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Abstract

In fairly elementary terms this paper presents how the theory of preordered fuzzy sets, more precisely quantale-valued

preorders on quantale-valued fuzzy sets, is established under the guidance of enriched category theory. Motivated

by several key results from the theory of quantaloid-enriched categories, this paper develops all needed ingredients

purely in order-theoretic languages for the readership of fuzzy set theorists, with particular attention paid to fuzzy

Galois connections between preordered fuzzy sets.
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1. Introduction

The theory of fuzzy preorders was initiated by Zadeh’s pioneering work [52] and has been developed for decades,

during which time the table of truth-values under concern has been extended from the unit interval [0, 1] to a unital

quantale Q [35]. With the multiplication &: Q × Q // Q of a unital quantale Q playing the role of the logical con-

junction and its unit e representing the logical value “true”, a Q-preorder on a set X is given by a map α : X × X // Q

such that

e ≤ α(x, x) (reflexivity) and α(y, z) & α(x, y) ≤ α(x, z) (transitivity) (1.i)

for all x, y, z ∈ X; here the transitivity condition is also formulated by some authors as α(x, y) & α(y, z) ≤ α(x, z)

(see, e.g., [19, 46]), which in fact defines Qτ-preorders on X in the sense of (1.i), with Qτ being the conjugate of

the quantale Q (see Remark 3.10). Q-preordered sets have attracted wide attention in the fuzzy community; see

[3, 4, 10, 20, 21, 26, 28, 41, 51] for instance.

While Q-preordered sets defined by (1.i) are actually Q-preorders on crisp sets, recently Lai and Zhang and

their co-authors have established the theory of Q-preorders on fuzzy sets especially when Q is a divisible quantale

[30, 34, 48]; similar approaches have been adopted by Höhle and Kubiak for the construction of their quantale-

valued preorders [19, 22]. The key machinery involved in these works is that of categories enriched in a quantaloid

[36, 44, 45, 46], which is a special case of categories enriched in a bicategory [5, 6, 50]. To be specific, each unital

quantale Q gives rise to a quantaloid DQ of diagonals in Q [22, 34, 46], and a Q-subset (i.e., a Q-valued fuzzy set)

equipped with a Q-preorder is exactly a category enriched in the quantaloid DQ.

The purpose of this paper is to present the theory of preordered fuzzy sets, more precisely Q-preordered

Q-subsets, in the most accessible terms for readers from the fuzzy community who may not be familiar with the

arsenal of category theorists and, in particular, the theory of quantaloid-enriched categories. For the most generality

we only assume Q to be a unital quantale, not necessarily commutative, without imposing any divisibility condition

as in [34, 48], and our focus will be on Q-Galois connections between Q-preordered Q-subsets. Although some of

the results in this paper are generalizations of those in [15] for Q-preordered (crisp) sets, the method developed here,

as prepared in Section 2, allows for a much wider range of applicability.
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To understand the structure of Q-preorderedQ-subsets, let us first look at their crisp version; that is, when Q = 2,

the two-element Boolean algebra. In this case, a 2-preordered 2-subset is a partially defined preordered set given by

a (crisp) set X, a (crisp) subset A ⊆ X and a preorder “≤” on A. Explicitly, for all x, y, z ∈ X:

(P1) (divisibility) x ≤ y only if x, y ∈ A;

(P2) (reflexivity) if x ∈ A, then x ≤ x;

(P3) (transitivity) if there exists y ∈ A such that y ≤ z and x ≤ y, then x ≤ z.

Now, replacing 2 with a general unital quantale Q, a Q-subset consists of a (crisp) set X and a map |-| : X // Q, and

a Q-preorder on (X, |-|) is given by a map α : X × X // Q satisfying

(QP1) (divisibility) (α(x, y) / |x|) & |x| = α(x, y) = |y| & (|y| \ α(x, y)),

(QP2) (reflexivity) |x| ≤ α(x, x),

(QP3) (transitivity) (α(y, z) / |y|) & α(x, y) = α(y, z) & (|y| \ α(x, y)) ≤ α(x, z)

for all x, y, z ∈ X, where /, \ stand for the left and the right implications inQ. Hence, while the notion ofQ-preordered

set defined by (1.i) extend the notion of “preordered set”, the notion of Q-preordered Q-subset defined as above is

actually a generalization of the notion of “partially defined preordered set”.

However, instead of establishing the theory of Q-preordered Q-subsets upon the complicated pointwise defini-

tion (QP1)–(QP3) as in most of the literature for Q-preordered sets, we would rather introduce Q-relations between

Q-subsets (i.e., fuzzy relations between fuzzy sets), in Section 2, as the cornerstone of our theory. Indeed, as it is

well known that (crisp) preorders are reflexive and transitive (crisp) relations, an appropriate notion of Q-relation

betweenQ-subsets (see Definition 2.3) allows us to defineQ-preorders onQ-subsets simply as reflexive and transitive

Q-relations (see Definition 3.1). More importantly, the calculus of Q-relations based on the fact that Q-subsets and

Q-relations constitute a quantaloid significantly simplifies the treatment of Q-preorders and also makes the related

concepts much more elegant.

With necessary discussions of the basic concepts of Q-preorderedQ-subsets in Section 3, we put our emphasis on

Q-Galois connections in Section 4. The notion of Galois connections between preordered sets [7, 16, 33] has been

extended to the fuzzy setting by Bělohlávek since 1999 [2, 3, 4], and in the subsequent works [13, 14, 15] of other

authors fuzzy Galois connections have been considered in a non-commutative world. More precisely, Bělohlávek’s

fuzzy Galois connections are Q-Galois connections between Q-preordered (crisp) sets, whose prototypes are adjoint

functors between quantale-enriched categories [15, 23, 27, 49]. In this paper, based on the notion of adjoint func-

tor between quantaloid-enriched categories [25, 44, 46], we extend the realm of fuzzy Galois connections further to

Q-Galois connections betweenQ-preorderedQ-subsets. Motivated by several key results from the theory of quantaloid-

enriched categories [37, 42, 44, 45], we carefully exhibit the interactions of Q-Galois connections with

• the completeness of Q-preorderedQ-subsets,

• the preservation of suprema, infima and (co)tensors, and

• Q-distributors betweenQ-preorderedQ-subsets (i.e.,Q-relations that are compatible with theQ-preorder struc-

tures).

In particular, we propose a conceptual definition of Q-polarities and (dual) Q-axialities, following the terminologies

in [7, 11, 15], as Q-Galois connections between (dual) Q-powersets of Q-preordered Q-subsets, and their bijective

correspondences with Q-distributors are established.

Without assuming any a-priori background by the readers on quantaloid-enriched categories, this paper is intended

to develop all needed ingredients purely in order-theoretic languages, though implicitly under the guidance of enriched

category theory and occasionally with remarks pointing out their pivotal links to the categorical concepts. As shall be

seen, the implementation of the Q-relational calculus, our key method that was not usually adopted in the literature,

not only presents the theory of Q-preordered Q-subsets in a succinct way, but also unveils the conceptual nature of

the related notions.
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2. The calculus of fuzzy relations

A unital quantale is a triple (Q,&, e) consisting of a complete lattice Q, an element e ∈ Q and a binary operation

& on Q, such that

(1) (Q,&, e) is a monoid with e being the unit;

(2) p & (
∨
i∈I

qi) =
∨
i∈I

(p & qi) and (
∨
i∈I

pi) & q =
∨
i∈I

(pi & q) for all p, pi, q, qi ∈ Q (i ∈ I).

The corresponding Galois connections Q Q

−&q
//
QQ

−/q
oo ⊥ and Q Q

p&−
//
QQ

p\−

oo ⊥ induced by the monoid multiplications

satisfy

p & q ≤ r ⇐⇒ p ≤ r / q ⇐⇒ q ≤ p \ r

for all p, q, r ∈ Q, where the operations /, \ are called left and right implications in Q, respectively.

Throughout this paper, we let Q = (Q,&, e) be a non-trivial unital quantale; that is, the bottom element ⊥ < e in

Q. We say that Q is integral if e = ⊤, the top element of Q. Q is commutative if p & q = q & p for all p, q ∈ Q, in

which case we write p→ q for q / p = p \ q.

Taking Q as the table of truth-values, a Q-subset (or, fuzzy set) is a pair (X, |-|X), where X is a crisp set and

|-|X : X // Q

is a map, with the value |x|X interpreted as the membership degree of each x in X. For the simplicity of notations, in

the following we just write |-| for |-|X and X for aQ-subset (X, |-|) if no confusion arises, which is always assumed to be

equipped with a membership map |-| : X //Q. The slice category Set/Q has Q-subsets as objects, and membership-

preserving maps f : X // Y between Q-subsets, i.e., maps f : X // Y with

|x| = | f x|

for all x ∈ X, as morphisms.

Given an element q ∈ Q, following the terminologies in [19], we say that

(1) u ∈ Q is left-divisible by q if there exists p ∈ Q such that q & p = u or, equivalently, if q & (q \ u) = u;

(2) u ∈ Q is right-divisible by q if there exists p ∈ Q such that p & q = u or, equivalently, if (u / q) & q = u.

For any p, q ∈ Q, we denote by

DQ(p, q) = {u ∈ Q | (u / p) & p = u = q & (q \ u)}

the set of elements inQ that are simultaneously right-divisible by p and left-divisible by q. The quantaleQ is divisible

if, whenever u ≤ q in Q, u is both left- and right-divisible by q, i.e., q & (q \ u) = u = (u / q) & q. It is easy to

observe the following facts:

Lemma 2.1. Let (Q,&, e) be a unital quantale and p, q ∈ Q. Then:

(1) DQ(⊥, q) = DQ(q,⊥) = {⊥}.

(2) DQ(e, e) = Q.

(3) q ∈ DQ(q, q).

(4) ⊥ ∈ DQ(p, q).

(5) e ∈ DQ(⊤,⊤) if, and only if, Q is integral.

Moreover,
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(6) Q is integral if, and only if, DQ(p, q) ⊆ {u ∈ Q | u ≤ p ∧ q} for all p, q ∈ Q.

(7) Q is divisible if, and only if, DQ(p, q) = {u ∈ Q | u ≤ p ∧ q} for all p, q ∈ Q.

Examples 2.2.

(1) (Commutative and divisible quantales) Every frame is a divisible, commutative and idempotent quantale, and

vice versa; in particular, so is Q = 2, the two-element Boolean algebra.

A binary operation & on the unit interval [0, 1] defines a continuous (resp. left-continuous) t-norm on [0, 1] if,

and only if, ([0, 1],&, 1) is a commutative and divisible (resp. integral) quantale. In particular, [0, 1] equipped

with the minimum, the product, or the Łukasiewicz t-norm is a commutative and divisible quantale.

Lawvere’s quantale [29] ([0,∞]op,+, 0), where [0,∞]op is the extended non-negative real line equipped with the

order “≥”, is commutative and divisible, in which implications are given by

p→ q = max{0, q − p}.

Indeed, Lawvere’s quantale is isomorphic to the quantale [0, 1] equipped with the product t-norm.

(2) (Commutative and non-integral quantales) On the three-chain C3 = {⊥, e,⊤} we have the commutative unital

quantale (C3,&, e), with

⊤ & ⊤ = ⊤ → ⊤ = ⊤, ⊤ → ⊥ = ⊤ → e = ⊥

and the other multiplications / implications being trivial. It follows immediately from Lemma 2.1 that

DC3(⊥,⊥) = DC3(⊥, e) = DC3(⊥,⊤) = DC3(e,⊥) = DC3(⊤,⊥) = {⊥},

DC3(⊤,⊤) = DC3(e,⊤) = DC3(⊤, e) = {⊥,⊤} and DC3(e, e) = {⊥, e,⊤}.

In fact, this quantale is universal among non-integral unital quantales in the sense that in any non-integral unital

quantale Q, the elements {⊥, e,⊤} ⊆ Q form a subquantale that is isomorphic to (C3,&, e). For instance, one

may embed (C3,&, e) into the quantale Q = ([0,∞], ·, 1), whose underlying complete lattice is [0,∞] equipped

with the usual order “≤”, and whose multiplication is given by the multiplication “·” of real numbers (under the

assumption 0 · ∞ = 0), with implications given by

p→ q =
q

p
.

