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Abstract

In this paper, we study first order linear fuzzy differential equations under
differential inclusions and strongly generalized differentiability approaches.
We present some new results on the relation between their solutions. Finally,
some examples are given to illustrate our results.
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1. Introduction

As it is well-known, there exist several possibilities to define the deriva-
tive of a fuzzy function and, in consequence, to deal with fuzzy differential
equations [7, 16, 29]. To refer to one of the first approaches to the topic, we
mention the H-derivative of a fuzzy-number-valued function introduced in
[29], which involves the consideration of the Hukuhara derivative on every
α-level set of the function, constituting a generalization of this concept of
derivative defined for set-valued functions. With the first studies on the
solutions to fuzzy differential equations interpreted from the point of view
of the Hukuhara derivative, it was revealed its main drawback: it leads to
solutions whose level sets have increasing length [15]. Under these circum-
stances, we cannot expect the properties of the crisp solution to be inherited
by the fuzzy solution.
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The notion of strongly generalized differentiability was introduced in [3]
and studied or applied in [4, 5, 9, 20, 21, 23]. This new definition allows
to successfully overcome the difficulties detected in the use of Hukuhara
derivative, expanding at the same time the family of fuzzy-number-valued
functions which admit derivative in comparison with the previous approach.

On the other hand, Hüllermeier [17] considered a fuzzy differential in-
clusion (for differential inclusions, see [2]) and a solution to this inclusion
to be a fuzzy R-solution. However, one shortcoming has also been ascribed
to this formulation, consisting in the absence of a proper definition for the
derivative of a fuzzy-number-valued function. In contrast, when the fuzzy
differential equation is interpreted with the help of differential inclusions, we
find the advantage that we only need the classical concept of differentiation.

For the Extension Principle’s approach to fuzzy differential equations,
we mention [26, 10, 1]. Generalized Hukuhara differentiability of interval-
valued functions and interval differential equations are considered in [33] and
the fuzzy-valued case is analyzed in [6]. Some other related works are: [30],
where some algebraic and topological properties are obtained for the quo-
tient space of fuzzy numbers with respect to the equivalence relation given
by Mareš; [31] for fuzzy differential equations in this space; [12] on fuzzy
differential equations with π-derivative; or [25] for granular differentiability
of fuzzy-number-valued functions.

In [5], first order linear fuzzy differential equations under strongly gener-
alized differentiability concept are considered and solutions to this problem
in some especial cases are presented. Recently, a variation of constants for-
mula for a first order linear fuzzy differential equation is provided in [20]
under strongly generalized differentiability, in addition to the work [14]. See
also [32] for comparison results on fuzzy differential equations.

In this paper, we consider first order linear fuzzy differential equations
from the point of view of strongly generalized differentiability and differential
inclusions and present some results on the relationship between the solutions
corresponding to these two approaches. Several examples are presented to
illustrate our results.

2. Preliminaries

In this section, we present some definitions and introduce the notation
which is necessary for the rest of the paper. For details, see, for example,
[15].

We denote by RF the class of fuzzy subsets of the real axis (i.e., functions
u : R→ [0, 1]) which satisfy the following properties:
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(i) u is normal, i.e., there exists s0 ∈ R such that u(s0) = 1,
(ii) u is fuzzy-convex (i.e., u(ts+(1−t)r) ≥ min{u(s), u(r)}, ∀t ∈ [0, 1], s, r ∈
R),
(iii) u is upper semicontinuous on R,
(iv) cl{s ∈ R|u(s) > 0} is compact, where cl denotes the closure of a subset.

The set RF previously defined is called the space of fuzzy numbers. For
each 0 < α ≤ 1, we set [u]α = {s ∈ R|u(s) ≥ α} and [u]0 = cl{s ∈ R|u(s) >
0}. Properties (i)-(iv) provide that, if u belongs to RF, then the α-level set
of u, [u]α, is a non-empty compact interval for all 0 ≤ α ≤ 1. We use the
notation

[u]α = [uα, uα],

to express the α-level set of u. For u ∈ RF, we measure the length of the
level sets of u in the following form:

diam([u]α) = uα − uα, α ∈ [0, 1].

Note that the previous expression is nonincreasing in α.
Given u, v ∈ RF and λ ∈ R, we define the sum u+ v and the product λu

by the classical operations for real intervals [u+ v]α = [u]α + [v]α, [λu]α =
λ[u]α,∀α ∈ [0, 1], where [u]α + [v]α represents the usual addition of two
subsets of R and λ[u]α denotes the usual product between a scalar and a
subset of R.

It is well-known [15] that (RF, D) is a complete metric space with the
metric structure D given by the Hausdorff distance

D : RF × RF → R+ ∪ {0},

D(u, v) = sup
α∈[0,1]

max{|uα − vα|, |uα − vα|}.

Definition 2.1. Given x, y ∈ RF, if there exists z ∈ RF such that x = y+ z
then z is called the H-difference of x, y and it is denoted x	 y.

For the existence of the H-difference x	 y, we need the following conditions
to be fulfilled:

• diam([x]α) ≥ diam([y]α), ∀α ∈ [0, 1].

• xα − yα is nondecreasing in α ∈ [0, 1].

• xα − yα is nonincreasing in α ∈ [0, 1].
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Throughout the paper, we use the sign “	” for the H-difference, in such
a way that we usually denote x+ (−1)y by x− y, while x	 y stands for the
H-difference of x, y. Note that, in general, x	 y 6= x+ (−1)y.

In the following notions and results, we consider the interval I = (ξ, η),
for ξ < η ∈ R.

First, we recall the concept of strongly generalized differentiability, which
was introduced in [3] and studied in [4, 5, 9, 19, 20, 33].

