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Abstract

Stochastic dominance and statistical preference are two important tools for the

pairwise comparison of random variables. However, pairwise methods are not

always appropriate in the case of more than two alternatives. In this work,

we generalize the notion of winning probability to the notion of multivariate

winning probability. The latter allows to establish a ranking (with ties) on

any set of random variables and naturally leads to the notion of probabilistic

preference. We investigate the relationship between the latter notion and the

classical notions of stochastic dominance and statistical preference.

Keywords: Winning probabilities, Stochastic dominance, Probabilistic

relation, Statistical preference, Decision Making

1. Introduction

In decision making under risk, the different alternatives under consideration

are usually modelled by means of random variables, whence the need arises for

tools that allow to establish an ordering between random variables. Two of

the most prominent such tools are stochastic dominance [1, 2, 3] and statistical

preference [4, 5].
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Stochastic dominance is probably the most widely used tool for ordering ran-

dom variables. Over the last decades it has been applied in a variety of areas,

such as economics [1], agriculture [6], operations research [7], and so on. How-

ever, stochastic dominance does not take into account the possible dependence

between the random variables under consideration, since it is based on their

marginal distributions only. To cope with this problem, various generalizations

have been proposed, such as the stochastic precedence order [8, 9] and probabil-

ity dominance [10]. From the same point of view, statistical preference has been

introduced [4, 5] as a graded version of stochastic dominance, in the sense that

it is based on a probabilistic relation that expresses the winning probabilities

between the random variables.

Stochastic dominance between two random variables can be characterized

in terms of the comparison of the expectations of increasing transformations

of these random variables. In this vein, some of the present authors have

proved that statistical preference is closer to another location parameter, namely

the median [11]. We have also proved that, under common conditions such

as independence, (first degree) stochastic dominance implies statistical prefer-

ence [12, 13, 14, 15], and that both concepts are equivalent in some particular

situations, such as when comparing normally distributed random variables with

the same variance [16].

In this work, we will focus on the problem of comparing more than two ran-

dom variables. In this setting, pairwise methods like stochastic dominance and

statistical preference have a number of drawbacks, whence the need arises to

develop alternative comparison tools. To that end, we will generalize the notion

of winning probability for a set of random variables. These so-called multivari-

ate winning probabilities are computed using the joint distribution of all the

random variables involved and thus use all the available information. The mul-

tivariate winning probabilities allow to rank (with ties) the random variables,

and thus naturally lead to a preference relation called probabilistic preference,

which is an extension of the notion of statistical preference to a multivariate

setting. In addition, we will characterize probabilistic preference in terms of
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the comparison of certain cumulative distribution functions, and we will inves-

tigate its relationship with statistical preference. We will also investigate the

relationship between probabilistic preference and stochastic dominance in the

case of independent random variables. Finally, we will illustrate how to use the

multivariate winning probabilities and the associated probabilistic preference

relation in a linguistic decision making problem.

This contribution is organized as follows. In Section 2, we will give an

overview of the notions of stochastic dominance and statistical preference, as

well as other stochastic orders like expected utility [17] and multi-utility repre-

sentations [18]. We will recall a number of characterizations and the connections

between them. In Section 3, we will discuss why these pairwise methods are

not fully adequate for comparing more than two random variables and we will

introduce multivariate winning probabilities, which will give rise to the notion of

probabilistic preference. In Section 4, we will investigate some of the properties

of this new tool, while in Section 5 we will investigate the relationship between

(first degree) stochastic dominance and probabilistic preference in the case of

independent random variables. Finally, we will demonstrate in Section 6 how

probabilistic preference can be applied in a decision making problem and we

will devote the final section to conclude the paper and to discuss possible future

lines of research.

2. Pairwise comparison of random variables

Throughout this paper, we consider a probability space (Ω,Σ, P ). A random

variable X : Ω → R is a Σ-measurable function. Associated with the random

variable X, we consider its cumulative distribution function FX : R → [0, 1],

given by FX(t) = P (X ≤ t), where {X ≤ t} denotes the set {ω ∈ Ω | X(ω) ≤ t}.

The pairwise comparison of random variables is a topic that has been widely

studied in the literature, and several methods have been proposed over the last

decades. In this section, we recall the notions of stochastic dominance and

statistical preference, and explain the relationship between them.
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The best-known stochastic order is the expected utility model of von Neu-

mann and Morgenstern [17]: if u : R → R is a utility function, then a ran-

dom variable X is preferred to a random variable Y , denoted by X �EU Y , if

E[u(X)] ≥ E[u(Y )], assuming that both expectations exist.

A more general approach was proposed in [18]: if U denotes a set of utility

functions, then X is preferred to Y with respect to the multi-utility representa-

tion U , denoted by X �MUR Y , if E[u(X)] ≥ E[u(Y )] for every u ∈ U .

Another possibility is to use stochastic dominance, which is based on the

direct comparison of the cumulative distribution functions associated with the

random variables [1, 2, 3].

Definition 1. Let X and Y be two random variables with cumulative distribu-

tion functions FX and FY . X is said to stochastically dominate Y in the first

degree, denoted by X �FSD Y , if FX(t) ≤ FY (t) for any t ∈ R.

