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Abstract

In this paper we apply Young diagrams, a well-known object appearing in Combinatorics
and group representation theory, to study some properties of the polytope of 2-symmetric fuzzy
measures with respect to a given partition, a subpolytope of the set of fuzzy measures. The
main result in the paper allows to build a simple and fast algorithm for generating points on this
polytope in a random fashion. Besides, we also study some other properties of this polytope, as
for example its volume. In the last section, we give an application of this result to the problem
of identification of general fuzzy measures.
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1 Introduction

Fuzzy measures over a finite referential set constitute a powerful tool appearing in many different
fields, such as Decision Making, Game Theory, Evidence Theory, and many others (see e.g. [20, 18, 19]
and the references therein). For this reason, the study of the properties of these measures (or any
of their subfamilies) has attracted the attention of many researchers. One of these problems is
determining the properties of the set of all fuzzy measures over a referential set of fixed cardinality;
in this sense, it is easy to see that this set is a convex bounded polyhedron (i.e. a polytope), and
this also happens to many other subfamilies, such as k-additive measures, k-symmetric measures or
belief functions, among others [9, 10]. Related to the geometrical structure of fuzzy measures or any
subfamily, we have the problem of randomly generating a measure [5].

This is an interesting problem for several reasons. First, and most evident, it is an appealing
problem from a mathematical point of view. Next, being able to generate points in a polytope allows
to approximate several characteristics, as the center of gravity, the volume, and so on; these problems
could be solved numerically by using Monte-Carlo methods if we know how to generate uniformly
inside these polytopes.

We state now a more practical reason, related to the problem of identification of fuzzy measures.
This problem arises when we have some sample data (perhaps in a non-numerical scale) and we
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look for the fuzzy measure (possibly restricted to a subfamily F) that best fits these data. In [6], a
method to deal with the problem of identification of some convex families of fuzzy measures based
on genetic algorithms has been proposed; in that paper, the cross-over operator considered is the
convex combination of points, taking advantage of the fact that F can be seen as a polytope. This
algorithm is very fast and the simulations carried out suggest that it is stable with respect to the
presence of noise. However, the convex combination reduces the search region in each iteration;
although a desirable property at first sight, it has the handicap that if the solution is left outside
the search region in an iteration, it is not possible to include it in the search region again. To cope
with this problem, there are several options; the most natural is to consider the set of vertices as
the initial population of the algorithm and use as mutation operator the convex combination of the
measure with one of the vertices; unfortunately, for the general case of fuzzy measures and also for
many subfamilies, the number of vertices increases too fast [7]. Thus, this solution is most of times
unfeasible from a computational point of view. Then, the most practical way of proceeding is to
consider as initial population a set of fuzzy measures selected randomly with respect to the uniform
distribution on the set of all fuzzy measures in F . In other words, we want to select a set of fuzzy
measures in F such that no region takes advantage of a larger probability than other region with the
same volume.

As stated before, for general fuzzy measures and many subfamilies, the problem of random gener-
ation consists in generating points randomly in a polytope. However, this is a complex problem that
has not been satisfactorily solved for general polytopes; indeed, there are many different techniques
to deal with this problem, as the grid method [13], the sweep-plane method [28] and triangulation
methods [13]; in the case of fuzzy measures, it can be seen that it is a special case of polytope, namely
an order polytope [36], whose subjacent poset is the Boolean poset. The same happens for some
subfamilies of fuzzy measures, as k-symmetric measures [9] (but it does not hold for other important
families, as k-additive measures). In this sense, triangulations methods are specially appealing for
order polytopes because, as it is proved in [30] pag. 304, the problem of generating a point in an
order polytope can be turned into generating a linear extension of the subjacent poset in a random
way.

On the other hand, Brightwell andWinkler have shown in [3] that, for general posets, this problem,
as well as the problem of counting the number of linear extensions, are � P-complete problems, and
consequently, it is not possible to derive a satisfactory procedure for solving these problems for
general posets. Then, this problem has been treated by many researchers, aiming to derive either
techniques for a particular class of posets, or to propose algorithms that are close to randomness and
whose complexity is reduced (see e.g. [23, 34, 25] for generating a random linear extension of a poset
and [26, 40, 24] for counting the number of linear extensions). Indeed, this problem is a hot topic in
Computer Sciences nowadays.

In this paper, we deal with the polytope of 2-symmetric measures. Briefly speaking, k-symmetric
measures arise when some elements of the referential set X present the same behavior and thus can be
grouped in a subset of indifferent elements (see Section 2 below). This is a situation that appears in
many practical situations and, thus defined, k-symmetric measures allow a reduction in the number
of coefficients (and thus, the complexity) needed to define the corresponding measure. Therefore,
k-symmetric measures define a gradation between symmetric measures (where we just care about
the number of elements in the subset) and general fuzzy measures. Moreover, from a combinatorial
point of view, the set of k-symmetric measures with respect to a given partition of X is an order
polytope, so it suffices to consider the subjacent poset and solve the problem of random generating
a linear extension.

We show in the paper that this poset is a special case of Ferrers posets. These posets are closely
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related to Young diagrams, a tool appearing in Combinatorics to represent partitions of natural
numbers. We show that Young diagrams are a suitable way to represent the posets corresponding
to 2-symmetric measures. And from the properties of Young diagrams, we derive a procedure to
generate randomly linear extensions of Ferrers posets. Besides, we show that Young diagrams can
be used to recover some properties of 2-symmetric measures in an elegant and easy way.

The rest of the paper goes as follows: we introduce the basic concepts about k-symmetric measures
and order polytopes in next section. In Section 3 we introduce Young diagrams and Ferrers posets,
together with the Hook theorem, that constitutes the basis of our algorithm for random generation.
Section 4 shows the relation between 2-symmetric measures and these combinatorial objects. In
Section 5, we develop the algorithm for random generation of 2-symmetric measures. Section 6
presents an application of these results, related to the problem of identification of general fuzzy
measures. We finish with conclusions and open problems.

2 Basic concepts on k-symmetric measures and order poly-

topes

2.1 The set FM(A1, A2)

Let X = {1, . . . , n} be a finite referential set of n elements and let us denote by A,B, . . . the subsets
of X. The set of subsets of X is denoted by P(X). A fuzzy measure [39] over X is a set function
μ : P(X) → [0, 1] satisfying μ(∅) = 0, μ(X) = 1, (boundary conditions) and μ(A) ≤ μ(B) for all
A,B ∈ P(X) such that A ⊆ B (monotonicity). Depending on the context, elements of X have
different meanings (criteria in Multicriteria Decision Making, players in Game Theory, and so on).
We will denote by FM(X) the set of all fuzzy measures over X .