Definition 2.2. [3] Let F : I → RF and fix t0 ∈ I. We say that F is differ-
entiable at t0, if there exists an element F ′(t0) ∈ RF such that either:
(1) for all h > 0 sufficiently close to 0, the H-differences F (t0 + h) 	
F (t0), F (t0)	 F (t0 − h) exist and the limits (in the metric D)

lim
h→0+

F (t0 + h)	 F (t0)

h
= lim

h→0+

F (t0)	 F (t0 − h)

h
= F ′(t0),

or
(2) for all h > 0 sufficiently close to 0, the H-differences F (t0) 	 F (t0 +
h), F (t0 − h)	 F (t0) exist and the limits (in the metric D)

lim
h→0+

F (t0)	 F (t0 + h)

−h
= lim

h→0+

F (t0 − h)	 F (t0)

−h
= F ′(t0).

Definition 2.3. Let F : I → RF. We say that F is (i)-differentiable on I
if F is differentiable in the sense (1) of Definition 2.2 at every point of I, in
which case its derivative is denoted by D1F . Similarly, (ii)-differentiability
of F on I consists in the differentiability of F in the sense (2) of Definition
2.2 at every point of I, obtaining D2F .

References [4, 9, 20, 33] include several results on the essential properties in
relation with strongly generalized differentiability. We recall some of them,
which are useful to this paper.

Theorem 2.4. Let F : I → RF and consider [F (t)]α = [fα(t), gα(t)], for
each α ∈ [0, 1].
(i) If F is (i)-differentiable, then fα and gα are differentiable functions and
[D1F (t)]α = [f ′α(t), g′α(t)].
(ii) If F is (ii)-differentiable, then fα and gα are differentiable functions and
[D2F (t)]α = [g′α(t), f ′α(t)].

Proof: See [9].

When there is no possibility of confusion, we denote D1F and D2F
simply by F ′, making explicit reference to the type of differentiability ((i)
or (ii), respectively).
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Theorem 2.5. Let F be (ii)-differentiable on I and assume that the deriva-
tive F ′ is integrable over I. Then, for each t ∈ I, we have

F (t) = F (ξ)	
∫ t

ξ
−F ′(τ)dτ.

Proof: See [20].

Theorem 2.6. Let F be a continuous fuzzy function on I and define

u(t) = γ 	
∫ t

ξ
−F (τ)dτ, t ∈ I,

where γ ∈ RF is such that the previous H-difference exists for t ∈ I. Then
u is (ii)-differentiable and

u′(t) = F (t), t ∈ I.

Proof: See [20] for the proof with ξ = 0.

3. Differential inclusions’ approach

We denote by KnC the family of all nonempty compact convex subsets of
Rn. Following [26], we consider the differential inclusion{

y′(t) ∈ F (t, y(t)), t ∈ I,
y(0) = y0 ∈ X0,

(1)

where 0 ∈ I, F : I × Rn → KnC is a set-valued function and X0 ∈ KnC .
In terms of [26], a function y(t) with the initial condition y0 ∈ X0 is a
solution of (1) on the interval I if it is absolutely continuous and satisfies
the equation in (1) for a.e. t ∈ I [2, 26]. We refer to the subset of Rn

At(X0) =

{
y(t)

∣∣∣∣ y is a solution of (1) with y0 ∈ X0

}
as the attainable set at time t ∈ I related to problem (1). As it is remarked
in [26] and the references therein, the choice of F as a set-valued function is
an excellent tool to deal with uncertainty since the equation in (1) represents
that the derivative of y at t is not known exactly, the unique information is
that it is an element of F (t, y).
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Next, we recall two different approaches to fuzzy dynamical systems. On
one hand, the authors of [26] suggest, with the purpose of modeling fuzzy
dynamical systems, to pass to a problem more general than (1) by replacing
F by a fuzzy set-valued function, as follows{

y′(t) ∈ F̃ (t, y(t)), t ∈ I,
y(0) = y0 ∈ X̃0,

(2)

for F̃ : I × Rn → RF and X̃0 ∈ RF, and interprete this fuzzy initial value
problem (2) as a family of differential inclusions [17] at each α-level, 0 ≤
α ≤ 1, {

y′(t) ∈ [F̃ (t, y(t))]α, t ∈ I,
y(0) = y0 ∈ [X̃0]α,

(3)

although, for simplicity, the fuzzy set taken as the initial condition will be
represented just by X0.

Definition 3.1. [26] Given α ∈ [0, 1], a mapping y : I → Rn is said to be
an α-solution to (2) if it is a solution to problem (3). For each t ∈ I, we
denote by Aαt := A([X0]α, t), the attainable set of the α-solutions at time t,
i.e.,

Aαt = A([X0]α, t) =

{
y(t)

∣∣∣∣ y is a solution of (3) with y0 ∈ [X0]α
}
.

If, for each t ∈ I, the sets Aαt are the α-level sets of a fuzzy set in Rn, it
will be denoted by At(X0) or A(X0, t) and referred to as the attainable set
of problem (2) at time t, for t ∈ I. See [13] for sufficient conditions which
guarantee that Aαt define a fuzzy set in Rn, for t ∈ I.

On the other hand, concerning fuzzy differential equations, we first
consider the particular case where function f : [0, η] × RF → RF is the
result of applying Zadeh’s Extension Principle to a continuous function
h : [0, η] × R → R. In this particular case, the level sets of f(t, x) can
be obtained in terms of function h as follows:

[f(t, x)]α = h(t, [x]α),

for every t ∈ [0, η], x ∈ RF and 0 ≤ α ≤ 1. Following Hüllermeier [17],
Diamond [13, 14] and Kaleva [18], we rewrite the fuzzy initial value problem{

y′(t) = f(t, y(t)), t ∈ [0, η],
y(0) = y0 ∈ RF,

(4)
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as the following family of differential equations with set initial conditions

y′α(t) = h(t, yα(t)), t ∈ [0, η], yα(0) ∈ [y0]α, 0 ≤ α ≤ 1.

