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Abstract

This manuscript proposes a local H∞ switched controller design for a class of uncertain nonlinear plants described by Takagi–
Sugeno (T–S) fuzzy models with unknown membership functions. The control design requires only the lower and upper bounds of 
the system nonlinearities and of the system linear parameters, which can depend on uncertain parameters. The switched control law 
chooses a state-feedback controller gain, which belongs to a given set of gains, that minimizes the time derivative of a quadratic 
Lyapunov function. This procedure eliminates the necessity of finding the membership function expressions to implement the con-
trol law, guarantees an H∞ performance and ensures that the state trajectory remains within a region in which the T–S fuzzy model 
is valid. Due to the H∞ control design, that frequently results in very large control inputs, it is considered that the switched control 
law is subject to actuator saturation. Finally, two examples are presented. The first example studies the control of a chaotic Lorenz 
system. It shows that, for disturbances with large magnitude, the proposed procedures provided better results than the obtained 
with another recent method found in the literature, that considers full access to the membership functions. In the second example, 
a practical implementation of an active nonlinear suspension control system, considering an uncertain bounded mass and a fault in 
the actuator, confirms the effectiveness of the proposed approach.
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1. Introduction

A broad class of nonlinear systems can be exactly described by Takagi–Sugeno (T–S) fuzzy models [1,2] in a given 
operation region, through a combination of local linear models by means of nonlinear fuzzy membership functions. 
The operation region commonly is a bounded region in the state space and one can assure that the plant can be exactly 
represented by a T–S fuzzy model only in this region. Based on parallel distributed compensation [3] and linear 
matrix inequalities (LMIs), different control design techniques have been proposed over the past decades [2,4–19] for 
controlling T–S fuzzy models.

However, for a nonlinear system described by T–S fuzzy model, some problems can hinder a practical implementa-
tion. Usually, the control design procedure assumes that the membership functions are completely known. In practice, 
membership functions can depend on immeasurable premise variables or uncertain parameters. For this reason, meth-
ods that allow to use T–S fuzzy models with uncertainties in the membership functions or premise variables have been 
studied. An H∞ filter design for T–S fuzzy systems with unknown or partially unknown membership functions is pro-
posed in [20]. Considering again that the membership functions are unmeasurable or unknown, [21] addresses the fault 
detection problem for T–S fuzzy systems, based on a new fault detection filter with varying gains and [22] presents 
results regarding the design of H∞ observer-based controllers for T–S fuzzy systems, with the premise variables es-
timation. A switched control design for a class of uncertain nonlinear plants, based on a minimum-type Lyapunov 
function, is proposed in [18] and this methodology eliminates the need to find the membership function expressions 
to implement the control law and the design conditions are given by bilinear matrix inequalities (BMIs).

A good performance of the controlled system can be prejudiced due to the inaccurate representation of the nonlinear 
system, because usually the operation region and practical constraints, inherent to the plants or actuators, are neglect 
in the control designs [23]. Thus, several papers have proposed methods that ensure that the state trajectories remain 
within the operation region in which the fuzzy model T–S is valid [24–26] and in [23,27–29] are also considered that 
the actuator is subject to saturation.

For nonlinear systems subject to external disturbances, the H∞ control is a technique that mitigates the exogenous 
input effect in the system output and, consequently, improves the system performance. However, the actuator satu-
ration is an inevitable problem for most H∞ control designs. Then, [27] proposes an H∞ fuzzy control design for 
nonlinear systems subject to actuator saturation. The design conditions ensure that the closed-loop system, subject to 
energy-bounded disturbance, has an H∞ performance, but there is no assurance that the state trajectories will remain 
within the operation region. In [26], for a known nonlinear system with disturbance bounded by magnitude and en-
ergy, the proposed H∞ fuzzy control guarantees an H∞ performance and ensures that the state trajectories will not 
escape from the operation region.

In the literature there are different techniques to deal with the problem of control signal saturation. For instance, 
in [27,30] the saturation is described by a sector bounded condition. The method proposed in [31] presents a less 
conservative estimation of the domain of attraction by using a quadratic Lyapunov function and a saturation repre-
sentation based on a polyhedral set. This methodology proved to be less conservative than existing conditions which 
are based on the circle criterion (see [31]), for instance. Moreover, the design conditions can be expressed in terms of 
LMIs, including the saturation constraints in the control design.

This manuscript proposes a local H∞ switched controller design method for a class of uncertain nonlinear systems 
described by T–S fuzzy model subject to energy-bounded disturbances. For the representation of the uncertain non-
linear system, it is necessary only to know the lower and upper bounds of the system nonlinearities and linear terms 
that are calculated considering the operation region in the state space and the known set of uncertain parameters. Due 
to the H∞ control design, that frequently results in very large control inputs, it is considered that the switched control 
law is subject to actuator saturation. The saturation representation is based on a polyhedral set, proposed in [31]. 
Using auxiliaries matrices, the switched control law selects a state-feedback controller gain that minimizes the time 
derivative of a quadratic Lyapunov function. This procedure eliminates the necessity to find the membership function 
expressions to implement the control law, which is an advantage because these terms may contain uncertain parame-
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ters or even have long and/or complex expressions. The control law also guarantees an H∞ performance and ensures 
that the state trajectory remains within a region in which the T–S fuzzy model is valid.

Additionally, the proposed method is applied in two examples. The first example shows a comparison between the 
proposed switched control design and the method presented in [26]. The results make it clear that for an uncertain 
nonlinear system, subject to disturbances with large magnitude, the proposed procedure is the best option. Next, in the 
second example, an implementation demonstrates the practical effectiveness of the method, for controlling an active 
suspension system fabricated by Quanser� [32], considering a nonlinear spring, an uncertain bounded mass and an 
actuator fault.

The structure of this manuscript is as follows. In Section 2 the preliminary results on the T–S fuzzy model, the 
switched control law subject to saturation and the local H∞ control problem are presented. Section 3 proposes a local 
H∞ switched controller design for a class of uncertain nonlinear systems. Examples illustrate the proposed method 
performance in Section 4. Finally, Section 5 draws the conclusions.

For convenience, in some places, the following notation is used: Kr = {1, 2, . . . , r}, r ∈N, x(t) = x, αi(z(t)) = αi . 
For symmetric matrices, the symbol (∗) denotes each of their symmetric blocks and I represents the identity ma-
trix with appropriate dimension. diag{M1, M2, . . . , Mr} represents a block-diagonal matrix in which the diagonal 
elements are M1, M2, . . ., Mr . co{a1, · · · , ar} is the convex hull of the vectors ai , i ∈ Kr . M > 0 (M < 0, M ≥ 0
and M ≤ 0) means that the matrix M is positive definite (negative definite, positive semi-definite and negative semi-
definite, respectively). The space of square-integrable vector functions over [0, ∞) is denoted by L2[0, ∞), and for 

w(t) ∈ L2[0, ∞), its norm is denoted by ‖w‖2 =
√∫∞

t=0 w(t)T w(t)dt . Finally, Ez represents a generic matrix, such 
that

Ez =
r∑

i=1

αiEi with α = [α1 α2 . . . αr ]T ∈ �r =
{

α ∈ R
r : αi ≥ 0,

r∑
i=1

αi = 1, i ∈Kr

}
. (1)

2. Problem statement and preliminaries

2.1. Takagi–Sugeno fuzzy systems

Consider an uncertain nonlinear system, subject to actuator saturation and energy-bounded disturbances, described 
by

ẋ(t) = f1(z(t))x(t) + f2(z(t)) sat(u(t)) + f3(z(t))w(t), (2a)

y(t) = g1(z(t))x(t) + g2(z(t)) sat(u(t)) + g3(z(t))w(t), (2b)

where x(t) ∈R
nx is the state vector, u(t) ∈R

nu is the input vector, w(t) ∈R
nw is the disturbance input such that w(t) ∈

L2[0, ∞) and y(t) ∈ R
ny is the output vector. The uncertain nonlinear system dynamics is given by the nonlinear 

functions f1(·) : Rq → R
nx×nx , f2(·) : Rq → R

nx×nu , f3(·) : Rq → R
nx×nw , g1(·) : Rq → R

ny×nx , g2(·) : Rq →
R

ny×nu and g3(·) : Rq → R
ny×nw . z(t) ∈ R

q is a vector whose the entries zl(t), l ∈ Kq , are the premise variables 
that depends on the state vector x(t) and uncertain parameters or unknown variables, and sat(u(t)) ∈ R

nu is the 
amplitude-bounded control input, such that

sat(u(t)) =
⎡
⎢⎣

sat(u(1)(t))
...

sat(u(nu)(t))

⎤
⎥⎦ , sat(u(k))(t) =

⎧⎪⎨
⎪⎩

−ρ(k), if u(k)(t) < −ρ(k),

u(k)(t), if
∣∣u(k)(t)

∣∣ ≤ ρ(k),

ρ(k), if u(k)(t) > ρ(k),

∀k ∈ Knu, (3)

where ρ(k), k ∈Knu , are known positive constants.
Let an operation region X in the state space defined as follows [23]:

X := {
x(t) ∈R

nx : ∣∣R(h)x(t)
∣∣≤ φ(h), h ∈Kp

}
, (4)

where R =
[
RT

(1) · · ·RT
(p)

]T ∈ R
p×nx and φ = [

φ(1) · · ·φ(p)

]T ∈ R
p are known. Consider that in the region X , the 

system (2) can be exactly represented by a T–S fuzzy model as described below in (5) and (6) [2,14,18,29]:
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Rule i: IF z1(t) is μi1 and . . . and zq(t) is μiq ,

THEN

{
ẋ(t) = Aix(t) + Bi sat(u(t)) + Hiw(t),

y(t) = Cix(t) + Di sat(u(t)) + Giw(t),

(5)

where i ∈ Kr , l ∈ Kq , μil is a fuzzy set of the rule i corresponding to the function zl(t) and the following matrices 
are known: Ai ∈R

nx×nx , Bi ∈ R
nx×nu , Hi ∈ R

nx×nw , Ci ∈ R
ny×nx , Di ∈R

ny×nu and Gi ∈R
ny×nw .