([0,∞], ·, 1) is obviously a commutative and non-integral quantale, and it is not difficult to see that

DQ(p, q) =



{0} if p ∧ q = 0,

[0,∞] if 0 < p, q < ∞,

{0,∞} if p ∨ q = ∞.

(3) (Non-commutative and non-integral quantales) For each complete lattice L with at least two elements, the

complete lattice Sup(L, L) of all sup-preserving maps on L carries a non-trivial and non-commutative quantale

structure (Sup(L, L), ·, 1L), where · is the composition of maps, and 1L is the identity map on L. Moreover,

(Sup(L, L), ·, 1L) is non-integral if, and only if, L contains at least three elements.

Each non-empty set X gives rise to a non-trivial and non-commutative quantale (Rel(X, X), ◦, idX), where

Rel(X, X) = 2X×X is the complete lattice of all relations on X, ◦ is the composition of relations, and idX =

{(x, x) | x ∈ X} is the identity relation on X. Moreover, Rel(X, X) is non-integral if, and only if, X contains at

least two elements.

Each monoid M = (M,&, e) induces a free quantale Q = (2M,&, {e}) with A & B = {a & b | a ∈ A, b ∈ B} for

all A, B ⊆ M. Clearly, Q is non-commutative if and only if so is M, while Q is non-integral if and only if M

contains at least two elements.
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(4) (Non-commutative and non-divisible integral quantales) For each complete chain L with at least three elements,

the subset

Sup(L, L)≤1L
= { f ∈ Sup(L, L) | f ≤ 1L}

forms a subquantale of (Sup(L, L), ·, 1L) that is non-commutative, non-divisible and integral. Indeed, in order

to see that (Sup(L, L)≤1L
, ·, 1L) is non-divisible, let x0 ∈ L with ⊥ < x0 < ⊤, and let f , g ∈ Sup(L, L)≤1L

be given

by

f x =


⊥ if x ≤ x0,

x0 if x > x0

and gx =


⊥ if x ≤ x0,

x if x > x0

for all x ∈ L. Then f < g, but obviously there exists no h ∈ Sup(L, L)≤1L
with f = g · h.

In particular, when L = C3 = {⊥, e,⊤} is the three-chain, it is not difficult to see that Sup(C3,C3)≤1C3
is the

following complete lattice:

◦

◦◦

◦ ❏❏❏❏❏
◦

◦
ttttt

◦

◦
ttttt

◦

◦ ❏❏❏❏❏

⊥ = (⊥,⊥,⊥)

a = (⊥,⊥, e)

b = (⊥,⊥,⊤) c = (⊥, e, e)

⊤ = (⊥, e,⊤)

In fact, the subquantale on the four-chain C4 = {⊥, a, b,⊤} ⊆ Sup(C3,C3)≤1C3
is also non-commutative, non-

divisible and integral, which is the simplest complete lattice that can be endowed with such quantale structures.

Explicitly, multiplications in the quantale (C4, ·,⊤) are given by

a · a = b · a = ⊥, a · b = a and b · b = b,

and (C4, ·,⊤) is non-divisible since a is not right-divisible by b, although a < b holds.

Definition 2.3. A Q-relation (or, fuzzy relation) ϕ : X //7 Y between Q-subsets is a map ϕ : X × Y // Q such that

ϕ(x, y) ∈ DQ(|x|, |y|), i.e.,

(ϕ(x, y) / |x|) & |x| = ϕ(x, y) = |y| & (|y| \ ϕ(x, y)), (2.i)

for all x ∈ X and y ∈ Y.

Note that when Q = 2, the two-element Boolean algebra, ϕ : X //7 Y in Definition 2.3 reduces to a “binary

relation between (crisp) subsets A ⊆ X and B ⊆ Y”. In other words, ϕ : X //7 Y is actually a partially defined relation

from X to Y.

As for a general Q, Lemma 2.1 (1) forces ϕ(x, y) = ⊥ in Equation (2.i) whenever |x| = ⊥ or |y| = ⊥. Hence, with

the value ϕ(x, y) of a Q-relation ϕ : X //7 Y interpreted as the degree of x and y being related, Equation (2.i) can be

understood as a many-valued reformulation of “x and y are related only if x is in the Q-subset (X, |-|) of X and y is in

the Q-subset (Y, |-|) of Y”.

Recall that a Q-relation between (crisp) sets is nothing but a map ϕ : X × Y // Q. Since every (crisp) set X can

be regarded as a Q-subset in which |x| = e for all x ∈ X, the following diagram illustrates the chain of generalization
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from “binary relations between (crisp) sets” to “Q-relations between Q-subsets”:

Binary relations between (crisp) sets

Binary relations between (crisp) subsets Q-relations between (crisp) sets

Q-relations between (crisp) subsets

Q-relations between Q-subsets

(2.ii)

Explicitly, for any Q-relation ϕ : X //7 Y between Q-subsets:

(1) If |x| = |y| = e and ϕ(x, y) ∈ {⊥, e} for all x ∈ X and y ∈ Y, then ϕ can be identified with the binary relation Rϕ

between (crisp) sets X and Y, given by x Rϕ y ⇐⇒ ϕ(x, y) = e for all x ∈ X and y ∈ Y.

(2) If |x|, |y|, ϕ(x, y) ∈ {⊥, e} for all x ∈ X and y ∈ Y, then ϕ can be identified with the binary relation Rϕ between

(crisp) subsets

supp X = {x ∈ X | |x| , ⊥} ⊆ X and supp Y = {y ∈ Y | |y| , ⊥} ⊆ Y,

given by x Rϕ y ⇐⇒ ϕ(x, y) = e for all x ∈ supp X and y ∈ supp Y.

(3) If |x| = |y| = e for all x ∈ X and y ∈ Y, then Lemma 2.1 (2) shows that DQ(|x|, |y|) = Q for all x ∈ X and y ∈ Y,

and hence ϕ is just a map ϕ : X × Y // Q; that is, a Q-relation between (crisp) sets X and Y.

(4) If |x|, |y| ∈ {⊥, e} and ϕ(x, y) ∈ Q for all x ∈ X and y ∈ Y, by Lemma 2.1 (1) (2) one sees that DQ(|x|, |y|) = Q if

x ∈ supp X, y ∈ supp Y and DQ(|x|, |y|) = {⊥} otherwise; hence, ϕ can be identified with a Q-relation between

(crisp) subsets supp X ⊆ X and supp Y ⊆ Y.

Examples 2.4.

(1) For any Q-subset X, the map idX : X × X // Q with

idX(x, x′) =


|x| if x = x′,

⊥ else

defines a Q-relation idX : X //7 X (by Lemma 2.1 (3) (4)), called the identity Q-relation on X.

(2) For any q ∈ Q, let 1q denote the singleton Q-subset {∗} with | ∗ | = q. Then for any p, q ∈ Q, each u ∈ DQ(p, q)

can be regarded as a Q-relation u : 1p
//7 1q with u(∗, ∗) = u. In other words, there are as many Q-relations

1p
//7 1q as elements in DQ(p, q).

(3) For any Q-relation ϕ : X //7 Y, x ∈ X and y ∈ Y, the maps ϕ(x,−) : 1|x| × Y // Q and ϕ(−, y) : X × 1|y| // Q

given by

ϕ(x,−)(∗, y) = ϕ(x, y) and ϕ(−, y)(x, ∗) = ϕ(x, y)

define Q-relations

ϕ(x,−) : 1|x| //7 Y and ϕ(−, y) : X //7 1|y|.

In particular, ϕ(x, y) can be regarded as a Q-relation ϕ(x, y) : 1|x| //7 1|y|, which is a special case of (2).
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For Q-relations ϕ : X //7 Y and ψ : Y //7 Z, it is straightforward to check that the map ψ ◦ ϕ : X × Z //Q with

(ψ ◦ ϕ)(x, z) =
∨

y∈Y

(ψ(y, z) / |y|) & |y| & (|y| \ ϕ(x, y))

=
∨

y∈Y

(ψ(y, z) / |y|) & ϕ(x, y)

=
∨

y∈Y

ψ(y, z) & (|y| \ ϕ(x, y)) (2.iii)

defines a Q-relation

ψ ◦ ϕ : X //7 Z,

called the composition of ψ and ϕ. (2.iii) can be interpreted as a many-valued version of “x and z are related if, and

only if, there exists y in the Q-subset (Y, |-|) of Y such that x and y are related, y and z are related”.

Proposition 2.5. Let ϕ, ϕ′, ϕi : X //7 Y, ψ, ψi : Y //7 Z, ξ : Z //7 W (i ∈ I) be Q-relations between Q-subsets.

(1) ξ ◦ (ψ ◦ ϕ) = (ξ ◦ ψ) ◦ ϕ.

(2) idY ◦ ϕ = ϕ = ϕ ◦ idX .

(3) With the pointwise order inherited from Q, i.e.,

ϕ ≤ ϕ′ ⇐⇒ ∀x ∈ X, y ∈ Y : ϕ(x, y) ≤ ϕ′(x, y),

Q-relations from X to Y form a complete lattice Q-FRel(X, Y). Moreover, it holds that

ψ ◦
(∨

i∈I

ϕi

)
=
∨

i∈I

(ψ ◦ ϕi) and
(∨

i∈I

ψi

)
◦ ϕ =

∨

i∈I

(ψi ◦ ϕ).

Proposition 2.5 (3) induces Galois connections

Q-FRel(Y, Z) Q-FRel(X, Z)
−◦ϕ

//
Q-FRel(X, Z)Q-FRel(Y, Z)

−ւϕ
oo ⊥ and Q-FRel(X, Y) Q-FRel(X, Z)

ψ◦−
//
Q-FRel(X, Z)Q-FRel(X, Y)

ψց−
oo ⊥

for all Q-relations ϕ : X //7 Y and ψ : Y //7 Z, where the operationsւ,ց are called left and right implications of

Q-relations, respectively. Explicitly, for any ξ : X //7 Z, the implications ξ ւ ϕ and ψց ξ are given by

ξ ւ ϕ =
∨
{ψ′ : Y //7 Z | ψ′ ◦ ϕ ≤ ξ} and ψց ξ =

∨
{ϕ′ : X //7 Y | ψ ◦ ϕ′ ≤ ξ}. (2.iv)

Remark 2.6. Given p, q, r ∈ Q, u ∈ DQ(p, q), v ∈ DQ(q, r) and w ∈ DQ(p, r), since u, v and w are themselves

elements in Q, one could compute the implications

w / u and v \ w

inQ. On the other hand, if we consider u : 1p
//7 1q, v : 1q

//7 1r , w : 1p
//7 1r asQ-relations (see Example 2.4 (2)),

then it is also possible to calculate the implications

wւ u : 1q
//7 1r and vց w : 1p

//7 1q

of Q-relations. It is not difficult to see that

wւ u =
∨
{v′ ∈ DQ(q, r) | v′ ≤ w / (q \ u)} and vց w =

∨
{u′ ∈ DQ(p, q) | u′ ≤ (v / q) \ w};

hence, in general w ւ u , w / u and v ց w , v \ w. That is why we distinguish implications in Q and those of

Q-relations with different symbols.
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It is straightforward to verify the following calculus of Q-relations:

Proposition 2.7. For Q-relations ϕ : X //7 Y, ψ : Y //7 Z and ξ : X //7 Z, it holds that

ψ ◦ ϕ =
∨

y∈Y

ψ(y,−) ◦ ϕ(−, y), ξ ւ ϕ =
∧

x∈X

ξ(x,−)ւ ϕ(x,−) and ψց ξ =
∧

z∈Z

ψ(−, z)ց ξ(−, z).

Proposition 2.8. The following formulas hold for allQ-relations ϕ, ϕi, ψ, ψi, ξ, ξi (i ∈ I) betweenQ-subsets whenever

the compositions and implications make sense:

(1) ψ ◦ ϕ ≤ ξ ⇐⇒ ψ ≤ ξ ւ ϕ ⇐⇒ ϕ ≤ ψց ξ.