Imposing adequate hypotheses and using the Representation Theorem, it
is possible to prove that the attainable sets of this family define a fuzzy
funtion y (see [18]), which is called a DI-solution to problem (4). It is
known that, assuming the existence and uniqueness of solution for each
initial value problem of the type z′(t) = h(t, z(t)), z(0) = z0 ∈ R, then it is
deduced that Aαt = [z1(t), z2(t)], where z′1(t) = h(t, z1(t)), z1(0) = y0

α and
z′2(t) = h(t, z2(t)), z2(0) = y0

α. Here, z1 and z2 obviously depend on α, but
the level has been skipped in the expression of Aαt for simplicity.

Note that, in problem (4), f is generated from h and the right hand side
of the fuzzy differential equation is independent of fuzzy parameters, so that
the fuzziness is introduced only through the variable y. Introducing a fuzzy
parameter U in the equation (4), the problem adopts the form{

y′(t) = f(t, y(t), U), t ∈ [0, η],
y(0) = y0 ∈ RF,

where f : [0, η]×RF×RF → RF. Assuming that [f(t, x, U)]α = h(t, [x]α, [U ]α),
for every α ∈ [0, 1], where h : [0, η]× R× R → R, then the family of differ-
ential inclusions associated is (see [11])

y′α(t) ∈ h(t, yα(t), [U ]α), t ∈ [0, η], yα(0) ∈ [y0]α, 0 ≤ α ≤ 1.

Markov, in [24], considers the problem

X ′(t) = F (t,X(t)), t ∈ [t0, t1] = I, X(t0) = X0,

where X0 is a fixed interval and F is an interval-valued function that is
continuous on D = {(t, x) : t0 ≤ t ≤ t0 + r, ‖x − x0‖ < β}, and analyzes
the existence of an interval T = [t0, t0 + r1], with r1 ≤ r, and an interval-
valued function X differentiable on T and such that ‖X(t) −X0‖ < β, for
t ∈ T , satisfying that X ′(t) = F (t,X(t)), t ∈ T, X(t0) = X0 and X is
diam-increasing in T (that is, such that diam(X(t)) is nondecreasing). As
a particular case, the following initial value problem for interval differential
equations is studied

X ′(t) = a(t)X(t) +B(t), t ∈ [t0, t1] = I, X(t0) = X0,

with a : T = [t0,∞) −→ R continuous, B : T −→ KC continuous and
X0 ∈ KC are given. Showing an application to control theory, Markov [24]
also considers the problem

x′(t) = a(t)x(t) + b(t)u(t) + c(t), x(t0) = x0, (5)
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where u is the control variable, the coefficients a, b, c are integrable on
T = [t0,∞) and a > 0. Considering U(t) a continuous interval valued
function on T , the set of admissible controls for τ ∈ [t0, t], Ωt, is defined as

Ωt = {u : u(τ) ∈ U(τ), t0 ≤ τ ≤ t}.

The attainable set for control problem (5) is given by

A(t) = {xu(t) : xu satisfies (5), for u ∈ Ωt},

which represents an interval diam-increasing function of t (since a > 0).
Markov in [24] ensures that the attainable set for (5) satisfies the interval

differential equation

X ′(t) = a(t)X(t) + b(t)U(t) + c(t), X(t0) = X0, (6)

whose right-hand side is the interval extension in x and u of the right-hand
side of (5). The problem proposed by Markov [24] is to know which are the
requirements imposed on h and U , so that the attainable sets for the system
x′(t) = h(t, x(t), u(t)), x(t0) = x0, is a solution to the interval differential
equation

X ′(t) = H(t,X(t), U(t)), X(t0) = X0,

where H is the interval extension of h, that is,

H(t,X,U) =
⋃

x∈X,u∈U
h(t, x, u).

With our notation, we consider that B : I → RF is a continuous fuzzy
function, then the admissible controls for τ ∈ [t0, t] and α ∈ [0, 1],

Ωα
t = {γ : I −→ R, γ measurable, γ(τ) ∈ [B(τ)]α, t0 ≤ τ ≤ t}.

Hence, the attainable set for the problem

x′(t) = a(t)x(t) + γ(t), x(t0) = x0, (7)

is
Aα(t) = {x(t) : x satisfies (7) for γ ∈ Ωα

t }.

This represents, for each α, an interval whose diameter is monotonic increas-
ing in t, if a > 0 (see [24]). Markov question’s brought to the context of
fuzzy differential equations is whether those attainable sets are coincident
with the solution to the fuzzy differential equation

x′(t) = a(t)x(t) +B(t) = H(t, x(t), B(t)), x(t0) = x0, (8)
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where H is the fuzzy extension of h(t, x, u) = a(t)x + u by using Zadeh’
Extension Principle, that is, H(t,X,U) = a(t)X + U , from the properties
of the sum and the multiplication by an scalar. Hence, [H(t,X, U)]α =
a(t)[X]α + [U ]α = h(t, [X]α, [U ]α). This problem can be formulated more
generally as the equation

x′(t) = f(t, x,W (t)), x(0) = x0, (9)

where f : I × RnF × RmF −→ RnF is obtained by Zadeh’ Extension Principle
from a real-valued continuous function h : I × Rn × Rm −→ Rn, x0 ∈ RnF.
The approach in [11], for solving this problem via differential inclusions,
makes use of the identity

[f(t, x, U)]α = h(t, [x]α, [U ]α), α ∈ [0, 1],

for h(t, C,D) = {h(t, c, d) : c ∈ C, d ∈ D}. According to [11], the previous
fuzzy problem can be written as a family of differential equations with set
initial conditions

x′α(t) = fα(t, xα(t)), xα(0) ∈ [x0]α, 0 ≤ α ≤ 1, (10)

where the continuous function fα : I × R −→ KnC is defined by

fα(t, xα) = h(t, xα, [W (t)]α) = {h(t, xα, w) : w ∈ [W (t)]α}.

