂ ′
ϕP (t) = (F ′

ϕ(t)
)
p

= ([ag′(t), ag′(t)
])

p
= [min

{
ag′(t), ag′(t)

}
, max

{
ag′(t), ag′(t)

}]
.

The interval F̂ ′
ϕP obtained in the last equality coincides with the gH -derivative of F at t as can be seen in [10].

The results given by Theorem 2.3 and by Corollary 2.1 allow to obtain a solution for a given interval initial value 
problem by solving only one classical initial value problem in R2 for which is known solving methods. Moreover, 
these results allow to avoid a priori choice for the switching points in the solving process.

The next result relates the ϕP -differentiability to gH -differentiability.

Theorem 2.4. ([11]) Let U ⊆ R be an open set. Given F̂ : U −→ I (R) an interval-valued function, F̂ (t) =[
f̂1(t), f̂2(t)

]
, then F̂ is ϕP -differentiable at t if and only if F̂ is gH -differentiable at t .

The next result provides a necessary and sufficient condition of existence for ϕP -differentiability of an interval-
valued function.

Corollary 2.2. ([8,11]) Let U ⊆ R be an open set. Given F̂ : U −→ I (R) an interval-valued function, F̂ (t) =[
f̂1(t), f̂2(t)

]
, then F̂ is ϕP -differentiable at t if and only if one of the following cases holds

(a) f̂1 and f̂2 are differentiable at t and

F̂ ′
ϕP (t) =

[
f̂ ′

1(t), f̂
′
2(t)

]
p

;

(b) (f̂1)
′−(t), (f̂1)

′+(t), (f̂2)
′−(t) and (f̂2)

′+(t) exist and satisfy (f̂1)
′−(t) = (f̂2)

′+(t) and (f̂1)
′+(t) = (f̂2)

′−(t). More-
over,

F ′(t) =
[
(f̂1)

′−(t), (f̂2)
′−(t)

]
p

=
[
(f̂1)

′+(t), (f̂2)
′+(t)

]
p

.

Since the concepts of π -differentiability, gH -differentiability, and Markov-differentiability are all equivalents 
(see [8]) and ϕP -differentiability is equivalent to gH -differentiability, then ϕP -differentiability is also equivalent 
to these concepts.
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Remark 2.2. The proper function plays a key role in the development of this study since it helps to define the 
ϕP -differentiability and it allows to define the class of interval differential equations that we deal in this research. 
Moreover, using the proper function the Theorem 2.3, which is fundamental for this presentation, is proved.

The next section shows that the use of the gH -differentiability in Mϕ (via equivalency with ϕP -differentiability) 
allows to obtain solutions for interval initial valued problems involving linear interval differential equations in a 
simple, straightforward, and computationally tractable way, without having to use a criterion of choice for switching 
points.

3. Interval initial value problems

This section presents a method to obtain solutions of interval initial value problems involving linear interval dif-
ferential equations. Moreover, a relation between the solutions given by this method and the solutions given by a 
differential inclusion method is presented.

3.1. Formalization of the generalized interval differential equations and of the interval differential equations

The formalization of Generalized interval differential equations and the formalization of Interval differential equa-
tions is presented here. The Generalized interval differential equations plays a key role in this study since the solutions 
of an interval initial value problem are obtained by solving a generalized interval initial value problem, which is equiv-
alent to solve a classical initial value problem in R2.

Definition 3.1. Given the functions Y : U −→ M and G : U × M −→ M , where U ⊆R, then the equation

Y ′
ϕ(t) = G(t,Y (t)) (4)

is called a generalized interval differential equation.

Definition 3.2. Let I ⊆R be an interval. The generalized interval-valued function 	 : I −→ M is called a solution of 
(4) defined on I if and only if 	′

ϕ(t) = G(t, 	(t)) for all t ∈ I .

A generalized interval linear differential equation (GILDE) is a generalized interval differential equation given 
by

Y ′
ϕ(t) = a(t) ·ϕ Y (t) +ϕ B(t), (5)

where a : U ⊆R −→R and Y, B : U ⊆R −→ M .