From [4] and the definitions in (1), ẋ(t) and y(t) given in (5) can be written as follows:

ẋ(t) =
r∑

i=1

αi(z(t))(Aix(t) + Bi sat(u(t)) + Hiw(t)) = Azx(t) + Bz sat(u(t)) + Hzw(t), (6a)

y(t) =
r∑

i=1

αi(z(t))(Cix(t) + Di sat(u(t)) + Giw(t)) = Czx(t) + Dz sat(u(t)) + Gzw(t), (6b)

where αi (z(t)) = μi1 (z1(t)) × · · · × μiq

(
zq(t)

)
∑r

i=1

(
μi1 (z1(t)) × · · · × μiq

(
zq(t)

)) , and μil (zl(t)) is the grade of membership, in terms of 

unknown variables or uncertain parameters, corresponding to the fuzzy term μil, i ∈ Kr and l ∈ Kq . The entry αi of the 
vector α = [α1 α2 . . . αr ]T ∈ �r given in (1) is the normalized weight of each local model system (Ai, Bi, Ci, Di, Gi,

Hi) defined in (5), for i ∈Kr .

Remark 1. To ensure that the uncertain nonlinear system (2) is exactly described by a T–S fuzzy model (6), it is 
adopted a procedure presented in [14,18,29]. The lower and upper bounds of the system nonlinearities and uncertain 
linear terms are calculated considering the given operation region of the state vector and also the known set of the plant 
uncertain parameters. The obtained T–S fuzzy models with this procedure, can exactly represent uncertain nonlinear 
systems described in (2) by a T–S fuzzy model (6), that present known local models and unknown normalized weights. 
This method was applied for controlling a magnetic levitator system [18,29], a ball-and-beam system [29] and an 
active suspension system described in the Example 2 of this manuscript.

Considering the quadratic Lyapunov function candidate

V (x(t)) = x(t)T Px(t), (7)

where P ∈ R
nx×nx is a symmetric positive definite matrix. For a positive constant v0, then it is defined the ellipsoid

E(V , v0) :=
{
x ∈ R

nx : xT Px ≤ v0

}
. (8)

2.2. Switched control law subject to saturation

The proposed procedure uses auxiliary symmetric matrices Q̄j , j ∈ Kr , that are responsible for determining the 
value of the switching index σ , as described in (9). This index σ selects a state-feedback controller gain, which 
belongs to the set of gains {Kj ∈ R

nu×nx , j ∈ Kr}. The switched control law is defined as follows:

u(t) = uσ (t) = −Kσ x(t), σ = arg∗ min
j∈Kr

{x(t)T Q̄j x(t)}, (9)

where arg∗ min
j∈Kr

{x(t)T Q̄j x(t)} denotes the smallest index σ ∈Kr , such that x(t)T Q̄σ x(t) = min
j∈Kr

{x(t)T Q̄j x(t)}.
Note that it is not necessary to use the membership functions to implement the control law (9). Therefore, the 

membership functions may depend on uncertain and unknown parameters. It allows the application of this control 
strategy for controlling uncertain nonlinear plants exactly described by T–S fuzzy models with known local models 
and unknown normalized weights, using the procedure proposed in [14,18,29] (see Remark 1 for more details).

Let F be the set composed by diagonal matrices Fs ∈ R
nu×nu , s ∈ K2nu , whose diagonal elements are either 0

or 1 [33]. For example, if nu = 2, then

F =
{
F1 =

[
1 0
0 1

]
, F2 =

[
1 0
0 0

]
, F3 =

[
0 0
0 1

]
, F4 =

[
0 0
0 0

]}
, (10)
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and for all s ∈ K2nu , F−
s denotes the element of F associated with Fs , such that F−

s = I − Fs . For convenience, the 
following notation is used:

Fλ =
2nu∑
s=1

λsFs, F−
λ =

2nu∑
s=1

λsF
−
s with λ ∈ �2nu =

⎧⎨
⎩λ ∈R

2nu : λs ≥ 0,

2nu∑
s=1

λs = 1, s ∈ K2nu

⎫⎬
⎭ . (11)

Let the polyhedral set L(Lj ) given by

L(Lj ) := {x ∈R
nx : ∣∣Lj(k)x

∣∣≤ ρ(k), j ∈Kr , k ∈Knu}, (12)

where Lj =
[
LT

j(1) · · ·LT
j(nu)

]T ∈R
nu×nx and ρ = [

ρ(1) · · ·ρ(nu)

]T ∈ R
nu is a known vector.

For x(t) ∈ L(Lj ), ∀j ∈ Kr , then x(t) ∈ L(Lσ ). According to [31,33], it follows that sat(u(t)) = sat(−Kσ x(t)) ∈
co{Fs(−Kσ x(t)) + F−

s Lσ x(t)}. Consequently, using the notations (11), sat(u(t)) can be represented as:

sat(u(t)) =
2nu∑
s=1

λs

(
Fs(−Kσ x(t)) + F−

s Lσ x(t)
)= (−FλKσ + F−

λ Lσ

)
x(t). (13)

Substituting (13) into (6) and using the notations (1) and (11), the closed-loop system can be rewritten as follows

ẋ(t) = Azx(t) + Bz

(−FλKσ + F−
λ Lσ

)
x(t) + Hzw(t), (14a)

y(t) = Czx(t) + Dz

(−FλKσ + F−
λ Lσ

)
x(t) + Gzw(t). (14b)

2.3. Local H∞ control problem

As is well known, besides stability, a controller must assure a good performance of the closed-loop system. In this 
sense, an important index is the H∞ norm, which is related to the capacity of the controlled system to reject energy-
bounded disturbances [11,34]. Thus, consider the energy-bounded disturbance w(t) ∈ W and a positive constant ε, 
such that

W :=
⎧⎨
⎩w(t) ∈ R

nw :
∞∫

0

w(t)T w(t)dt ≤ ε

⎫⎬
⎭ . (15)

Based on [26], considering a positive slack variable ϕ and a positive constant ε0, the local H∞ control problem 
consists in determining a control law that satisfies the following statements:

1. for w(t) = 0, t ≥ 0, the zero equilibrium point of (9) and (14) is locally asymptotically stable and the ellipsoid 
E(V , ε0 + ϕ−1ε) is an invariant subset of the domain of attraction [31] (i.e., if x(0) belongs to this set, then 
x(t), t > 0, will also stay in this set). Fig. 1a shows this propriety;

2. for w(t) ∈ W , any trajectory with initial condition within E(V , ε0) (i.e., x(0)T Px(0) ≤ ε0) will not escape the 
ellipsoid E(V , ε0 + ϕ−1ε), for all t ≥ 0. Fig. 1b illustrates this propriety;

3. for w(t) ∈ W and x(0) = 0, the closed-loop T–S fuzzy system (14) has an H∞ guaranteed cost γ > 0, satisfying 
the following inequality

‖y(t)‖2
2 ≤ γ 2 ‖w(t)‖2

2 , ∀α ∈ �r. (16)

3. Main result

This section presents a switched control design to deal with the local H∞ control problem defined previously. For 
convenience, considering (1) and (11) and j ∈ Kr , define the following matrix functions:

M(ẋ)
zλ (P,Kj ,Lj ) =

[
AT

z P + PAz + PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P ∗
HT P −ϕ−1I

]
, (17)
z
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Fig. 1. (a) The inclusion relations among the sets X , L(Lj ) and E(V , ε0 + ϕ−1ε), and the state trajectory x(t) for w(t) = 0, for all t ≥ 0; (b) The 
inclusion relations among the sets X , L(Lj ), E(V , ε0 + ϕ−1ε) and E(V , ε0), and the state trajectory x(t) for w(t) ∈ W , for all t ≥ 0.

N (ẋ)
zλ (P,Kj ,Lj ) = PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P + ϕPHzH
T
z P, (18)

M(ẋy)
zλ (P,Kj ,Lj ) =

[
AT

z P + PAz + PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P ∗
HT

z P −ϕ−1I

]

+
[ (

Cz + Dz

[−FλKj + F−
λ Lj

])T
GT

z

]
ϕ−1γ −2I

[ (
Cz + Dz

[−FλKj + F−
λ Lj

])T
GT

z

]T

, (19)

N (ẋy)
zλ (P,Kj ,Lj ) = PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P

+ ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T (
Cz + Dz

[−FλKj + F−
λ Lj

])
+
(
HT

z P + ϕ−1γ −2GT
z (Cz + Dz

[−FλKj + F−
λ Lj

]
)
)T (

ϕ−1I − ϕ−1γ −2GT
z Gz

)−1

×
(
HT

z P + ϕ−1γ −2GT
z (Cz + Dz

[−FλKj + F−
λ Lj

]
)
)

. (20)

The following lemmas will be used in the proof of the main result of this manuscript. Lemmas 1 and 2 are based 
on [35].

