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Abstract

Uninorms on the unit interval are a common extension of triangular norms (t-norms) and

triangular conorms (t-conorms). As important aggregation operators, uninorms play a very

important role in fuzzy logic and expert systems. Recently, several researchers have studied

constructions of uninorms on more general bounded lattices. In particular, Çaylı (2019)

gave two methods for constructing uninorms on a bounded lattice L with e ∈ L \ {0, 1},
which is based on a t-norm Te on [0, e] and a t-conorms Se on [e, 1] that satisfy strict

boundary conditions. In this paper, we propose two new methods for constructing uninorms

on bounded lattices. Our constructed uninorms are indeed the largest and the smallest among

all uninorms on L that have the same restrictions Te and Se on [0, e] and, respectively, [e, 1].

Moreover, our constructions does not require the boundary condition, and thus completely

solved an open problem raised by Çaylı.

Keywords: Bounded lattices; Aggregation operators; Uninorms; Neutral elements.

1. Introduction

Uninorms on the unit interval [0, 1], introduced by Yager and Rybalov [15], are an ex-

tension of triangular norms (t-norms) and triangular conorms (t-conorms) [13]. It has been

widely recognized that uninorms are important aggregation operators in fuzzy logic, expert

systems, neural networks and so on.

Noticing that bounded lattices are more general than the unit interval [0, 1], several

researchers [4–8, 11] have studied constructions of uninorms on bounded lattices. Very
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recently, Çaylı [5] gave two novel methods for constructing uninorms on bounded lattices.

The following is the methods given by Çaylı.

Suppose (L,≤, 0, 1) is a bounded lattice with e ∈ L \ {0, 1}. Denote x ∥ y if x and y are

incomparable and use Ie for the set of elements that are incomparable with e.

Theorem 1.1 ([5]). Suppose (L,≤, 0, 1) is a bounded lattice and e ∈ L \ {0, 1}. Given

t-norm Te on [0, e] and t-conorm Se on [e, 1] such that Te(x, y) > 0 for all x, y ∈ (0, e] and

Se(x, y) < 1 for all x, y ∈ [e, 1).

(i) If x ∥ y for all x ∈ Ie and y ∈ [e, 1), then the function U e
1 : L2 → L is a uninorm on L

with the neutral element e, where

U e
1 (x, y) =



Te(x, y) (x, y) ∈ [0, e]2,

Se(x, y) (x, y) ∈ [e, 1]2,

x (x, y) ∈ Ie × [e, 1) ∪ Ie × (0, e),

y (x, y) ∈ [e, 1)× Ie ∪ (0, e)× Ie,

x ∨ y (x, y) ∈ I2e ∪ Ie × {1} ∪ {1} × Ie ∪ (0, e)× {1} ∪ {1} × (0, e),

x ∧ y otherwise.

(ii) If x ∥ y for all x ∈ Ie and y ∈ (0, e], then U e
2 is a uninorm on L with neutral element e.

The function U e
2 : L2 → L is a uninorm on L with the neutral element e, where

U e
2 (x, y) =



Te(x, y) (x, y) ∈ [0, e]2,

Se(x, y) (x, y) ∈ [e, 1]2,

x (x, y) ∈ Ie × (e, 1) ∪ Ie × (0, e],

y (x, y) ∈ (e, 1)× Ie ∪ (0, e]× Ie,

x ∧ y (x, y) ∈ I2e ∪ Ie × {0} ∪ {0} × Ie ∪ (e, 1)× {0} ∪ {1} × (e, 1),

x ∨ y otherwise.

In the above constructions of U e
1 and U e

2 , the underlying t-norm Te and the t-conorm

Se are required to satisfy the strict boundary condition: Te(x, y) > 0 for all x, y > 0 and

Se(x, y) < 1 for all x, y < 1. At the end of [5], Çaylı proposed an open problem: when

the assumptions on t-norm and t-conorm are removed, how is the structure of uninorms

(especially idempotent uninorms) with the underlying t-norms and t-conorms on bounded

lattices.