Definition 3.3. Given the functions X : U → I (R) and F : U × I (R) → I (R), where U ⊆R, then the equation

X′
ϕP (t) = F(t,X(t)) (6)

is called a interval differential equation.

Definition 3.4. Let I ⊆ R be an interval. The interval-valued function 	 : I −→ I (R) is called a solution of (6)
defined on I if and only if 	′

ϕP (t) = F(t, 	(t)) for all t ∈ I .

An interval linear differential equation (ILDE) is an interval differential equation given by

X′
ϕP (t) = ((a(t) ·ϕ X(t)) +ϕ B(t)

)
p

, (7)

where a : U ⊆R −→R and X, B : U ⊆R −→ I (R).
In this work our objects of study are the interval initial value problems involving equations of kind (7). To be more 

precise, the class of interval initial value problems studied in this presentation is composed by interval initial value 
problems of kind:
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{
X′

ϕP (t) = ((a(t) ·ϕ X(t)) +ϕ B(t)
)
p

X(t0) = [x1(t0), x2(t0)],
(8)

where t0, tf ∈ R with t0 ≤ tf , and X, B : [t0, tf ] → I (R), are interval valued functions given, respectively, by
X(t) = [x1(t), x2(t)] and B(t) = [b1(t), b2(t)], where a, x1, x2, b1, b2 : [t0, tf ] −→ R are real continuous functions.

Remark 3.1. By using the standard arithmetic (see [22]) and the gH -difference (see [25,5,6]) we have that the right 
side of (7) is given by:(

(a(t) ·ϕ X(t)) +ϕ B(t)
)
p

= B(t) + a(t) · X(t), if 0 ≤ a(t),

and (
(a(t) ·ϕ X(t)) +ϕ B(t)

)
p

= B(t) 
 (−a(t) · X(t)), if a(t) ≤ 0.

It is known that many works in the literature such as [16,25] present studies for each one of these cases separately. 
One of the advantages of using the formalization (7) is that this formalization allows to study both these two cases in 
a unified way without having to worry about the sign of the function a(·) in a given point t .

The method developed in this study consists of providing a solution of (8) solving a generalized interval initial 
value problem of kind:{

Y ′
ϕ(t) = c(t) ·ϕ Y (t) +ϕ D(t)

Y (t0) = [y1(t0), y2(t0)] = [y10, y20],
(9)

where t0, tf ∈ R with t0 ≤ tf , Y : [t0, tf ] −→ M with Y(t) = [y1(t), y2(t)] and Y(t0) ∈ I (R), D : [t0, tf ] −→ I (R)

with D(t) = [d1(t), d2(t)], and c, y1, y2, d1, d2 : [t0, tf ] −→R are real continuous functions.

3.2. Solving the Problem (8) via the Problem (9)

Here, we present a theorem about the existence and uniqueness of solution of (9). We also show that the solution 
of (9) is a proper interval. Moreover, using the Theorem 2.3 we obtain a solution of (8) by solving the Problem (9).

Theorem 3.1. The Problem (9) has only one solution and this solution is a proper interval.

Proof. From definition of +ϕ and of ·ϕ , and from Corollary 2.1, it follows that the Problem (9) is equivalent to:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′
1(t) = c(t)y1(t) + d1(t)

y′
2(t) = c(t)y2(t) + d2(t)

y1(t0) = y10

y2(t0) = y20.

(10)

From the classical existence and uniqueness theorem, it follows that (10) has only one solution (y1(t), y2(t)). Conse-
quently, the Problem (9) has only the solution Y(t) = [y1(t), y2(t)]. Moreover, it is known that (y1(t), y2(t)) is given 
by

yi(t) = e

⎛
⎜⎜⎝

t∫
t0

c(τ )dτ

⎞
⎟⎟⎠
yi(t0) +

t∫
t0

e

⎛
⎜⎜⎝

t∫
s

c(τ )dτ

⎞
⎟⎟⎠
di(s)ds, i = 1,2. (11)

Since d1(t) ≤ d2(t), 0 ≤ e

⎛
⎜⎜⎝

t∫
s

c(τ )dτ

⎞
⎟⎟⎠

, 0 ≤ e

⎛
⎜⎜⎝

t∫
t0

c(τ )dτ

⎞
⎟⎟⎠
yi(t0) for all t0 ≤ s ≤ t ≤ tf , and y1(t0) ≤ y2(t0), then 

from (11), it follows that y1(t) ≤ y2(t) for all t ∈ [t0, tf ]. Therefore, Y(t) = [y1(t), y2(t)] is a proper interval. �
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The next result is one of our main results.