Lemma 1. Consider M(ẋy)
zλ (P, Kσ , Lσ ) and N (ẋy)

zλ (P, Kσ , Lσ ) given in (19) and (20), respectively, and suppose that 
−ϕ−1I + ϕ−1γ −2GT

z Gz < 0. Then, the following condition

sup
w∈L2

{[
xT wT

]
M(ẋy)

zλ (P,Kσ ,Lσ )
[
xT wT

]T }= xT
{
AT

z P + PAz +N (ẋy)
zλ (P,Kσ ,Lσ )

}
x (21)

holds and the optimal solution of the left side of (21) is

w∗ =
(
ϕ−1I − ϕ−1γ −2GT

z Gz

)−1 (
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))
x. (22)

Proof. Defining the function

f (w,x) = [
xT wT

]
M(ẋy)

zλ (P,Kσ ,Lσ )
[
xT wT

]T
, (23)

the partial derivative of the function f (w, x) with respect to w is

∂f (w,x) = 2
(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))
x − 2

(
ϕ−1I − ϕ−1γ −2GT

z Gz

)
w. (24)
∂w
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Thus, for ∂f (w,x)
∂w

= 0 the critical point w∗ (22) is obtained. Moreover, note that

∂2f (w,x)

∂w2 = −2
(
ϕ−1I − ϕ−1γ −2GT

z Gz

)
< 0, (25)

and then f (w∗, x) is a maximum point. Now, replacing w∗ in f (w, x)

f (w∗, x) = [
xT w∗T

]
M(ẋy)

zλ (P,Kσ ,Lσ )
[
xT w∗T

]T
= xT

{
AT

z P + PAz + PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P

+ ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T (
Cz + Dz

[−FλKj + F−
λ Lj

])}
x

+ xT
{
PHz + ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T
Gz

}
w∗

+ w∗T
{
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKj + F−
λ Lj

])}
x

+ w∗T
{
−ϕ−1I + ϕ−1γ −2GT

z Gz

}
w∗

= xT
{
AT

z P + PAz + PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P

+ ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T (
Cz + Dz

[−FλKj + F−
λ Lj

])}
x

+ xT

{(
PHz + ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T
Gz

)(
ϕ−1I − ϕ−1γ −2GT

z Gz

)−1

×
(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))}
x

+ xT

{(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))T (
ϕ−1I − ϕ−1γ −2GT

z Gz

)−T

×
(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKj + F−
λ Lj

]))}
x

+ xT

{(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))T (
ϕ−1I − ϕ−1γ −2GT

z Gz

)−T

×
(
−ϕ−1I + ϕ−1γ −2GT

z Gz

)(
ϕ−1I − ϕ−1γ −2GT

z Gz

)−1

×
(
HT

z P + ϕ−1γ −2GT
z

(
Cz + Dz

[−FλKσ + F−
λ Lσ

]))}
x (26)

one obtains the right side of (21), and the proof is concluded. �
Lemma 2. Consider M(ẋ)

zλ (P, Kσ , Lσ ) and N (ẋ)
zλ (P, Kσ , Lσ ) given in (17) and (18), respectively and suppose that 

ϕ > 0. Then, the following condition

sup
w∈L2

{[
xT wT

]
M(ẋ)

zλ (P,Kσ ,Lσ )
[
xT wT

]T }= xT
{
AT

z P + PAz +N (ẋ)
zλ (P,Kσ ,Lσ )

}
x (27)

holds and the optimal solution of the left side of (27) is

w∗ = ϕHT
z Px. (28)

Proof. Defining the function

f (w,x) = [
xT wT

]
M(ẋ)

zλ (P,Kσ ,Lσ )
[
xT wT

]T
, (29)

the partial derivative of the function f (w, x) with respect to w is

∂f (w,x) = 2HT
z Px − 2ϕ−1w. (30)
∂w
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Thus, for ∂f (w,x)
∂w

= 0 the critical point w∗ (28) is obtained. Moreover, note that

∂2f (w,x)

∂w2 = −2ϕ−1I < 0, (31)

and then f (w∗, x) is a maximum point. Now, replacing w∗ in f (w, x) one obtains the right side of (27), and the proof 
is concluded. �
Lemma 3. Assume that there exist a symmetric positive definite matrix X ∈ R

nx×nx , symmetric matrices Zi , Qj ∈
R

nx×nx , matrices Mj , Nj ∈ R
nu×nx , for all i, j ∈Kr and s ∈ K2nu , such that the condition holds:⎡

⎢⎣
Bi

[−FsMj + F−
s Nj

]+ [−FsMj + F−
s Nj

]T
BT

i − Zi − Qj ∗ ∗
HT

i −ϕ−1I ∗
CiX + Di

[−FsMj + F−
s Nj

]
Gi −ϕμI

⎤
⎥⎦< 0. (32)

Then, considering (1), (9), (18) and (20), for x 
= 0, the conditions below also hold

xT
{
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P
}

x < xT Z̄zx + xT Q̄zx, (33a)

xT N (ẋ)
zλ (P,Kσ ,Lσ )x < xT Z̄zx + xT Q̄zx, (33b)

xT N (ẋy)
zλ (P,Kσ ,Lσ )x < xT Z̄zx + xT Q̄zx, (33c)

where P = X−1, Z̄i = X−1ZiX
−1, Q̄i = X−1QiX

−1, Kj = MjX
−1, Lj = NjX

−1 and γ 2 = μ > 0.

Proof. Suppose that there exist a symmetric positive definite matrix X ∈ R
nx×nx , symmetric matrices Zi , Qj ∈

R
nx×nx and matrices Mj , Nj ∈ R

nu×nx , such that (32) holds, for all i, j ∈ Kr and s ∈ K2nu . From (1) and (11), 
remembering that αi ≥ 0, 

∑r
i=1 αi = 1, λs ≥ 0 and 

∑2nu

s=1 λs = 1, define P = X−1, Kσ = Mσ X−1, Lσ = Nσ X−1, 
Z̄z = X−1ZzX

−1, Q̄σ = X−1Qσ X−1 and μ = γ 2. Pre- and post-multiplying (32) by diag{P, I, I }, replacing j by σ , 
multiplying the result by αi and taking the sum from i = 1 to i = r , multiplying the result by λs and taking the sum 
from s = 1 to s = 2nu , then it follows the inequality⎡

⎢⎣
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P − Z̄z − Q̄σ ∗ ∗
HT

z P −ϕ−1I ∗
Cz + Dz

[−FλKσ + F−
λ Lσ

]
Gz −ϕγ 2I

⎤
⎥⎦< 0, (34)

and consequently[
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P − Z̄z − Q̄σ ∗
HT

z P −ϕ−1I

]
< 0, (35)

PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P − Z̄z − Q̄σ < 0. (36)

Applying the Schur complement to (35) and considering N ẋ
zλ(P, Kσ , Lσ ), given in (18), one obtains

PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P + ϕPHzH
T
z P − Z̄z − Q̄σ

=N ẋ
zλ(P,Kσ ,Lσ ) − Z̄z − Q̄σ < 0. (37)

Now, applying the Schur complement to (34), it follows that[
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P − Z̄z − Q̄σ ∗
HT

z P −ϕ−1I

]

+ϕ−1γ −2

[
(Cz + Dz

[−FλKσ + F−
λ Lσ

]
)T

GT

][
(Cz + Dz

[−FλKσ + F−
λ Lσ

]
)T

GT

]T
z z
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=

⎡
⎢⎢⎢⎢⎣

PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P − Z̄z − Q̄σ

+ϕ−1γ −2(Cz + Dz

[−FλKσ + F−
λ Lσ

]
)T

×(Cz + Dz

[−FλKσ + F−
λ Lσ

]
)

∗

HT
z P + ϕ−1γ −2GT

z (Cz + Dz

[−FλKσ + F−
λ Lσ

]
) −ϕ−1I + ϕ−1γ −2GT

z Gz

⎤
⎥⎥⎥⎥⎦< 0

(38)

Considering N ẋy
zλ (P, Kσ , Lσ ), given in (20), and applying the Schur complement to (38), one obtains

PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P − Z̄z − Q̄σ

+ϕ−1γ −2 (Cz + Dz

[−FλKj + F−
λ Lj

])T (
Cz + Dz

[−FλKj + F−
λ Lj

])
+
(
HT

z P + ϕ−1γ −2GT
z (Cz + Dz

[−FλKj + F−
λ Lj

]
)
)T (

ϕ−1I − ϕ−1γ −2GT
z Gz

)−1

×
(
HT

z P + ϕ−1γ −2GT
z (Cz + Dz

[−FλKj + F−
λ Lj

]
)
)

=N ẋy
zλ (P,Kσ ,Lσ ) − Z̄z − Q̄σ < 0. (39)

For x 
= 0, from (1) and (9), note that xT Q̄σ x = min
j∈Kr

{xT Q̄j x} ≤
r∑

i=1

αix
T Q̄ix = xT Q̄zx. Thus

r∑
i=1

αix
T Z̄ix + xT Q̄σ x ≤

r∑
i=1

αix
T
{
Z̄i + Q̄i

}
x = xT

{
Z̄z + Q̄z

}
x. (40)

Therefore, for x 
= 0, from (40), observe that from (36), (37) and (39) it follows that

xT
{
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P
}

x < xT
{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x, (41)

xT N ẋ
zλ(P,Kσ ,Lσ )x < xT

{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x, (42)

xT N ẋy
zλ (P,Kσ ,Lσ )x < xT

{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x, (43)

respectively. The conditions (41), (42) and (43) are equivalent to (33a), (33b) and (33c), respectively. Then the proof 
is concluded. �
Lemma 4. [29,31,34] Let the sets X , E(V , ε0 + ϕ−1ε) and L(Lj ) given in (4), (8) and (12), respectively. The con-
straints E(V , ε0 +ϕ−1ε) ⊂ X and E(V , ε0 +ϕ−1ε) ⊂ L(Lj ) are enforced if the following conditions hold, respectively

⎡
⎣ φ2

(h)

ε0+ϕ−1ε
∗

XRT
(h) X

⎤
⎦≥ 0, (44a)

⎡
⎣ ρ2

(k)

ε0+ϕ−1ε
∗

NT
j(k) X

⎤
⎦≥ 0, (44b)

for all h ∈Kp , j ∈ Kr and k ∈ Knu , where X = P −1 and Nj(k) = Lj(k)X.