In this work, based on the same incomparable condition, i.e., that x, y are incomparable

for all x ∈ Ie and all y ∈ [e, 1) or that x, y are incomparable for all x ∈ Ie and all y ∈ (0, e],

we address the problem above by giving two new methods for constructing uninorms on
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bounded lattices, which do not require that Te and Se satisfy the condition specified in

Theorem 1.1. Moreover, given the same t-norm Te and t-conorm Se, we prove that the two

uninorms defined in this work are, respectively, the largest and the smallest uninorms among

all uninorms that have the same restrictions to [0, e] and [e, 1] (viz. Te and Se).

The remainder of this paper is organized as follows. Section 2 recalls basic concepts and

results used in this paper and Section 3 describes our constructions. A brief conclusion is

then given in Section 4.

2. Preliminaries

In this section, we recall some concepts and facts which will be used in the text.

Definition 2.1. [3] A lattice (L,≤) is called bounded if it has the top and bottom elements

(written as 1 and 0, respectively), that is, 0 ≤ x ≤ 1 for any x ∈ L.

Definition 2.2. [3] Let (L,≤, 0, 1) be a bounded lattice and a, b ∈ L with e ∈ L \ {0, 1}.

(i) For a, b ∈ L with a ≤ b, [a, b] is defined as [a, b] = {x|a ≤ x ≤ b}. Similarly, we can

define (a, b], [a, b) and (a, b).

(ii) We write A(e) = [0, e]× [e, 1] ∪ [e, 1]× [0, e] and Ie = {x ∈ L | x ∥ e}.

Definition 2.3. [1, 9, 12, 14] Let (L,≤, 0, 1) be a bounded lattice.

(i) A function T : L2 → L is called a triangular norm (t-norm for short) if it is commu-

tative, associative, increasing with respect to both variables and has the neutral element 1

such that T (1, x) = x for any x ∈ L.

(ii) A function S : L2 → L is called a triangular conorm (t-conorm for short) if it

is commutative, associative, increasing with respect to both variables and has the neutral

element 0 such that S(0, x) = x for any x ∈ L.

Two special t-norms and two special t-conorms are given below.

Example 2.1. Let (L,≤, 0, 1) be a bounded lattice. The smallest t-norm TW (or t-conorm

S∨) and the greatest t-norm T∧ (or t-conorm SW ) are given as, respectively,
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T∧(x, y) = x ∧ y, TW (x, y) =


x y = 1,

y x = 1,

0 otherwise,

S∨(x, y) = x ∨ y, SW (x, y) =


x y = 0,

y x = 0,

1 otherwise.

Definition 2.4. [2, 10, 11] Let (L,≤, 0, 1) be a bounded lattice. A function U : L2 → L

is called a uninorm on L if it is commutative, associative, increasing with respect to both

variables and there exists neutral element e ∈ L such that U(e, x) = x for all x ∈ L.

Apparently, t-norms and t-conorms on L are special uninorms on L.

Definition 2.5. [5, 6] Let (L,≤, 0, 1) be a bounded lattice and U be a uninorm on L with

neutral element e ∈ L \ {0, 1}.
(i) An element x ∈ L is called an idempotent element of U if U(x, x) = x.

(ii) U is called an idempotent uninorm if U(x, x) = x for all x ∈ L.

Proposition 2.1. [5, 11] Let (L,≤, 0, 1) be a bounded lattice and U be a uninorm on L

with neutral element e ∈ L \ {0, 1}. Suppose Te : [0, e]2 → [0, e] is the restriction of U on

[0, e] and Se : [e, 1]
2 → [e, 1] the restriction of U on [e, 1]. Then Te is a t-norm on [0, e] and

Se is a t-conorm on [e, 1].

We call Te (Se) the underlying t-norm (t-conorm) of U .

3. Uninorms on bounded lattice

In this section, we recall some concepts and facts which will be used in this paper.