(2) (
∧
i∈I

ξi)ւ ϕ =
∧
i∈I

(ξi ւ ϕ) and ψց (
∧
i∈I

ξi) =
∧
i∈I

(ψց ξi).

(3) hւ (
∨
i∈I

ϕi) =
∧
i∈I

(ξ ւ ϕi) and (
∨
i∈I

ψi)ց ξ =
∧
i∈I

(ψi ց ξ).

(4) (ξ ւ ψ) ◦ (ψւ ϕ) ≤ ξ ւ ϕ and (ϕց ψ) ◦ (ψց ξ) ≤ ϕց ξ.

(5) (ξ ւ ϕ)ւ ψ = hւ (ψ ◦ ϕ) and ϕց (ψց ξ) = (ψ ◦ ϕ)ց ξ.

(6) (ψց ξ) ւ ϕ = ψց (ξ ւ ϕ).

(7) (ξ ւ ϕ) ◦ ϕ ≤ ξ and ψ ◦ (ψց ξ) ≤ ξ.

(8) ξ ◦ (ψւ ϕ) ≤ (ξ ◦ ψ)ւ ϕ and (ψց ξ) ◦ ϕ ≤ ψց (ξ ◦ ϕ).

Recall that an ordered category [18], as a special kind of a 2-category [31], is a category C whose hom-sets C(X, Y)

are equipped with a preorder “≤”, such that

v ≤ v′ =⇒ w ◦ v ◦ u ≤ w ◦ v′ ◦ u

holds for all morphisms u : X // Y, v, v′ : Y // Z and w : Z // W in C.

Proposition 2.5 in fact shows that Q-subsets and Q-relations constitute an ordered categoryQ-FRel which, more-

over, is a quantaloid [36]. Explicitly, a quantaloid is a category C in which every hom-set C(X, Y) is a complete lattice,

with

v ◦
(∨

i∈I

ui

)
=
∨

i∈I

(v ◦ ui) and
(∨

i∈I

vi

)
◦ u =

∨

i∈I

(vi ◦ u)

holding for all morphisms u, ui : X // Y and v, vi : Y // Z (i ∈ I) in C. The properties of Q-relations presented in

Proposition 2.8 are valid for morphisms in any quantaloid C.

3. Preordered fuzzy sets valued in a quantale

3.1. Q-preordered Q-subsets

Let α : X //7 X be a Q-relation on a Q-subset X. Then

• α is reflexive if idX ≤ α;

• α is transitive if α ◦ α ≤ α.

Definition 3.1. A Q-preorder on a Q-subset X is a reflexive and transitive Q-relation α : X //7 X. The pair (X, α) is

called a Q-preordered Q-subset.

In elementary words, a map α : X × X // Q defines a Q-preorder on a Q-subset X if

(QP1) (α(x, y) / |x|) & |x| = α(x, y) = |y| & (|y| \ α(x, y)),

(QP2) |x| ≤ α(x, x),
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(QP3) (α(y, z) / |y|) & α(x, y) = α(y, z) & (|y| \ α(x, y)) ≤ α(x, z)

for all x, y, z ∈ X. These conditions can be intuitively interpreted as:

(1) x ≤ y only if x and y are both in the Q-subset (X, |-|);

(2) if x is in the Q-subset (X, |-|), then x ≤ x;

(3) if there exists y in the Q-subset (X, |-|) such that y ≤ z and x ≤ y, then x ≤ z.

Remark 3.2. A unital quantale Q gives rise to a quantaloid DQ [22, 34, 46] with the following data:

(1) objects in DQ are elements of Q;

(2) a morphism u : p // q in DQ is an element in Q right-divisible by p and left-divisible by q, i.e., u ∈ DQ(p, q);

(3) the composition of u : p // q and v : q // r in DQ is given by

v ◦ u = (v / q) & q & (q \ u) = (v / q) & u = v & (q \ u);

(4) the identity morphism on q in DQ is q : q // q.

The structure of the quantaloid DQ is extremely clear when Q is divisible, in which case each hom-set DQ(p, q) is

exactly the principal lower set generated by p ∧ q (see Lemma 2.1 (7)). From the viewpoint of enriched category

theory, aQ-preorderedQ-subset is precisely a category enriched in the quantaloid DQ; we refer to [17, 36, 38, 44, 46]

for the theory of quantaloid-enriched categories.

Note that the same map α : X × X // Q can define Q-preorders on different Q-subsets over the same (crisp) set

X. In particular, we have the following:

Proposition 3.3. Let α be a Q-preorder on a Q-subset (X, |-|).

(1) If (X, |-|′) is another Q-subset with

|x| ≤ |x|′ ≤ α(x, x) (3.i)

for all x ∈ X, then α is also a Q-preorder on (X, |-|′).

(2) If Q is integral, then α(x, x) = |x| for each x ∈ X.

Proof. (1) (X, |-|′, α) obviously satisfies (QP2). For (QP1), let x, y ∈ X. By applying (3.i) and (QP1), (QP3) for

(X, |-|, α) one has

α(x, y) = (α(x, y) / |x|) & |x| ≤ (α(x, y) / |x|) & |x|′ ≤ (α(x, y) / |x|) & α(x, x) = α(x, y),

which proves the right-divisibility of α(x, y) by |x|′, and its left-divisibility by |y|′ can be checked similarly. As for

(QP3), just note that

α(y, z) & (|y|′ \ α(x, y)) ≤ α(y, z) & (|y| \ α(x, y)) ≤ α(x, z)

for all x, y, z ∈ X, by (3.i) and (QP3) for (X, |-|, α).

(2) IfQ is integral, then it follows from (QP1) that α(x, x) ≤ |x| for each x ∈ X, and thus α(x, x) = |x| by (QP2).

Remark 3.4. As we remarked in 3.2, in the case thatQ is a divisible quantale, Lemma 2.1 (7) simplifies the condition

(QP1) for a Q-preorder α on a Q-subset X to

α(x, y) ≤ |x| ∧ |y|

for all x, y ∈ X. Since divisible quantales are necessarily integral, with Proposition 3.3 (2) one deduces that a

Q-preorderedQ-subset is exactly a pair (X, α), where X is a (crisp) set and α : X × X //Q is a map, such that

(DP1) α(x, y) ≤ α(x, x) ∧ α(y, y),
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(DP2) (α(y, z) / α(y, y)) & α(x, y) = α(y, z) & (α(y, y) \ α(x, y)) ≤ α(x, z)

for all x, y, z ∈ X. When Q is commutative and divisible, the conditions (DP1) and (DP2) were first presented

by Höhle-Kubiak to formulate their pre-Q-sets (see [22, Example 3.4]) and by Pu-Zhang in the definition of their

Q-valued preordered sets (see [34, Definition 3.4]), which are both precisely Q-preorderedQ-subsets in our sense.1

However, if Q is non-divisible, one may find pairs (X, α) satisfying (DP1) and (DP2) but fail to be Q-preordered

Q-subsets. For example, let Q = (C4, ·,⊤) be the non-divisible integral quantale introduced in Example 2.2 (4), and

let X = {x, y} with α : X × X //Q given by

α(-, -) x y

x b a

y ⊥ b

Then (X, α) satisfies (DP1) and (DP2), but in order for α to become a Q-preorder on the Q-subset (X, |-|) with |x| =

|y| = α(x, x) = α(y, y) = b (see Proposition 3.3 (2)), α(x, y) = a should belong to DQ(|x|, |y|) = DQ(b, b), which cannot

be true since a is not right-divisible by b.

Each Q-preorderedQ-subset (X, α) admits a natural underlying preorder on X given by

x ≤ y ⇐⇒ |x| = |y| and |x| ≤ α(x, y).

(X, α) is said to be separated if (X,≤) is a partial order; that is, x = y ⇐⇒ x ≤ y and y ≤ x.

Remark 3.5. Given a Q-preordered Q-subset (X, α), it is easy to see that x ≤ y in the underlying preorder whenever

|x| = |y| = ⊥; that is, the underlying preorder of (X, α) always endows the set

X⊥ = {x ∈ X | |x| = ⊥}

with the indiscrete preorder. Consequently, if (X, α) is separated, then there is at most one element x ∈ X with |x| = ⊥.

Definition 3.6. A membership-preserving map f : (X, α) // (Y, β) between Q-preordered Q-subsets is Q-order-

preserving if

α(x, x′) ≤ β( f x, f x′)

for all x, x′ ∈ X. A Q-order-preserving map f : (X, α) // (Y, β) is fully faithful if

α(x, x′) = β( f x, f x′)

for all x, x′ ∈ X.

With the pointwise (pre)order of Q-order-preserving maps f , g : (X, α) // (Y, β) given by

f ≤ g ⇐⇒ ∀x ∈ X : f x ≤ gx ⇐⇒ ∀x ∈ X : |x| ≤ β( f x, gx),

Q-preordered Q-subsets and Q-order-preserving maps constitute an ordered category Q-FOrd. Fully faithful and

bijective Q-order-preserving maps are clearly isomorphisms in Q-FOrd.

Examples 3.7.

(1) Each Q-subset X is equipped with a discrete Q-preorder idX : X //7 X. In particular, the singleton Q-subset 1q

(see Example 2.4 (2)) is always assumed to be equipped with the discrete Q-preorder.

1Pre-Q-sets were defined in [22, Definition 3.1] for a general quantale Q, but they may not be identified with our Q-preordered Q-subsets,

unless Q is commutative and divisible.
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(2) If Q = 2, then Definition 3.1 gives partially defined preordered sets (see [39]); that is, (crisp) sets X equipped

with a preorder on a (crisp) subset supp X ⊆ X. A morphism f : X // Y in

POrd := 2-FOrd

is a map f : X // Y satisfying supp X = f −1(supp Y), whose restriction f |supp X : supp X // supp Y is order-

preserving. It should be pointed out that X ∈ POrd is not a preordered set as long as supp X ( X due to the

failure of reflexivity for elements in X \ supp X, but the underlying preorder of X is indeed a preorder on X by

assigning supp X with its original order and X \ supp X with the indiscrete preorder (see Remark 3.5).

(3) Every frame Ω = (Ω,∧,⊤) is a commutative and divisible quantale. Moreover,

(q→ v) ∧ u = v ∧ (q→ u) = v ∧ u

whenever u, v ≤ q in Ω. Then by Remark 3.4, an Ω-preorderedΩ-subset becomes a (crisp) set X equipped with

a map α : X × X // Ω, such that

α(x, y) ≤ α(x, x) ∧ α(y, y) and α(y, z) ∧ α(x, y) ≤ α(x, z)

for all x, y, z ∈ X. Therefore,Ω-preorderedΩ-subsets are precisely skewΩ-sets in the sense of Borceux-Cruciani

[8]. In particular, skew Ω-sets (X, α) satisfying α(x, y) = α(y, x) for all x, y ∈ X are exactly Ω-sets originally

defined by Fourman-Scott [12].

(4) Since Lawvere’s quantale Q = ([0,∞]op,+, 0) is divisible, it follows from Remark 3.4 that a Q-preordered

Q-subset is exactly a pair (X, α), where X is a (crisp) set and α : X × X // [0,∞] is a map, such that

α(x, x) ∨ α(y, y) ≤ α(x, y) and α(x, z) ≤ α(y, z) − α(y, y) + α(x, y)

for all x, y, z ∈ X; that is to say, (X, α) is a (generalized) partial metric space (see [9, 22, 24, 32, 34]). Morphisms

f : (X, α) // (Y, β) between partial metric spaces are non-expanding maps; that is, maps f : X // Y satisfying

α(x, x) = β( f x, f x) and α(x, x′) ≥ β( f x, f x′)

for all x, x′ ∈ X.