Hence, the attainable sets at time t are given by

Aα(t, xα0 , [B(·)]α) = {xα(t) : xα(·) is a solution to (10) on I}.

Assuming that, for every t ∈ I, the family {Aα(t, xα0 , [B|[0,t](·)]α)}α∈[0,1]

represent the α-levels of a compact fuzzy set A(t, x0, B|[0,t]), then XIW (t) =
A(t, x0, B|[0,t]) is called a weak fuzzy solution to (9) via differential inclu-
sion. If, moreover, A(t, x0, B|[0,t]) is also a convex fuzzy set, then XI(t) =
A(t, x0, B|[0,t]) is called a fuzzy solution to (9) via differential inclusion,
whose level sets are the attainable sets at time t, {Aα(t, xα0 , [B|[0,t](·)]α)
for all α ∈ [0, 1]. Under some conditions on f , the family of differential
inclusions (10) is equivalent to a family of dynamical systems controlled by
parameters γα(t) ∈ [B(t)]α, (see [11]),

x′α(t) = h(t, xα(t), γα(t)), xα(0) = xα0 ∈ [x0]α, 0 ≤ α ≤ 1. (11)

Denote by M(I, [B(·)]α) the family of all measurable functions γα : I −→
Rm such that γα(t) ∈ [B(t)]α. For each γα ∈ M(I, [B(·)]α) and xα0 ∈ [x0]α,
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under the existence and uniqueness hypotheses, we obtain the existence of
a unique solution xα(t, xα0 , γα) to (11) and it is obviously a solution to the
differential inclusion in (10). This justifies, similarly to [11], that

Aα(t, xα0 , [B|[0,t](·)]α) =
⋃

γα∈M(I,[B(·)]α), xα0∈[x0]α

xα(t, xα0 , γα).

In our particular case, x′ = a(t)x + b(t), the existence and uniqueness of
solution to each problem in (11) is guaranteed and h(t, x, u) = a(t)x+ u, so
that the family of differential inclusions in (10) is written as

x′α(t) = a(t)xα(t) + [B(t)]α, xα(0) ∈ [x0]α, 0 ≤ α ≤ 1, (12)

and the family of dynamical systems controlled by parameters as

x′α(t) = a(t)xα(t) + γα(t), xα(0) = xα0 ∈ [x0]α, 0 ≤ α ≤ 1, (13)

where γα(t) ∈ [B(t)]α, t ∈ I. Hence, the linear problem of interest can be
considered such as in [11] but, in this case, the control W is not necessarily
constant in t, instead, it is a function of t.

Since we are working with continuous functions a and B, to calculate
Aα(t, xα0 , [B(·)]α), it is enough to consider γα continuous such that γα(t) ∈
[B(t)]α. Also, since the solution to (13) exists always and it is increasing
in γα and xα0 , then Aα(t, xα0 , [B(·)]α = [xα(t, x0

α, Bα(·)), xα(t, x0
α, B

α
(·))],

α ∈ [0, 1].
Concerning the fuzzy differential inclusion

x′∈̂f̂(t, x(t)) = f(t, x(t), B(t)), x(0)∈̂X0,

where f̂ : I × Rn −→ RnF, X0 ∈ RnF, f̂(t, x) = f(t, x,B(t)), where f comes
by Zadeh’s Extension Principle from h : I × Rn × Rm −→ Rn with respect
to the third variable, then the family of differential inclusions associated is

x′α(t) ∈ [f̂(t, x(t))]α = [f(t, x(t), B(t))]α = h(t, xα(t), [B(t)]α), xα(0) ∈ [X0]α,
(14)

for 0 ≤ α ≤ 1, which coincides with that in (10), then both approaches
coincide, similarly to the specifications in [11] for a fixed control W ∈ RF.

In the particular case where f̂(t, x) = a(t)x + B(t) = f(t, x,B(t)),
h(t, x, u) = a(t)x + u, f(t,X,U) = a(t)X + U , the differential inclusion
x′ ∈ a(t)x+B(t), x(0) ∈ X0 is written as (12).

The results in Section 3.4 [11] seem to be extensible to the case of non
constant control functionB with minor adaptations. Hence, in the particular
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case of the linear problem, all those conditions hold: h(t, x, u) = a(t)x + u
is continuous, the boundedness assumption holds for all x0 ∈ [x0]α and the
inclusion

x′ ∈ f0(t, x) = h(t, x, [B(t)]0) = a(t)x+ [B(t)]0, x(0) ∈ [x0]0,

so that the attainable sets are nonempty and compact for each t. Besides,
f̂(t, x) = f(t, x,B(t)) = a(t)x+B(t) is concave. Indeed, if α+ β = 1, then

αf̂(t, x) + βf̂(t, y) = α(a(t)x+B(t)) + β(a(t)y +B(t))

= a(t)(αx+βy) +αB(t) +βB(t) = a(t)(αx+βy) +B(t) ≤ f̂(t, αx+βy),

thus the attainable sets are convex (see [11] and the references therein).
The hypotheses of Proposition 2 in [11] are also true replacing W by B(t).
Besides,

D(f(t,X,B(t)), f(t, Y,B(t))) = D(a(t)X +B(t), a(t)Y +B(t))

= D(a(t)X, a(t)Y ) = |a(t)|D(X,Y ) ≤ LD(X,Y )

on compact sets, so that f is Lipschitzian on the compact sets of the type
I, then the attainable sets are nonempty, convex and compact subsets of
R, for every t ∈ I. Concerning Theorem 4 in [11], h is continuous, with the
boundedness condition on

x′ ∈ h(t, x, [B(t)]0), x(0) ∈ [x0]0,

hence, there exists a unique solution to the problem on I. Since the attain-
able sets Aα(t, xα0 , [B(·)]α) are convex, for α ∈ [0, 1], there exists a unique
fuzzy solution on I.