Theorem 3.1. Let (L,≤, 0, 1) be a bounded lattice with e ∈ L \ {0, 1}. Given t-norm Te

on [0, e] and t-conorm Se on [e, 1], if x ∥ y for all x ∈ Ie and y ∈ [e, 1), then the function

U1,e : L
2 → L is a uninorm on L with the neutral element e, where

U1,e(x, y) =



Te(x, y) (x, y) ∈ [0, e]2,

Se(x, y) (x, y) ∈ [e, 1]2,

y (x, y) ∈ [0, e]× Ie,

x (x, y) ∈ Ie × [0, e],

1 (x, y) ∈ (e, 1]× Ie ∪ Ie × (e, 1] ∪ I2e ,

x ∨ y otherwise.
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Proof. See Appendix A.

We next give a simple example.

Example 3.1. Let L1 = {0, a, b, c, d, e, f, 1} be the bounded lattice depicted by the Hasse

diagram in Figure 1. Obviously, the condition in Theorem 3.1 is satisfied. Take Te = T∧ on

[0, e] and Se = SW on [e, 1]. Then the function U1,e on L1, shown in Table 1, is a uninorm

on L1 with the neutral element e.

It is worth pointing out that if the condition that x ∥ y for all x ∈ Ie and y ∈ [e, 1)

in Theorem 3.1 is not satisfied, then U1,e may not be a uninorm on L. See the following

counterexample.

Example 3.2. Let L2 = {0, a, b, c, d, e, 1} be the bounded lattice depicted by the Hasse

diagram in Figure 2, where b ∈ Ie, c > e, d > e, and b is comparable with c and d. Let

Se = S∨ on [e, 1] and Te = TW on [0, e]. Then the function U1,e on L2, shown in Table 2, is

not a uninorm on L2. In fact, the monotonicity is not satisfied, because we have b < c on

one hand and U1,e(b, d) = 1 > d = S∨(c, d) = U1,e(c, d) on the other hand.

Interestingly, the uninorm U1,e constructed in Theorem 3.1 is indeed the largest one

among all uninorms with the same restrictions on [0, e] and [e, 1].

Proposition 3.1. Let (L,≤, 0, 1) be any bounded lattice with e ∈ L \ {0, 1} and x ∥ y for

all x ∈ Ie and y ∈ [e, 1). Suppose U1,e is the uninorm on L defined as in Theorem 3.1 with

underlying t-norm Te and t-conorm Se, and U is any uninorm on L such that the restrictions

of U to [0, e] and [e, 1] are the t-norm Te and the t-conorm Se on [e, 1], respectively. Then

U1,e ≥ U .

Proof. Since U1,e and U have the same t-norm Te on [0, e]2 and t-conorm Se on [e, 1]2, we

need only to consider the cases such as on [0, e]× [e, 1], [0, e]× Ie and so on.

If (x, y) ∈ [0, e]× [e, 1] ∪ [e, 1]× [0, e] , then x ∧ y ≤ U(x, y) ≤ x ∨ y = U1,e(x, y).

If (x, y) ∈ [0, e]× Ie, then U(x, y) ≤ U(e, y) = y = U1,e(x, y).

If (x, y) ∈ Ie × [0, e], then U(x, y) ≤ U(x, e) = x = U1,e(x, y).

If (x, y) ∈ Ie × Ie ∪ Ie × (e, 1] ∪ (e, 1]× Ie, then U1,e(x, y) = 1 ≥ U(x, y).

Consequently, it always holds that U1,e(x, y) ≥ U(x, y). �
As a consequence, we have the following characterization of the largest uninorm on a

bounded lattice.
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Figure 1: Bounded lattice L1
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Figure 2: Bounded lattice L2

U1,e 0 a b c d e f 1

0 0 0 b c 0 0 f 1

a 0 a b c 0 a f 1

b b b 1 1 b b 1 1

c c c 1 1 c c 1 1

d 0 0 b c d d f 1

e 0 a b c d e f 1

f f f 1 1 f f 1 1

1 1 1 1 1 1 1 1 1

Table 1: The function U1,e on the bounded lattice L1 given in Figure 1
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U1,e 0 a b c d e 1