Proof. See [29]. �
In this context, considering the local H∞ control problem, the main theorem is proposed.
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3.1. Local H∞ switched controller design

Theorem 1. Consider an operation region X in which the nonlinear system subject to actuator saturation and energy-
bounded disturbances (2) can be exactly described by (14), where ρ ∈ R

nu , R ∈ R
p×nx , φ ∈ R

p , ε0 ≥ 0, ε > 0
and ϕ > 0 are known. Assume that there exist a symmetric positive definite matrix X ∈ R

nx×nx , symmetric matri-
ces Zi, Qi ∈ R

nx×nx , matrices Mj , Nj ∈ R
nu×nx and scalar μ > 0, such that the following optimization problem is 

feasible:

minμ

subject to⎡
⎢⎣

Bi

[−FsMj + F−
s Nj

]+ [−FsMj + F−
s Nj

]T
BT

i − Zi − Qj ∗ ∗
HT

i −ϕ−1I ∗
CiX + Di

[−FsMj + F−
s Nj

]
Gi −ϕμI

⎤
⎥⎦< 0, (45a)

XAT
i + AiX + Zi + Qi < 0, (45b)⎡

⎣ φ2
(h)

ε0+ϕ−1ε
∗

XRT
(h) X

⎤
⎦≥ 0, (45c)

⎡
⎣ ρ2

(k)

ε0+ϕ−1ε
∗

NT
j(k) X

⎤
⎦≥ 0, (45d)

for all i, j ∈ Kr , h ∈ Kp , k ∈ Knu and s ∈ K2nu , where Fs ∈ F and F−
s = I − Fs . Then, E(V , ε0 + ϕ−1ε) ⊂ X , 

E(V , ε0 + ϕ−1ε) ⊂ L(Lj ) and the switched control law (9), where P = X−1, Q̄i = X−1QiX
−1 and the controller 

gains are given by Kj = MjX
−1, ensures that:

1. for w(t) = 0, t ≥ 0, the uncertain nonlinear system (2) and (9) is locally asymptotically stable for all x(0) ∈
E(V , ε0 + ϕ−1ε) and the ellipsoid E(V , ε0 + ϕ−1ε) is an invariant subset of the domain of attraction (i.e., if x(0)

belongs to this set, then x(t), t > 0, will also stay in this set). Fig. 1a shows this propriety;
2. for w(t) 
= 0, if x(0) ∈ E(V , ε0), then x(t) ∈ E(V , ε0 + ϕ−1ε), for all t ≥ 0. Fig. 1b illustrates this propriety;
3. for w(t) 
= 0, if x(0) = 0, then the nonlinear system (2) and (9) has an H∞ guaranteed cost γ = √

μ > 0, such 
that

‖y(t)‖2
2 ≤ γ 2 ‖w(t)‖2

2 , (46)

and x(t) ∈ E(V , ϕ−1ε), for all t ≥ 0.

Proof. Consider the Lyapunov function candidate (7). Preliminarily, according to Lemma 4, observe that (45c) and 
(45d) ensure that E(V , ε0 + ϕ−1ε) ⊂ X and E(V , ε0 + ϕ−1ε) ⊂ L(Lj ), respectively. Pre- and post-multiplying (45b)
by P = X−1, changing the variables Z̄i = X−1ZiX

−1 and Q̄i = X−1QiX
−1, multiplying the result by αi ≥ 0, i ∈Kr , ∑r

i=1 αi = 1 and taking the sum from i = 1 to r , for x 
= 0, the following inequality is obtained

xT AT
z Px + xT PAzx + xT Z̄zx + xT Q̄zx < 0. (47)

• First statement:

For the first statement, note that from Lemma 3, (45a) ensures that (33a) holds. For x 
= 0, from (33a) and (47), it 
follows

xT
{
PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P
}

x < xT
{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x.

(48)
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From (14a) and (7), if w(t) = 0 and x(t) ∈ E(V , ε0 +ϕ−1ε), remembering that E(V , ε0 +ϕ−1ε) ⊂ X and E(V , ε0 +
ϕ−1ε) ⊂ L(Lj ), the inequality (48) implies that V̇ (x(t)) < 0, for all x(t) ∈ E(V , ε0 + ϕ−1ε)\{0}. Thus, for w(t) = 0, 
the nonlinear system (2) is locally asymptotically stable for all x(0) ∈ E(V , ε0 + ϕ−1ε).

• Second statement:

The second statement follows from Lemma 3. Considering (18), observe that (45a) ensures that (33b) holds. For 
x 
= 0, from (33b) and (47), it follows

xT N (ẋ)
zλ (P,Kσ ,Lσ )x < xT

{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x. (49)

For x 
= 0, considering (17) and (18), from Lemma 2 and (49), observe that

0 > xT
{
AT

z P + PAz +N (ẋ)
zλ (P,Kσ ,Lσ )

}
x ≥ [

xT wT
]
M(ẋ)

zλ (P,Kσ ,Lσ )
[
xT wT

]T
=
[

x

w

]T
[

AT
z P + PAz + PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P ∗
HT

z P −ϕ−1I

][
x

w

]

= xT
{
AT

z P + PAz + PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P
}

x

+xT PHzw + wT HT
z Px − wT ϕ−1w. (50)

From (14a) and (7), if w(t) 
= 0 and x(t) ∈ E(V , ε0), remembering that E(V , ε0) ⊂ X and E(V , ε0) ⊂ L(Lj ), the 
inequality (50) implies that

V̇ (x(t)) − ϕ−1w(t)T w(t) < 0, (51)

for all x(t) ∈ E(V , ε0)\{0}.
For x(0) ∈ E(V, ε0) and from (15), one has V (x(0)) ≤ ε0 and 

∫∞
0 w(t)T w(t)dt ≤ ε, respectively. Thus, integrating 

(51) from 0 to ∞, one obtains

V (x(∞)) < V (x(0)) + ϕ−1

∞∫
0

w(t)T w(t)dt ≤ V (x(0)) + ϕ−1ε ≤ ε0 + ϕ−1ε, (52)

concluding that V (x(∞)) < ε0 + ϕ−1ε. Remembering that E(V , ε0 + ϕ−1ε) ⊂ X and E(V , ε0 + ϕ−1ε) ⊂ L(Lj ), 
the inequality (51) ensures that a state trajectory started with an initial condition x(0) ∈ E(V , ε0) will remain within 
E(V , ε0 + ϕ−1ε)\∂E(V , ε0 + ϕ−1ε), for all t ≥ 0, where ∂E(V , ε0 + ϕ−1ε) is the boundary of E(V , ε0 + ϕ−1ε).

• Third statement:

For the third statement, considering (20) and Lemma 3, observe that (45a) ensures that (33c) holds. For x 
= 0, from 
(33c) and (47), it follows

xT N (ẋy)
zλ (P,Kσ ,Lσ )x < xT

{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x. (53)

Note that, from (45a), � = [
ψ1 ψ2

]
< 0, where ψ1 = [−ϕ−1I GT

i

]T
and ψ2 = [

Gi −ϕμI
]T . Thus, con-

sidering the Schur Complement, � < 0 is equivalent to −ϕ−1I + ϕ−1μ−1GT
i Gi < 0. Therefore, remembering that 

μ = γ 2, the condition supposed in Lemma 1 holds. For x 
= 0, considering (19) and (20), from Lemma 1 and (53), 
observe that

0 > xT
{
AT

z P + PAz +N (ẋy)
zλ (P,Kσ ,Lσ )

}
x ≥ [

xT wT
]
M(ẋy)

zλ (P,Kσ ,Lσ )
[
xT wT

]T
=
[

x

w

]T
{[

AT
z P + PAz + PBz

[−FλKj + F−
λ Lj

]+ [−FλKj + F−
λ Lj

]T
BT

z P ∗
HT P −ϕ−1I

]

z
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+
[ (

Cz + Dz

[−FλKj + F−
λ Lj

])T
GT

z

]
ϕ−1γ −2I

[ (
Cz + Dz

[−FλKj + F−
λ Lj

])T
GT

z

]T
⎫⎬
⎭
[

x

w

]

= xT
{
AT

z P + PAz + PBz

[−FλKσ + F−
λ Lσ

]+ [−FλKσ + F−
λ Lσ

]T
BT

z P
}

x + xT PHzw + wT HT
z Px

+ϕ−1γ −2 (Czx + Dz

[−FλKj + F−
λ Lj

]
x + Gzw

)T (
Czx + Dz

[−FλKj + F−
λ Lj

]
x + Gzw

)
−ϕ−1wT w. (54)

From (14), (7) and Statement 2, if w(t) 
= 0 and x(0) = 0, then x(t) ∈ E(V , ϕ−1ε) ⊂ E(V , ε0 + ϕ−1ε), ∀t ≥ 0. 
Remembering that E(V , ε0 + ϕ−1ε) ⊂ X and E(V , ε0 + ϕ−1ε) ⊂ L(Lj ), the inequality (54) implies that

V̇ (x(t)) + ϕ−1γ −2y(t)T y(t) − ϕ−1w(t)T w(t) < 0, (55)

for all x(t) ∈ E(V , ε0 + ϕ−1ε)\{0}.
Integrating (55) from 0 to ∞, one obtains

ϕ−1γ −2

∞∫
0

y(t)T y(t)dt − ϕ−1

∞∫
0

w(t)T w(t)dt < V (x(0)) − V (x(∞)) ≤ V (x(0)) = 0. (56)

Hence

ϕ−1γ −2

∞∫
0

y(t)T y(t)dt − ϕ−1

∞∫
0

w(t)T w(t)dt < 0

∞∫
0

y(t)T y(t)dt < γ 2

∞∫
0

w(t)T w(t)dt

‖y(t)‖2
2 ≤ γ 2 ‖w(t)‖2

2 . � (57)

Remark 2. In literature, different procedures are proposed to enlarge the size of E(V , 1). According to [26], the 
boundary of E(V , 1) can be enlarged inserting the restriction 

{
x ∈ R

nx : xT x ≤ β
}⊂ E(V ,1), that is enforced if[

β−1I ∗
I P

]
≥ 0 (58)

holds, where β is a positive constant.

Remark 3. Usually, when the H∞ norm is reduced, the controllers Kj present high values of gains, that could result 
in equipment damage. However, these high gains can be reduced inserting the restriction E(V , ε0 + ϕ−1ε) ⊂ L(Kj ), 
that is enforced if⎡

⎣ ρ2
(k)

ε0+ϕ−1ε
∗

MT
j(k) X

⎤
⎦≥ 0 (59)

holds, for all j ∈Kr and k ∈ Knu . Note that, L(Kj ) is a polyhedral set similar to (12) [31].