Stochastic dominance between two random variables can be characterized in

terms of the comparison of the expectations of some appropriate transformations

of these random variables (see, for example, [1]):

X �FSD Y ⇐⇒ E[u(X)] ≥ E[u(Y )] , (1)

for any increasing function u, whenever both expectations exist. We can easily

see that stochastic dominance is equivalent to the multi-utility representation

considering for U the set of all increasing utility functions. For an extensive

treatment of the notion of stochastic dominance, we refer to [1, 2, 3].

The notion of statistical preference is related to that of a probabilistic rela-

tion.

Definition 2. Given a set A, a mapping Q : A×A → [0, 1] is called a proba-

bilistic relation on A if it fulfills the reciprocity property:

Q(a, b) + Q(b, a) = 1 ,

for any (a, b) ∈ A×A.
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In [4, 5], A is formed by random variables defined on the same probability space,

and the following probabilistic relation is defined.

Definition 3 ([4, 5]). Let A denote a set of random variables defined on the

probability space (Ω,Σ, P ). The winning probability relation on A is the proba-

bilistic relation Q on A defined by

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y ) . (2)

The above probabilistic relation expresses the winning probability of a random

variable X over another random variable Y , in the sense that the greater the

winning probability Q(X,Y ), the stronger the preference of X over Y . Hence,

the closer the value Q(X,Y ) to 1, the more X is preferred over Y ; the closer

Q(X,Y ) to 0, the more Y is preferred over X; and if Q(X,Y ) equals 0.5, then

both random variables are considered indifferent.

Statistical preference is the formal interpretation of the winning probability

relation Q.

Definition 4 ([4, 5]). Let X and Y be two random variables defined on the

same probability space:

(i) X is said to be statistically preferred to Y , denoted by X �SP Y , if

Q(X,Y ) ≥ 1
2 ;

(ii) X is said to be strictly statistically preferred to Y , denoted by X �SP Y ,

if Q(X,Y ) > 1
2 ;

(iii) X and Y are said to be statistically indifferent if Q(X,Y ) = 1
2 .

One obvious advantage of statistical preference compared to stochastic domi-

nance is the possibility of establishing winning probabilities between the alter-

natives. Another advantage is the fact that it takes into account the possible

dependence between the random variables since it is based on the joint distri-

bution, while stochastic dominance only uses the marginal distributions. More-

over, statistical preference establishes a complete relation, while we can find
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pairs of random variables that are incomparable under first degree stochastic

dominance.

Taking into account that Q(X,Y ) ≥ Q(Y,X) if and only if P (X ≥ Y ) ≥

P (Y ≥ X), statistical preference can be characterized in the following way.

Theorem 5 ([11]). Let X and Y be two random variables defined on the same

probability space with cumulative distribution functions FX and FY . The fol-

lowing equivalence holds:

X �SP Y ⇐⇒ FX−Y (0) ≤ FY−X(0) .

3. General comparison of random variables using multivariate win-

ning probabilities

This section introduces a generalization of the notion of statistical preference

for the comparison of more than two random variables. First, we explain why

the pairwise methods discussed above may not be adequate in this setting, and

then we introduce the notion of multivariate winning probability, which gives

rise to a ranking (with ties) on any set of random variables.

3.1. Pairwise methods for comparing more than two random variables

So far, we have presented stochastic dominance and statistical preference as

pairwise comparison methods. However, a natural question arises: can we use

these methods for the comparison of more than two random variables? On the

one hand, stochastic dominance was defined as a pairwise comparison method

based on the pointwise comparison of cumulative distribution functions. This

method could be adapted for comparing more than two random variables, saying

that a random variable is the preferred one if it stochastically dominates all the

other ones. However, as we have already mentioned, stochastic dominance allows

for incomparability, and, moreover, different random variables could have the

same cumulative distribution function. Thus, stochastic dominance results in a

pre-order (also called quasi-order) only.
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While statistical preference does not allow for incomparability, it has its own

important drawback: its lack of transitivity in general. The underlying idea of

statistical preference is to consider X preferred to Y when it provides a greater

utility the majority of times. As such, it is close to the rule of majority in voting

systems; taking into account Condorcet’s paradox [19], it is not difficult to see

that statistical preference is not always transitive. De Schuymer et al. [4, 5]

provided an example to illustrate this fact; another one can be found in [20,

Example 3].

Example 6 ([5, Section 1]). Consider three fair dice. Each dice has the fol-

lowing values on its faces:

Notation face 1 face 2 face 3 face 4 face 5 face 6

First dice X 1 3 4 15 16 17

Second dice Y 2 10 11 12 13 14

Third dice Z 5 6 7 8 9 18

We can then consider the probability space (Ω,P(Ω), P ), where the elements

ω ∈ Ω are given by

ω = (Face i of the first dice,Face j of the second dice,Face k of the third dice)

for any i, j, k ∈ {1, . . . , 6}. Since we are assuming that the dice are fair, P is

the discrete uniform distribution.

We consider the game consisting of rolling the three dice simultaneously, so

that the dice whose number is the greatest wins the game. We compute the

winning probability relation Q for these dice, and obtain:

Q(X,Y ) = 5
9 , i.e. X �SP Y ,

Q(Y,Z) = 25
36 , i.e. Y �SP Z ,

Q(Z,X) = 7
12 , i.e. Z �SP X .