(5) Considering Q itself as a Q-subset with |q| = e for all q ∈ Q, there is an intrinsic Q-preorder α : Q //7 Q on

(Q, |-|) with

α(p, q) = q / p

for all p, q ∈ Q, whose underlying preorder coincides with the given order on Q. From Proposition 3.3 (1)

we know that for any map |-|′ : Q // Q with e ≤ |q|′ ≤ q / q for all q ∈ Q, α is a Q-preorder on (Q, |-|′). In

particular, α is aQ-preorder on (Q, |-|α) with |q|α = q / q for all q ∈ Q, and the underlying preorder of (Q, |-|α, α)

is, in general, coarser than the given order on Q.

As the Q-preorderedQ-subsets (Q, |-|, α) and (Q, |-|α, α) coincide if, and only if, the quantale Q is integral, the

simplest example in which they differ is the quantale Q = (C3,&, e) introduced in Example 2.2 (2). Indeed,

there are precisely four Q-subsets of C3 on which α is a Q-preorder:

• |⊥|1 = |e|1 = |⊤|1 = e, whose underlying preorder is the given order on C3;

• |⊥|2 = |e|2 = e and |⊤|2 = ⊤, whose underlying preorder on C3 is given by ⊥ ≤ e;

• |⊥|3 = ⊤ and |e|3 = |⊤|3 = e, whose underlying preorder on C3 is given by e ≤ ⊤;

• |⊥|4 = |⊤|4 = ⊤ and |e|4 = e, whose underlying preorder on C3 is given by ⊥ ≤ ⊤.
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3.2. Comparison: Q-preordered (crisp) sets

As a counterpart of Diagram (2.ii) for Q-relations between Q-subsets, the following diagram explains how one

generalizes step by step from preordered sets to Q-preorderedQ-subsets:

Preordered sets

Partially defined preordered sets Q-preordered sets

Partially defined Q-preordered sets

Q-preorderedQ-subsets

(3.ii)

Recall that a Q-preorder on a (crisp) set X is given by a map α : X × X //Q satisfying

(1) e ≤ α(x, x),

(2) α(y, z) & α(x, y) ≤ α(x, z)

for all x, y, z ∈ X. Since a (crisp) set X can be considered as aQ-subset with |x| = e for all x ∈ X, for anyQ-preordered

Q-subset (X, α):

(1) If |x| = e and α(x, y) ∈ {⊥, e} for all x, y ∈ X, then α can be identified with the underlying preorder on X and,

hence, (X, α) is identified with a preordered set.

(2) If |x|, α(x, y) ∈ {⊥, e} for all x, y ∈ X, then α can be identified with the underlying preorder defined on the (crisp)

subset supp X ⊆ X and, hence, (X, α) is identified with a partially defined preordered set.

(3) If |x| = e for all x ∈ X, then DQ(|x|, |y|) = Q for all x, y ∈ X; that is, (X, α) is just a Q-preordered set.

(4) If |x| ∈ {⊥, e} and α(x, y) ∈ Q for all x, y ∈ X, then DQ(|x|, |y|) = Q if x, y ∈ supp X and DQ(|x|, |y|) = {⊥}

otherwise; hence, α can be identified with a Q-preorder on the (crisp) subset supp X ⊆ X, which turns (X, α)

into a partially defined Q-preordered set.

Hence, one has the following full embeddings of ordered categories, where Ord, POrd, Q-Ord, Q-POrd are

all full subcategories of Q-FOrd, consisting of preordered sets, partially defined preordered sets, Q-preordered sets,

partially defined Q-preordered sets, respectively:

Q-POrd

Q-FOrd

� ?

OO

POrd Q-Ord

Q-POrd

POrd

88

+ � rr
rr
rr
rr
r
Q-POrd

Q-Ord

ff

3 S▲▲
▲▲

▲▲
▲▲

▲

POrd

Ord

ff

3 S▲▲
▲▲

▲▲
▲▲

▲
POrd Q-OrdQ-Ord

Ord

88

+ � rr
rr
rr
rr
r

(3.iii)

Indeed, all the embeddings in (3.iii) are coreflective. To see this, one first observes an easy fact:
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Lemma 3.8. Let S ⊆ Q and QS -FOrd denote the full subcategory of Q-FOrd consisting of Q-preordered Q-subsets

(X, α) with |x| ∈ S for all x ∈ X. If S ⊆ T ⊆ Q, then QS -FOrd is a coreflective subcategory of QT -FOrd with the

coreflector sending each (X, α) ∈ QT -FOrd to the set

XS = {x ∈ X | |x| ∈ S }

equipped with the membership map and the Q-preorder inherited from (X, α).

As a special case of Lemma 3.8, one has (2) and (3) of the following proposition, while (1) can be checked easily:

Theorem 3.9. All the full embeddings of ordered categories in (3.iii) are coreflective. To be specific:

(1) POrd is a coreflective subcategory of Q-POrd, with the coreflector sending each (X, α) ∈ Q-POrd to its

underlying preorder. Similarly, Ord is a coreflective subcategory of Q-Ord.

(2) Q-Ord is a coreflective subcategory of Q-POrd, with the coreflector sending each (X, α) ∈ Q-POrd to the set

X{e} = {x ∈ X | |x| = e}

equipped with the Q-preorder inherited from (X, α). In particular, Ord is a coreflective subcategory of POrd.

(3) Q-POrd is a coreflective subcategory ofQ-FOrd, with the coreflector sending each (X, α) ∈ Q-FOrd to the set

X{e,⊥} = {x ∈ X | |x| = e or |x| = ⊥}

equipped with the Q-preorder inherited from (X, α).

Remark 3.10. The different notions of Q-preorders involved in Diagram (3.ii) must be carefully distinguished from

Q-valued preordered sets, as considered by Höhle (see [19, Definition 3.2]). Explicitly, given a (crisp) set X, a map

α : X × X // Q is called a Q-valued preorder on X, if

(1) (divisibility) (α(x, y) / α(y, y)) & α(y, y) = α(x, y) = α(x, x) & (α(x, x) \ α(x, y)),

(2) (transitivity) α(x, y) & (α(y, y) \ α(y, z)) = (α(x, y) / α(y, y)) & α(y, z) ≤ α(x, z)

for all x, y, z ∈ X. Indeed, let Qτ denote the conjugate of Q, i.e., the unital quantale whose underlying complete lattice

is the same as Q and whose multiplication &τ satisfies p &τ q = q & p for all p, q ∈ Q, then a Q-valued preorder α

on X is precisely a Qτ-preorder on the Qτ-subset (X, |-|) given by

|x| = α(x, x)

for all x ∈ X. Conversely, Proposition 3.3 (1) indicates that eachQ-preorderα defined on aQ-subset (X, |-|) determines

a unique Qτ-valued preorder on the crisp set X.

In the case that Q is integral, Proposition 3.3 (2) shows that Q-preorders defined on a Q-subset (X, |-|) coincide

with Qτ-valued preorders defined on the crisp set X. In particular, if Q is divisible, Qτ-valued preordered sets as

characterized by [19, Proposition 3.3] are exactlyQ-preorderedQ-subsets defined by (DP1) and (DP2) in Remark 3.4.

However, without the hypothesis of integrality onQ, for a given crisp set X one may construct moreQ-preordered

Q-subsets (X, |-|, α) than Qτ-valued preorders on X, as Example 3.7 (5) shows.

We end this subsection with an interesting comparison of the number of Q-preordered sets, Q-valued preordered

sets (in the sense of Höhle) and Q-preorderedQ-subsets that can be defined on a singleton set {∗}:

Remark 3.11.

(1) Each idempotent element q ∈ Q greater than or equal to e determines aQ-preordered set ({∗}, αq) with αq(∗, ∗) =

q, and vice versa; that is, there are as manyQ-preorders on {∗} as idempotent elements inQ greater than or equal

to e, among which there are at least e and⊤. Hence,Q is integral if, and only if, there is precisely oneQ-preorder

on {∗}.
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(2) Each element q ∈ Q obviously determines a unique Q-valued preorder on {∗} in the sense of Höhle, and vice

versa; that is, the number of Höhle’s Q-valued preorders on {∗} equals to the cardinality of Q.

(3) It follows immediately from Example 3.7 (1) that each singleton Q-subset 1q (q ∈ Q) can be equipped with at

least one Q-preorder, i.e., the discrete one. In particular, since DQ(e, e) = Q by Lemma 2.1 (2), similar to (1)

we see that there are as many Q-preorders on 1e as idempotent elements in Q greater than or equal to e, among

which there are at least e and ⊤. Hence, the combination of Lemma 2.1 (6) and (QP2) shows that Q is integral

if, and only if, there is precisely one Q-preorder on 1q for every q ∈ Q.

3.3. Potential lower (upper) Q-subsets

Each Q-order-preserving map f : (X, α) // (Y, β) induces two Q-relations

f♮ : X //7 Y, f♮(x, y) = β( f x, y) and f ♮ : Y //7 X, f ♮(y, x) = β(y, f x),

called respectively the graph and cograph of f . Obviously, for any (X, α) ∈ Q-FOrd, the identity map 1X is Q-order-

preserving, and

α = (1X)♮ = 1
♮

X
.

Hence, in order to simplify the notation, from now on we abbreviate a Q-preorderedQ-subset (X, α) to X, and use

1
♮

X
: X //7 X

as the standard notation for the Q-preorder structure on X. In summary, whenever we say “X is a Q-preordered

Q-subset” or “X ∈ Q-FOrd”, it means that X is equipped with

(1) a membership map |-| : X //Q, and

(2) a Q-relation 1
♮

X
: X //7 X as the Q-preorder on X.

Definition 3.12. Let X be aQ-preorderedQ-subset. AQ-relation µ : X //7 1q (resp. λ : 1q
//7 X) is called a potential

lower (resp. upper) Q-subset of X if

µ ◦ 1
♮

X
≤ µ (resp. 1

♮

X
◦ λ ≤ λ). (3.iv)

Since the reverse inequality of (3.iv) is trivial, a potential lower (resp. upper) Q-subset µ : X //7 1q (resp.

λ : 1q
//7 X) necessarily satisfies

µ ◦ 1
♮

X
= µ (resp. 1

♮

X
◦ λ = λ). (3.v)

In elementary words, a potential lower Q-subset of X consists of a map µ : X // Q and an element q ∈ Q, such that

(1) µ(x) = (µ(x) / |x|) & |x|,

(2) µ(x) = q & (q \ µ(x)), and

(3) (µ(y) / |y|) & 1
♮

X
(x, y) = µ(y) & (|y| \ 1

♮

X
(x, y)) ≤ µ(x)

for all x, y ∈ X. If we consider (X, µ) as a Q-subset, then q can be interpreted as the degree of (X, µ) being a lower

Q-subset of X, and the above conditions can be translated as:

(1) x is in (X, µ) only if x is in (X, |-|);

(2) the degree of x being in (X, µ) is less than or equal to q;

(3) if x ≤ y and y is in (X, µ), then x is in (X, µ).
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Potential lower Q-subsets of X constitute a Q-subset PX, called the Q-powerset of X, with the membership map

sending each µ : X //7 1q to |µ| = q. There is a naturalQ-preorder on PX given by

1
♮

PX
(µ, µ′) = µ′ ւ µ

for all µ, µ′ ∈ PX, which is intuitively the inclusion order of potential lower Q-subsets.

Dually, potential upperQ-subsets of X constitute a Q-preorderedQ-subset P†X, called the dualQ-powerset of X,

with the membership map sending each λ : 1q
//7 X to |λ| = q and. The naturalQ-preorder on P†X given by

1
♮

P†X
(λ, λ′) = λ′ ց λ

for all λ, λ′ ∈ P†X is intuitively the reverse inclusion order (see Remark 3.13 below) of potential upper Q-subsets.

Remark 3.13. It is important to note that for any X ∈ Q-FOrd, it follows from the definition that the underlying

preorder on P†X is the reverse local order of Q-FRel, i.e.,

λ ≤ λ′ in P†X ⇐⇒ λ′ ≤ λ in Q-FRel.

In order to get rid of the confusion about the symbol “≤”, we make the convention that “≤” between Q-relations

always stands for the local order in Q-FRel unless otherwise specified.