Remark 4. For an appropriate control design, several parameters need to be adjusted. Note that, the parameters 
φ and ρ are related to physics limitations, such that φ and ρ are chosen according to the operation regions (4) and 
saturation region (12), respectively. The parameter ε0 is related to the initial condition x(0) and the symmetric positive 
definite matrix P , and it can be determined according to a possible region of initial conditions. From (8), observe that 
x(0)T Px(0) ≤ ε0. Therefore, additional constraints such as (58) should be added to enlarge the size of E(V (x(0)), ε0). 
The parameter ε is the disturbance energy. The parameter ϕ is a slack variable with no physical meaning. Together, 
the parameters ε0, ε and ϕ are responsible for establishing the region E(V , ε0 +ϕ−1ε) and the parameter β determines 
the volume of this region.
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Remark 5. The control law, given by u(t) = −Kx(t), is an alternative to solving the local H∞ control problem, 
without the necessity to find the membership functions expressions. Using a quadratic Lyapunov function (7), the 
local H∞ control design conditions can be enunciated similarly to Theorem 1.

Corollary 1. Consider an operation region X in which the nonlinear system subject to actuator saturation and energy-
bounded disturbances (2) can be exactly described by (5), where ρ ∈ R

nu , R ∈ R
p×nx , φ ∈ R

p , ε0 ≥ 0, ε > 0 and 
ϕ > 0 are known. Assume that there exist a symmetric positive definite matrix X ∈ R

nx×nx , matrices M , N ∈ R
nu×nx

and scalar μ > 0, such that the following optimization problem is feasible:

minμ

subject to⎡
⎢⎣

XAT
i + AiX + Bi

[−FsM + F−
s N

]+ [−FsM + F−
s N

]T
BT

i ∗ ∗
HT

i −ϕ−1I ∗
CiX + Di

[−FsM + F−
s N

]
Gi −ϕμI

⎤
⎥⎦< 0, (60a)

⎡
⎣ φ2

(h)

ε0+ϕ−1ε
∗

XRT
(h) X

⎤
⎦≥ 0,

⎡
⎣ ρ2

(k)

ε0+ϕ−1ε
∗

NT
(k) X

⎤
⎦≥ 0, (60b)

for all i ∈Kr , h ∈ Kp , k ∈Knu and s ∈ K2nu , where Fs ∈F and F−
s = I −Fs . Then, E(V , ε0 +ϕ−1ε) ⊂ X , E(V , ε0 +

ϕ−1ε) ⊂ L(L) and the control law u(t) = −Kx(t), where the controller gain is given by K = MX−1, ensures that:

1. for w(t) = 0, t ≥ 0, the uncertain nonlinear system (2), with u(t) = −Kx(t), is locally asymptotically stable for 
all x(0) ∈ E(V , ε0 + ϕ−1ε) and the ellipsoid E(V , ε0 + ϕ−1ε) is an invariant subset of the domain of attraction 
(i.e., if x(0) belongs to this set, then x(t), t > 0, will also stay in this set). Fig. 1a shows this propriety;

2. for w(t) 
= 0, if x(0) ∈ E(V , ε0), then x(t) ∈ E(V , ε0 + ϕ−1ε), for all t ≥ 0. Fig. 1b illustrates this propriety;
3. for w(t) 
= 0, if x(0) = 0, then the nonlinear system (2), with u(t) = −Kx(t), has an H∞ guaranteed cost 

γ = √
μ > 0, such that

‖y(t)‖2
2 ≤ γ 2 ‖w(t)‖2

2 , (61)

and x(t) ∈ E(V , ϕ−1ε), for all t ≥ 0.

Proof. Suppose that there exist a symmetric positive definite matrix X ∈ R
nx×nx and matrices M , N ∈ R

nu×nx , for 
all i ∈ Kr . Similarly to Lemma 3 and considering Kσ = K , Lσ = L, (18) and (20), for x 
= 0, if the condition (60a)
holds, then the following conditions also hold

xT
{
PBz

[−FλK + F−
λ L

]+ [−FλK + F−
λ L

]T
BT

z P
}

x < xT
{
−AT

z P − PAz

}
x, (62a)

xT N (ẋ)
zλ (P,K,L)x < xT

{
−AT

z P − PAz

}
x, (62b)

xT N (ẋy)
zλ (P,K,L)x < xT

{
−AT

z P − PAz

}
x. (62c)

Observe that, the inequalities (62a), (62b) and (62c) are equivalent to (48), (49) and (53), respectively, for Kσ = K

and Lσ = L. Hence, from (62) and following the steps of the proof of Theorem 1, the Statements 1, 2 and 3 of this 
corollary can be easily demonstrated. �
Remark 6. In [26] is proposed a local H∞ control design that guarantees an H∞ performance and ensures that the 
state trajectory remains within an ellipsoid E(V , 1 + ϕ−1ε) ⊂ X . However, note that, in [26]:

• The Lyapunov function is given by V (x(t)) = x(t)T P −1
z x(t), where z(t) = T x(t) ∈ R

q , T ∈ R
q×nx i.e., the 

premise variables are a linear combinations of the state variables, and the following sets are considered:

R= {
x(t) ∈R

nx : Tlx(t) ∈ [−ξl,max, ξl,max], l ∈Kq

}
and H(b) = {x(t) ∈R : |α̇i (z(t))| ≤ b, i ∈ Kr} .
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• It is considered that the continuous-time T–S system is subject a magnitude- and energy-bounded disturbances, 
such that w(t)T w(t) ≤ δ and 

∫∞
0 w(t)T w(t)dt ≤ ε. The restriction w(t)T w(t) ≤ δ is an auxiliary condition 

necessary to ensure that: if w(t) 
= 0 and x(0) ∈ E(V , 1 + ϕ−1ε), then E(V , 1 + ϕ−1ε) ⊂ H(b).
• The control law considers full access to membership functions, such that u(t) = KzP

−1
z x(t).

• The control design does not consider that the actuator is subject to saturation. Therefore, L(Lj) is a region that 
does not exist in the proposed control project in [26].

Remark 7. The control design shown in [26] does not consider that the actuator is subject to saturation. Thus, in order 
to make a fair comparison among the methodologies addressed in this work, the switched control design proposed in 
Corollary 2 must not also consider that the control signal is subject to saturation. Then, preliminarily, consider a class 
of nonlinear system subject to energy-bounded disturbances, described by

ẋ(t) = f1(z(t))x(t) + f2(z(t))u(t) + f3(z(t))w(t), (63a)

y(t) = g1(z(t))x(t) + g2(z(t))u(t) + g3(z(t))w(t). (63b)

Hence, considering the operation region X , given in (4), the nonlinear system subject to energy-bounded distur-
bances (63) can be exactly represented by a T–S fuzzy model as follows [2,4,14,18]:

ẋ(t) =
r∑

i=1

αi(z(t))(Aix(t) + Biu(t) + Hiw(t)) = Azx(t) + Bzu(t) + Hzw(t), (64a)

y(t) =
r∑

i=1

αi(z(t))(Cix(t) + Diu(t) + Giw(t)) = Czx(t) + Dzu(t) + Gzw(t). (64b)

Corollary 2. Consider an operation region X in which the nonlinear system subject to energy-bounded disturbances 
(63) can be exactly described by (64), where R ∈ R

p×nx , φ ∈ R
p , ε0 ≥ 0, ε > 0 and ϕ > 0 are known. Assume 

that there exist a symmetric positive definite matrix X ∈ R
nx×nx , symmetric matrices Zi , Qi ∈ R

nx×nx , matrices 
Mj ∈R

nu×nx and scalar μ > 0, such that the following optimization problem is feasible:

minμ

subject to⎡
⎢⎣

−BiMj − MT
j BT

i − Zi − Qj ∗ ∗
HT

i −ϕ−1I ∗
CiX − DiMj Gi −ϕμI

⎤
⎥⎦< 0, (65a)

XAT
i + AiX + Zi + Qi < 0, (65b)⎡

⎣ φ2
(h)

ε0+ϕ−1ε
∗

XRT
(h) X

⎤
⎦≥ 0, (65c)

for all i, j ∈ Kr and h ∈ Kp . Then, E(V , ε0 + ϕ−1ε) ⊂ X and the switched control law (9), where P = X−1, Q̄i =
X−1QiX

−1 and the controller gains are given by Kj = MjX
−1, ensures that:

1. for w(t) = 0, t ≥ 0, the uncertain nonlinear system (63) and (9) is locally asymptotically stable for all x(0) ∈
E(V , ε0 + ϕ−1ε) and the ellipsoid E(V , ε0 + ϕ−1ε) is an invariant subset of the domain of attraction (i.e., if x(0)

belongs to this set, then x(t), t > 0, will also stay in this set). Fig. 2a shows this propriety;
2. for w(t) 
= 0, if x(0) ∈ E(V , ε0), then x(t) ∈ E(V , ε0 + ϕ−1ε), for all t ≥ 0. Fig. 2b illustrates this propriety;
3. for w(t) 
= 0, if x(0) = 0, then the nonlinear system (63) and (9) has an H∞ guaranteed cost γ = √

μ > 0, such 
that

‖y(t)‖2
2 ≤ γ 2 ‖w(t)‖2

2 , (66)

and x(t) ∈ E(V , ϕ−1ε), for all t ≥ 0.
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Fig. 2. (a) The inclusion relations among the sets X and E(V , ε0 +ϕ−1ε), and the state trajectory x(t) for w(t) = 0, for all t ≥ 0; (b) The inclusion 
relations among the sets X , E(V , ε0 + ϕ−1ε) and E(V , ε0), and the state trajectory x(t) for w(t) ∈ W , for all t ≥ 0.

Proof. First, note that the control design does not consider that the actuator is subject to saturation. Therefore, it is 
not necessary to take into account the region L(Lj) in this control design.