Fuzzy measures have proved to be an interesting tool in many different fields, as they are able to
model many different situations; for example, in Multicriteria Decision Making fuzzy measures are
able to model interactions among criteria, as well as situations of veto or favor [16]. On the other
hand, this flexibility has to be paid via an increase in the complexity; in this sense, for a referential
set of n elements, 2n − 2 values are needed to completely define the fuzzy measure. In order to
reduce this complexity, several attempts have been proposed. For example, we could just reduce the
number of coalitions allowed to happen; this situation is perfectly justified in many cases in Game
Theory (see e.g. [17]). Another way to reduce the complexity is to consider some subfamilies of fuzzy
measures, aiming to combine flexibility with a reduction in the number of coefficients; following this
line, many subfamilies have been proposed, as for example k-additive measures [15, 16], k-symmetric
measures [31], k-intolerant measures [29], and many others.

Let us introduce k-symmetric measures. For this concept, the notion of subset of indifference is
the crux of the issue.

Definition 1. [31] Let μ : P(X) → [0, 1] be a fuzzy measure. Given a subset A ⊆ X, we say that
A is a subset of indifference for μ if for any B1, B2 ⊂ A, such that |B1| = |B2| and for any
C ⊆ X \ A, then

μ(B1 ∪ C) = μ(B2 ∪ C).

From the point of view of Game Theory, this definition translates the idea that we do not care
about which players inside A are included in a coalition, and we just need to know how many of
them take part in it. Remark that if A is a subset of indifference, so is any B ⊆ A. Moreover,
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for a given fuzzy measure μ, X can be partitioned in {A1, ..., Ak} subsets of indifference; there are
several partitions of X in subsets of indifference, but it can be proved that there is a partition that
is the coarsest one [31], being any other refinement of this partition another partition in subsets of
indifference for μ.

Definition 2. [31] Let μ ∈ FM(X). We say that μ is a k−symmetric measure if and only if the
(unique) coarsest partition of the referential set in subsets of indifference has k non-empty subsets.

In particular, if we consider the partition {X} we recover the set of symmetric fuzzy measures,
i.e. measures μ satisfying μ(A) = μ(B) whenever |A| = |B|. These measures and their corresponding
Choquet integral are very important in Fuzzy Logic, where they are related to OWA operators [41].

If {A1, A2, · · · , Ak} is a partition ofX , the set of all fuzzy measures μ such that {A1, A2, · · · , Ak} is
a partition of indifference for μ is denoted by FM(A1, A2, · · · , Ak).Note that μ ∈ FM(A1, A2, · · · , Ak)
does not imply that {A1, A2, · · · , Ak} is the coarsest partition for μ; indeed, all symmetric measures
belong to FM(A1, A2, · · · , Ak), no matter the partition.

As all elements in a subset of indifference have the same behavior, when dealing with a fuzzy
measure in FM(A1, ..., Ak), it suffices to know the number of elements of each Ai that belong to a
given subset C of the universal set X. Therefore, the following result holds:

Lemma 1. [31] If {A1, ..., Ak} is a partition of X, then any C ⊆ X can be identified with a k-
dimensional vector (c1, ..., ck) with ci := |C ∩ Ai|.

Then, ci ∈ {0, ..., |Ai|} and in order to build a k−symmetric measure we just need (|A1|+ 1) ×
(|A2|+ 1)×· · ·× (|Ak|+ 1)−2 coefficients, a number far away from 2n−2 needed for a general fuzzy
measure.

2.2 Order polytopes

Let us now turn to the problem of random generation of fuzzy measures. For this problem, we have to
note that the set FM(X) is a polytope, and so are many subfamilies of FM(X); in particular, it is an
easy exercise [7] to show that FM(A1, A2, · · · , Ak) is a polytope. As explained in the introduction,
there are several methods to generate random points in a polytope; one of these methods is the
triangulation method; let us explain this method with more detail.

Consider n+1 affine independent points in Rm, m ≥ n, i.e. n+1 points of Rm in general position.
The convex hull of these points is called a simplex. This notion is a generalization of the notion
of triangle for the m-dimensional space. The random generation in simplices is very simple and fast
[35], as any point in the simplex can be written as a unique convex combination of the vertices.
Thus, it just suffices to generate such convex combination, and this can be done, e.g., by ordering
the points and sampling uniformly n times in [0, 1], assigning each value to the corresponding point
and finally normalizing.

The triangulation method is based on the decomposition of the polytope into simplices; once the
decomposition is obtained, we assign to each simplex a probability proportional to its volume; next,
these probabilities are used for selecting one of the simplices; finally, a random m-uple in the simplex
is generated.

However, in general it is not easy to split a polytope into simplices. Moreover, even if we are
able to decompose the polytope in a suitable way, we have to deal with the problem of determining
the volume of each simplex in order to properly select one of them. This is the Achilles heel of the
triangulation method and the reason for which it is not very popular for general polytopes. In our
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case, we take advantage of the fact that FM(X) and FM(A1, A2, · · · , Ak) belong to a very special
class of polytopes called order polytopes.

The notion of order polytope is deeply related to finite partially ordered sets (posets for short).
For a general introduction on the theory of posets see [11, 32]). A (finite) poset, denoted by (P,�),
is a finite set P with p elements endowed with a partial order � (a reflexive, antisymmetric and
transitive relation); we will often denote the poset (P,�) by P for short. Posets can be represented
through Hasse diagrams. The Hasse diagram is a graph where for a, b ∈ P , a ≺ b if and only if there
is a sequence of connected lines upwards from a to b (see Fig. 1).

Given a poset (P,�), it is possible to associate to P a polytope O(P ) over Rp, called the order
polytope of P (cf. [36]), formed by the p-uples f of real numbers indexed by the elements of P
satisfying

• 0 ≤ f(a) ≤ 1 for every a in P, and

• f(a) ≤ f(b) whenever a � b in P .

Thus, the polytope O(P ) consists of (the p-uples of images of) the order-preserving functions
from P to [0, 1]. O(P ) is a 0/1-polytope [36], i.e., its extreme points are all in {0, 1}p. In fact, it is
easy to see that the extreme points of O(P ) are exactly (the characteristic functions of) the filters
of P (i.e., subsets F of P satisfying that if x ∈ F and x � y, then y ∈ F ). Applied to distributive
lattices, the notion of order polytope has been also defined in [27] with the name of geometric
realization.