0 0 0 b c d 0 1

a 0 0 b c d a 1

b b b 1 1 1 b 1

c c c 1 c d c 1

d d d 1 d d d 1

e 0 a b c d e 1

1 1 1 1 1 1 1 1

Table 2: The function U1,e on the bounded lattice L2 given in Figure 2

Corollary 3.1. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1}, x ∥ y for all x ∈ Ie and

y ∈ [e, 1). If we put Te = T∧ on [0, e]2 and Se = SW on [e, 1]2 in Theorem 3.1, then the

following U is the largest uninorm on L with the neutral element e, where

U(x, y) =



T∧(x, y) (x, y) ∈ [0, e]2,

SW (x, y) (x, y) ∈ [e, 1]2,

y (x, y) ∈ [0, e]× Ie,

x (x, y) ∈ Ie × [0, e],

1 (x, y) ∈ (e, 1]× Ie ∪ Ie × (e, 1] ∪ I2e ,

x ∨ y otherwise.

Proof. From Proposition 3.1, we can easily get the result. �
If x ∥ y for all x ∈ Ie and y ∈ (0, e], then we have the following similar construction of

uninorms on L.

Theorem 3.2. Let (L,≤, 0, 1) be a bounded lattice with e ∈ L\{0, 1}. If x ∥ y for all x ∈ Ie

and y ∈ (0, e], then the function U2,e : L
2 → L is a uninorm on L with the neutral element
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e, where

U2,e(x, y) =



Te(x, y) (x, y) ∈ [0, e]2,

Se(x, y) (x, y) ∈ [e, 1]2,

y (x, y) ∈ [e, 1]× Ie,

x (x, y) ∈ Ie × [e, 1],

0 (x, y) ∈ [0, e)× Ie ∪ Ie × [0, e) ∪ I2e ,

x ∧ y otherwise.

Similarly, if the condition of x ∥ y for all x ∈ Ie and y ∈ (0, e] in Theorem 3.2 is violated,

then U2,e may not be a uninorm on L. See the counterexample below.

Example 3.3. Let L3 = {0, a, b, c, d, e, 1} be the bounded lattice depicted by the Hasse

diagram in Figure 3, where c ∈ Ie, a, b < e, and c is comparable with a and b. Let Te = T∧

on [0, e] and Se = SW on [e, 1]. Consider the function U2,e on L3 (shown in Table 3). Although

b < c, we obtain U2,e(b, a) = b ∧ a = a > 0 = U2,e(c, a). Hence the monotonicity does not

hold and U2,e is not a uninorm on L3.

e

0
a

c

b

d
1

Figure 3: Bounded lattice L3

Analogously, the uninorm U2,e constructed above is the smallest one among all uninorms

with the same restrictions on [0, e] and [e, 1].

Proposition 3.2. Let (L,≤, 0, 1) be any bounded lattice with e ∈ L \ {0, 1} and x ∥ y for

all x ∈ Ie and y ∈ (0, e]. Suppose U2,e is the uninorm on L defined as in Theorem 3.2 and U
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U2,e 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a a 0 a a a

b 0 a b 0 b b b

c 0 0 0 0 c c c

d 0 a b c 1 d 1

e 0 a b c d e 1

1 0 a b c 1 1 1

Table 3: The function U2,e on the bounded lattice L3 given in Figure 3

is any uninorm on L such that the restrictions of U to [0, e] and [e, 1] are the t-norm Te on

[0, e] and the t-conorm Se on [e, 1], respectively. Then U2,e ≤ U .

As a consequence, we have the following characterization for the smallest uninorm on L.

Corollary 3.2. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1}, x ∥ y for all x ∈ Ie and

y ∈ (0, e]. If we put Te = TW on [0, e]2 and Se = S∨ on [e, 1]2 in Theorem 3.1, then the

following U is the smallest uninorm on L with the neutral element e, where

U(x, y) =



TW (x, y) (x, y) ∈ [0, e]2,

S∨(x, y) (x, y) ∈ [e, 1]2,

y (x, y) ∈ [e, 1]× Ie,

x (x, y) ∈ Ie × [e, 1],

0 (x, y) ∈ [0, e)× Ie ∪ Ie × [0, e) ∪ I2e ,

x ∧ y otherwise.