Consider the Lyapunov function candidate (7). Preliminarily, according to Lemma 4, observe that (65c) ensure that 
E(V , ε0 + ϕ−1ε) ⊂ X . Suppose that there exist a symmetric positive definite matrix X ∈ R

nx×nx , symmetric matrices 
Zi , Qj ∈ R

nx×nx and matrices Mj , such that (65a) and (65b) hold, for all i, j ∈ Kr . From (1), remembering that 
αi ≥ 0 and 

∑r
i=1 αi = 1, define P = X−1, Kσ = Mσ X−1, Z̄z = X−1ZzX

−1, Q̄z = X−1QzX
−1, Q̄σ = X−1Qσ X−1

and μ = γ 2. Pre- and post-multiplying (65a) by diag{P, I, I } and pre- and post-multiplying (65b) by P , changing 
the variables Z̄i = X−1ZiX

−1 and Q̄i = X−1QiX
−1, replacing j by σ , multiplying the results by αi ≥ 0, i ∈ Kr , ∑r

i=1 αi = 1 and taking the sum from i = 1 to r , for x 
= 0, the following inequalities are obtained, respectively:⎡
⎢⎣

−PBzKσ − KT
σ BT

z P − Z̄z − Q̄σ ∗ ∗
HT

z P −ϕ−1I ∗
Cz − DzKσ Gz −ϕγ 2I

⎤
⎥⎦< 0, (67)

AT
z P + PAz + Z̄z + Q̄z < 0. (68)

Similarly to Lemma 3 and considering (40), for x 
= 0, if the conditions (67) and (68) hold, then the following 
conditions also hold

xT
{
−PBzKσ − KT

σ BT
z P

}
x < xT

{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x, (69a)

xT
{
−PBzKσ − KT

σ BT
z P + ϕPHzH

T
z P

}
x < xT

{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x,

(69b)

xT
{− PBzKσ − KT

σ BT
z P + ϕ−1γ −2 (Cz − DzKσ )T (Cz − DzKσ )

+
(
HT

z P + ϕ−1γ −2GT
z (Cz − DzKσ )

)T (
ϕ−1I − ϕ−1γ −2GT

z Gz

)−1 (
HT

z P + ϕ−1γ −2GT
z (Cz − DzKσ )

)}
x

< xT
{
Z̄z + Q̄σ

}
x ≤ xT

{
Z̄z + Q̄z

}
x < xT

{
−AT

z P − PAz

}
x. (69c)

The proof of Theorem 1 can be adapted to the case in which the control design does not consider that the actuator 
is subject to saturation. Note that, from (9) and (13), considering Fλ = I and F−

λ = 0, one obtains

sat(u(t)) = (−FλKσ + F−
λ Lσ

)
x(t) = −Kσ x(t) = u(t). (70)

Then, for Fλ = I and F−
λ = 0, sat(u(t)) = u(t) and the inequalities (69a), (69b) and (69c) are equivalent to (48), 

(49) and (53), respectively, considering that the actuator is not subject to saturation. Hence, from (69) and following 
the steps of the proof of Theorem 1, the Statements 1, 2 and 3 of this corollary can be demonstrated. �
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Remark 8. In [18] is proposed a state-feedback switched controller design for a class of uncertain nonlinear systems. 
The design of switched controllers is based on a minimum-type Lyapunov function given by

V (x(t)) = min
j∈KN

{x(t)T Pjx(t)}, (71)

where Pj , j ∈KN , are symmetric positive definite matrices.
By using the minimum-type Lyapunov function (71) it is possible to insert relaxing parameters such that the design 

conditions become less conservative. These design conditions are given by a kind of BMIs, which contain some 
products of full matrices and scalars, and the path-following method [18] has been used in order to find feasible 
solutions.

The procedure presented in [18] does not suppose that the nonlinear system is subject to disturbances and deals 
with the stability problem without the specification of the operation region X . Furthermore, it is not considered that 
the actuator is subject to saturation.

Hence, Corollary 2 can be seen as an extension of the procedure presented in [18], to deal with the H∞ control 
problem considering a given operating region and also that the nonlinear system is subject to disturbances. From (7)
and (71), note that from the conditions of Corollary 2 j ∈K1, avoiding design conditions given by BMIs.

4. Numerical examples

Example 1 (A comparative example). From (6), consider the chaotic Lorenz system described by the following T–S 
fuzzy model [26,36]:

A1 =
⎡
⎢⎣

−η1 η1 0

η2 −1 20

0 −20 −η3

⎤
⎥⎦ ,A2 =

⎡
⎢⎣

−η1 η1 0

η2 −1 −30

0 30 −η3

⎤
⎥⎦ ,B1 =

⎡
⎢⎣

η1 0

0 η2

η3 0

⎤
⎥⎦ ,B2 =

⎡
⎢⎣

0 −η1

−η2 0

0 η3

⎤
⎥⎦ ,

H1 = H2 =
⎡
⎢⎣

η1 0 0

0 η1 0

0 0 η1

⎤
⎥⎦ ,

C1 = C2 = [
1 0 0

]
,

G1 = G2 = [
0 0 0

]
,

D1 = D2 = [
0 0

]
.

(72)

The energy-bounded disturbance input w(t) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(t) =A

⎡
⎢⎣

sin(ωt)

sin(ωt)

sin(ωt)

⎤
⎥⎦ , t ∈ [0, tf );

w(t) = 03, t ∈ [tf ,∞),

(73)

and the parameters A, ω and tf are chosen to satisfy the following conditions:

tf∫
0

w(t)T w(t)dt ≤
∞∫

0

w(t)T w(t)dt ≤ ε and w(t)T w(t) ≤ δ, ∀t ∈ [0,∞). (74)

From (73) and (74), observe that

w(t)T w(t) = 3A2 sin2(ωt) ≤ 3A2 ≤ δ, (75)

and

tf∫
w(t)T w(t)dt =

tf∫
3A2 sin2(ωt)dt =

tf∫
3A2

(
1 − cos(2ωt)

2

)
dt = 3A2tf

2
− 3A2 sin(2ωtf )

4ω
. (76)
0 0 0



D.R. de Oliveira et al. / Fuzzy Sets and Systems 344 (2018) 1–26 17
Fig. 3. Comparison among the methods proposed in Theorem 1 (LMIs (45) and (58)), Corollary 1 (LMIs (60) and (58)), Corollary 2 (LMIs (65)
and (58)) and [26]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Consider the disturbance signal w(t) given in (73), with tf = aπ

2ω
and a ∈ {1, 2, . . .}. Therefore, from (76) one 

obtains

tf∫
0

w(t)T w(t)dt = 3A2πa

4ω
− 3A2 sin(aπ)

4ω
= 3A2πa

4ω
≤ ε, a ∈ {1,2, . . .}. (77)

For (η1, η2, η3) = (5, 30, 2), N = [
1 0 0

]
, φ = 30, ρ = [

100 100
]T

, ϕ = 110, β = 100, ε0 = 1, ε = 15π

and 10 ≤ δ ≤ 1600. A comparison among the methods proposed in Theorem 1 (LMIs (45) and (58)), Corollary 1
(LMIs (60) and (58)), Corollary 2 (LMIs (65) and (58)) and [26] is shown in Fig. 3.

According to Fig. 3, note that for 10 ≤ δ ≤ 36 the method proposed in [26] presents the best values of γ . However, 
for δ ≥ 1443, the conditions of this same method are not feasible. For Theorem 1, Corollary 1 and Corollary 2, 
one obtains γ = 0.5342, γ = 0.5390 and γ = 0.4398, respectively, and note that the variation of the parameter δ
does not change the values of γ because the LMIs conditions proposed in these theorems are not influenced by 
the magnitude of the disturbance. Therefore, for δ > 36, Corollary 2 presents the best values of γ . As in [26], the 
conditions of Corollary 2 do not consider that the control signal is subject to saturation. Hence, Corollary 2 presents 
fewer constraints and consequently better results than Theorem 1 and Corollary 1.

Among the control designs proposed in this work, although the best numerical results are presented by Corollary 2, 
Theorem 1 will be used in the simulations because it is a control procedure that considers the saturation of the control 
signal. Solving the optimization problem given by the LMIs (45) and (58), using the parameters aforementioned, one 
obtains the following controller gains Kj , symmetric matrices Q̄j , j ∈ K2, and positive definite matrix P :

K1 =
[−5.1207 −1.3967 1.0277

5.3067 1.8843 0.1022

]
,

K2 =
[−5.0252 −1.3993 1.0316

5.1996 1.8793 0.0982

]
,

Q̄1 =
⎡
⎣ 0.0201 −0.0050 0.0047

−0.0050 −0.0017 0.0027
0.0047 0.0027 −0.0007

⎤
⎦ ,

P =
⎡
⎣ 0.0090 0.0028 −0.0008

0.0028 0.0011 −0.0003
−0.0008 −0.0003 0.0002

⎤
⎦ , Q̄2 =

⎡
⎣−0.0226 −0.0291 0.0049

−0.0291 −0.0149 0.0030
0.0049 0.0030 −0.0007

⎤
⎦ .

(78)

• First Simulation:

The goal of the first simulation is to analyze the behavior of the chaotic Lorenz system (6) and (72) subject to an 
external disturbance w(t) with large magnitude. Consider an initial condition x(0) = [

0 0 0
]T and a disturbance 
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Fig. 4. The dynamic behavior of the controlled system (2), (9) and (72)–(73): the state trajectory x(t), the switched control law (9), the energy of 
the system V (x(t)), the external disturbance w(t) and the relation between 

∫∞
0 y(t)T y(t)dt/

∫∞
0 w(t)T w(t)dt and γ .

w(t), given by (73), where

A= 10
√

5, ω = 112,5 rad/s, a = 3 and tf = 3π

225
s, (79)

such that 
∫ tf

0 w(t)T w(t)dt = 10π ≤ ε = 15π and w(t)T w(t) ≤ 1500. The control law (9), with the set of gains and 
auxiliary matrices given in (78), was used to perform a simulation of the closed-loop system (2) and (72)–(73) using 
the software MatLab/Simulink�. The simulation result is shown in Fig. 4.

Note that, using the switched control law (9) and (78), for x(0) = 0, the trajectories of the controlled sys-
tem remained within E(V , ϕ−1ε) = E(V , 0.4284) and, consequently, x(t) ∈ L(Lj ) and x(t) ∈ X , for all t ≥ 0. 
The H∞ guaranteed cost ensured that 

∫∞
0 y(t)T y(t)dt/

∫∞
0 w(t)T w(t)dt ≤ 0.0048 � γ = 0.5342. Finally, note that 

w(t)T w(t) ≤ 1500 = δ, thus, according to Fig. 3, the conditions of the method presented in [26] are not feasible.