Hence, dice X is strictly statistically preferred to dice Y , dice Y is strictly

statistically preferred to dice Z, yet dice Z is strictly statistically preferred to

dice X, i.e., there is a cycle.
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This fact has already been profoundly studied by some authors, like De Baets,

De Meyer, De Loof and De Schuymer [5, 15, 21, 22, 23, 24, 25, 26, 27] and

Martinetti et al. [28]. The above example shows that statistical preference may

not be adequate when we want to compare more than two random variables,

precisely because it is based on pairwise comparisons only.

Since there are situations in which both stochastic dominance and statistical

preference may not be adequate for the comparison of more than two random

variables, our aim in this section is to propose a generalization of the notion of

statistical preference suitable for the comparison of n random variables, based

on a generalization of the winning probability relation defined in Eq. (2). After

introducing the main definition, in Section 4 we will investigate its properties,

possible characterizations and the relationship with statistical preference.

3.2. Multivariate winning probabilities

First of all, we are going to analyze the case of three random variables, as

in the dice example, and later we will generalize our definition to the case of n

random variables.

Let us consider a set A = {X,Y, Z} formed by three distinct random vari-

ables X, Y and Z defined on the probability space (Ω,Σ, P ). We can decompose

Ω in the following way:

Ω = {X > max(Y,Z)} ∪ {Y > max(X,Z)} ∪ {Z > max(X,Y )} (3)

∪{X = Y > Z} ∪ {X = Z > Y } ∪ {Y = Z > X} ∪ {X = Y = Z} .

Obviously, {X > max(Y,Z)} denotes the subset of Ω containing the elements

ω ∈ Ω satisfying X(ω) > max(Y (ω), Z(ω)), and similarly for the other sets. In

the remainder, we will use this shorthand notation for the sake of brevity.

The above decomposition yields a partition of Ω. As a consequence,

1 = P (X > max(Y, Z)) + P (Y > max(X,Z)) + P (Z > max(X,Y )) (4)

+P (X = Y > Z) + P (X = Z > Y ) + P (Y = Z > X) + P (X = Y = Z) .
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Our goal now is to define the multivariate winning probability of X in A =

{X,Y, Z}. For this aim, we define ΠA(X) as follows:

ΠA(X) = P (X > max(Y, Z))

+ 1
2

(
P (X = Y > Z) + P (X = Z > Y )

)
+ 1

3P (X = Y = Z) .

This expression generalizes Eq. (2), and therefore we will refer to ΠA(X) as the

multivariate winning probability of X in A. Furthermore, we can also consider

the multivariate winning probabilities of Y and Z in A, denoted by ΠA(Y ) and

ΠA(Z), given by:

ΠA(Y ) = P (Y > max(X,Z)) +
1

2

(
P (X = Y > Z) + P (Y = Z > X)

)
+

1

3
P (X = Y = Z) ,

ΠA(Z) = P (Z > max(X,Y )) +
1

2

(
P (X = Z > Y ) + P (Y = Z > X)

)
+

1

3
P (X = Y = Z) .

Using the partition of Ω introduced in Eqs. (3) and (4), it can be shown that:

ΠA(X) + ΠA(Y ) + ΠA(Z) = 1 .

In this sense, following the idea of De Schuymer et al. [4, 5], X is the preferred

random variable in A, with multivariate winning probability ΠA(X), if

ΠA(X) ≥ max (ΠA(Y ),ΠA(Z)) .

Let us now extend this idea to a more general setting. Let A denote a finite set

of distinct random variables defined on the same probability space (Ω,Σ, P ).

Then, we can consider the mapping:

ΠA : A → [0, 1]

defined for any X ∈ A by1:

ΠA(X) =
∑

Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A\ ({X}∪Y)

)(
X = Z > W

))
.

(5)

1Note again that the notation
{(

∀Z ∈ Y
)(
∀W ∈ A\ ({X}∪Y)

)(
X = Z > W

)}
in Eq. (5)

is a shorthand for
{
ω ∈ Ω |

(
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X(ω) = Z(ω) > W (ω)

)}
.

9



Note that this formula is a generalization of the probabilistic relation defined in

Eq. (2), since for A = {X,Y } we retrieve Eq. (2). We can interpret the value

of ΠA(X) as the multivariate winning probability of X in the set of random

variables A. Consequently, the greater the multivariate winning probability

ΠA(X), the stronger the preference for X in A. Since any random variable in A

has an associated multivariate winning probability, we can establish a ranking

(with ties) on A. If ΠA(Xσ(1)) ≥ ΠA(Xσ(2)) ≥ . . . ≥ ΠA(Xσ(|A|)), then Xσ(1)

would be the preferred random variable, Xσ(2) would be the second preferred

random variable and so on. This ranking gives rise to the notion of probabilistic

preference2.

Definition 7. Let A be a finite set of distinct random variables. Given X,Y ∈

A:

(i) X is said to be probabilistically preferred to Y in A, denoted by X �APP Y ,

if ΠA(X) ≥ ΠA(Y );

(ii) X is said to be strictly probabilistically preferred to Y in A, denoted by

X �APP Y , if ΠA(X) > ΠA(Y );

(iii) X is said to be probabilistically indifferent to Y in A, denoted by X ≡APP Y ,

if ΠA(X) = ΠA(Y ).

Similarly, given X ∈ A, X is probabilistically preferred to the random variables

in A\{X}, denoted by X �APP A\{X}, if ΠA(X) ≥ ΠA(Y ) for any Y ∈ A\{X}.

For the sake of simplicity, whenever no confusion is possible, we will remove

the superscript in �APP,�APP and ≡APP.