With respect to the relationship between (i)-solutions and the solution
via differential inclusions, the following properties are already known.
For n = 1, a ≥ 0 and F measurable and integrably bounded, Markov [24]
ensures that the DI-solution coincides with the (i)-solution.

In [34], it is recalled the problem proposed by Markov [24] explicited
for the problem ẋ ∈ a(t)x + V (t), for a real-valued and V interval-valued.
Tolstonogov gives a positive answer in the following case: if a ≥ 0, a
summable on T (resp., on compact sets of R+), and V : T → convX
(resp., V : R+ → convX) is measurable and integrably bounded on T
(resp., on compact sets of R+), then the integral funnel of the differen-
tial inclusion coincides with the Hukuhara-solution to the interval equation
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DHU = a(t)U + V (t) on T (resp., R+). Hence, in the case where the sets
Aα define a fuzzy number (which is true for linear equations), then we can
affirm that the DI-solution coincides with the (i)-solution.

In the general case, consider T a finite interval of the type [0, b] or even
R+, X0 a convex subset of R, Γ : T × R −→ conv(R) and assume condi-
tions which guarantee the existence of a unique solution for the differential
inclusion (called R-solution) F (t) with F (0) = X0 defined on T and the
existence of a unique solution to the Hukuhara differential equation U(t)
with U(0) = U0 defined on T . Under these conditions, in [34], it is de-
duced that ΩΓ(t,X0) = F (t) ⊂ U(t), for t ∈ T . Here, ΦΓ(M) = {(t, x(t)) :
x(·) ∈ HΓ(M), t ∈ T} is the integral funnel of the differential inclusion,
HΓ(M) is the set of all Carathodory type solutions x(t), x(t) ∈ M , and
ΩΓ(t,M) = {x(t) : x(·) ∈ HΓ(M)} is the integral funnel section at time t,
that is, the attainable set at time t (which we denote by A(t,X0)). Besides,
due to the bijective correspondence between the integral funnel ΦΓ(M) and
the graph of the mapping t −→ ΩΓ(t,M), the mapping ΩΓ(·,M) is un-
derstood as the integral funnel of the differential inclusion. In particular,
Tolstonogov [34] affirms that, for a general linear problem, the DI-solution
is ‘included’ in the (i)-solution. However, the identity is not necessarily
valid, which is illustrated through the problem ẋ = ax+ [−m,m], x(0) = 0,
where m > 0, for which (see [34, pages 209–210]) the DI-solution coincides
with (i)-solution for a > 0, while the DI-solution is strictly included in the
(i)-solution for a < 0.

In [11], it is shown that a fuzzy differential equation x′ = f(t, x(t)), for
f : I × RnF −→ RnF, cannot always be written as a family of differential
inclusions. In the example shown, the authors illustrate the possible lack
of connection between the variable xα and the endpoints of the α-levels
of f(t, x), due to the dependence of all the level sets on a certain fixed
level. However, if we can ‘separate’ levels, in such a way that [f(t, x)]α =
hα(t, [x]α), where hα : I × Rn −→ Rn continuous, then it is possible to
consider a family of differential inclusions associated. As it is said in [11], a
condition is that each α-level of f(t, x) is independent of the rest of levels β
with β 6= α, such as it occurs for fuzzy functions generated through Zadeh’
Extension Principle, but also for f(t, x) = a(t)x+ b(t), for a fuzzy b, which
is our problem of interest.

The linear equation y′ = a(t)y + b(t) is not necessarily of the type y′ =
f(t, y, U), where U is fuzzy.

Theorem 3.2. If b : I −→ R, then we can compare the differential inclusion
solution with generalized solution and the switching points are the points
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where a changes its sign. However this is not always possible for b nonreal.

For problem (4), we use the following concepts of solution from the point
of view of strongly generalized differentiability.

Definition 3.3. Let y : I = [0, η] → RF be a fuzzy function. We say that
y is a (i)-solution to problem (4) if D1y exists on I and y satisfies problem
(4) taking D1y as y′. Similarly, we say that y is a (ii)-solution to problem
(4) if D2y exists on I and y satisfies problem (4) taking D2y as y′.

Again, we use the notation y′ both for D1y and D2y, making explicit the
type of differentiability used.

The following results, included respectively in [18, 9], allow to com-
pare the solutions obtained from differential inclusions’ approach and us-
ing the strongly generalized differentiability, distinguishing the cases where
(i)-differentiability (Theorem 3.4) or (ii)-differentiability (Theorem 3.5) is
used.

Theorem 3.4. (Theorem 3 [18]) If h is nondecreasing with respect to the
second argument, then the (i)-solution and the DI-solution are identical.

Proof: See [18].

Theorem 3.5. (Theorem 8 [9]) If h is nonincreasing with respect to the
second argument, then the (ii)-solution and the DI-solution are identical.

Proof: See [9].
However, these results are restricted to the case of fuzzy functions ob-

tained by Zadeh’s Extension Principle from a real continuous function. The
purpose of the following section is to consider a class of initial value problems
for fuzzy differential equations where Theorems 3.4–3.5 are not applicable
and compare the solutions from the different approaches in order to detect
their possible coincidence or distinction.