Theorem 3.2. Given the Problem (8), consider the Problem (9) with Y ≡ X, D ≡ B , d1 ≡ b1, d2 ≡ b2, and a ≡ c. 
Then, if X is the solution of (9), it implies that X is a solution of (8).

Proof. Let X : [t0, tf ] −→ M with X(t) = [x1, x2] be the solution of (9). That is,

X′
ϕ(t) = a(t) ·ϕ X(t) +ϕ B(t) and X(t0) = [x1(t0), x2(t0)].

Thus, using the proper function we have that

(X′
ϕ(t))p = (a(t) ·ϕ X(t) +ϕ B(t))p and (X(t0))P = ([x1(t0), x2(t0)])p. (12)

From Theorem 3.1, it follows that X(t) ∈ I (R) for all t ∈ [t0, tf ]. Consequently, given X̂ : [t0, tf ] → I (R) by
X̂(t) = (X(t))p for all t ∈ [t0, tf ], it follows that X̂(t) = X(t) for all t ∈ [t0, tf ], and from Theorem 2.3, it follows 
that (X′

ϕ(t))p = X′
ϕP (t) for all t ∈ [t0, tf ]. Therefore, from (12), it follows that

X′
ϕP (t) = (a(t) ·ϕ X(t) +ϕ B(t))p and X(t0) = [x1(t0), x2(t0)].

This means that X is a solution of (8). �
Remark 3.2. Theorem 3.2 provides our method to obtain solutions for interval initial valued problems involving linear 
interval differential equations. Our method is simple, straightforward, and computationally tractable because it allows
to find a solution for each one of these interval initial valued problems just solving a classical initial value problem 
in R2. A direct consequence of this fact is that we do not need to make a priori choice for the switching points in 
order to construct such solutions. Actually, by using our method, the switching points of a solution are given by such 
solution and not the otherwise.

3.3. Differential inclusion and interval initial value problem

Here we provide a theorem showing that the solution of (8) obtained by Theorem 3.2 is more intuitive than the 
solutions given by the previous approaches which involve treating interval differentiability directly in the solving 
methods. To be more precise, such result shows that the solution of (8) obtained by Theorem 3.2 coincides with the 
solution given by the following linear differential inclusion:

x′(t) ∈ (a(t) ·ϕ x +ϕ B(t)
)
p

and x(t0) ∈ X(t0), (13)

where x, a : [t0, tf ] −→ R, a is continuous and X, B : [t0, tf ] −→ I (R) ⊂ Mϕ are given in (8). This solution is 
considered more intuitive than the solutions given by the previous approaches which involve interval differentiability 
directly in the solving methods ([13], [14], [23], [15]) because it generalizes in a natural way the properties of solutions 
of classical differential equations such as periodicity, stability, bifurcation, among others. Mathematically we have 
that:

Theorem 3.3. Let X(t) be a solution of (8) given by Theorem 3.2. Then X(t) is an attainable set of (13) for all 
t ∈ [t0, tf ].

Proof. Consider (13). Since any real number r can be represented as a proper interval [r, r], and the sum of two 
proper intervals is also a proper interval, then (13) can be rewritten as

x′(t) ∈ a(t) ·ϕ [x, x] +ϕ B(t) and x(t0) ∈ X(t0).