It can be easily seen that the polytope FM(X) is the order polytope of the poset (P,�) where
P = P(X)\{X, ∅} and � is the inclusion between subsets [8], i.e., the Boolean lattice. Similarly, the
set FM(A1, ..., Ak) is the order polytope associated to the poset (P (A1, ..., Ak),�), where

P (A1, ..., Ak) := {(i1, ..., ik) : ij ∈ {0, ..., |Aj|}, i, j ∈ Z}\{(0, ..., 0), (|A1|, ..., |Ak|)}, (1)

and � is given by (c1, ..., ck) � (b1, ..., bk) ⇔ ci ≤ bi, i = 1, ..., k (see [8]). The Hasse diagrams of the
Boolean lattice of |X| = 4 and P ({1, 2}, {3, 4}) are given in Figure 1. Notice the difference in the
number of elements between these two posets.

Thus, the problem of random generation of points in FM(X) and FM(A1, ..., Ak) reduces to
obtain a random procedure for generating points in an order polytope. Now, when dealing with order
polytopes, the following result can be applied (see [30], pag. 304):

Theorem 1. Let (P,�) be a poset of p elements.

• If � is a total order on P , then the corresponding order polytope is a simplex of volume 1
p!
.

• For any partial ordering � on P, the simplices of the order polytope of (P,≤), where ≤ is a linear
extension1 of �, cover the order polytope of (P,�) and have disjoint interiors. Consequently,
vol(O(P,�)) = 1

p!
e(P ), where e(P ) denotes the number of linear extensions of poset (P,�).

These results are also outlined in [36]. Consequently, it suffices to generate randomly a linear
extension of � and then generate a point in the corresponding simplex. However, the problem of
generating a random linear extension of a general poset is a � P-complete problem [3]. The case of
the Boolean poset is especially complex, and in fact it can be proved that any poset can be seen as a
subposet of the Boolean lattice [37]. Therefore, obtaining procedures with low complexity valid for
a class of order polytopes is relevant.

1A linear extension of a poset (P,�) is a total order ≤ on P that is compatible with �, in the sense that x � y
implies x ≤ y.
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Figure 1: Hasse diagrams of the Boolean poset for |X| = 4 (left) and the poset P ({1, 2}, {3, 4})
(right).

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

X

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(2, 1) (1, 2)

(2, 2)

3 Young diagrams and Ferrers posets

In this section, we are going to introduce the basic properties of Young diagrams. Young diagrams
are not only a useful combinatorial structure but also play an important role in other branches of
mathematics such as representation theory or Schubert calculus [22].

Consider a natural number n. A partition of n (do not confuse this concept with the partition
of a set) is a sequence of natural numbers λ = (λ1, ..., λk) such that λ1 ≥ λ2 ≥ ... ≥ λk ≥ 1 and∑k

i=1 λi = n. Each partition represents a way to obtain n as a sum of natural numbers. Partitions of
n are represented through Young diagrams (see e.g., [33, 1] for the basic properties of this object).

Definition 3. Let λ be a partition of a natural number n ∈ N. Then, we define the Young diagram
(or Ferrers diagram) of shape λ, X(λ), as an array of cells, xi,j, arranged in left-justified rows,
i = 1, · · · , k and j = 1, . . . , λi.

Example 1. For instance, if λ = (5, 4, 4, 1) we obtain the Young diagram for n = 14 shown in
Figure 2 left.

Definition 4. Let λ be a partition of n. A Young tableau (plural Young tableaux) of shape λ
is an assignment of the integers 1, . . . , n to the cells in the diagram of shape λ. A Young tableau is
said to be standard if all rows and columns form increasing sequences.

Example 2. A (standard) Young tableau for the Young diagram of shape λ = (5, 4, 4, 1) is presented
in Figure 3.

Let us now introduce Hook-length formula. For this, some previous concepts are needed.

Definition 5. Let X(λ) be a Young diagram of shape λ. For a cell (i, j) in the diagram, the Hook
of cell (i, j), denoted Hλ(i, j), consists of the cells that are either below (i, j) in column j or to the
right of (i, j) in row i, along with (i, j) itself. That is:
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Figure 2: Young diagram associated to λ = (5, 4, 4, 1) and its corresponding Ferrers poset.

(1, 1)

(1, 2) (2, 1)

(1, 3) (2, 2) (3, 1)

(1, 4) (2, 3) (3, 2) (4, 1)

(1, 5) (2, 4) (3, 3)

(3, 4)

Figure 3: (Standard) Young tableau of shape (5,4,4,1).

1 4 6 7 10

2 8 11 12

3 9 13 14

5

Hλ(i, j) := {(a, b) ∈ X(λ)|(a = i, b ≥ j) ∨ (a ≥ i, b = j)}.
The Hook length hλ(i, j) is the number of cells in the hook Hλ(i, j).

Example 3. For the example with λ = (5, 4, 4, 1), the set H(1, 1) is drawn in Figure 4.

Figure 4: Hook Hλ(1, 1) with λ = (5, 4, 4, 1).

In this case, hλ(1, 1) = 8.

The number of standard Young tableaux of shape λ can be written in terms of the Hook lengths
of the different cells. This is the famous Hook-length formula.

Theorem 2. [33, 1] Let λ be a partition of n and dλ be the number of standard Young tableaux of
shape λ. Then,

dλ =
n!∏

(i,j)∈X(λ) hλ(i, j)
.
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Finally, let us introduce Ferrers posets. For a given Young diagram, we can build a poset (P,�)
in the following way. Elements of P are the cells (written as the pair of coordinates) and given two
cells (i, j), (k, l), we define

(i, j) � (k, l) ⇔ i ≤ k, j ≤ l.

This poset is known as the Ferrers poset associated to shape λ, denoted P(λ). We also call
normalized Ferrers poset, P∗(λ) to the poset resulting from removing maximum and minimum
from P(λ).

For example, the Ferrers poset associated to shape (5, 4, 4, 1) can be seen in Figure 2 right.

Remark 1.

• Note that the same Ferrers poset arises if we swap rows and columns and build the corresponding
Young diagram, i.e., the Ferrers poset is the same for shapes λ = (λ1, ..., λk) and η = (η1, ..., ηl)
where ηi := �{λj : λj ≥ i}.

• Remark also that (i, j) covers (i−1, j) and (i, j−1). In terms of the Young diagram, this means
that a cell covers just the cell to the left and the cell to the top. Following the terminology
of graphs, we will say that two cells are adjacent if one of them covers the other in the
corresponding Ferrers poset, i.e., when they are consecutive cells in a column or a row.