4. Solving linear fuzzy differential equations

In this section, we first work with a simple homogeneus equation to
illustrate the procedure and then we take a more general linear equation.
We start with the simple fuzzy initial value problem{

y′(t) = ay(t), t ∈ I,
y(0) = y0,

(15)
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where a ∈ R, 0 ∈ I and y0 ∈ RF. For simplicity, we work in intervals of the
type I = [0, A], for some A > 0, or I = [0,∞).

Considering Eq. (15) under the differential inclusion’s approach, since
function F (t, y) = ay is obtained by Zadeh’s extension principle from the
continuous function

f : I × R→ R

f(t, y) = ay,

then, for each α ∈ [0, 1] and t ∈ I, we have

[y′(t)]α = [F (t, y(t))]α = f(t, [y(t)]α) = a[y(t)]α.

Hence, the corresponding family of differential equations with a set of initial
conditions is given by {

y′α(t) = ayα(t), t ∈ I,
yα(0) ∈ [y0]α,

whose attainable sets are the α-level sets of the fuzzy function

y(t) = y0e
at.

Now, if a > 0, then f is nondecreasing with respect to the second variable
and, according to Theorem 3.4, the (i)-solution of (15) is exactly the same
as the DI-solution (see [5, 20])

y(t) = y0e
at.

On the other hand, if a < 0, then f is nonincreasing with respect to the
second variable and, consistently with Theorem 3.5, (ii)-solution is equal to
the solution by differential inclusions y(t) = y0e

at (see [5, 20]).

We note that, in the differential inclusion’s approach, the solution has a
unique expression independently of the sign of a. In this case of homogeneus
linear equations, the diameter of the DI-solution is nondecreasing for a > 0
and nonincreasing for a < 0, which is consistent with the properties of (i)-
and (ii)-solutions by virtue of Theorems 3.4–3.5.

Now, we consider the more general case of first order nonhomogeneous
linear fuzzy differential equations with initial value conditions of the type:{

y′(t) = a(t)y(t) + b(t), t ∈ I,
y(0) = y0,

(16)
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where a : I → R, b : I → RF are continuous functions and y0 ∈ RF.
Our aim is to investigate the connection between the solutions under differ-
ential inclusion’s approach and strongly generalized differentiable solutions
of Eq. (16).

Theorem 4.1. For a > 0, the (i)-solution of problem (16) is given by

y(t) = e
∫ t
0 a(u)du

(
y0 +

∫ t

0
b(s)e−

∫ s
0 a(u)duds

)
,

and (ii)-solution is as follows

y(t) = cosh(

∫ t

0
a(u)du)

(
y0 	

∫ t

0

[
b(s) sinh(

∫ s

0
a(u)du)− b(s) cosh(

∫ s

0
a(u)du)

]
ds

)

	−sinh(

∫ t

0
a(u)du)

(
y0 	

∫ t

0

[
b(s) sinh(

∫ s

0
a(u)du)− b(s) cosh(

∫ s

0
a(u)du)

]
ds

)
,

where we assume that the H-differences exist and the minus sign ’−’ repre-
sents the classical addition of the opposite.

Proof: See Theorem 6 in [5] for the expression of the (i)-solution and [20]
for (ii)-solution.

Theorem 4.2. For a < 0, the (ii)-solution of problem (16) is given by

y(t) = e
∫ t
0 a(u)du

(
y0 	

∫ t

0
(−b(s))e−

∫ s
0 a(u)duds

)
,

provided that the H-differences exist, and (i)-solution is as follows

y(t) = cosh(

∫ t

0
a(u)du)

(
y0 +

∫ t

0

[
b(s) cosh(

∫ s

0
a(u)du)	 b(s) sinh(

∫ s

0
a(u)du)

]
ds

)

+ sinh(

∫ t

0
a(u)du)

(
y0 +

∫ t

0

[
b(s) cosh(

∫ s

0
a(u)du)	 b(s) sinh(

∫ s

0
a(u)du)

]
ds

)
,

provided that the H-differences in the integral terms exist.

Proof: See Theorem 6 in [5] for the expression of the (ii)-solution and [20]
for (i)-solution.

The conditions that provide the existence of the solutions given in Theo-
rems 4.1, 4.2 are reduced to the existence of the corresponding H-differences.
For more details, see [8, 22].
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Remark 4.3. In the special case where b(t) ∈ R, for every t ∈ I, we have
that the fuzzy function

F (t, y) = a(t)y + b(t), y ∈ RF,

is obtained from the real continuous function

f(t, y) = a(t)y + b(t), y ∈ R,

by Zadeh’s extension principle. Indeed, for (t, y) ∈ I×RF and each α ∈ [0, 1],
we have

[F (t, y)]α = [a(t)y + b(t)]α = a(t)[y]α + {b(t)} = f(t, [y]α).

Then, according to Theorems 3.4 and 3.5, if a > 0 (i.e., a(t) > 0 for every
t ∈ I), then the (i)-solution of problem (16) is the same as the solution
under differential inclusion’s approach and, analogously, when a < 0 the
(ii)-solution is the same as differential inclusion’s solution.