Note that probabilistic preference is transitive, in contrast with statistical pref-

erence, because it is based on the comparison of the multivariate winning prob-

abilities, so �PP is a weak ordering allowing for ties.

2We prefer the term probabilistic preference instead of statistical preference, because it

emphasizes that we are dealing with probability distributions rather than with statistical

data.
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As was the case for statistical preference, probabilistic preference is based on

the multivariate winning probabilities, hence it is based on the joint distribution

of the variables in A, and thus takes into account the stochastic dependences

between them. Furthermore, the mapping ΠA also satisfies the property:∑
X∈A

ΠA(X) = 1 . (6)

This means that ΠA can be seen as a probability distribution on A, which mea-

sures the multivariate winning probability of each random variable in A. Also,

if we know |A| − 1 of the multivariate winning probabilities, the remaining one

directly follows because their sum equals 1. Moreover, when one of the multi-

variate winning probabilities takes a value larger than 0.5, the corresponding

random variable will surely be the most preferred one.

Example 8. We consider again the framework in Example 6 and compute the

multivariate winning probabilities to find the preferred dice in the set A =

{X,Y, Z}: ΠA(X) = 0.4167; ΠA(Y ) = 0.3472; and ΠA(Z) = 0.2361. Thus,

X is the most preferred dice with multivariate winning probability 0.4167; Y is

the second most preferred dice with multivariate winning probability 0.3472; and

Z is the least preferred dice with multivariate winning probability 0.2361.

4. Properties of probabilistic preference

In this section we investigate some basic properties of probabilistic prefer-

ence. First, we study the relationship between (pairwise) statistical preference

and probabilistic preference. Second, we generalize Theorem 5, providing a

characterization of probabilistic preference.

First, we prove that probabilistic preference sometimes points out a dif-

ferent preferred random variable than statistical preference. This is because

probabilistic preference uses the joint distribution of all the variables, while

statistical preference only takes into account their bivariate distributions, and,

consequently, it does not use all of the available information.
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Proposition 9. The following statements hold:

1. There exists a finite set A of distinct random variables containing a ran-

dom variable X such that

(∀Y ∈ A \ {X})(X �SP Y ) ,

while

(∃Z ∈ A \ {X})(Z �PP X) .

2. There exists a finite set A of distinct random variables containing a ran-

dom variable X such that

(∀Y ∈ A \ {X})(Y �SP X) ,

while

(∀Y ∈ A \ {X})(X �PP Y ) .

Proof. Let us consider the first statement. To provide an example, consider

n = 2 and the probability space (Ω,P(Ω), P ), where Ω = {ω1, ω2, ω3} and

P ({ω1}) = 0.4, P ({ω2}) = P (ω3) = 0.3. Let us consider the random variables

X, Y and Z defined by:

ω1 ω2 ω3

X 2 1 1

Y 0 2 1

Z 2 0 0

It holds that Q(X,Y ) = 0.55 and Q(X,Z) = 0.8, and, consequently, X �SP Y

and X �SP Z. However, for the set of random variables A = {X,Y, Z}, it holds

that

ΠA(X) = 0.35 , ΠA(Y ) = 0.45 , ΠA(Z) = 0.2 .

Thus, Y �PP X �PP Z, so X is not the preferred random variable in A =

{X,Y, Z}.

Next, we consider the second statement. Consider n = 2 and the dice X, Y

and Z, defined on the same probability space as in Example 6, by:

X = {1, 2, 4, 6, 17, 18} , Y = {3, 7, 9, 12, 14, 16} ,

Z = {5, 8, 10, 11, 13, 15} .
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It holds that Y �SP X and Z �SP X, since Q(X,Y ) = 7
18 and Q(X,Z) = 13

36 .

However, if we compute the multivariate winning probabilities in the set A =

{X,Y, Z}, we obtain the following:

ΠA(X) =
73

216
, ΠA(Y ) =

72

216
, ΠA(Z) =

71

216
.

Consequently, X �PP Y �PP Z. �

The second part of Proposition 9 implies that if X �PP A\{X} and we take

a subset A′ ⊂ A with X ∈ A′, there could be a random variable Y ∈ A′ \ {X}

such that ΠA′(Y ) > ΠA′(X). In other words, the preference is not preserved in

a smaller set of alternatives. In particular, this means that there is no general

relationship between statistical preference and probabilistic preference, even for

independent random variables.

The following result shows that, although pairwise and multivariate winning

probabilities are in general not related, under some conditions we can reduce

the set of alternatives A preserving the winning probabilities.

Proposition 10. Let A be a finite set of distinct random variables. Assume

that there exists X ∈ A such that X(ω) < maxY ∈A\{X} Y (ω) for every ω ∈ Ω.

Then, ΠA(X) = 0 and for every Y ∈ A \ {X} it holds that:

ΠA(Y ) = ΠA\{X}(Y ) .

Proof. Since X(ω) < maxY ∈A\{X} Y (ω) for every ω ∈ Ω, it holds that:

{
ω ∈ Ω | (∀Y ∈ A \ {X})(X(ω) ≥ Y (ω))

}
= ∅ .

It follows that ΠA(X) = 0.