Remark 3.1. (i) Compared to the construction of U e
1 (U e

2 , resp.) in [5], the construction of

U1,e (U2,e, resp.) has the same precondition, i.e., x, y are incomparable for all x ∈ Ie and all

y ∈ [e, 1) (for all x ∈ Ie and all y ∈ (0, e], resp.). However, in our constructions of U1,e and

U2,e, there is no any requirement for the t-norm Te and the t-conorm Se. So we completely

resolve the open problem raised in [5].
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(ii) We can not obtain idempotent uninorms from Theorems 3.1 and 3.2 because, for any

x ∈ Ie, we have U1,e(x, x) = 1 or U2,e(x, x) = 0, but not x.

(iii) If Ie = ϕ, or specially L = [0, 1] in Theorems 3.1 and 3.2, then U1,e ∈ Umax and

U2,e ∈ Umin [10].

4. Conclusion

Çaylı proposed in [5] two methods for constructing uninorms on bounded lattices, based

on the assumption that x, y are incomparable for all x ∈ Ie and all y ∈ (0, e] (or all y ∈ [e, 1)).

While in his construction the underlying t-norm Te and t-conorm Se have to satisfy the strict

boundary condition Te(x, y) > 0 for all x, y ∈ (0, e] and Se(x, y) < 1 for all x, y ∈ [e, 1), this

requirement is completely removed from our construction. Consequently, we completely

resolved the open problem raised by Çaylı [5]. Given a bounded lattice L and a t-norm T

on [0, e] and a t-conorm S on [e, 1], the uninorm constructed in Theorem 3.1 (Theorem 3.2,

resp.) is the largest (smallest, resp.) among all uninorms on L which have restrictions T

and S on [0, e] and, respectively, [e, 1].
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Appendix A. Proof of Theorem 3.1

Proof. First, we can easily check that U1,e is commutative and has e as the neutral element.

We next check its monotonicity and associativity.

Monotonicity. Suppose x, y, z ∈ L with x ≤ y. We prove U1,e(x, z) ≤ U1,e(y, z).

1. x ∈ [0, e].

1.1. y ∈ [0, e].

1.1.1. z ∈ [0, e].

U1,e(x, z) = Te(x, z) ≤ Te(y, z) = U1,e(y, z).

1.1.2. z ∈ (e, 1].

U1,e(x, z) = x ∨ z = z = y ∨ z = U1,e(y, z).

1.1.3. z ∈ Ie.

U1,e(x, z) = z = U1,e(y, z).
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1.2. y ∈ (e, 1].

1.2.1. z ∈ [0, e].

U1,e(x, z) = Te(x, z) ≤ e < y = y ∨ z = U1,e(y, z).

1.2.2. z ∈ (e, 1].

U1,e(x, z) = z ≤ Se(y, z) = U1,e(y, z).

1.2.3. z ∈ Ie.

U1,e(x, z) = z ≤ 1 = U1,e(y, z).

1.3. y ∈ Ie.

1.3.1. z ∈ [0, e].

U1,e(x, z) = Te(x, z) ≤ x ≤ y = U1,e(y, z).

1.3.2. z ∈ (e, 1].

U1,e(x, z) = x ∨ z = z ≤ 1 = U1,e(y, z).

1.3.3. z ∈ Ie.

U1,e(x, z) = z ≤ 1 = U1,e(y, z).

2. x ∈ (e, 1]. Then y ∈ (e, 1].

2.1. z ∈ [0, e].

U1,e(x, z) = x ∨ z = x ≤ y = y ∨ z = U1,e(y, z).

2.2. z ∈ (e, 1].

U1,e(x, z) = Se(x, z) ≤ Se(y, z) = U1,e(y, z).

2.3. z ∈ Ie.