From definitions of +ϕ and of ·ϕ , it follows that this differential inclusion coincides with the classical linear differential 
inclusion (see [2]) given by

x′(t) ∈ a(t) · x + B(t) and x(t0) ∈ X(t0). (14)

Thus, (13) is equivalent to (14), and consequently, the attainable sets of them also coincide for all t ∈ [t0, tf ].
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Setting �(t, s) = e

⎛
⎜⎜⎝

t∫
s

a(τ )dτ

⎞
⎟⎟⎠

for all t, s ∈ R with t0 ≤ s ≤ t ≤ tf , since the attainable sets of (13) coincide 
with the attainable sets of (14), then the attainable set of (13) at t ∈ [t0, tf ] is given by R(t) = �(t, t0)X(t0) +

t∫
t0

�(t, s)B(s)ds. Since this integral is the Aumann integral and �(t, s) > 0, from the definition of the Minkowski 

algebraic operations, it follows that

R(t) =
[
e

⎛
⎜⎜⎝

t∫
t0

a(τ)dτ

⎞
⎟⎟⎠
x1(t0) +

t∫
t0

e

⎛
⎜⎜⎝

t∫
s

a(τ )dτ

⎞
⎟⎟⎠
b1(s)ds,

e

⎛
⎜⎜⎝

t∫
t0

a(τ)dτ

⎞
⎟⎟⎠
x2(t0) +

t∫
t0

e

⎛
⎜⎜⎝

t∫
s

a(τ )dτ

⎞
⎟⎟⎠
b2(s)ds

]
.

Therefore, if X(t) is a solution of (8) given by Theorem 3.2, it follows that X(t) = R(t) for all t ∈ [t0, tf ]. That is, 
X(t) is an attainable set of (13) for all t ∈ [t0, tf ]. �
Remark 3.3. It is known that to obtain the attainable sets of a classical differential inclusion, in general, is not an 
easy task. However, Theorem 3.3 shows that we can obtain the attainable sets of a classical linear one-dimensional 
linear differential inclusion by solving an interval initial value problem which is an easy task since it means to solve 
a classical initial value problem in R2.

In short, through Theorem 3.2 we provide solutions for interval initial value problems involving linear interval 
differential equations in a simple, straightforward, and computationally tractable way which avoids a priori choice 
for switching points to construct the solution. Moreover, these solutions given by Theorem 3.3 are more intuitive than 
the solutions given by the previous approaches which involve treating interval differentiability directly in the solving 
methods.

The next section presents some examples in order to show, in practice, the efficiency of the results introduced here.

4. Numerical examples

Here some numerical examples of interval initial value problems (8) are presented using the concepts and results 
given in the Section 3. We present the graphs of solutions providing a geometric interpretation for them. These exam-
ples were studied in previous articles using other methods.

Example 4.1. (Example 40 in [25]): Consider the following interval initial value problem with t ∈ [0, 4]{
X′(t) = −X(t) + [1,2]t
X(0) = [0,1] (15)

Using (7) we can rewrite (15) as 

{
X′

ϕP (t) = (a(t) ·ϕ X(t) +ϕ B(t))p

X(0) = [0,1], where a(t) = −1 and B(t) = ([1, 2] ·ϕ t)p for 

all t ∈ [0, 4]. Then, from Theorem 3.2, it follows that the solution X(t) = [x1(t), x2(t)] is given by the following 
classical initial value problem
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Fig. 1. Solution of (15) given by Theorem 3.2.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1(t) = −x1(t) + t

x′
2(t) = −x2(t) + 2t

x1(0) = 0

x2(0) = 1

whose solution is (x1(t), x2(t)) = (−1 + t + e−t , −2 + 2t + 3e−t ). Thus, X(t) = [−1 + t + e−t , −2 + 2t + 3e−t ] is 
a solution of (15). See Fig. 1.

Remark 4.1. The solution X of Example 4.1 does not coincide with any solutions given in Example 40 [25].

Example 4.2. (Example 42 in [25]): Consider the following interval initial value problem with t ∈ [0, 6]{
X′(t) = X(t) sin(t)

X(0) = [1,2] (16)

Using (7) we can rewrite (16) as{
X′

ϕP (t) = (a(t) ·ϕ X(t) +ϕ B(t))p

X(0) = [1,2],
where a(t) = sin(t) and B(t) = [0, 0] for all t ∈ [0, 6].