Remark 3.14. If X ∈ Q-FOrd is regarded as a category enriched in the quantaloid DQ (see Remark 3.2), then

µ ∈ PX is precisely a presheaf (also contravariant presheaf [44, 46]) on X, while λ ∈ P†X is exactly a copresheaf

(also covariant presheaf ) on X.

Examples 3.15.

(1) Let X be a partially defined preordered set (see Example 3.7 (2)). Then PX (resp. P†X) consists of pairs (A, q)

(q = 0, 1), where A is a lower (resp. upper) subset of supp X if q = 1, and A = ∅ if q = 0.

(2) Let X = (X, α) be a partial metric space (see Example 3.7 (4)). Then PX consists of pairs (µ, q), where

µ : X −→ [0,∞] is a map and q ∈ [0,∞], such that

α(x, x) ∨ q ≤ µ(x) ≤ α(x, y) + µ(y) − α(y, y)

for all x, y ∈ X; dually, such a pair (µ, q) ∈ P†X if

α(x, x) ∨ q ≤ µ(x) ≤ α(y, x) + µ(y) − α(y, y)

for all x, y ∈ X.

(3) Let X = 1p ∈ Q-FOrd with p ∈ Q. Then it follows from Example 2.4 (2) that any potential lower (resp. upper)

Q-subset of X can be regarded as a u ∈ DQ(p, q) (resp. v ∈ DQ(q, p)), i.e.,

P1p = {u ∈ DQ(p, q) | q ∈ Q} and P†1p = {v ∈ DQ(q, p) | q ∈ Q}.

With Remark 2.6 one may exhibit the natural Q-preorders on P1p and P†1p as

1
♮

P1p
(u, u′) = u′ ւ u =

∨
{w ∈ DQ(q, r) | w ≤ u′ / (q \ u)} and

1
♮

P†1p
(v, v′) = v′ ց v =

∨
{w ∈ DQ(q, r) | w ≤ (v′ / r) \ v}

for all q, r ∈ Q, u ∈ DQ(p, q), u′ ∈ DQ(p, r), v ∈ DQ(q, p) and v′ ∈ DQ(r, p).
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(4) (Fuzzy powerset of a fuzzy set) For eachQ-subset X ∈ Set/Q, theQ-powerset of X is defined as theQ-powerset

of the discrete Q-preordered Q-subset (X, idX) ∈ Q-FOrd, whose elements are potential Q-subsets of X, i.e.,

Q-relations

µ : X //7 1q

with |µ| = q interpreted as the degree of µ being a Q-subset of X. It should be reminded that the Q-preorder

structure on PX is not discrete, although X is equipped with the discrete Q-preorder.

We point out that even if X is a crisp set, its Q-powerset PX is different from the crisp set QX of maps X //Q,

which is also referred to as the Q-powerset (or fuzzy powerset) of X in the literature:

• QX is a crisp set consisting of Q-subsets of X;

• PX is a Q-subset consisting of potentialQ-subsets of X.

Given X ∈ Q-FOrd, each x ∈ X gives rise to a principal potential lower Q-subset (cf. Example 2.4 (3))

yX x := 1
♮

X
(−, x) : X //7 1|x|.

It is easy to check that the assignment x 7−→ yX x defines a fully faithful Q-order-preserving map yX : X // PX,

called the Yoneda embedding. Dually, the fully faithful co-Yoneda embedding y
†

X
: X // P†X sends each x ∈ X to the

principal potential upperQ-subset

y
†

X
x := 1

♮

X
(x,−) : 1|x| //7 X.

Lemma 3.16 (Yoneda). For any X ∈ Q-FOrd, µ ∈ PX and λ ∈ P†X, it holds that

µ = (yX)♮(−, µ) = 1
♮

PX
(yX−, µ) and λ = (y

†

X
)♮(λ,−) = 1

♮

P†X
(λ, y†

X
−).

3.4. Complete Q-preordered Q-subsets

Definition 3.17. Let X ∈ Q-FOrd. The supremum of a potential lower Q-subset µ : X //7 1q, when it exists, is an

element sup µ ∈ X with | sup µ| = q, such that

1
♮

X
(sup µ,−) = 1

♮

X
ւ µ.

Dually, the infimum of a potential upperQ-subset λ : 1q
//7 X, when it exists, is an element inf λ ∈ X with | inf λ| = q,

such that

1
♮

X
(−, inf λ) = λց 1

♮

X
.

To explain the above definition in order-theoretic terms, we note from Proposition 2.7 that if µ ∈ PX, then sup µ

satisfies

1
♮

X
(sup µ, x) =

∧

x′∈X

1
♮

X
(x′, x)ւ µ(x′) (3.vi)

for all x ∈ X, where µ(x′) : 1|x′ | //7 1q and 1
♮

X
(x′, x) : 1|x′ | //7 1|x| are considered as Q-relations between singleton

Q-subsets. Thus (3.vi) illustrates the many-valued version of “sup µ ≤ x if, and only if, every x′ in (X, µ) satisfies

x′ ≤ x”, and | supµ| = q = |µ| indicates that the degree of (X, µ) being a lower Q-subset of X equals to the degree of

its supremum in (X, |-|), whenever it exists.

It is clear that the supremum of µ ∈ PX, when it exists, is unique up to isomorphism; that is, if s, s′ ∈ X are

both suprema of µ, then s � s′ in the underlying preorder of X. If X is separated, then each µ ∈ PX has at most one

supremum. The same facts hold for the infimum of λ ∈ P†X.

Proposition 3.18. (See [44].) For any X ∈ Q-FOrd, each potential lower Q-subset of X has a supremum if, and only

if, each potential upperQ-subset of X has an infimum.

Proof. For any µ ∈ PX, it is straightforward to check that ubµ := 1
♮

X
ւ µ ∈ P†X, and sup µ = inf ub µ whenever it

exists. This proves the “if” part, and the “only if” part is obtained dually.
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Definition 3.19. A Q-preorderedQ-subset X is complete if each potential lower Q-subset has a supremum; or equiv-

alently, if each potential upper Q-subset has an infimum.

If X is a complete Q-preorderedQ-subset, then

1
♮

PX
(µ, µ′) = µ′ ւ µ ≤ (1

♮

X
ւ µ′)ց (1

♮

X
ւ µ) = 1

♮

X
(sup µ′,−)ց 1

♮

X
(sup µ,−) = 1

♮

X
(sup µ, sup µ′)

for all µ, µ′ ∈ PX, where the last equality follows from the Yoneda lemma; that is to say,

sup : PX // X

is a Q-order-preserving map. Similarly, it is straightforward to check that so is inf : P†X // X.

Each Q-order-preserving map f : X // Y inducesQ-order-preserving maps

f→ : PX // PY and f −7→ : P†X // P†Y

with

f→µ = µ ◦ f ♮ and f −7→λ = f♮ ◦ λ (3.vii)

for all µ ∈ PX and λ ∈ P†X. f is said to be sup-preserving (resp. inf-preserving) if

f supXµ = supY f→µ (resp. f infXλ) = infY f −7→λ

whenever supX µ (resp. infX λ) exists in X.

Separated complete Q-preordered Q-subsets and sup-preserving Q-order-preserving maps constitute an ordered

category Q-FSup, which is a subcategory of Q-FOrd and, moreover, is a quantaloid (see the last paragraph of Sec-

tion 2).

Recall that, an object Z in a category C is M-injective [1, 18] w.r.t. a class M of morphisms in C if, for any

morphisms m : X // Y in M and f : X // Z, there exists a morphism g : Y // Z extending f , i.e., making the

diagram

X Y
m //X

Z

f

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏ Y

Z

g

��

commutative. The following theorem shows that objects inQ-FSup, i.e., separated completeQ-preorderedQ-subsets,

are characterized as injective objects in Q-FOrd:

Theorem 3.20. (See [40, 47].) A separatedQ-preorderedQ-subset is complete if, and only if, it is injective w.r.t. fully

faithfulQ-order-preserving maps.

Proof. Let Z be a separated Q-preordered Q-subset. If Z is complete, for morphisms m : X // Y and f : X // Z in

Q-FOrd with m fully faithful,

g := (Y
m̃♮

// PX
f→

// PZ
supZ // Z)

defines the required extension of f , where m̃♮ : Y // PX is given by m̃♮y = m♮(−, y) ∈ PX for all y ∈ Y.

Conversely, one applies the injectivity of Z to the fully faithful Yoneda embedding yZ : Z //PZ, and the resulting

extension of 1Z : Z // Z along yZ gives the required sup: PZ // Z.

Remark 3.21. An injective object in Q-Ord w.r.t. fully faithful Q-order-preserving maps is known as a complete

Q-lattice [41]; that is, a (crisp) set X equipped with a separated and complete Q-preorder. Explicitly, for any

X ∈ Q-Ord (i.e., X ∈ Q-FOrd with |x| = e for all x ∈ X), a lower (resp. upper) Q-subset of X is precisely a

potential lower (resp. upper) Q-subset

µ : X //7 1e (resp. λ : 1e
//7 X).

X is called a completeQ-lattice if every lowerQ-subset of X admits a supremum, or equivalently, every upperQ-subset

of X admits an infimum, with suprema and infima defined in the same way as in Q-FOrd.

Although Q-Ord is a coreflective subcategory of Q-FOrd and the coreflector sends each separated complete

Q-preorderedQ-subset to a completeQ-lattice, it is important to notice that a completeQ-lattice can never be complete

as a Q-preorderedQ-subset as long as Q is non-trivial; we will explain it later in Remark 3.24.
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3.5. (Co)tensoredQ-preordered Q-subsets

We now introduce tensors and cotensors as a useful tool to characterize completeQ-preorderedQ-subsets. Recall

from Example 2.4 (2) that for any p, q ∈ Q, an element u ∈ DQ(p, q) may be identified with aQ-relation u : 1p
//7 1q.

Thus we have the following definition:

Definition 3.22. Let X be a Q-preordered Q-subset, x ∈ X and q ∈ Q. For any u ∈ DQ(|x|, q), the tensor of u and x,

when it exists, is an element u ⊗ x ∈ X with |u ⊗ x| = q and

1
♮

X
(u ⊗ x,−) = 1

♮

X
(x,−)ւ u.

Dually, for any v ∈ DQ(|x|, q), the cotensor of v and x, when it exists, is an element v  x ∈ X with |v  x| = q and

1
♮

X
(−, v  x) = vց 1

♮

X
(−, x).

X is said to be tensored if u ⊗ x exists for all x ∈ X, q ∈ Q and u ∈ DQ(|x|, q). Dually, X is said to be cotensored if

v  x exists for all x ∈ X, q ∈ Q and v ∈ DQ(q, |x|).

A Q-preorderedQ-subset X is order-complete if, for any q ∈ Q, the (crisp) subset

Xq = {x ∈ X | |x| = q}

of X admits all joins (or equivalently, all meets) in the underlying preorder of X.

Theorem 3.23. (See [45].) A Q-preordered Q-subset is complete if, and only if, it is tensored, cotensored, and

order-complete.

Proof. Let X be a Q-preordered Q-subset. For the “only if” part, note that for all x ∈ X, q ∈ Q, u ∈ DQ(|x|, q) and

v ∈ DQ(q, |x|), the compositions

X 1|x|
yx

// 1|x| 1q
u //7 7 and 1q 1|x|

v // 1|x| X
y†x

//7 7

are respectively in PX and P†X, with

u ⊗ x = sup(u ◦ yx) and v  x = inf(y†x ◦ v).

Similarly, for all {xi}i∈I ⊆ Xq, one has
∨
i∈I

yxi ∈ PX and
∨
i∈I

xi = sup(
∨
i∈I

yxi). Thus X is tensored, cotensored, and

order-complete provided that X is complete.

Conversely, the “if” part holds since for all µ ∈ PX and λ ∈ P†X, one has

sup µ =
∨

x∈X

µ(x) ⊗ x and inf λ =
∧

x∈X

λ(x)  x.

Remark 3.24. As an immediate consequence of Theorem 3.23, one sees that a complete Q-preordered Q-subset X

must contain at least one element of membership degree q for each q ∈ Q, i.e., the bottom element in the underlying

preorder of each Xq (q ∈ Q) as the join of the empty set. Therefore, provided that Q is a non-trivial quantale, a

complete Q-lattice (see Remark 3.21) X can never be an object of Q-FSup since |x| = e for all x ∈ X.