We define a path in a Young diagram as a sequence of adjacent cells. Finally, we will say that
a subset F of cells in the Young diagram is connected if there is a path inside F connecting
any pair of cells in F . This will play an important role in the following section.

Now, for a fixed shape, observe that any standard Young tableau can be related to a possible
linear extension of the corresponding Ferrers poset, where the labels give the position of each element
in the linear extension (label one corresponds to the first element, label two to the second one and
so on); reciprocally, given a linear extension of the Ferrers poset, we can build a standard Young
tableau just assigning to each cell the position of the cell in the linear extension. Therefore, we have
as many standard Young tableaux as linear extensions of the Ferrers poset and applying Theorem 2,
the following holds for the number of linear extensions.

Corollary 1. Let λ be a partition of n, then:

e(P(λ)) =
n!∏

z∈P(λ) hλ(z)
.

4 FM(A1, A2) as an order polytope

We start with a fundamental property relating FM(A1, A2) to the normalized Ferrers poset P∗(λ)
with λ := (|A1|+ 1, |A1|+ 1, |A2|+1. . . , |A1|+ 1).

Lemma 2. Let {A1, A2} be a partition of the referential set X and let us denote |A1| = a1 and
|A2| = a2. The set FM(A1, A2) can be seen as an order polytope associated to the normalized
Ferrers poset P∗(λ) with λ := (a1 + 1, a1 + 1, a2+1. . . , a1 + 1).

Proof. As explained before (Eq. (1)), the set FM(A1, A2) is an order polytope whose subjacent
poset is P (A1, A2). Let us consider P+(A1, A2), where we have added ∅ and X, given by (0, 0) and
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(a1, a2), resp. to P (A1, A2); then, P
+(A1, A2) can be identified to a (a1 + 1)× (a2 + 1) table, where

entry (i, j) corresponds to element (i − 1, j − 1). But this table is the Young diagram of shape

λ = (a1 + 1, a1 + 1,
a2+1· · · , a1 + 1). Thus, P+(A1, A2) can be associated to P(λ) and consequently,

P (A1, A2) can be associated to P∗(λ).

Swapping positions of A1 and A2, we conclude that FM(A1, A2) can be associated to the Ferrers

poset P(η) with η = (a2 + 1, a2 + 1,
a1+1· · · , a2 + 1). Compare this with Remark 1.

An interesting consequence which follows from the last theorem gives us the exact volume of the
polytope FM(A1, A2).

Theorem 3. Let {A1, A2} be the coarsest partition of X in subsets of indifference and let |A1| = a1
and |A2| = a2. Then,

V ol (FM(A1, A2)) = [(a1 + 1)(a2 + 1)] [(a1 + 1)(a2 + 1)− 1]

a1∏
k=0

k!

(a2 + 1 + k)!

Proof. By Theorem 1, we know that for an order polytope,

vol(O(P,�)) =
1

|P |!e(P ),

where e(P ) denotes the number of linear extensions of poset (P,�). Thus, it suffices to find the
number of linear extensions of the subjacent poset. For FM(A1, A2), we have to sort out the
number of linear extensions of P (A1, A2). Note that the number of linear extensions of this poset
is the same as the polytope P+(A1, A2) defined in Lemma 2 or equivalently, to poset P(λ) with
λ := (a1 + 1, a1 + 1, a2+1. . . , a1 + 1). Now, by Corollary 1, for a shape λ,

e(P(λ)) =
[(a1 + 1)(a2 + 1)]!∏

(i,j)∈P(λ) hλ(i, j)
.

Let us then find the values of hλ(i, j) in this case. Note that for row i, the values of hλ(i, j),
where j = 1, ..., |A2|+ 1 are |A1|+ 1− i+ |A2|+ 1, ..., |A1|+ 1− i+ 1 resp. (see Figure 5),

Figure 5: Hook lengths for a rectangular Young tableau.

7 6 5 4 3

6 5 4 3 2

5 4 3 2 1

Thus,

∏
(i,j)∈P(λ)

hλ(i, j) =

a1+1∏
i=1

(|A1|+ 1 + |A2|+ 1− i)!

(|A1|+ 1− i)!
=

a1∏
k=0

(|A2|+ 1 + k)!

k!
.

Consequently,
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V ol (FM(A1, A2)) =
1

[(a1 + 1)× (a2 + 1)− 2]!
e(P (A1, A2))

=
1

[(a1 + 1)× (a2 + 1)− 2]!
e(P+(A1, A2))

=
1

[(a1 + 1)× (a2 + 1)− 2]!
[(a1 + 1)(a2 + 1)]!

a1∏
k=0

k!

(a2 + 1 + k)!

= [(a1 + 1)(a2 + 1)] [(a1 + 1)(a2 + 1)− 1]

a1∏
k=0

k!

(a2 + 1 + k)!
.

Some values of this volume for different values of a1 and a2 can be seen in the next table.

a1\a2 1 2 3 4 5
1 1 6·5

3!4!
8·7
4!5!

10·9
5!6!

12·11
6!7!

2 9·8·2!
3!4!5!

12·11·2!
4!5!6!

15·14·2!
5!6!7!

18·17·2!
6!7!8!

3 16·15·2!3!
4!5!6!7!

20·19·2!3!
5!6!7!8!

24·23·2!3!
6!7!8!9!

4 25·24·2!3!4!
5!6!7!8!9!

30·29·2!3!4!
6!7!8!9!10!

5 36·35·2!3!4!5!
6!7!8!9!10!11!

It must be remarked at this point that obtaining the volume of an order polytope is a complex
problem depending on the number of linear extensions (and counting linear extensions is another
complex problem), so that usually bounds are considered. In this case, some bounds for the volume
of FM(A1, A2) were given in [8].

Young tableaux also gives an interesting combinatorial approach to the adjacency in FM(A1, A2).

Definition 6. Given a n×m grid, a staircase walk is a path from (0, 0) to (n,m) which uses just
up and right steps.

An example of a staircase walk in a 4 × 4 grid can be seen in Figure 6. Staircase walks play an
important role in Combinatorics, since they are intimately linked to Catalan numbers [38].

Let us now show the relationship between vertices and staircase walks, and apply it to characterize
adjacency in FM(A1, A2).

Proposition 1. Let {A1, A2} be the coarsest partition of X in subsets of indifference and let |A1| = a1
and |A2| = a2. Then,

i) There is a bijection between the set of vertices of FM(A1, A2) and the staircase walks on a
(a1 + 1)× (a2 + 1) grid which do not cross (0, a2 + 1) nor (a1 + 1, 0).

ii) FM(A1, A2) has
(
a1+a2+2
a1+1

)− 2 vertices.

iii) Let F1 and F2 be two vertices of FM(A1, A2). F1 and F2 are adjacent if and only if the set of
cells between the two associated staircase paths is connected, as defined in Remark 1.