Then, from Theorem 3.2, it follows that the solution X(t) = [x1(t), x2(t)] is given by the following classical initial 
value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x′
1(t) = x1(t) sin(t)

x′
2(t) = x2(t) sin(t)

x1(0) = 1

x2(0) = 2

whose solution is (x1(t), x2(t)) =
(
e1−cos(t),2e1−cos(t)

)
. Thus, X(t) = [e1−cos(t), 2e1−cos(t)] is a solution of (16). See 

Fig. 2.

Remark 4.2. The Solution X of Example 4.2 coincides with one of the four solutions given in Example 42 [25].

Example 4.3. (studied in [13,18,7,1]): Consider the following interval initial value problem with t ∈ [0, 14]{
X′(t) = −X(t) + [−1,1] · cos(t)

X(0) = [−1,1] (17)
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Fig. 2. Solution of (16) given by Theorem 3.2.

Fig. 3. Solution of (17) given by Theorem 3.2.

Using (7) we can rewrite (17) as{
X′

ϕP (t) = (−ϕX(t) +ϕ B(t)
)
p

X(0) = [−1,1],
where a(t) = −1 and B(t) = [−| cos(t)|, | cos(t)|] for all t ∈ [0, 14]. Then, from Theorem 3.2, it follows that the 
solution X(t) = [x1(t), x2(t)] is given by the following classical initial value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x′
1(t) = −x1(t) − | cos(t)|

x′
2(t) = −x2(t) + | cos(t)|

x1(0) = −1

x2(0) = 1

whose solution is (x1(t), x2(t)) =
⎛
⎝−e−t

⎛
⎝1 +

t∫
0

es | cos(s)|ds

⎞
⎠ , e−t

⎛
⎝1 +

t∫
0

es | cos(s)|ds

⎞
⎠
⎞
⎠. Thus, X(t) =

⎡
⎣−e−t

⎛
⎝1 +

t∫
0

es | cos(s)|ds

⎞
⎠ , e−t

⎛
⎝1 +

t∫
0

es | cos(s)|ds

⎞
⎠
⎤
⎦ is a solution of (17). See Fig. 3.

Remark 4.3. The solution X of Example 4.3 coincides with the solution given in Example 1 [7].
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5. Conclusion

By using the concept of ϕP -differentiability, the vector space structure of (M, +ϕ, ·ϕ), and the proper function 
we provided a new formalization for interval differential equations. Specifically, we studied interval initial value 
problems involving linear interval equations of kind X′

ϕP (t) = (a(t) ·ϕ X(t) +ϕ B(t))p . Differently from some studies 
presented in the literature such as [4,8,16,25], which work with a linear interval differential equation in a separated 
way depending on if a(t) < 0 or if 0 ≤ a(t), this new formalization allows us to deal with linear interval differential 
equations in a unified way without having to worry about the sign that the function a(·) attained for each t . By using 
this formalization we obtained from Theorem 3.2 that each interval initial value problem involving linear interval 
differential equations has, at least, one solution, which can be obtained by solving only one classical initial value 
problem in R

2. Thus, the solution given by Theorem 3.2 is obtained in a simple, straightforward, and computationally 
tractable way, in which is not necessary a priori choice for switching points to construct such solution. Moreover, from 
Theorem 3.3 we obtained that the solutions given by Theorem 3.2 coincide with the solutions given by a differential 
inclusion method. Thus, these solutions generalize properties of solutions of ordinary differential equations such as 
periodicity, stability, and bifurcation, among others, in a natural way, and this is what makes these solutions be more 
intuitive than the solutions given by the other approaches that treats interval differentiability directly in the solving 
process. Theorem 3.3 also shows how to represent the attainable sets of an one-dimensional linear differential equation 
by solving an interval initial value problem which is interpreted through the concept of ϕP -differentiability.

Our proposal for future work is to use the results presented here and the formalization of fuzzy differential equation 
given in [17], which uses the α-levels of a fuzzy element to solve a fuzzy differential equation. Thus we hope also to 
obtain a good behavior for the fuzzy differential equations in a simple, straightforward, and computationally tractable 
way in which will not be necessary to make a priori to choose for switching points in the obtainment process of 
such solution, even that the model represents a periodic phenomenon. In this sense this research is a first step toward 
solving fuzzy differential equations.
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