In the particular case of Q = 2, a complete lattice is not complete as a partially defined preordered set (see

Example 3.7 (2)). Indeed, a partially defined preordered set X is complete if, and only if, X \ supp X , ∅ and supp X

admits all joins (or equivalently, all meets).

Examples 3.25. (See [45].) For each X ∈ Q-FOrd, PX and P†X are both separated, tensored, cotensored and

complete Q-preorderedQ-subsets:
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(1) Tensors and cotensors in PX are given by

u ⊗ µ = u ◦ µ and v  µ = vց µ

for all µ ∈ PX, q ∈ Q, u ∈ DQ(|µ|, q) and v ∈ DQ(q, |µ|), and consequently the Yoneda lemma implies

supΘ =
∨

µ∈PX

Θ(µ) ◦ µ =
∨

µ∈PX

Θ(µ) ◦ (yX)♮(−, µ) = Θ ◦ (yX)♮ and

inf Λ =
∧

µ∈PX

Λ(µ)ց µ =
∧

µ∈PX

Λ(µ)ց (yX)♮(−, µ) = Λց (yX)♮

for all Θ ∈ P(PX) and Λ ∈ P†(PX).

(2) Tensors and cotensors in P†X are given by

u ⊗ λ = λւ u, v  λ = λ ◦ v

for all λ ∈ P†X, q ∈ Q, u ∈ DQ(|λ|, q) and v ∈ DQ(q, |λ|), and consequently the Yoneda lemma implies

supΘ =
∧

λ∈P†X

λւ Θ(λ) =
∧

λ∈P†X

(y
†

X
)♮(λ,−)ւ Θ(λ) = (y

†

X
)♮ ւ Θ and

infΛ =
∨

λ∈P†X

λ ◦ Λ(λ) =
∨

λ∈P†X

(y
†

X
)♮(λ,−) ◦ Λ(λ) = (y

†

X
)♮ ◦ Λ

for all Θ ∈ P(P†X) and Λ ∈ P†(P†X).

4. Fuzzy Galois connections on fuzzy sets

4.1. Q-distributors

While dealing withQ-relations betweenQ-preorderedQ-subsets, it is natural to consider those ϕ : X //7 Y which

are compatible with the Q-preorder structures on X and Y; such Q-relations are called Q-distributors:

Definition 4.1. A Q-distributor ϕ : X //◦ Y between Q-preorderedQ-subsets is a Q-relation ϕ : X //7 Y satisfying

1
♮

Y
◦ ϕ ◦ 1

♮

X
≤ ϕ. (4.i)

Since the reverse inequality of (4.i) is trivial, a Q-distributor ϕ : X //◦ Y necessarily satisfies

1
♮

Y
◦ ϕ ◦ 1

♮

X
= ϕ.

In fact, there are more equivalent ways of describing the “compatibility” of a Q-relation with the Q-preorder on its

domain and codomain:

Proposition 4.2. For a Q-relation ϕ : X //7 Y between Q-preordered Q-subsets, the following statements are equiv-

alent:

(i) ϕ : X //◦ Y is a Q-distributor.

(ii) (1
♮

Y
(y, y′) / |y|) & ϕ(x, y) & (|x| \ 1

♮

X
(x′, x)) ≤ ϕ(x′, y′) for all x, x′ ∈ X and y, y′ ∈ Y.

(iii) ϕ ◦ 1
♮

X
≤ ϕ and 1

♮

Y
◦ ϕ ≤ ϕ.

(iv) ϕ(x,−) ∈ P†Y and ϕ(−, y) ∈ PX for all x ∈ X and y ∈ Y.

(v) 1
♮

X
≤ ϕց ϕ and 1

♮

Y
≤ ϕւ ϕ.
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Examples 4.3.

(1) For any Q-order-preserving map f : X // Y, its graph f♮ : X //◦ Y and cograph f ♮ : Y //◦ X are both

Q-distributors.

(2) Potential lower (resp. upper) Q-subsets of X are precisely Q-distributors

µ : X //◦ 1q (resp. λ : 1q
//◦ X).

Q-preordered Q-subsets and Q-distributors constitute a quantaloid Q-FDist, which contains Q-FRel as a full

subquantaloid; indeed, every Q-relation ϕ : X //7 Y between Q-subsets can be regarded as a Q-distributor between

X and Y equipped with the discrete Q-preorder. Compositions and implications of Q-distributors are calculated in

the same way as those of Q-relations (see Equations (2.iii) and Proposition 2.7), while the identity Q-distributor on

X ∈ Q-FOrd is given by its Q-preorder 1
♮

X
: X //◦ X.

Definition 4.4. A pair of Q-distributors ϕ : X //◦ Y and ψ : Y //◦ X forms an adjunction in Q-FDist, written as

ϕ ⊣ ψ, if

1
♮

X
≤ ψ ◦ ϕ and ϕ ◦ ψ ≤ 1

♮

Y
.

In this case, one says that ϕ is a left adjoint of ψ, and ψ is a right adjoint of ϕ.

Using the language of category theory, adjoint Q-distributors are in fact internal adjunctions in the ordered cate-

gory Q-FDist.

Examples 4.5.

(1) Every Q-order-preserving map f : X // Y induces an adjunction f♮ ⊣ f ♮ in Q-FDist.

(2) Let ϕ : X //◦ Y and ψ : Y //◦ X be a pair of distributors between partially defined preordered sets (see Exam-

ple 3.7 (2)). Then ϕ ⊣ ψ if, and only if, ϕ = f♮ and ψ = f ♮ for some order-preserving map f : supp X // supp Y.

(3) For a frame Ω, in Example 3.7 (3) we have seen that Ω-preorderedΩ-subsets are skew Ω-sets. The category

Ωsk-Set

of skew Ω-sets and their morphisms given in [8] is precisely a subcategory of Ω-FDist: its objects are also

Ω-preordered Ω-subsets, while its morphisms are left adjoint Ω-distributors. In other words, ϕ : X //◦ Y is a

morphism in Ωsk-Set if there exists ψ : Y //◦ X such that ϕ ⊣ ψ in Ω-FDist.

(4) Let Q = ([0,∞]op,+, 0) and (X, α) be a partial metric space (see Example 3.7 (4)). A sequence {xn}
∞
n=1
⊆ X is

Cauchy if the limit lim
n,m→∞

α(xn, xm) exists in [0,∞], and a Cauchy sequence {xn}
∞
n=1
⊆ X converges to x ∈ X [24]

if

α(x, x) = lim
n→∞

α(x, xn) = lim
n→∞

α(xn, x) = lim
n,m→∞

α(xn, xm).

Then every Cauchy sequence {xn}
∞
n=1
⊆ X induces an adjunction λ ⊣ µ in Q-FDist with

λ : 1q
//◦ X, λ(y) = lim

n→∞
α(xn, y) and µ : X //◦ 1q, µ(y) = lim

n→∞
α(y, xn)

for all y ∈ X, where q = lim
n,m→∞

α(xn, xm). It can be shown that {xn}
∞
n=1

converges to x ∈ X if, and only if,

λ(y) = α(x, y) and µ(y) = α(y, x) for all y ∈ X (see [34, Proposition 4.10]); that is, λ and µ are respectively the

graph and cograph of the (necessarily non-expanding) map

f : 1q
// X, ∗ 7−→ x.

The identities presented below are quite useful when being applied to the adjunction f♮ ⊣ f ♮:
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Proposition 4.6. (See [17].) If ϕ ⊣ ψ in Q-FDist, then the following identities hold for all Q-distributors ξ and ξ′

whenever the compositions and implications make sense:

(1) ξ ◦ ϕ = ξ ւ ψ and ψ ◦ ξ = ϕց ξ.

(2) (ϕ ◦ ξ) ց ξ′ = ξ ց (ψ ◦ ξ′) and (ξ′ ◦ ϕ)ւ ξ = ξ′ ւ (ξ ◦ ψ).

(3) (ξ ց ξ′) ◦ ϕ = ξ ց (ξ′ ◦ ϕ) and ψ ◦ (ξ′ ւ ξ) = (ψ ◦ ξ′)ւ ξ.

(4) ψ ◦ (ξ ց ξ′) = (ξ ◦ ϕ)ց ξ′ and (ξ′ ւ ξ) ◦ ϕ = ξ′ ւ (ψ ◦ ξ).

4.2. Q-Galois connections

Parallel to the definition of adjoint Q-distributors, internal adjunctions in the ordered category Q-FOrd give the

definition of Q-Galois connections between Q-preorderedQ-subsets:

Definition 4.7. A pair of Q-order-preserving maps f : X // Y and g : Y // X forms a Q-Galois connection (or, a

Q-adjunction), written as f ⊣ g, if

1X ≤ g f and f g ≤ 1Y .

In this case, one says that f is a left adjoint of g, and g is a right adjoint of f .

Remark 4.8. If one considersQ-preorderedQ-subsets as categories enriched in the quantaloid DQ (see Remark 3.2),

then Q-Galois connections are precisely adjoint DQ-functors between DQ-enriched categories.

It is useful to characterize Q-Galois connections in the following ways:

Proposition 4.9. (See [44].) Let f : X //Y and g : Y //X be a pair ofQ-order-preserving maps. Then the following

statements are equivalent:

(i) f ⊣ g in Q-FOrd.

(ii) f♮ = g♮; that is, 1
♮

Y
( f x, y) = 1

♮

X
(x, gy) for all x ∈ X and y ∈ Y.

(iii) g♮ ⊣ f♮ in Q-FDist.

(iv) g♮ ⊣ f ♮ in Q-FDist.

Condition (ii) in the above proposition is in fact strong enough to determine a Q-Galois connection even without

the premise that f and g are Q-order-preserving:

Proposition 4.10. (See [37].) If f : X // Y and g : Y // X are a pair of membership-preserving maps between

Q-preordered Q-subsets (need not be Q-order-preserving maps), then the following statements are equivalent:

(i) f and g are Q-order-preserving, and f ⊣ g in Q-FOrd.

(ii) 1
♮

Y
( f x, y) = 1

♮

X
(x, gy) for all x ∈ X and y ∈ Y.

From the above characterizations ofQ-Galois connections one easily sees that the right adjoint (or the left adjoint)

of f : X // Y in Q-FOrd, when it exists, is unique up to isomorphism; that is, if g, g′ : Y //X are both right adjoints

(or both left adjoints) of f , then g � g′ in the ordered hom-setQ-FOrd(Y, X), and one has g = g′ when X is separated.

Examples 4.11.

(1) Each X ∈ Q-FOrd induces a Q-Galois connection PX P†X
ub //

P†XPX
lb

oo ⊥ , where ub: PX // P†X (see the proof of

Proposition 3.18) and lb : P†X // PX are respectively given by

ub µ = 1
♮

X
ւ µ and lb λ = λց 1

♮

X

for all µ ∈ PX and λ ∈ P†X.
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(2) Every Q-order-preserving map f : X // Y gives rise to two Q-Galois connections

PX PY
f→

//
PYPX

f←
oo ⊥ and P†Y P†X,

f←7−
//
P†X,P†Y

f−7→
oo ⊥

where f→ and f −7→ are defined as in (3.vii), while

f←µ = µ ◦ f♮ and f←7−λ = f ♮ ◦ λ

for all µ ∈ PY and λ ∈ P†Y.

(3) For any X ∈ FOrd, the following statements are equivalent:

(i) X is complete;

(ii) the Yoneda embedding y : X // PX has a left adjoint in Q-FOrd, given by sup: PX // X;

(iii) the co-Yoneda embedding y† : X // P†X has a right adjoint in Q-FOrd, given by inf : P†X // X.

(4) For any p ∈ Q, from Example 3.15 (3) we see that

P1p = {u ∈ DQ(p, q) | q ∈ Q} and P†1p = {v ∈ DQ(q, p) | q ∈ Q}.