10



Figure 6: Staircase walk in a 4× 4 grid.

Proof.

i) By Lemma 2, we know that FM(A1, A2) is an order polytope associated to the normalized
Ferrers poset P∗(λ) with λ := (a1 + 1, a1 + 1, a2+1. . . , a1 + 1). Since FM(A1, A2) is an order
polytope, its vertices are the characteristic functions of the filters of P∗(λ). Let us then
characterize filters in this poset. For this, note that (i, j) ≤ (k, l) in P∗(λ) means i ≤ k, j ≤ l.
Consequently, a filter of P(λ) translates in the Young diagram as a set of cells satisfying that
if (i, j) ∈ F then Hλ(i, j) ⊆ F. Therefore, a filter defines a group of cells whose border is given
by a staircase path from (a1+1, 1) to (1, a2+1), or equivalently, a path in a (a1+1)× (a2+1)
grid from (0, 0) to (a1, a2). For example, the cells appearing to the right of the staircase in
Figure 6 define a filter of P∗(λ). Finally, we have to take into account that the underlying
poset is P∗(λ) instead of P(λ), whence we have to remove two possible paths, namely the path
crossing (0, a2 + 1) and the path crossing (a1 + 1, 0).

ii) It suffices to remark that the number of staircase walks in a (a1 +1)× (a2 +1) grid is given by

(
(a1 + 1) + (a2 + 1)

a1 + 1

)
=

(
a1 + a2 + 2

a1 + 1

)
.

By i), we just should remove 2 staircase walks, whence the result.

iii) To prove this, we will use the fact that in an order polytope two vertices are adjacent to each
other if and only if their associated filters satisfy either F1 ⊂ F2 or F2 ⊂ F1 and the difference
F1 \ F2 or F2 \ F1 is connected [8]. Consider two vertices in these conditions and let us assume
F2 ⊂ F1; suppose F1 \ F2 is connected as poset. Note that by i) the elements in F1 \ F2

correspond to the cells between the two staircase paths associated to both filters. Now, given
two cells (i1, j1), (i2, j2) in F1 \ F2, there exists a path

(i1, j1) = a1 − a2 − ...− ar = (i2, j2)

in F1 \ F2 such that either ai covers ai+1 or the other way round. On the other hand, (i, j)
covers (k, l) if and only if either i = k + 1 or j = l + 1. But this means that cells (i+ 1, j + 1)
and (k+1, l+1) are adjacent in P(λ). Thus, connection of F1 \F2 is equivalent to connection
of the corresponding set of cells F1 \ F2 in the Young diagram, in the sense of Remark 1.
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5 A procedure for random generation in FM(A1, A2)

In this section, we tackle the problem of generating measures in FM(A1, A2) in a random way.
As explained in Section 2, this is equivalent to generate a linear extension in a random way for
the underlying poset P (A1, A2). Now, as explained in Section 4, generating a linear extension of

P (A1, A2) is equivalent to generate a linear extension of P∗(λ) with λ = (|A1| + 1, |A1| + 1, |A2|+1. . .
, |A1|+1); and finally, as stated in Section 3, this is equivalent to generate a standard Young tableau
for a rectangular Young diagram of shape λ. The main difficulty here is the following: once an
element i is selected as the last one in the linear extension of poset P∗, this element is removed
and we have to select another one from the poset P∗\{i} to be the element before i in the linear
extension; and this has to be done in a way such that all linear extensions have the same probability.

Definition 7. Given a Young diagram of shape λ, we say that a position (i, j) is maximal if there
is no (k, l) �= (i, j) in the diagram satisfying i ≤ k, j ≤ l.

Example 4. For the Young diagram in Figure 2, it can be seen that we have three maximal cells,
namely (1,5), (3,4) and (4,1).

Note that at each step, we aim to select a maximal element of the diagram. For a (|A1| + 1)×
(|A2| + 1) rectangular Young diagram, the only maximal element in the linear extension is the one
in position (|A1|+1, |A2|+1). Next step is to select the previous element in the linear extension and
two candidates (maximal elements) arise: (|A1|, |A2| + 1) and (|A1| + 1, |A2|); the question now is:
which probability should be assigned to select (|A1|, |A2|+1)? This translates to step i: once several
elements have been selected, we have some other positions that are candidates to be chosen as the
previous element in the linear extension; which are the corresponding probabilities for each of them?

At this point, it should be noted that when an element is selected to be the last one, we obtain
a new Young diagram (not necessarily a rectangular one), as next lemma shows:

Lemma 3. Let λ = (λ1, λ2, · · · , λk) be a partition of n. If a maximal cell is removed from the i− th
row in X(λ), then we obtain another Young diagram X(λ′) with λ′

i = λi − 1, λ′
j = λj , j �= i.

Proof. Since X(λ) is a Young diagram and the removed element is a maximal element, it follows
that below and on the right side of the the cell associated to this maximal element there is no cell.
Then, λi > λi+1, whence λ′

i = λi − 1 ≥ λi+1 = λ′
i+1. We conclude that λ′ is a partition of n− 1 and

X(λ′) is its corresponding Young diagram.

Consequently, the problem reduces to obtain a procedure to select a maximal element in a general
Young diagram so that we obtain a random standard Young tableau. The main result of the section
solves this question.

Theorem 4. Let P(λ) be a Ferrers poset with n elements and x ∈ P(λ) be a maximal element.
Then, the probability of x being the last element in a linear extension of P(λ) is given by:

P (x | P(λ)) =
1

n

∏
z∈H−1

λ (x)

hλ(z)

hλ(z)− 1
,

where H−1
λ (x) = {z ∈ P(λ) | x ∈ Hλ(z) and z �= x}.
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Proof. We start noting that

e (P(λ)) =
∑

x maximal of P(λ)

e (P(λ) \ {x})

and

P (x | P(λ)) =
e (P(λ) \ {x})

e (P(λ))
.

From Lemma 3, P(λ) \ {x} is a Ferrers poset with partition λ′, with λ′
i = λi − 1, λ′

k = λk, k �= i
if x = (i, j). Then, both e (P(λ) \ {x}) and e (P(λ)) can be computed from Corollary 1, whence

P (x | P(λ)) =

(n− 1)!∏
z∈P(λ′) hλ′(z)

n!∏
z∈P(λ) hλ(z)

=
1

n

∏
z∈P(λ) hλ(z)∏
z∈P(λ′) hλ′(z)

.