Also, consider Y ∈ Y, then for any Y ⊆ A \ {X,Y } it holds that:

{
ω ∈ Ω |

(
∀Z ∈ Y

)(
∀W ∈ A \ ({Y } ∪ Y)

)(
Y (ω) = Z(ω) > W (ω)

)}
={

ω ∈ Ω |
(
∀Z ∈ Y

)(
∀W ∈ A \ ({X,Y } ∪ Y)

)(
Y (ω) = Z(ω) > W (ω)

)}
,

and therefore the multivariate winning probability ΠA(Y ) equals ΠA\{X}(Y )

for every Y ∈ A \ {X}. �
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Next, we prove that ΠA(X) is always smaller than or equal to Q(X,Y ) for

every Y ∈ A\ {X}. This means that the multivariate winning probability of X

in A cannot be greater than the winning probability over any of the variables

in a pairwise comparison.

Proposition 11. Let A be a finite set of distinct random variables. It holds

that:

ΠA(X) ≤ Q(X,Y ), for any Y ∈ A \ {X}.

Consequently, if ΠA(X) ≥ 1
2 , then X �PP A \ {X} and X �SP Y for any

Y ∈ A \ {X}.

Proof. First of all, note that ΠA(X) can be expressed as follows:

ΠA(X) =
∑

Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > Y

))
=

∑
{Y }6⊆Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
+

∑
{Y }⊆Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
.

Recall also that Q(X,Y ) = P (X > Y ) + 1
2P (X = Y ). It holds that:

{X > Y } ⊇
⋃

{Y }6⊆Y⊆A\{X}

{(
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

)}
.

Moreover, the sets involved are pairwise disjoint, and, consequently,

P (X > Y ) ≥
∑

{Y }6⊆Y⊆A\{X}

P
((
∀Z ∈ Y

)(
∀W ∈ A\({X}∪Y)

)(
X = Z > W

))
.

Similarly, it holds that

{X = Y } ⊇
⋃

{Y }⊆Y⊆A\{X}

{(
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

)}
.

Since these sets are pairwise disjoint, it holds that:

P (X = Y ) ≥
∑

{Y }⊆Y⊆A\{X}

P
((
∀Z ∈ Y

)(
∀W ∈ A\({X}∪Y)

)(
X = Z > W

))
.
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Consequently, we obtain:

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y )

≥
∑

{Y }6⊆Y⊆A\{X}

P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
+

1

2

∑
{Y }⊆Y⊆A\{X}

P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
≥

∑
{Y }6⊆Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
+

∑
{Y }⊆Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
=

∑
Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
= ΠA(X).

We conclude that Q(X,Y ) ≥ ΠA(X). Consequently, if ΠA(X) ≥ 1
2 , then it

holds that X �PP A \ {X} and X �SP Y , for any Y ∈ A \ {X}. �

Next, we establish a connection between pairwise and multivariate winning

probabilities. For this aim, we first prove the following technical result.

Lemma 12. Let A be a finite set of distinct random variables. For any X ∈ A,

it holds that:

Q
(
X, max

Y ∈A\{X}
Y
)
−ΠA(X) =

∑
∅6=Y⊆A\{X}

(
1

2
− 1

1 + |Y|

)
P
((
∀Z ∈ Y

)(
∀W ∈ A\({X}∪Y)

)(
X = Z > W

))
.

Proof. Consider the expression of Q
(
X,maxY ∈A\{X} Y

)
:

Q
(
X, max

Y ∈A\{X}
Y
)

= P
(
X > max

Y ∈A\{X}
Y
)

+
1

2

∑
∅6=Y⊆A\{X}

P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
.
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Using Eq. (5), ΠA(X) can be expressed as:

ΠA(X) = P
(
X > max

Y ∈A\{X}
Y
)

+

+
∑

∅6=Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
.

The stated result follows easily by computing the difference between both ex-

pressions. �

From the preceding result, we deduce that

ΠA(X) ≤ Q
(
X, max

Y ∈A\{X}
Y
)
. (7)

Clearly, if X �PP A \ {X} with multivariate winning probability ΠA(X) ≥ 1
2 ,

then Eq. (6) implies that X �SP maxY ∈A\{X} Y .

Moreover, there are situations where the inequality in Eq. (7) becomes an

equality.

Proposition 13. Let A be a finite set of distinct random variables and consider

X ∈ A. It holds that

ΠA(X) = Q
(
X, max

Y ∈A\{X}
Y
)

(8)

if and only if for every Y ⊆ A \ {X} with |Y| > 1:

P
((
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

))
= 0 . (9)

Proof. From Lemma 12, Q
(
X,maxY ∈A\{X} Y

)
− ΠA(X) is the sum of

non-negative terms, hence Q
(
X,maxY ∈A\{X} Y

)
= ΠA(X) if and only if all

the terms are zero, which is equivalent to(
1

2
− 1

1 + |Y|

)
P
(

(∀Z ∈ Y)(∀W ∈ A \ ({X} ∪ Y))(X = Z > W )
)

= 0 (10)

for every ∅ 6= Y ⊆ A\{X}. However, for Y ⊆ A\{X} of cardinality 1, Eq. (10)

trivially holds because 1
2 −

1
1+|Y| = 0. Hence, Eq. (8) holds if and only if for

every Y ⊆ A \ {X} with |Y| > 1, Eq. (9) holds. �

In particular, the above result holds when the random variables satisfy

P (X = Y ) = 0 for any Y ∈ A \ {X}, as is for instance the case for discrete
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random variables with pairwise disjoint supports or when the random variables

in A form an absolutely continuous random vector.