• Second Simulation:

In the second implementation, the intention is to analyze the dynamics of the Lorenz chaotic system subject to external 

disturbance w(t) with low frequency, in order to increase the value of the relation 
∫∞

0 y(t)T y(t)dt∫∞
0 w(t)T w(t)dt

. Consider an initial 

condition x(0) = [
0 0 0

]T and a disturbance w(t), given by (73), where

A= 10

3

√
6, ω = 15 rad/s, a = 3 and tf = 3π

30
s, (80)

such that 
∫ tf

0 w(t)T w(t)dt = 10π ≤ ε = 15π and w(t)T w(t) ≤ 200. The control law (9), with the set of gains and 
auxiliary matrices given in (78), was used to perform a simulation of the closed-loop system (2) and (72)–(73). The 
simulation result is shown in Fig. 5.

The energy of the external disturbance is the same in both simulations (
∫ tf

0 w(t)T w(t)dt = 10π ). In the sec-
ond simulation, presented in Fig. 5, note that the frequency ω = 15 rad/s increased the value of the relation ∫∞

0 y(t)T y(t)dt/
∫∞

0 w(t)T w(t)dt . However, the H∞ guaranteed cost ensured that 
∫∞

0 y(t)T y(t)dt/∫∞
0 w(t)T w(t)dt � 0.0473 � γ = 0.5342.

In the first simulation, from the results presented in Fig. 4, note that the gains K1 and K2 commuted few times 
and the gain K2 was used more frequently. Now, from the results of the second simulation in Fig. 5, observe that 
the commutations between the gains K1 and K2 increased as well as the time in which the gain K1 was active. The 
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Fig. 5. The dynamic behavior of the controlled system (2), (9) and (72)–(73): the state trajectory x(t), the switched control law (9), the energy of 
the system V (x(t)), the external disturbance w(t) and the relation between 

∫∞
0 y(t)T y(t)dt/

∫∞
0 w(t)T w(t)dt and γ .

increase of the relation 
∫∞

0 y(t)T y(t)dt/
∫∞

0 w(t)T w(t)dt is one of the reasons why this fact can be observed. In other 
words, the frequency 15 rad/s is close to the resonant frequency of the system and the switched control law (9) uses 
more controller options to mitigate the influence of the disturbance.

Note that Corollary 1 and Corollary 2 could be applied to control this system. However, Theorem 1 was used in 
both simulations for the following reasons:

• Among the methods that consider saturation of the control signal, Theorem 1 presents the best numerical results;
• Corollary 1 presents numerical results with close values, but the choice of Theorem 1 is also justified by the 

switched control strategy that often provides a better dynamic response of the system, due to the switched 
control law (9) that chooses the gain Ki , i ∈ K2, that minimizes the time derivative of a quadratic Lya-
punov function. For instance, in the second simulation, using Theorem 1 and Corollary 1, one obtains ∫∞

0 y(t)T y(t)dt/
∫∞

0 w(t)T w(t)dt equal to 0.473 and 0.475, respectively;
• As in [26], the conditions of Corollary 2 do not consider that the control signal is subject to saturation. Therefore, 

Corollary 2 presents fewer constraints and consequently better results than Theorem 1 and Corollary 1.

Example 2 (A practical implementation using an active suspension system with an actuator fault). The purpose of 
the active suspension example is to design and implement a switched H∞ regulator for a quarter-car model. Then, 
consider the active suspension system of a vehicle, manufactured by the Quanser� [32] and its schematic model 
represented in Fig. 6.

The system consists of a set of two masses, denoted by Ms and Mus . The mass Ms represents 1
4 of the total vehicle 

body and is supported by the spring ks and by the damper bs . The mass Mus corresponds to the mass of the tire set 
and is supported by the spring kus and by the damper bus . The vibrations caused by irregularities in the road can be 
attenuated by the vehicle’s active suspension system, represented by a motor (actuator) connected between the masses 
Ms and Mus , and controlled by the force Fc [37].

The schematic model provided by the Quanser� considers that the spring stiffness kus is constant and equal to 
kus0 . Although it constitutes a good approximation to model the spring, none of the springs has linear characteristics 
in real life and due to it is reasonable to model the suspension spring by a nonlinear function [38]. According to [38]
the spring stiffness has a nonlinear behavior near the spring ends. Hence, based on [38], this manuscript considers a 
more general case with the stiffness given by

kus(zus − zr , �kus) = kus0 (1 + �kus |zus − zr |) . (81)



20 D.R. de Oliveira et al. / Fuzzy Sets and Systems 344 (2018) 1–26
Fig. 6. (a) Active suspension system from Quanser� belonging to the LPC–FEIS–UNESP (Brazil); (b) Schematic model of the active suspension 
system.

Observe that �kus |zus − zr | can represent the nonlinearity and also parametric uncertainty related to the spring 
stiffness, where �kus is an uncertain parameter such that 0 ≤ �kus ≤ �kus0 , and �kus0 , kus0 are known constants. 
Note that this definition of kus , for �kus = 0, includes the nominal value kus = kus0 , given in [32].

Furthermore, in this example is considered an actuator fault that results in a power loss. The power loss is repre-
sented, in the mathematical model, by the function kfault (t) [13,37]. Supposing the fault channel from the controller 
to the actuator, it follows that

u(t)f ault = kf ault (t) u(t), u(t) = Fc(t), (82)

and one can consider three cases corresponding to three different actuator conditions [37]: (i) If kf ault (t) = 0, implies 
that the corresponding actuator u(t)f ault has completely failed, or the active suspension system is in open-loop; (ii) If 
kf ault (t) = 1, represents the case of no fault in the actuator u(t)f ault ; (iii) If 0 < kf ault (t) < 1, means that there 
exists a partial fault in the corresponding actuator u(t)f ault . Thus an actuator fault can be considered as a parametric 
uncertainty. In the physical model of the active suspension system there is a payload mass, that consists of two identical 
weight units, resulting in the mass Ms . The Ms mass may assume values between 1.455 kg (without the two weight 
units) and 2.45 kg (with the two weight units). Hence, the Ms mass may be uncertain and belongs to the interval 
1.455 ≤ Ms ≤ 2.45 kg. Therefore, based on the modeling presented in [32] and considering (81), (82) and the vector 
of the premise variables z(t) = [

x(t)T �kus kf ault Ms

]T
, the dynamic model of the active suspension system can be 

represented by

ẋ(t) =

⎡
⎢⎢⎢⎢⎣

0 1 0 −1

− ks

Ms
− bs

Ms
0 bs

Ms

0 0 0 1
ks

Mus

bs

Mus
f43(z(t)) − (bs+bus)

Mus

⎤
⎥⎥⎥⎥⎦x(t) +

⎡
⎢⎢⎢⎣

0
kf ault (t)

Ms

0

− kf ault (t)

Mus

⎤
⎥⎥⎥⎦u(t) +

⎡
⎢⎢⎣

0
0

−1
bus

Mus

⎤
⎥⎥⎦w(t),

x(t) =

⎡
⎢⎢⎣

zs(t) − zus(t)

żs(t)

zus(t) − zr(t)

żus(t)

⎤
⎥⎥⎦ , y(t) =

[
1 0 0 0
0 0 1 0

]
x(t), w(t) = żr ,

f43(z(t)) = −kus0 (1 + �kus |zus − zr |)
Mus

. (83)

The respective values for the system parameters are shown in Table 1.
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Table 1
Parameters of the active suspension system [32].

Parameters Symbol Value

Mass of 1
4 of the total vehicle (kg) Ms 1.455 ≤ Ms ≤ 2.45

Mass of the tire set (kg) Mus 1
Stiffness constant of the spring (N/m) ks 900
Stiffness constant of the spring (N/m) kus0 2500
Damping coefficient (Ns/m) bs 7.5
Damping coefficient (Ns/m) bus 5
Parameter of the spring (m−1) �kus0 60

Thus, to find the local models, the maximum and minimum values of the functions kfault (t) and f43(z(t)) must be 
obtained. In this case, the methodology proposed in [14] will be used. Considering that the actuator fault can decrease 
from 0% to 20% the actuator power, then 0.8 ≤ kf ault (t) ≤ 1. Due the physics restrictions of the spring length, the 
state variable zus − zr is limited in the interval −0.02 ≤ zus − zr ≤ 0.02 m. Then, the domain D of the nonlinear 
function f43(z(t)), kf ault (t) and Ms is

D =
{
z(t) =

[
x(t)T �kus kf ault Ms

]T ∈ R
7 :

− 0.02 ≤ zus − zr ≤ 0.02, 0 ≤ �kus ≤ 60, 0.8 ≤ kf ault (t) ≤ 1, 1.455 ≤ Ms ≤ 2.45
}
. (84)

The maximum and minimum values of the function f43(z(t)), in the domain D, are the following:

a431 = max
z(t)∈D

{f43(z(t))} = −2500, a432 = min
z(t)∈D

{f43(z(t))} = −3000. (85)

Thus, from (83), (84), (85) and Table 1, the following local models are obtained:

A1 = A3 =

⎡
⎢⎢⎣

0 1 0 −1
−367.35 −3.0612 0 3.0612

0 0 0 1
900 7.5 −3000 −12.5

⎤
⎥⎥⎦ ,

A2 = A4 =

⎡
⎢⎢⎣

0 1 0 −1
−367.35 −3.0612 0 3.0612

0 0 0 1
900 7.5 −2500 −12.5

⎤
⎥⎥⎦ ,

A5 = A7 =

⎡
⎢⎢⎣

0 1 0 −1
−618.56 −5.1546 0 5.1546

0 0 0 1
900 7.5 −3000 −12.5

⎤
⎥⎥⎦ ,

A6 = A8 =

⎡
⎢⎢⎣

0 1 0 −1
−618.56 −5.1546 0 5.1546

0 0 0 1
900 7.5 −2500 −12.5

⎤
⎥⎥⎦ ,

B1 = B2 = [
0 0.32653 0 −0.8

]T
, B3 = B4 = [

0 0.40816 0 −1
]T

,

B5 = B6 = [
0 0.54983 0 −0.8

]T
, B7 = B8 = [

0 0.68729 0 −1
]T

,

H1 = H2 = H3 = H4 = H5 = H6 = H7 = H8 = [
0 0 −1 5

]T
,

C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 =
[

1 0 0 0
0 0 1 0

]
,

D1 = D2 = D3 = D4 = D5 = D6 = D7 = D8 = 02×1,

G1 = G2 = G3 = G4 = G5 = G6 = G7 = G8 = 02×1. (86)
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Consider that the operation region X (4) is given by: p = 1, h ∈ K1, R = [ 0 0 1 0 ] and φ = 0.02. The input 
signal Fc(t) is limited between ±39.2 N, according to the manufacturer’s suggestions and the system restrictions [32]. 
This limitation is performed using a saturator via Simulink�. Then, the polyhedral set L(Lj ) (12) has nu = 1, k ∈ K1
and ρ = 39.2.