Observe that if we remove a maximal element from a Young diagram, then the only elements
with different hook lengths are the elements in the same row or in the same column as the removed
maximal element (see Figure 7). Therefore,

Figure 7: Hook lengths before (left) and after (right) removing a maximal element.

9 7 5 3 1

7 5 3 1

5 3 1

3 1

1

9 7 4 3 1

7 5 2 1

4 2

3 1

1

P (x | P(λ)) =
1

n

∏
z∈P(λ) hλ(z)∏
z∈P(λ′) hλ′(z)

=
1

n

∏
z∈H−1

λ (x) hλ(z)∏
z∈H−1

λ (x) hλ′(z)
=

1

n

∏
z∈H−1

λ (x)

hλ(z)

hλ′(z)
,

where in the last step we have used that hλ(x) = 1 because it is a maximal element.
Finally, since we have removed x we obtain hλ′(z) = hλ(z) − 1 for every element z in the same

row or column as x. Therefore, we get the desired formula.

Theorem 4 provides the probability of selecting a maximal element as the previous element in a
linear extension at each step. Therefore, we can state the following procedure for deriving a random
standard Young tableau and thus, a random 2-symmetric measure.
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Figure 8: Standard Young tableau associated to λ = (3, 3) (left) and its Ferrers poset (right).

1 2 3

4 5 6

6

54

32

1

SAMPLING ALGORITHM FOR 2-SYMMETRIC MEASURES FM(A1, A2)

1. Consider a Young diagram of shape λ = (|A1|+ 1, |A1|+ 1,
|A2|+1· · · , |A1|+ 1).

2. Sampling algorithm for standard Young tableaux.

(a) Select a maximal cell (i, j) of the Young diagram with probability

P ((i, j) | P(λ)) =
1

n

∏
(k,l)∈H−1

λ (i,j)

hλ(k, l)

hλ(k, l)− 1
.

(b) Remove this cell and repeat the previous step for the new Young diagram.

3. Given the standard Young tableau obtained in the previous step, build the corresponding linear
extension of the Ferrers poset, thus obtaining a linear extension ε of the poset (P,�).

4. Remove the first (0, 0) and last element (|A1| + 1, |A2| + 1) of the linear extension. Thus, we
obtain a linear extension ε∗ of the poset P∗(λ).

5. Sampling the values of the 2-symmetric measure.

(a) Generate a [(a1 + 1)(a2 + 1)− 2] vector �u of random variables U(0, 1).

(b) Sort �u, to get a [(a1 + 1)(a2 + 1)− 2] vector �v with the values generated in the previous
step in increasing order.

(c) Assign the value v[k] to μ(i, j) if the element associated to the cell (i+ 1, j + 1) is placed
at position k in ε∗. Let us denote this by ε∗[(i+ 1, j + 1)] = k.

Example 5. Let X = {1, 2, 3}, A1 = {1, 2} and A2 = {3}. Therefore n = 3, a1 = 2 and a2 = 1.
Then by Lemma 2, this polytope is associated to the Young diagram of shape λ = (3, 3). The initial
Young diagram and its Ferrers poset (with its labeling) are given in Figure 8.

• At the beginning we have just one maximal cell, namely (2, 3) (element 6 in the Ferrers poset),
so we remove it and ε((2, 3)) = 6. That is, the element associated to subset (2, 3) is at position
6 in the linear extension ε. Update λ′ = (3, 2).
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• Now (2, 2) and (1, 3) are maximal cells, corresponding to elements 5 and 3 in the Ferrers poset.
We compute its probabilities through Theorem 4.

P ((2, 2) | P(λ′)) =
1

5
· 3
2
· 2
1
=

3

5
, P ((1, 3) | P(λ′)) =

1

5
· 3
2
· 4
3
=

2

5
.

Suppose (2, 2) is selected, ε(2, 2) = 5. Update λ′ to λ′′ = (3, 1).

• Now (2, 1) and (1, 3) are maximal cells, corresponding to elements 3 and 4 in the Ferrers poset.
We compute its probabilities through Theorem 4.

P ((2, 1) | P(λ′′)) =
1

4
· 4
3
=

1

3
, P ((1, 3) | P(λ′′)) =

1

4
· 2
1
· 4
3
=

2

3
.

Suppose (2, 1) is selected, ε(2, 1) = 4. Update λ′′ to λ′′′ = (3, 0) ≡ 3.

• The remaining poset is a chain, so we have just one maximal in each step and ε(1, 3) = 3,
ε(1, 2) = 2 and ε(1, 1) = 1. Then we get the standard tableau shown in Figure 8 (left). There-
fore, ε = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} or with the poset labeling ε = {1, 2, 4, 3, 5, 6}.

Now we obtain ε∗ from ε by removing the maximum and minimum, ε∗ = {(1, 2), (1, 3), (2, 1), (2, 2)} =
{2, 4, 3, 5}.

Finally, we have to generate 4 variables U(0, 1) in order to sample inside the simplex ε∗. Using
any mathematical software (for example R), we obtain say

(0.77, 0.65, 0.73, 0.09).

Now, v = (0.09, 0.65, 0.73, 0.77), and μ is given by:

μ(0, 0) = 0.00, μ(0, 1) = 0.09 μ(0, 2) = 0.65, μ(1, 0) = 0.73, μ(1, 1) = 0.77 μ(1, 2) = 1.00.

Next, let us study the computational complexity.

Proposition 2. The computational complexity of the previous algorithm is O(n2), where n = (a1 +
1)(a2 + 1).

Proof. We will count the number of operations that the algorithm performs to obtain a random
2-symmetric measure.

• Initializing: Build the initial hook matrix. The complexity is n, since we just have to save
n = (a1 + 1) · (a2 + 1) numbers in memory, corresponding to the hook length of the n cells.

• Updating position vector: When an element is removed, we should identify the new maximal
cells. The number of maximal elements is at mostmin {a1 + 1, a2 + 1} and we repeat this search
n times, one for each iteration, we need say (a1 + 1) · n ≤ n2 computations at most.

• Updating hook matrix: When removing an element, we have to subtract 1 to the elements
above and to the left of it. The number of such cells is limited by (a1 +1)+ (a2 +1) ≤ n. And
taking it for the n iterations, we obtain the upper bound n2.
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• Computing probability vectors for maximals: For each combination of maximals we
should compute the probability of each maximal.