U1,e(x, z) = 1 = U1,e(y, z).

3. x ∈ Ie. Then y ∈ Ie.

3.1. z ∈ [0, e].

U1,e(x, z) = x ≤ y = U1,e(y, z).

3.2. z ∈ (e, 1] ∪ Ie.

U1,e(x, z) = 1 = U1,e(y, z).

Associativity. When x = e, or y = e, or z = e, the equation U1,e(U1,e(x, y), z) =

U1,e(x, U1,e(y, z)) always holds. So we need only consider the case when x ̸= e, y ̸= e and

z ̸= e.

1. x ∈ [0, e).

1.1. y ∈ [0, e).

1.1.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = Te(Te(x, y), z) = Te(x, Te(y, z)) = U1,e(x, U1,e(y, z)).

1.1.2. z ∈ (e, 1].
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U1,e(U1,e(x, y), z) = U1,e(Te(x, y), z) = z = x∨ z = U1,e(x, z) = U1,e(x, U1,e(y, z)).

1.1.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(Te(x, y), z) = z = U1,e(x, z) = U1,e(x, U1,e(y, z)).

1.2. y ∈ (e, 1].

1.2.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(x∨y, z) = U1,e(y, z) = y = U1,e(x, y) = U1,e(x, U1,e(y, z)).

1.2.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(y, z) = Se(y, z) = U1,e(x, Se(y, z)) = U1,e(x, U1,e(y, z)).

1.2.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(y, z) = 1 = x ∨ 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

1.3. y ∈ Ie.

1.3.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(y, z) = y = U1,e(x, y) = U1,e(x, U1,e(y, z)).

1.3.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(y, z) = 1 = x ∨ 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

1.3.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(y, z) = 1 = x ∨ 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

2. x ∈ (e, 1].

2.1. y ∈ [0, e).

2.1.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(x, z) = x ∨ z = x = x ∨ Te(y, z) = U1,e(x, U1,e(y, z)).

2.1.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(x, z) = U1,e(x, U1,e(y, z)).

2.1.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(x, z) = U1,e(x, U1,e(y, z)).

2.2. y ∈ (e, 1].

2.2.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = Se(x, y) ∨ z = Se(x, y) = U1,e(x, y) = U1,e(x, U1,e(y, z)).

2.2.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = Se(Se(x, y), z) = Se(x, Se(y, z)) = U1,e(x, U1,e(y, z)).

2.2.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(Se(x, y), z) = 1 = Se(x, 1) = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

2.3. y ∈ Ie.

2.3.1. z ∈ [0, e).
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U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 ∨ z = 1 = U1,e(x, y) = U1,e(x, U1,e(y, z)).

2.3.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(1, z) = Se(x, 1) = 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

2.3.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

3. x ∈ Ie.

3.1. y ∈ [0, e).

3.1.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(x, z) = x = U1,e(x, Te(y, z)) = U1,e(x, U1,e(y, z)).

3.1.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(x, z) = U1,e(x, y ∨ z) = U1,e(x, U1,e(y, z)).

3.1.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(x, z) = U1,e(x, U1,e(y, z)).

3.2. y ∈ (e, 1].

3.2.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 ∨ z = 1 = U1,e(x, y) = U1,e(x, U1,e(y, z)).

3.2.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1,e(1, z) = Se(1, z) = 1 = U1,e(x, Se(y, z)) = U1,e(x, U1,e(y, z)).

3.2.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

3.3. y ∈ Ie.

3.3.1. z ∈ [0, e).

U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 ∨ z = 1 = U1,e(x, y) = U1,e(x, U1,e(y, z)).

3.3.2. z ∈ (e, 1].

U1,e(U1,e(x, y), z) = U1(1, z) = Se(1, z) = 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

3.3.3. z ∈ Ie.

U1,e(U1,e(x, y), z) = U1,e(1, z) = 1 = U1,e(x, 1) = U1,e(x, U1,e(y, z)).

Consequently, U1,e is a uninorm on L with the neutral element e. �
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