The following example shows that when Eq. (9) is not satisfied, it is in

general not possible to express multivariate winning probabilities in terms of

the probabilistic relation Q.

Example 14. Consider the space Ω = {ω1, ω2, ω3, ω4} and the probability mea-

sure P given by

P ({ω1}) = 0.1, P ({ω2}) = 0.2, P ({ω3}) = 0.3, P ({ω4}) = 0.4 .

Consider the set of random variables A = {X,Y, Z} defined by:

ω1 ω2 ω3 ω4

X 1 0 1 0

Y 0 1 1 0

Z 1 1 0 0

For these random variables, it holds that:

ΠA(X) =
1

3
, ΠA(Y ) =

1.15

3
, ΠA(Z) =

0.85

3
,

whence Y �PP X �PP Z. Note that

ΠA(Y ) 6= Q(Y,max(X,Z)) = 0.45.

Not surprisingly, one can easily verify that Eq. (9) is not satisfied for the random

variable Y .

Finally, let us generalize Theorem 5 and provide a characterization of proba-

bilistic preference. To that end, we consider a set of random variables A such

that every X ∈ A satisfies Eq. (9).

Theorem 15. Let A be a finite set of distinct random variables such that any

X ∈ A and Y ⊆ A \ {X} with |Y| > 1 satisfy Eq. (9). Then X �PP A \ {X} if

and only if

FX−maxZ∈A\{X} Z(0) ≤ FY−maxZ∈A\{Y } Z(0) ,

for any Y ∈ A \ {X}.
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Proof. The probabilistic relation Q(X,Y ) can be expressed as:

Q(X,Y ) = P (X > Y ) + 1
2P (X = Y )

= 1− P (X ≤ Y ) + 1
2P (X = Y ) = 1− FX−Y (0) + 1

2P (X = Y ) .

Using this expression with Y = maxZ∈A\{X} Z and applying Proposition 13, it

follows that:

ΠA(X) = Q
(
X, max

Z∈A\{X}
Z
)

= 1− FX−maxZ∈A\{X} Z(0) +
1

2
P
(
X = max

Z∈A\{X}
Z
)

= 1− FX−maxZ∈A\{X} Z(0).

Similarly, we can compute ΠA(Y ):

ΠA(Y ) = 1− FY−maxZ∈A\{Y } Z(0) .

Therefore, X �PP Y in A if and only if:

1− FX−maxZ∈A\{X} Z(0) ≥ 1− FY−maxZ∈A\{Y } Z(0),

or, equivalently,

FX−maxZ∈A\{X} Z(0) ≤ FY−maxZ∈A\{Y } Z(0) .

In particular, X �PP A\{X} if the above inequality holds for every Y ∈ A\{X}.

�

Thus, given a set of random variables A satisfying the conditions of The-

orem 15, finding the preferred one by computing multivariate winning proba-

bilities is equivalent to comparing the values of FX−maxZ∈A\{X} Z)(0) for every

X ∈ A.

5. Stochastic dominance versus probabilistic preference

Although stochastic dominance and statistical preference have different in-

terpretations [11], there are situations in which they are closely connected.
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Proposition 16. [11, 13, 22] If X and Y are two independent random variables

such that X �FSD Y , then it also holds that X �SP Y .

This result underlines that for two independent random variables, stochastic

dominance is more restrictive than statistical preference. Also in the multivari-

ate setting, we can establish an interesting correspondence between stochastic

dominance and probabilistic preference when the random variables are indepen-

dent. This lack of dependence clearly compensates for the fact that stochastic

dominance only considers the marginal distributions.

Theorem 17. Let A be a finite set of distinct random variables such that any

X ∈ A and Y ⊆ A \ {X} with |Y| > 1 satisfy Eq. (9). Assume that the random

variables in A are independent3. If X �FSD Y for any Y ∈ A \ {X}, then

X �PP A \ {X}.

Proof. Since the conditions of Proposition 13 hold, we have that:

ΠA(X) = Q
(
X, max

Z∈A\{X}
Z
)

and

ΠA(Y ) = Q
(
Y, max

Z∈A\{Y }
Z
)
,

for any Y ∈ A \ {X}. Therefore, X �PP A \ {X} if and only if:

Q
(
X, max

Z∈A\{X}
Z
)
≥ Q

(
Y, max

Z∈A\{Y }
Z
)

for any Y ∈ A\{X}. Note that since the random variables inA are independent,

we also have that:

1. X and maxZ∈A\{X} Z are independent;

2. Y and maxZ∈A\{Y } Z are independent.

Now, we have to recall that if U1 and U2 are two independent random variables

with cumulative distribution functions FU1 and FU2 , as a consequence of [29,

Thm. 20.3], it holds that P (U1 ≥ U2) = E[FU2
(U1)].

3Note that in some contexts, independence is also referred to as mutual independence to

distinguish it from pairwise independence.
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Applying this result, we have that:

P
(
X ≥ max

Z∈A\{X}
Z
)

= E
(
FmaxZ∈A\{X}(X)

)
= E

 ∏
Z∈A\{X}

FZ(X)

 .

Similarly,

P
(
Y ≥ max

Z∈A\{Y }
Z
)

= E
(
FmaxZ∈A\{Y }(Y )

)
= E

 ∏
Z∈A\{Y }

FZ(Y )

 ≤ E

 ∏
Z∈A\{X}

FZ(Y )

 ,

where the last inequality holds since X �FSD Xi. Finally, Eq. (1) assures

that E[h(X)] ≥ E[h(Xi)] for any increasing function h. In particular, we may

consider the increasing function

h(t) =

n∏
j=1

FXj
(t) .