First, let us assume w.l.g. that a1 ≤ a2, and that this holds for the Young diagram arising at
each iteration. Note that the number of maximals is bounded by 1 in the first iteration, by 2
for iterations 2,3, by 3 for iterations 4, 5, 6 and so on. Next, after iteration 1+2+3+4+ ...+a1
the number of maximals is bounded by a1+1 (the number of lines of the initial Young diagram)
and this remains for (a1 + 1)(a2 − a1) + 1 iterations, i.e., until the last 1 + 2 + 3 + 4 + ...+ a1
iterations, where the number of maximals is again bounded by a1, a1−1, .... Now, for maximal
(i, j), the number of products to compute the probability of this maximum is 2∗ (i+ j−2)+1.
Therefore, we have to compute

n∑
t=1

∑
{(i,j) maximal in iteration t}

[2 ∗ (i+ j − 2) + 1] .

We are going to split this sum into the two parts mentioned above.

For the first 1 + 2 + 3 + 4 + ... + a1 iterations, we know that there are a1 kinds of iterations
depending on the bound for the number of maximals. Moreover, for the kind of iteration p
there are p of these iterations (as many as cells in the diagonal), and in each of these iteration
there are at most p maximals; for each maximal we should do 2 · (i+ j − 2) + 1 ≤ 2(a1 + a2)
computations at most. This also applies for the last 1 + 2 + 3 + 4 + ... + a1 iterations, so we
have to double the bound.

2

a1∑
p=1

2(a1+a2)p
2 = 4(a1+a2)

a1(a1 + 1)(2a1 + 1)

6
≤ 16

6
·(a1+1)3(a2+1) ≤ 3·(a1+1)2(a2+1)2 = 3n2.

For the second part, we work with the (a1+1)(a2− a1)+ 1 iterations related to the cells in the
middle of the Young tableau. In each of these iterations, there are at most (a1 + 1) maximals
and for each maximal we should do 2 · (i + j − 2) + 1 ≤ 2(a1 + a2) computations at most.
Therefore we have:

2(a1 + a2) · (a1 + 1)2 · (a2 − a1 + 1) ≤ 4 · (a1 + 1)2(a2 + 1)2 = 4n2,

whence the quadratic complexity is obtained.

• Sampling: We sample n uniform random variables. Obviously, it takes a complexity of n.

By adding these steps we observe that the important part is the computation of the probability
vector which reaches a quadratic complexity.

6 Application: the problem of identification

In this last section, let us present an application of the previous results. First, we need to introduce
Choquet integral.
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Definition 8. The Choquet integral of a function

f : X → R
+

with respect to a fuzzy measure μ on X is defined by

Cμ(f) :=
n∑

i=1

(f((i))− f((i− 1)))μ(Bi),

where {(1), . . . , (n)} is a permutation of the set {1, . . . , n} satisfying

0 = f((0)) ≤ f((1)) ≤ ... ≤ f((n)),

and
Bi = {(i), ..., (n)}.

Consider a problem in the framework of Multicriteria Decision Making; then, we have a set of
|X| = n criteria and we have to choose between a set of objects; each object is given an overall
value y from the partial evaluations on each criterion, denoted x1, ..., xn; it could be the case that
y, (x1, ..., xn) or both of them are ordinal values, not necessarily numerical; we assume that the
problem can be modeled via a Choquet model, i.e., we assume that y is the Choquet integral [4] of
a function f defined by f(i) = xi, i = 1, ..., n, with respect to an unknown fuzzy measure μ (possibly
restricted to a subfamily of fuzzy measures). The goal is to identify the fuzzy measure μ modeling
this situation and for this, we have a sample of m objects for which we know both the partial scores
(xi

1, ..., x
i
n), i = 1, ...m, and the overall score yi, i = 1, ..., m (possibly affected by some random noise).

Then, we look for a fuzzy measure (not necessarily unique) that best fits these data. If the quadratic
error is considered, this amounts to looking for a fuzzy measure μ0 minimizing

F (μ) :=

m∑
i=1

(Cμ(xi
1, ..., x

i
n)− yi

)2
,

where Cμ denotes Choquet integral. Several techniques have been proposed to solve this problem [21,
42, 2]. One of them is based on genetic algorithms [14]. Genetic algorithms are general optimization
methods based on the theory of natural evolution; starting from an initial population, at each iteration
some individuals are selected with probability proportional to their fitness (measured according to
the function that we want to optimize) and new individuals are generated from them using a cross-
over operator. These new individuals replace the old ones (their parents) and the process continues
until an optimum is found or the maximum number of generations is reached; besides, some other
individuals may mutate via a mutation operator. Finally, the best individual in the last population
is returned as a possible solution to the problem.

In [6], a procedure based on genetic algorithms has been proposed. In this procedure, the cross-
over operator is given by the convex combination between parents and the mutation operator is given
by a convex combination between the selected measure and another one. The algorithm seems to be
fast and work properly. However, it has the drawback that the search region reduces in each iteration;
and this forbids to go back if the solution of the problem is left outside in an iteration. To avoid
this, the natural option is to take advantage of the polyhedral structure of FM(X) and consider
the set of vertices of FM(X) as the initial population; and use a vertex selected at random for the
mutation operator. However, the number of vertices of FM(X) is too large to be used in practice
[6]. Therefore, we have to look for another solution and a natural one is to consider a random sample
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of FM(X); in this case, the problem relies on the fact that no random procedure for generating
points in FM(X) has been developed. In this section, we are going to develop a procedure based
on the previous results on 2-symmetric measures.

To apply the previous results on 2-symmetric measures to this problem, the following result is the
cornerstone. It tells that the whole set of fuzzy measures FM(X) can be recovered from 2-symmetric
measures, just allowing different partitions. First, let us define

FMS2 :=
⋃
A⊆X

FM(A,Ac),

the set of all fuzzy measures being at most 2-symmetric for a partition.

Proposition 3. Let X be a referential set of n elements and consider μ ∈ FM(X). Then:
There exists k, k′ ∈ N such that μ can be written as

μ = μ1 ∨ μ2 ∨ · · · ∨ μk

and also
μ = μ∗

1 ∧ μ∗
2 ∧ · · · ∧ μ∗

k′

where μi ∈ FMS2, ∀i ∈ 1, · · · , k and μ∗
i ∈ FMS2, ∀i ∈ 1, · · · , k′.

Proof.