The reference zr(t) was chosen to produce a sine wave signal, with amplitude 0.0015 m and frequency 
(f = 1 + t) Hz for 0.5 ≤ t ≤ 9.5 s, which varies linearly from 1.5 to 10.5 Hz and zr(t) = 0 for 0 ≤ t < 0.5 s 
and 9.5 < t ≤ 10 s. Observe that w(t) has a finite energy. Then, consider that x(0) = 0, x(0)T Px(0) = 0 and ∫ 10

0 w(t)T w(t)dt ≤ ∫∞
0 w(t)T w(t)dt ≤ 0.02, such that ε0 = 0 and ε = 0.02.

For ϕ = 10 and β = 0.01, the optimization problem with LMIs (45), given in Theorem 1, and (58)–(59) were 
solved using the MatLab� software and the modeling language YALMIP with the solver LMILab. A feasible solution 
was obtained with an H∞ guaranteed cost γ = 0.4587 and the following controller gains Kj , symmetric matrices Q̄j , 
j ∈K8, and positive definite matrix P :

K1 = [
21.317 55.892 −1519.125 −25.726

]
,

K2 = [
19.501 55.759 −1821.392 −26.042

]
,

K3 = [
39.206 54.827 −1586.110 −26.951

]
,

K4 = [
34.657 54.621 −1833.107 −26.886

]
,

K5 = [−279.307 43.373 −1439.728 −26.561
]
,

K6 = [−277.567 43.212 −1680.111 −26.284
]
,

K7 = [−229.815 43.310 −1537.852 −29.692
]
,

K8 = [−220.798 43.648 −1761.310 −29.029
]
,

Q̄1 =

⎡
⎢⎢⎣

−16272.519 −1825.561 114155.930 925.079
−1825.561 −36.668 −2248.541 −51.874
114155.930 −2248.541 546811.233 7447.960

925.079 −51.874 7447.960 91.543

⎤
⎥⎥⎦ ,

Q̄2 =

⎡
⎢⎢⎣

−16272.500 −1825.557 114150.475 925.078
−1825.557 −36.668 −2248.077 −51.874
114150.475 −2248.077 546732.075 7446.793

925.078 −51.874 7446.793 91.543

⎤
⎥⎥⎦ ,

Q̄3 =

⎡
⎢⎢⎣

−16272.670 −1825.572 114157.018 925.113
−1825.572 −36.632 −2249.797 −51.898
114157.018 −2249.797 546851.740 7448.712

925.113 −51.898 7448.712 91.557

⎤
⎥⎥⎦ ,

Q̄4 =

⎡
⎢⎢⎣

−16272.642 −1825.573 114151.610 925.108
−1825.573 −36.632 −2249.350 −51.899
114151.610 −2249.350 546775.471 7447.611

925.108 −51.899 7447.611 91.557

⎤
⎥⎥⎦ ,

Q̄5 =

⎡
⎢⎢⎣

−16252.451 −1823.735 114105.917 924.290
−1823.735 −36.536 −2251.732 −51.923
114105.917 −2251.732 546872.720 7448.650

924.290 −51.923 7448.650 91.544

⎤
⎥⎥⎦ ,

Q̄6 =

⎡
⎢⎢⎣

−16252.542 −1823.744 114101.419 924.289
−1823.744 −36.536 −2251.270 −51.924
114101.419 −2251.270 546796.656 7447.574

924.289 −51.924 7447.574 91.544

⎤
⎥⎥⎦ ,

Q̄7 =

⎡
⎢⎢⎣

−16253.609 −1823.739 114107.876 924.361
−1823.739 −36.488 −2253.168 −51.944
114107.876 −2253.168 546912.743 7449.212

924.361 −51.944 7449.212 91.551

⎤
⎥⎥⎦ ,

Q̄8 =

⎡
⎢⎢⎣

−16253.743 −1823.758 114103.620 924.370
−1823.758 −36.489 −2252.700 −51.945
114103.620 −2252.700 546838.514 7448.179

924.370 −51.945 7448.179 91.553

⎤
⎥⎥⎦ ,
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Fig. 7. The active suspension dynamic behavior for the open-loop and the closed-loop systems, with Ms = 2.45 kg. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

P =

⎡
⎢⎢⎣

2.0338 0.0761 −0.6087 0.0258
0.0761 0.0070 −0.1292 −0.0002

−0.6087 −0.1292 9.7192 0.0909
0.0258 −0.0002 0.0909 0.0031

⎤
⎥⎥⎦ . (87)

The goal of the practical implementation is to decrease the oscillations caused by the road surface (zr(t)). Then, 
two cases of practical implementations will be presented. In the first case, one considers the two weight units coupled 
to the active suspension system (Ms = 2.45 kg). In the second case, no weight unit is considered coupled to the system 
(Ms = 1.455 kg).

For each case (Ms = 2.45 kg and Ms = 1.455 kg), the following practical implementations were performed:

• an open-loop implementation, such that u(t) = 0, for 0 ≤ t ≤ 10 s;
• a closed-loop implementation, such that the switched H∞ controller given in (9) and (87) was used, considering 

an actuator fault. To add a fault in the actuator without any physical change, a 20% decrease in power of the 
actuator is forced by inserting a gain kf ault = 0.8 acting directly on engine, as described in (82), using the 
MatLab/Simulink� software. Emphasizing that the complete closed-loop implementation was performed with 
the actuator fault (kfault (t) = 0.8 in (82), for 0 ≤ t ≤ 10 s).

Fig. 7 and Fig. 8 show the system dynamic behavior for Ms = 2.45 kg and Ms = 1.455 kg, respectively. From 
these figures, observe that the open-loop system responses are bounded, even without the control action. However, 
the system presents oscillations with large amplitudes, causing discomfort to the driver and high levels of mechanical 
stress, which can cause damage to the suspension components. Note that the closed-loop system reduced the maximum 
amplitudes of zs and zus , providing comfort and safety to the equipment. Finally, the H∞ norm minimization mitigated 
the exogenous input effect in the output.

Remark 9. Now, considering the active suspension example, some considerations will be presented relating the meth-
ods proposed in this work (Theorem 1, Corollary 1 and Corollary 2) and [26]. In this example, implementing the 
method proposed in Theorem 1 is justified because:
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Fig. 8. The active suspension dynamic behavior for the open-loop and the closed-loop systems, with Ms = 1.455 kg. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

• the control design of Theorem 1 considers that the control signal is subject to saturation, unlike Corollary 2
and [26];

• in this example, it is considered that the active suspension system has an uncertain mass (Ms) and a nonlinearity 
related to the spring stiffness kus . After obtaining the state-feedback gains solving the optimization problem of 
Theorem 1, to implement the switched control law (9) it is not necessary to calculate the membership functions of 
the nonlinear system. On the other hand, to implement the control law presented in [26] it is necessary to calculate 
the membership function. Therefore, due to the uncertain mass (Ms) and the nonlinearity kus , it is advantageous 
to use the method proposed in Theorem 1;

• considering (86) and the aforementioned design parameters (φ = 0.02, R = [ 0 0 1 0 ], ρ = 39.2, ϕ = 10, 
β = 0.01, ε0 = 0 and ε = 0.02), the conditions of the optimization problem with LMIs (60), given in Corollary 1, 
and (58)–(59) are not feasible. Thus, using the method proposed in Corollary 1, it was not possible to design only 
one state-feedback gain to control the active suspension system (83)–(86).

5. Conclusions

An H∞ switched controller design for a class of uncertain nonlinear systems, subject to actuator saturation and 
energy-bounded disturbances, is proposed. The switched control law ensures that the state trajectory remains within a 
region in which the uncertain nonlinear system can be exactly described by a T–S fuzzy model. The two main advan-
tages of the proposed method are: i) To perform the design and implementation of the control law is not necessary to 
find the membership functions expressions. Thus, the proposed procedure allows the membership functions depend 
on uncertain or unknown parameters and also avoids complex calculations that are often related to these expressions; 
ii) The design conditions do not depend on the magnitude of the disturbance, unlike the method presented [26] that 
only is applied in systems subject to magnitude-bounded disturbances. Considering a chaotic Lorenz system, pre-
sented in the first example, the switched control design proposed in Theorem 1 presented relaxation when compared 
to the result obtained with the control design proposed in Corollary 1, that uses only one controller. For disturbances 
with large magnitude, the proposed methods provided better results, even when compared to the procedure presented 
in [26], that considers full access to the membership functions. As in [26], the conditions of Corollary 2 do not con-
sider that the control signal is subject to saturation. Therefore, Corollary 2 presents fewer constraints and consequently 
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better results than Theorem 1 and Corollary 1. A practical implementation using an active suspension system illus-
trated the practical effectiveness of the proposed methodology as well as showed that the H∞ switched control can be 
able to mitigate the action of an exogenous input in system output, even with an actuator fault and different operating 
conditions related to the mass Ms . Finally, considering the control design specifications and the conditions presented 
in Corollary 1, it was not possible to find a solution with only one state-feedback gain to control the same active 
suspension system.
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