Let X ∈ Q-FOrd. Then for any x ∈ X,

1
♮

X
(x,−) : X // P1|x|, y 7−→ 1

♮

X
(x, y) and 1

♮

X
(−, x) : X // P†1|x|, y 7−→ 1

♮

X
(y, x)

are both Q-order-preserving maps. It follows soon from Definition 3.22 that

• X is tensored if, and only if, for every x ∈ X, 1
♮

X
(x,−) : X // P1|x| has a left adjoint in Q-FOrd, given by

− ⊗ x : P1|x| // X;

• X is cotensored if, and only if, for every x ∈ X, 1
♮

X
(−, x) : X //P†1|x| has a right adjoint in Q-FOrd, given

by − x : P†1|x| // X.

(5) A partial metric space X = (X, α) is Cauchy complete [34] if every Cauchy sequence in X converges (see

Example 4.5 (4)) and there exists x ∈ X with α(x, x) = ∞. Considering X as a Q-preordered Q-subset, where

Q = ([0,∞]op,+, 0), it makes sense to define

(PX)c := {µ : X //◦ 1q | µ is a right adjoint in Q-FDist, q ∈ Q}, (4.ii)

which becomes a Q-preorderedQ-subset with structures inherited from PX. Then the Cauchy completeness of

partial metric spaces can be characterized byQ-Galois connections: a partial metric space X is Cauchy complete

if, and only if, the restriction of the Yoneda embedding y : X // (PX)c has a left adjoint in Q-FOrd, given by

sup: (PX)c
// X.

For a general Q, one may define the Cauchy completeness of X ∈ Q-FOrd in the same way: X is Cauchy

complete if y : X // (PX)c has a left adjoint, where (PX)c is given by (4.ii). When Q = Ω is a frame, Cauchy

complete Ω-preorderedΩ-subsets are exactly complete skew Ω-sets in the sense of Borceux-Cruciani [8].

Moreover, left adjoint maps between complete Q-preorderedQ-subsets are precisely sup-preserving maps:

Theorem 4.12. (See [44, 45].) For anyQ-order-preserving map f : X //Y, with X complete, the following statements

are equivalent:

(i) f is a left (resp. right) adjoint in Q-FOrd.

(ii) f is sup-preserving (resp. inf-preserving).

22



(iii) f is a left (resp. right) adjoint between the underlying preordered sets of X and Y, and preserves tensors (resp.

cotensors) in the sense that f (u ⊗X x) = u ⊗Y f x (resp. f (v X x) = v Y f x) for all x ∈ X, q ∈ Q and

u ∈ DQ(|x|, q) (resp. v ∈ DQ(q, |x|)).

Proof. (i) =⇒ (ii): If g : Y // X is a right adjoint of f , then for all µ ∈ PX,

1
♮

Y
( f supXµ,−) = 1

♮

X
(supXµ, g−) = 1

♮

X
(−, g−)ւ µ = f♮ ւ µ = 1

♮

Y
ւ (µ ◦ f ♮) = 1

♮

Y
ւ f→µ,

where the penultimate equality follows from Proposition 4.6 (2) and the fact that f♮ ⊣ f ♮. Thus f supX µ = supY f→µ.

(ii) =⇒ (iii): Since tensors and underlying joins are both suprema (see the proof of Theorem 3.23), the conclusion

soon follows.

(iii) =⇒ (i): Since f has a right adjoint g : Y // X in the underlying preorder, it suffices to show that f ⊣ g in

Q-FOrd. To this end, we show that 1
♮

Y
( f x, y) = 1

♮

X
(x, gy) for all x ∈ X and y ∈ Y. On one hand, 1

♮

X
(x, gy) ≤ 1

♮

Y
( f x, y)

since

|y| ≤ 1
♮

X
(x, gy)ւ 1

♮

X
(x, gy) = 1

♮

X

((
1
♮

X
(x, gy) ⊗X x

)
, gy
)

implies

|y| ≤ 1
♮

Y

(
f
(
1
♮

X
(x, gy) ⊗X x

)
, y
)
= 1

♮

Y

((
1
♮

X
(x, gy) ⊗Y f x

)
, y
)
= 1

♮

Y
( f x, y)ւ 1

♮

X
(x, gy),

following the facts that f ⊣ g in Ord and f preserves tensors. On the other hand, 1
♮

Y
( f x, y) ≤ 1

♮

X
(x, gy) can be checked

similarly, which completes the proof.

4.3. Q-polarities and (dual) Q-axialities

In this subsection we are concerned with Q-Galois connections between (dual) Q-powersets of Q-preordered

Q-subsets. With a slight modification of the terminologies in [15], which originated from [7, 11], we have the follow-

ing definition:

Definition 4.13. Let X and Y be Q-preorderedQ-subsets.

(1) A Q-polarity from X to Y is a Q-Galois connection PX P†Y
f

//
P†YPX

g
oo ⊥ .

(2) A Q-axiality from X to Y is a Q-Galois connection PX PY
f

//
PYPX

g
oo ⊥ .

(3) A dualQ-axiality from X to Y is a Q-Galois connection P†X P†Y
f

//
P†YP†X

g
oo ⊥ .

Remark 4.14. If we extend directly the terminologies of [15] into the setting of Q-preordered Q-subsets, then it is

not difficult to observe that

• a type I Q-polarity from X to Y is a Q-polarity from X to Y;

• a type II Q-polarity from X to Y is a Q-polarity from Y to X, i.e., a Q-Galois connection PY P†X
f

//
P†XPY

g
oo ⊥ ;

• a type I Q-axiality from X to Y is a Q-axiality from X to Y;

• a type II Q-axiality from X to Y is a dual Q-axiality from Y to X.

So, as is already mentioned in [15, Remark 3.2] for the case of Q-preordered sets, type I Q-polarities from X to Y are

precisely type II Q-polarities from Y to X; that is why we combine these two concepts into “Q-polarities”. However,

the two types ofQ-axialities are essentially different as they cannot be switched to each other simply by swapping the

positions of X and Y.

As a special case of Theorem 4.12, we have the following characterizations of (dual) Q-axialities:
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Proposition 4.15. Let X, Y ∈ Q-FOrd and f : PX //PY be aQ-order-preserving map. Then the following statements

are equivalent:

(i) f is a left adjoint in Q-FOrd; that is, there exists g : PY //PX such that f ⊣ g forms a Q-axiality from X to Y.

(ii) f is a left adjoint between the underlying preordered sets of PX and PY, and f (u ◦ µ) = u ◦ fµ for all µ ∈ PX,

q ∈ Q and u ∈ DQ(|µ|, q).

(iii) f is a left adjoint between the underlying preordered sets of PX and PY, and f (u ◦ yX x) = u ◦ f yX x for all

x ∈ X, q ∈ Q and u ∈ DQ(|x|, q).

Proof. (i) ⇐⇒ (ii) is an immediate consequence of Theorem 4.12 and Example 3.25, and (ii) =⇒ (iii) is trivial. For

(iii) =⇒ (ii), note that for any µ ∈ PX and u ∈ DQ(|µ|, q),

f (u ◦ µ) = f (u ◦ µ ◦ 1
♮

X
) (Equation (3.v))

= f
(∨

x∈X

u ◦ µ(x) ◦ 1
♮

X
(−, x)

)
(Proposition 2.7)

= f
(∨

x∈X

u ◦ µ(x) ◦ yX x
)

=
∨

x∈X

u ◦ µ(x) ◦ f yX x (Condition (iii))

= u ◦
∨

x∈X

µ(x) ◦ f yX x (Proposition 2.5 (3))

= u ◦ f
(∨

x∈X

µ(x) ◦ yX x
)

(Condition (iii))

= u ◦ fµ, (Equation (3.v) and Proposition 2.7)

which completes the proof.

Proposition 4.16. Let X, Y ∈ Q-FOrd and g : P†Y // P†X be a Q-order-preserving map. Then the following

statements are equivalent:

(i) g is a right adjoint in Q-FOrd; that is, there exists f : P†X // P†Y such that f ⊣ g forms a dual Q-axiality

from X to Y.

(ii) g is a right adjoint between the underlying preordered sets of P†Y and P†X, and g(λ ◦ v) = gλ ◦ v for all

λ ∈ P†Y, q ∈ Q and v ∈ DQ(q, |λ|).

(iii) g is a right adjoint between the underlying preordered sets of P†Y and P†X, and g(y
†

Y
y ◦ v) = gy

†

Y
y ◦ v for all

y ∈ Y, q ∈ Q and v ∈ DQ(q, |y|).

Proof. Similar to Proposition 4.15, though one needs to be careful about the underlying preorders of P†X and P†Y

(see Remark 3.13).

4.4. Q-Galois connections vs. Q-polarities and (dual) Q-axialities

The following proposition indicates that every Q-distributor gives rise to a Q-polarity, a Q-axiality and a dual

Q-axiality:

Proposition 4.17. (See [25, 37, 42].) EachQ-distributor ϕ : X //◦ Y between Q-preorderedQ-subsets induces three

Q-Galois connections between their (dual) Q-powersets:2

2In [25, 37, 42], the Q-Galois connections ϕ↑ ⊣ ϕ
↓, ϕ∗ ⊣ ϕ∗ and ϕ† ⊣ ϕ

† are respectively called the Isbell adjunction, Kan adjunction and dual

Kan adjunction induced by a Q-distributor ϕ.
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(1) A Q-polarity ϕ↑ ⊣ ϕ
↓ from X to Y with

ϕ↑ : PX // P†Y, µ 7−→ ϕւ µ and

ϕ↓ : P†Y // PX, λ′ 7−→ λ′ ց ϕ

for all µ ∈ PX and λ′ ∈ P†Y.

(2) A Q-axiality ϕ∗ ⊣ ϕ∗ from Y to X with

ϕ∗ : PY // PX, µ′ 7−→ µ′ ◦ ϕ and

ϕ∗ : PX // PY, µ 7−→ µւ ϕ

for all µ′ ∈ PY and µ ∈ PX.

(3) A dualQ-axiality ϕ† ⊣ ϕ
† from Y to X with

ϕ† : P†Y // P†X, λ′ 7−→ ϕց λ′ and

ϕ† : P†X // P†Y, λ 7−→ ϕ ◦ λ

for all λ′ ∈ P†Y and λ ∈ P†X.

Proof. For all µ ∈ PX, λ ∈ P†X, µ′ ∈ PY and λ′ ∈ P†Y, one could easily perform the following calculations using the

formulas in Proposition 2.8:

1
♮

P†Y
(ϕ↑µ, λ

′) = λ′ ց (ϕւ µ) = (λ′ ց ϕ)ւ µ = 1
♮

PX
(µ, ϕ↓λ′),

1
♮

PX
(ϕ∗µ′, µ) = µւ (µ′ ◦ ϕ) = (µւ ϕ)ւ µ′ = 1

♮

PY
(µ′, ϕ∗µ),

1
♮

P†X
(ϕ†λ

′, λ) = λց (ϕց λ′) = (ϕ ◦ λ)ց λ′ = 1
♮

P†Y
(λ′, ϕ†λ).

Examples 4.18.

(1) For any X ∈ Q-FOrd, let ϕ = 1
♮

X
. Then the Q-polarity

(
1
♮

X

)
↑ ⊣
(
1
♮

X

)↓
on X is precisely the Q-Galois connection

ub ⊣ lb given in Example 4.11 (1). Obviously, the Q-axiality
(
1
♮

X

)∗
⊣
(
1
♮

X

)
∗ and the dualQ-axiality

(
1
♮

X

)
† ⊣
(
1
♮

X

)†
on X are both the identity maps on PX and P†X, respectively.

It is noteworthy to point out that the fixed points of the Q-polarity
(
1
♮

X

)
↑ ⊣

(
1
♮

X

)↓
constitute a complete

Q-preordered Q-subset, which is precisely the MacNeille completion of X (see [42, Remark 4.17 (2)] and [37,

Section 5.5]).