μ =
∨

∅⊂A⊂X

μA,

where μA is defined by

μA(C) :=

{
μ(A) if C ⊇ A,
0 otherwise

As μA ∈ FM(A,Ac), the result holds.
For the second statement, note that

μ =
∧

∅⊂A⊂X

μ∗
A,

where μ∗
A is given by

μ∗
A(C) :=

{
μ(A) if A ⊇ C,
1 otherwise

As μ∗
A ∈ FM(A,Ac), the result holds.

Based on the previous proposition, we could modify the procedure in [6], and consider as cross-
over operator

μ1 ⊕λ μ2 := λ (μ1 ∨ μ2) + (1− λ) (μ1 ∧ μ2) , λ ∈ [0, 1], (2)

instead of the convex combination. This cross-over operator shares similar properties to the convex
combination, in the sense that it is not necessary to check at each iteration whether the children
are inside the set FM(X). In other words, we can achieve any element of FM(X) from a proper
random initial population of elements in FMS2.

To study the behavior of this algorithm, we have conducted a simulation study. We have studied
two different situations.
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• Case 1: Identification of 2-symmetric measures for a fixed partition. We try to
identify a measure μ ∈ FM(A,Ac) chosen at random. The data to identify the measure are
the 3n points consisting in all possible n-vectors (x1, ..., xn), where xi ∈ {0, 0.5, 1} (this is the
same data as considered in [6]). For any possible vector, the overall value y is the corresponding
Choquet integral with respect to μ.The initial population consists in 30 measures in FM(A,Ac)
selected at random via the algorithm presented in the previous section. At each step, the
population splits into three groups. The first group consists in the measures with the highest
scores (lowest mean Choquet errors F (μ)) computed with the first quartile. The second group
includes the elements with the lowest scores, using the third quartile. Finally, the third group
are the rest of the elements. The cross-over operator is the convex combination. In each step,
we apply the cross-over operator to groups 2 and 3. The mutation operator is as follows:
the elements of group 2 are replaced by new ones generated at random from FM(A,Ac); In
addition, groups 1 and 3 are mutated by adding gaussian noise on some coordinates chosen
at random. As the algorithm progresses, the three types of population change and better
scored elements arrive to group 1. This method stops when the mean Choquet error is below
a threshold (ε = 10−8) or a maximum number of iterations is achieved.

• Case 2: Identification of general fuzzy measures. In this case, we try to identify a
measure μ ∈ FM(X) chosen at random. For this generation we can use some high complexity
algorithm such as an acceptance-rejection method. As in the previous case, the data are the
3n points consisting in all possible n-vectors (x1, ..., xn), where xi ∈ {0, 0.5, 1} and the overall
value y is the corresponding Choquet integral with respect to μ. The initial population is a
set of n = 30 2-symmetric fuzzy measures in FMS2 selected at random; for this, we have
first to choose a partition {A,Ac} at random, and this can be done using the volume of each
FM(A,Ac) (that has been obtained in Corollary 1) to know the probability of each partition;
next, once A is fixed, we generate a measure in FM(A,Ac) via the algorithm proposed in the
previous section. The population again splits into three groups as defined above. The rest of
the algorithm is also similar as above but selecting the cross-over operator given by (2). At
each step, we apply the cross-over operator for a value of λ selected at random in [0,1] to groups
2 and 3. The mutation operator is also similar as above. The elements of group 2 are replaced
by the new ones generated at random from FMS2. In addition, groups 1 and 3 are mutated
by adding gaussian noise on some coordinates chosen at random. This method stops when the
mean Choquet error is below 10−8 or a maximum number of iterations is achieved.

We have repeated both models 50 times for each size n. The mean identification errors for the
different referential sizes are given in Table 1. From these values, it can be seen that the algorithm
seems to perform very well in both cases.

Obviously, when we identify a general fuzzy measure by using an initial random population of
2-symmetric measures we get a higher identification error. However, this error is acceptable even for
big values of n. Moreover, this algorithm get lower errors than other methods in the literature (see
[6]). This way we have managed to achieve a way of avoiding the computational problems related to
the huge number of vertices in FM(X) and identifying fuzzy measures by using the combinatorial
properties of FMS2.
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Identification Algorithm Performance
Referencial Size 2-Symmetric Fuzzy measures

n = 3 1.388e-05 2.653e-05
n = 4 3.918e-05 4.128e-05
n = 5 6.365e-05 2.413e-04
n = 6 7.831e-05 4.480e-04
n = 7 8.134e-05 7.279e-04
n = 8 1.915e-04 9.011e-04
n = 9 2.353e-04 9.545e-04
n = 10 2.561e-04 1.025e-03

Table 1: Identification errors.

7 Conclusions and open problems

In this paper we have developed an algorithm to generate 2-symmetric measures with respect to a
fixed partition in a random way. The novelty in the paper is the use of combinatorial tools, in this
case Young diagrams, to sort out the problem. The procedure proposed in the paper is appealing
from a visual point of view, easy to implement and has a reduced computational cost. Moreover,
we have obtained several results related to the geometrical structure of FM(A,Ac), as the volume
or the adjacency structure. All these results have been applied in the last section to the problem of
identification of fuzzy measures. Two types of algorithms have been proposed. In the first case we
identify 2-symmetric random measures by using genetic algorithms with the convex combination as
cross-over operator. In the second case, we use Proposition 3 to construct a new cross-over operator
which let us identify general fuzzy measures with a low mean Choquet error. Although these results
do not provide us with a random sampler in FM(X) because a fuzzy measure can be put as a
maximum or minimum of 2-symmetric measures in different ways, this could be a startpoint for a
fast pseudo-random procedure.

Of course, next step should be extending this procedure for general k-symmetric measures. How-
ever, many technical problems arise, showing the difficulties that random generation prompts. The
first one is to extend Hook theorem for three-dimensional Young diagrams; this is a very complex
problem that has not been solved yet; indeed, generalizations of Hook theorem for (2-dimensional)
Young diagrams where some cells inside the diagram are not considered has not been solved in general
(see shifted tableaux [1]).

Another interesting problem arises from Proposition 3 and consits in determining the minimum
number k(n) of 2-symmetric measures needed to write a fuzzy measure μ ∈ FM(X) as maximum
or minimum of 2-symmetric measures. In this sense, it can be shown that k(n) = k′(n), ∀n ∈ N and
the first three values of k(n) are k(1) = k(2) = 1 and k(3) = 2. However, the problem of computing
the exact value of k(n) for a general natural number seems to be a deep and complex combinatorial
problem.

Finally, we have characterized when two vertices in FM(A1, A2) are adjacent. Thus, given a
vertex μ ∈ FM(A1, A2), how can we count the number of adjacent vertices to μ?
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