However, if, in Eq. (16), we consider

F : I × RF → RF,

F (t, y) = a(t)y + b(t),

where b is a nonreal fuzzy function, i.e., b(t) ∈ RF (or even b(t) ∈ K1
C , but

excluding the case where b(t) ∈ R for every t ∈ I), then the fuzzy function F
is not the extension of any real continuous function f : I × R→ R. Indeed,
there is no such a real function f satisfying that

[F (t, y)]α = a(t)[y]α + [b(t)]α = f(t, [y]α), for every α ∈ [0, 1],

if, for at least some t ∈ I and α ∈ [0, 1], [b(t)]α has positive length. Therefore,
we cannot apply Theorems 3.4 and 3.5 to compare the different types of
solutions.
According to Hüllermeier’s interpretation [17], we can write problem (16) as
a family of differential inclusions{

y′α(t) ∈ a(t)yα(t) + [b(t)]α, t ∈ I,
yα(0) ∈ [y0]α,

or {
y′α(t) ∈ Fα(t, yα(t)), t ∈ I,
y(0) ∈ [y0]α,
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where Fα(t, y) = a(t)y+ [b(t)]α, Fα : I ×R −→ K1
C , and solve the collection

of problems {
y′α(t) = a(t)yα(t) + γ(t), t ∈ I, γ(t) ∈ [b(t)]α,
yα(0) ∈ [y0]α.

(17)

Definition 4.4. We call a function y : I → R an α-solution to (16) if it is
continuous and satisfies (17) for some admissible function γ. The set of all
α-solutions to (16) is denoted by Xα and the attainable set at t, Aα(t), are
given by

Aα(t) = {y(t)|y(·) ∈ Xα} .

Using classical results and the theory of differential inclusions [2], since
a, γ : I → R are continuous functions and the solutions to{

y′α(t) = a(t)yα(t) + γ(t), t ∈ I,
yα(0) = C

are nondecreasing in the initial condition C and also in the independent
term γ, then the solution of the differential inclusion (17) is obtained as:

Aα(t) = e
∫ t
0 a(u)du

(
[y0]α +

∫ t

0
[b(s)]αe−

∫ s
0 a(u)duds

)
, ∀α ∈ [0, 1]. (18)

5. Some relations between solutions

In the following, we study the connection between the solutions corre-
sponding to the strongly generalized differentiability concept and those of
differential inclusion’s approach. We consider problem (16) in three cases:
a > 0, a < 0 and a ≡ 0. It is clear that the most interesting case corresponds
to a nonreal function b.

Case 1. a > 0:
According to Theorem 4.1 and Eq. (18), for a > 0, the DI-solution and
the (i)-solution are equal. Then, in this case, any relation between the (i)-
solution and the (ii)-solution is also valid between the DI-solution and the
(ii)-solution. The diameter of each level set of the (ii)-solution is nonincreas-
ing and the diameter of each level set of the (i)-solution (or DI-solution) is
nondecreasing.

Case 2. a < 0:
Comparing Eq. (18) and Theorem 4.2, DI-solution appears to be different

17



from (i)-solution and (ii)-solution. In the rest of the section, we study the
relationship between the DI-solution and the strongly generalized differen-
tiable solutions to problem (16).

Theorem 5.1. Suppose that a < 0 and let y(∗) be the DI-solution of problem
(16). Then, as far as the (ii)-solution y(ii) to (16) exists, it is less fuzzy than
(or has the same fuzziness as) the DI-solution y(∗), i.e., we have

y(∗)(t) ≤ y(ii)(t) and y(ii)(t) ≤ y(∗)(t), ∀t ∈ J, (19)

where J ⊆ I is the interval where the (ii)-solution y(ii) is well-defined.

Proof: First, we prove that y(∗)(t) ≤ y(ii)(t), ∀t ∈ J . For this, we need to
show, for every t ∈ J ,

e
∫ t
0 a(u)du

(
y0 +

∫ t

0
b(s)e−

∫ s
0 a(u)duds

)
≥ e

∫ t
0 a(u)du

(
y0 +

∫ t

0
b(s)e−

∫ s
0 a(u)duds

)
,

which is correct, since it is equivalent to

e
∫ t
0 a(u)du

(∫ t

0
(b(s)− b(s))e−

∫ s
0 a(u)duds

)
≥ 0, t ∈ J.

For the other inequality, it is obvious that, for t ∈ J ,

e
∫ t
0 a(u)du

(
y0 +

∫ t

0
b(s)e−

∫ s
0 a(u)duds

)
≥ e

∫ t
0 a(u)du

(
y0 +

∫ t

0
b(s)e−

∫ s
0 a(u)duds

)
,

therefore y(ii)(t) ≤ y(∗)(t), ∀t ∈ J.

Remark 5.2. Note that the inequalities in (19) are valid on the interval
I, even in the case where the (ii)-solution is not well-defined in the whole
interval I. This situation corresponds to the interchanging of position of
the branches which are not defining a proper (ii)-solution anymore, but both
functions still lie in the region determined by the branches of the DI-solution.

In the statement of Theorem 5.1, the solutions are identical just if b is
a real-valued function. That is why we affirm that, for b nonreal, the (ii)-
solution y(ii) is strictly less fuzzy than the DI-solution y(∗). This is explained
in detail in the following Remark.
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Remark 5.3. Another consequence of the proof of Theorem 5.1 is the fol-
lowing: under the assumptions of Theorem 5.1 and for b nonreal, we have

y(∗)(t) ≺ y(ii)(t) and y(ii)(t) ≺ y(∗)(t), for t ∈ I with t > µ, (20)

where µ ∈ I is such that b(µ) /∈ R. In the previous inequalities, u ≺ v means
that u ≤ v but u(α) < v(α) for some α ∈ [0, 1] (and, necessarily, for α = 0).

This comes from the fact that b(µ) /∈ R implies that b(µ;α) > b(µ;α)
for some α ∈ [0, 1] and, by continuity of b, b(s;α) > b(s;α) for s in a
neighborhood of µ, so that

e
∫ t
0 a(u)du

(∫ t

0
(b(s;α)− b(s;α))e−

∫ s
0 a(u)duds

)
> 0, t > µ,

which leads to

y(∗)(t;α) < y(ii)(t;α) and y(ii)(t;α) < y(∗)(t;α), for t ∈ I with t > µ,

and similarly for the rest of levels β ∈ [0, α]. In fact, (20) holds for t > δ,
where δ = inf{µ ∈ I : b(µ) 6∈ R}. If b(0) 6∈ R, then (20) holds for t > 0,
since, at t = 0, the value of both solutions is y0, but the same happens if
b(t) 6∈ R, for t > 0.