(2) AQ-relation ϕ : X //7 Y betweenQ-subsets is considered as a fuzzy context (X, Y, ϕ) in formal concept analysis

(FCA) and rough set theory (RST) on fuzzy sets [25, 37, 43]. Considering ϕ as a Q-distributor between discrete

Q-preordered Q-subsets, the Q-polarity ϕ↑ ⊣ ϕ
↓ and the Q-axiality ϕ∗ ⊣ ϕ∗ induced by ϕ are the fundamental

operators in FCA and RST, and their fixed points constitute the “concept lattice” (which are both complete

Q-preorderedQ-subsets) of the fuzzy context (X, Y, ϕ) based on FCA and RST, respectively.

Recall that a 2-functor F : C //D between ordered categories is a functor preserving the order on hom-sets; that

is,

f ≤ g =⇒ F f ≤ Fg

for all morphisms f , g : X // Y in C. Let Cco denote the ordered category with the same objects and morphisms as in

C, but reversing the order on each hom-set of C. Then it is routine to check that

(−)♮ : (Q-FOrd)co // Q-FDist, ( f : X // Y) 7−→ ( f♮ : X //◦ Y) and

(−)♮ : (Q-FOrd)op // Q-FDist, ( f : X // Y) 7−→ ( f ♮ : Y //◦ X)

are both 2-functors of ordered categories, and furthermore:
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Proposition 4.19. (See [17].) Both

(−)∗ : Q-FDist // (Q-FOrd)op, (ϕ : X //◦ Y) 7−→ (ϕ∗ : PY // PX) and

(−)† : Q-FDist // (Q-FOrd)co, (ϕ : X //◦ Y) 7−→ (ϕ† : P†X // P†Y)

are 2-functors, and one has two pairs of adjoint 2-functors

Q-FDist (Q-FOrd)op
(−)∗

//
(Q-FOrd)op

Q-FDist
(−)♮

oo ⊥ and (Q-FOrd)co
Q-FDist.

(−)♮
//
Q-FDist.(Q-FOrd)co

(−)†
oo ⊥

Proof. For any Q-distributor ϕ : X //◦ Y, define

ϕ̃ : Y // PX, y 7−→ ϕ(−, y) and ϕ̂ : X // P†Y, x 7−→ ϕ(x,−). (4.iii)

It is straightforward to check that the assignments ϕ 7−→ ϕ̃ and ϕ 7−→ ϕ̂ give isomorphisms of hom-sets (isomorphisms

of complete lattices, indeed, see Theorem 4.25)

Q-FOrd(Y,PX) � Q-FDist(X, Y) � (Q-FOrd)co(X,P†Y) (4.iv)

natural in X, Y ∈ Q-FOrd.

It follows immediately from the isomorphisms (4.iv) that whenever any one of ϕ : X //◦ Y, ϕ̃ : Y // PX or

ϕ̂ : X // P†Y is fixed, then so are the other two. The following identities are easy to verify, but quite useful:

Proposition 4.20. (See [37, 42].) For any Q-distributor ϕ : X //◦ Y,

ϕ̂ = ϕ↑yX = ϕ
†y
†

X
and ϕ̃ = ϕ↓y†

Y
= ϕ∗yY .

The following proposition is an immediate consequence of the above one:

Proposition 4.21. For any Q-distributors ϕ, ψ : X //◦ Y,

ϕ = ψ ⇐⇒ ϕ↑ = ψ↑ ⇐⇒ ϕ↓ = ψ↓ ⇐⇒ ϕ∗ = ψ∗ ⇐⇒ ϕ† = ψ†.

With the above preparations, we are now ready to characterize an arbitrary Q-Galois connection in terms of

Q-polarities and (dual) Q-axialities:

Theorem 4.22. For Q-order-preserving maps f : X // Y and g : Y // X, the following statements are equivalent:

(i) X Y
f

//
YX

g
oo ⊥ is a Q-Galois connection.

(ii) PX P†Y

( f♮)↑
//
P†YPX

(g♮)↓
oo ⊥ is a Q-polarity from X to Y.

(iii) PY PX

( f♮)
∗

//
PXPY

(g♮)∗

oo ⊥ is a Q-axiality from Y to X.

(iv) P†Y P†X

( f♮)†
//
P†XP†Y

(g♮)†
oo ⊥ is a dual Q-axiality from Y to X.

Proof. (i) =⇒ (ii), (i) =⇒ (iii) and (i) =⇒ (iv) are immediate consequences of Propositions 4.9 and 4.17. Conversely,

if ( f♮)↑ ⊣ (g♮)↓, then ( f♮)↑ = (g♮)↑ since one also has (g♮)↑ ⊣ (g♮)↓, and thus Proposition 4.21 guarantees f ⊣ g; this

proves (ii) =⇒ (i). One could derive (iii) =⇒ (i) and (iv) =⇒ (i) with similar arguments.
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In particular, the Q-polarity PX P†Y

( f♮)↑
//
P†YPX

(g♮)↓
oo ⊥ may be considered as a lifting of the Q-Galois connection f ⊣ g,

since one could easily verify the commutativity of the diagram

PX P†Y

( f♮)↑
//

X

PX

yX

��

X Y
f

//
Y

P†Y

y
†

Y

��

PX P†Yoo

(g♮)↓

X

PX

X Yoo
g

Y

P†Y

⊥

⊥

with the identities given in Proposition 4.20.

4.5. Q-distributors vs. Q-polarities and (dual)Q-axialities

The interaction between Q-distributors, Q-polarities and (dual) Q-axialities is much more profound than what

is revealed in Proposition 4.17; the aim of this last subsection is to show that there exist bijective correspondences

between them. The prototypes of the results below come from quantaloid-enriched categories [37, 42]; nevertheless,

we will provide their proofs in order-theoretic terms so that prior reading of [37, 42] is not required for the purpose of

understanding this subsection.

Proposition 4.23. Let X and Y be Q-preordered Q-subsets.

(1) Every Q-polarity from X to Y is of the form ϕ↑ ⊣ ϕ
↓ for some Q-distributor ϕ : X //◦ Y.

(2) Every Q-axiality from X to Y is of the form ϕ∗ ⊣ ϕ∗ for some Q-distributor ϕ : Y //◦ X.

(3) Every dualQ-axiality from X to Y is of the form ϕ† ⊣ ϕ
† for some Q-distributor ϕ : Y //◦ X.

Proof. (1) Let PX P†Y
f

//
P†YPX

g
oo ⊥ be aQ-polarity from X to Y, then ϕ̂ := (X

yX //PX
f

//P†Y) defines a Q-distributor

ϕ : X //◦ Y (see Proposition 4.19). We claim that f = ϕ↑. Indeed, for any µ ∈ PX,

fµ = f (µ ◦ 1
♮

X
) (Equation (3.v))

= f
(∨

x∈X

µ(x) ◦ 1
♮

X
(−, x)

)
(Proposition 2.7)

= f
(∨

x∈X

µ(x) ◦ yX x
)

=
∧

x∈X

f (µ(x) ◦ yX x) (Theorem 4.12 and Remark 3.13)

=
∧

x∈X

f yX x ւ µ(x) (Theorem 4.12 and Example 3.25)

=
∧

x∈X

ϕ̂xւ µ(x)

=
∧

x∈X

ϕ(x,−)ւ µ(x) (Equations (4.iii))

= ϕւ µ (Proposition 2.7)

= ϕ↑µ,

as desired.
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(2) If PX PY
f

//
PYPX

g
oo ⊥ is a Q-axiality from X to Y, then ϕ̃ := (X

yX // PX
f

// PY) defines a Q-distributor

ϕ : Y //◦ X (see Proposition 4.19) with f = ϕ∗.

(3) If P†X P†Y
f

//
P†YP†X

g
oo ⊥ is a dualQ-axiality from X to Y, then ϕ̂ := (Y

y
†

Y //P†Y
g

//P†X) defines a Q-distributor

ϕ : Y //◦ X (see Proposition 4.19) with g = ϕ†.

The verification of the details of (2) and (3) is similar to (1), so we leave it to the readers.

For X, Y ∈ Q-FOrd, let us take a closer look at

(1) Q-distributors X //◦ Y, and

(2) Q-polarities from X to Y.

Propositions 4.17 and 4.23 give us an assignment ϕ 7−→ (ϕ↑ ⊣ ϕ
↓) from (1) to (2), and an assignment ( f ⊣ g) 7−→ ϕ

with ϕ̂ = f yX from (2) to (1). On one hand, in Proposition 4.23 it is already shown that the composition of the two

assignments is the identity when starting from (2). On the other hand, starting from a Q-distributor ϕ : X //◦ Y one

has ϕ̂ = ϕ↑yX by Proposition 4.20, showing that the composition in the other direction also produces the identity.

Therefore, these two assignments are inverse to each other, and thus (1) and (2) are bijective to each other.

Since the same argument shows that Q-distributors X //◦ Y correspond bijectively to Q-axialities from Y to X

and also dualQ-axialities from Y to X, in conjunction with (4.iv) we have proved:

Theorem 4.24. Let X and Y be Q-preordered Q-subsets. Then the following items are bijective to each other:

• Q-distributors X //◦ Y;

• Q-order-preserving maps Y // PX;

• Q-order-preserving maps X // P†Y;

• Q-polarities from X to Y;

• Q-axialities from Y to X;

• dual Q-axialities from Y to X.

The bijections in the above theorem are indeed isomorphisms of hom-sets of the ordered categories concerned in

this paper which, moreover, are actually isomorphisms of complete lattices:

Theorem 4.25. Let X and Y be Q-preordered Q-subsets. There are isomorphisms of complete lattices

Q-FDist(X, Y) � Q-FOrd(Y,PX) � (Q-FOrd)co(X,P†Y)

� (Q-FSup)co(PX,P†Y) � Q-FSup(PY,PX) � (Q-FSup)co(P†Y,P†X).

Proof. We prove Q-FDist(X, Y) � (Q-FSup)co(PX,P†Y) as an example, and the rest isomorphisms are similar. To

see that the bijections ϕ 7−→ ϕ↑ and f 7−→ ϕ with ϕ̂ = f yX establish isomorphisms of complete lattices, it suffices to

show that they are order-preserving. Indeed,

ϕ ≤ ϕ′ in Q-FDist(X, Y) ⇐⇒ ∀µ ∈ PX : ϕ↑µ = ϕւ µ ≤ ϕ′ ւ µ = ϕ′↑µ in Q-FDist

⇐⇒ ∀µ ∈ PX : ϕ↑µ ≥ ϕ
′
↑µ in P†Y

⇐⇒ ϕ↑ ≤ ϕ
′
↑ in (Q-FSup)co(PX,P†Y),
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and

f ≤ f ′ in (Q-FSup)co(PX,P†Y) ⇐⇒ ∀µ ∈ PX : fµ ≥ f ′µ in P†Y

⇐⇒ ∀µ ∈ PX : fµ ≤ f ′µ in Q-FDist

=⇒ ∀x ∈ X : f yX x ≤ f ′yX x in Q-FDist

⇐⇒ ∀x ∈ X : ϕ(x,−) ≤ ϕ′(x,−) in Q-FDist

⇐⇒ ϕ ≤ ϕ′ in Q-FDist(X, Y),

where ϕ and ϕ′ are determined by ϕ̂ = f yX and ϕ̂′ = f ′yX .
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1981.

[51] W. Yao and L.-X. Lu. Fuzzy Galois connections on fuzzy posets. Mathematical Logic Quarterly, 55(1):105–112, 2009.

[52] L. A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences, 3(2):177–200, 1971.

30


	1 Introduction
	2 The calculus of fuzzy relations
	3 Preordered fuzzy sets valued in a quantale
	3.1 Q-preordered Q-subsets
	3.2 Comparison: Q-preordered (crisp) sets
	3.3 Potential lower (upper) Q-subsets
	3.4 Complete Q-preordered Q-subsets
	3.5 (Co)tensored Q-preordered Q-subsets

	4 Fuzzy Galois connections on fuzzy sets
	4.1 Q-distributors
	4.2 Q-Galois connections
	4.3 Q-polarities and (dual) Q-axialities
	4.4 Q-Galois connections vs. Q-polarities and (dual) Q-axialities
	4.5 Q-distributors vs. Q-polarities and (dual) Q-axialities