Therefore, for any Y ∈ A \ {X}, it holds that

P
(
X ≥ max

Z∈A\{X}
Z
)

= E
( ∏
Z∈A\{X}

FZ(X)
)

≥ E

 ∏
Z∈A\{X}

FZ(Y )

 ≥ P
(
Y ≥ max

Z∈A\{Y }
Z
)
,

or, equivalently,

Q
(
X, max

Z∈A\{X}
Z
)
≥ Q

(
Y, max

Z∈A\{Y }
Z
)
.

We conclude that X �PP Y for every Y ∈ A \ {X}, which implies that X �PP

A \ {X}. �

6. Probabilistic preference as a tool for linguistic decision making

We have introduced probabilistic preference as a tool for the comparison of

two or more random variables. As an illustration of the usefulness of this tool,

we consider a decision making problem with linguistic utilities. We consider
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the product management example discussed in [30, Section 8]: a company seeks

to select its production strategy for the next year, and considers six possible

alternatives:

A1 Create a new product for very high-income customers.

A2 Create a new product for high-income customers.

A3 Create a new product for medium-income customers.

A4 Create a new product for low-income customers.

A5 Create a new product suitable for all customers.

A6 Do not create a new product.

Due to the uncertainty involved, the experts of the company are not able to

express the impact of each alternative in a numerical way. For this reason, they

express the utility on a seven-point linguistic scale S = {s1, . . . , s7}, where:

s1 : None s2 : Very low s3 : Low

s4 : Medium s5 : High s6 : Very high

s7 : Perfect

Moreover, since the decision depends on the economic situation of the following

year, six scenarios are considered:

N1 : Very bad N2 : Bad N3 : Regular-Bad

N4 : Regular-Good N5 : Good N6 : Very good

The following probability vector is given for these scenarios:

W = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3) .

The first expert e1 of the company gives the following evaluations of the alter-

natives:

e1 N1 N2 N3 N4 N5 N6

A1 s2 s1 s4 s6 s7 s5

A2 s1 s3 s5 s5 s6 s6

A3 s3 s4 s4 s4 s4 s7

A4 s2 s5 s6 s4 s2 s5

A5 s1 s3 s4 s5 s6 s6

A6 s6 s5 s5 s4 s2 s2
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Let us denote by A the set of alternatives to be compared. Computing the

multivariate winning probabilities of e1 for each alternative, we obtain the fol-

lowing:

Ai A1 A2 A3 A4 A5 A6

Πe1
A (Ai) 0.4 0 0.3 0.15 0 0.15

Note that for computing the multivariate winning probabilities Πe1
A (Ai), we have

made use of Proposition 10. Since for the first expert it holds that A2, A5 <

max(A1, A3, A4, A6), we know that the multivariate winning probability of A2

and A5 for the first expert is zero; hence, we can simplify the computations and

simply use the formula for ΠA′ , where A′ = {A1, A3, A4, A6}. The preferences

of expert e1 are then given by: A1 �PP A3 �PP A4 ≡PP A6 �PP A2 �PP A5.

Two other experts of the company, e2 and e3, also evaluate the alternatives:

e2 N1 N2 N3 N4 N5 N6

A1 s3 s1 s3 s5 s6 s6

A2 s1 s3 s4 s5 s6 s6

A3 s3 s4 s5 s4 s3 s7

A4 s3 s4 s5 s4 s2 s4

A5 s2 s3 s4 s6 s6 s6

A6 s7 s6 s4 s3 s2 s2

e3 N1 N2 N3 N4 N5 N6

A1 s1 s2 s3 s5 s7 s6

A2 s2 s3 s4 s4 s5 s6

A3 s3 s4 s6 s4 s3 s7

A4 s2 s4 s6 s4 s2 s4

A5 s1 s3 s4 s5 s6 s6

A6 s6 s6 s5 s3 s2 s3

Following a similar procedure, we can compute the multivariate winning prob-

abilities for experts e2 and e3:

Ai A1 A2 A3 A4 A5 A6

Πe2
A (Ai) 0.0667 0.0667 0.35 0.05 0.2667 0.2

Πe3
A (Ai) 0.3 0 0.35 0.05 0.1 0.2

For the company, the three experts do not have the same influence, and their

importance is given by the weight vector (0.2, 0.4, 0.4). Hence, using the mul-

tivariate winning probabilities Π
ej
A (Ai) and the weight vector of the experts

(0.2, 0.4, 0.4), we can aggregate them to obtain the overall multivariate winning

probability of each alternative:

ΠA(A1) = Πe1
A (A1) · 0.2 + Πe2

A (A1) · 0.4 + Πe3
A (A1) · 0.4

= 0.4 · 0.2 + 0.0667 · 0.4 + 0.3 · 0.4 = 0.22667 .
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Similarly, for the other alternatives we obtain:

Ai A1 A2 A3 A4 A5 A6

ΠA(Ai) 0.22667 0.02667 0.34 0.07 0.14667 0.19

Thus, the multivariate winning probabilities yield A3 as the preferred alterna-

tive: A3 �PP A\{A3}; A1 is the second preferred alternative, A6 the third, A5

the fourth, A4 the fifth and finally A2 is the least preferred alternative. Con-

sequently, creating a new product for medium-income customers seems to be

the best option, while the worst alternative is creating a new product for high-

income customers. Hence, the final ranking given by probabilistic preference

relation is A3 �PP A1 �PP A6 �PP A5 �PP A4 �PP A2.

This problem was solved in [30] by means of aggregation operators. The main

drawback of that approach is that it depends on the chosen aggregation operator.

For example, for the maximum operator the final ranking is A3 � A1 � A6 �

A2 ∼ A5 � A4, while for the minimum operator the final ranking is A3 � A4 ∼

A6 � A1 ∼ A2 ∼ A5. It seems that for most of the aggregation operators the

preferred alternative is A3, which coincides with the best alternative given by

our approach. However, the ranking between the remaining alternatives varies

a lot with the aggregation operator.

7. Conclusions

In this paper, we have introduced a new method for the comparison of two

or more random variables. The proposed method, called probabilistic prefer-

ence, is based on multivariate winning probabilities, which express the strength

of preference of one random variable over the other ones in a given set. Since

multivariate winning probabilities are based on the joint distribution of the

random variables, probabilistic preference takes into account the stochastic de-

pendences between them. Also, multivariate winning probabilities establish a

ranking (with ties) on the set of random variables.

We have also investigated some properties of the notion of probabilistic pref-

erence, and provided a characterization in terms of the pointwise comparison of
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some specific cumulative distribution functions. In addition, we have confirmed

that there is no relationship between probabilistic preference and statistical

preference, simply because the latter only takes into account the bivariate dis-

tributions. With respect to stochastic dominance, we have shown the interesting

result that for independent random variables, first degree stochastic dominance

implies probabilistic preference.

Note that this new method could offer an interesting alternative in some real-

world applications in which both stochastic dominance and statistical preference

do not provide an optimal solution, as, for example, in multicriteria decision

making.

As for future research, we have stressed that one of the advantages of using

multivariate winning probabilities is that they use the joint distribution of the

random variables and thus take into account the possible dependence between

them. At this point, we can make use of the Theory of Copulas [31], which

allows us to capture the dependence information between the random variables.

Therefore, as we did in [14] for statistical preference, we aim to extend the con-

nection between first degree stochastic dominance and probabilistic preference

given in Theorem 17 for some prominent dependence models.

Also, it would be interesting to study the behaviour of probabilistic prefer-

ence for some well-known families of distributions, such as normally distributed

random variables.

Finally, the mapping ΠA could be studied within the framework of proba-

bilistic and fuzzy choice functions (see [32] for an overview and [33, 34] for some

recent advances), determining which properties it satisfies, as well as from the

point of view of game theory.
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Hoeffding upper bound, Journal of Multivariate Analysis 143 (2016) 275–

298.

[15] B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of

independent random variables, Journal of Multivariate Analysis 96 (2005)

352–373.

[16] I. Montes, D. Martinetti, S. Dı́az, S. Montes, Estudio de la preferencia

estad́ıstica en distribuciones normales bidimensionales, in: Proceedings of

XXXII SEIO Conference, 2010, p. 78.

[17] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behav-

ior, Princeton University Press, 1953.

[18] J. Durba, F. Maccheroni, E. Ok, Expected utility theory without the

completeness axiom, Journal of Economic Theory 115 (2004) 118–133.

26



[19] M. Condorcet, An essay on the application of probability theory to plurality

decision making: an election between three candidates, Reprinted in 1989,

F. Sommerlad, I. McLean (Eds.), 1785.

[20] D. Dubois, H. Fargier, P. Perny, Qualitative decision theory with preference

relations and comparative uncertainty: An axiomatic approach, Artificial

Intelligence 148 (2003) 219–260.

[21] B. De Baets, K. De Loof, H. De Meyer, A frequentist view on cycle-

transitivity of reciprocal relations, Fuzzy Sets and Systems 281 (2015)

198–218.

[22] B. De Baets, H. De Meyer, Transitivity frameworks for reciprocal relations:

cycle-transitivity versus FG-transitivity, Fuzzy Sets and Systems 152 (2005)

249–270.

[23] B. De Baets, H. De Meyer, On the cycle-transitive comparison of artificially

coupled random variables, International Journal of Approximate Reasoning

47 (2008) 306–322.

[24] B. De Baets, H. De Meyer, K. De Loof, On the cycle-transitivity of the

mutual rank probability relation of a poset, Fuzzy Sets and Systems 161

(2010) 2695–2708.

[25] B. De Baets, H. De Meyer, B. De Schuymer, S. Jenei, Cyclic evaluation

of transitivity of reciprocal relations, Social Choice and Welfare 26 (2006)

217–238.

[26] H. De Meyer, B. De Baets, B. De Schuymer, On the transitivity of the

comonotonic and countermonotonic comparison of random variables, Jour-

nal of Multivariate Analysis 98 (2007) 177–193.

[27] B. De Schuymer, H. De Meyer, B. De Baets, Extreme copulas and the

comparison of ordered lists, Theory and Decision 62 (2007) 195–217.

27



[28] D. Martinetti, I. Montes, S. Dı́az, S. Montes, A study on the transitivity

of probabilistic and fuzzy relations, Fuzzy Sets and Systems 184 (2011)

156–170.

[29] P. Billingsley, Probability and Measure, 3 ed., Wiley-Interscience, 1995.
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