The conclusion of the following result is well-known (see [27, 28, 34]).
In [34], Tolstonogov proves that the DI-solution is less fuzzy than the (i)-
solution for every linear problem and independently of the sign of the co-
efficient a. However, the following proof gives the clue to determine under
which circumstances the comparison between the different solutions is strict.

Theorem 5.4. Suppose that a < 0 and let y(∗) be the DI-solution of (16).
Then the DI-solution is less fuzzy than (or has the same fuzziness as) the
(i)-solution y(i) of (16), i.e., we have

y(i)(t) ≤ y(∗)(t) and y(∗)(t) ≤ y(i)(t), ∀t ∈ I.

Proof: We prove the first part and the other part can be deduced similarly.
By expression (18) and Theorem 4.2, we need to show

y(i)(t) = y0 cosh z(t)+

∫ t

0

{
cosh z(t) cosh z(s)b(s)− cosh z(t) sinh z(s)b(s)

}
ds

+y0 sinh z(t) +

∫ t

0

{
sinh z(t) cosh z(s)b(s)− sinh z(t) sinh z(s)b(s)

}
ds
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≤ y0e
z(t) +

∫ t

0
b(s)ez(t)−z(s)ds,

where z(t) =
∫ t

0 a(u)du. This inequality is equivalent to the following

y(i)(t) = y0 cosh z(t)+y0 sinh z(t)+

∫ t

0
b(s) {cosh z(t) cosh z(s)− sinh z(t) sinh z(s)} ds

+

∫ t

0
b(s) {sinh z(t) cosh z(s)− cosh z(t) sinh z(s)} ds

= y0 cosh z(t)+y0 sinh z(t)+

∫ t

0

{
b(s) cosh(z(t)− z(s)) + b(s) sinh(z(t)− z(s))

}
ds

≤ y0e
z(t) +

∫ t

0
b(s)ez(t)−z(s)ds,

or also
y0(− cosh z(t) + ez(t))− y0 sinh z(t)

+

∫ t

0

{
b(s)(ez(t)−z(s) − cosh(z(t)− z(s)))− b(s) sinh(z(t)− z(s))

}
ds ≥ 0.

The previous inequality can also be written as

(y0 − y0) sinh z(t) +

∫ t

0
sinh(z(t)− z(s))(b(s)− b(s)) ds ≥ 0,

or, equivalently,

sinh z(t) diam[y0]α +

∫ t

0
sinh(z(t)− z(s))diam[b(s)]α ds ≤ 0,

for every α ∈ [0, 1], which is trivially valid. Then the proof is complete.

Remark 5.5. Under the assumptions of Theorem 5.4, since z(t) =
∫ t

0 a(u)du <
0, for every t > 0, then sinh z(t) < 0, for t > 0, and also sinh(z(t)− z(s)) =
sinh(

∫ t
s a(u)du) < 0, for t > 0 and s ∈ (0, t). Hence, the unique possibility

of coincidence between y(i)(t) and y(∗)(t) is

diam[y0]α = 0, ∀α ∈ [0, 1] and diam[b(t)]α = 0, ∀α ∈ [0, 1], t ∈ I,
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that is, y0 real and b real function simultaneously, and similarly for the up-
per branch. If this is not the case, then the DI-solution is less fuzzy than the
(i)-solution.

Case 3. a ≡ 0:
In this case, problem (16) is reduced to

y′(t) = b(t), t ∈ I, y(0) = y0.

The (i)-solution of this problem is

y0 +

∫ t

0
b(s)ds,

and the (ii)-solution is given by

y0 	
∫ t

0
(−b(s))ds,

provided that the H-differences exist (see, for instance, [20]). The DI-
solution is the same as the (i)-solution and the results of comparison between
solutions are identical to the case a > 0.

5.1. Monotonicity of the diameter of the solutions

Independently of the sign of a(t), the diameter of the level sets of the so-
lutions corresponding to strongly generalized differentiability is monotonic:
the diameter of the level sets of the (i)-solution is nondecreasing and the
diameter of the level sets of the (ii)-solution is nonincreasing.
According to the specifications made in the case a > 0, we see that the
diameter of the level sets of the DI-solution ((i)-solution) is nondecreasing.
However, this property is not true in general for the case a < 0, where
most DI-solutions are fuzzier than the corresponding (ii)-solutions and less
fuzzy than (i)-solutions. To this purpose, we have to define the concept of
diameter of the level sets of the DI-solution. For simplicity, let y(t) denote
the DI-solution of problem (16). Set φα(t) = diam[y(t)]α := diam(Aαt ) =
diam(Aα(t)), for t ∈ I and α ∈ [0, 1]. Then we have

φα(t) = ez(t)diam[y0]α + ez(t)
∫ t

0
diam[b(s)]αe−z(s)ds,

where z(t) =
∫ t

0 a(u)du.
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Remark 5.6. It is obvious that, if a < 0, the diameter of the level sets
of the DI-solution is not monotonic in general. Indeed, since a < 0, the
term ez(t) in φα(t) is nonincreasing and diam[y0]α +

∫ t
0 diam[b(s)]αe−z(s)ds

is nondecreasing. Hence, the monotonicity of φα(t) in the variable t depends
on a, b and the initial value y0.

Remark 5.7. Since a(t) and b(t) are continuous functions, then we have

φ′α(t) = ez(t)a(t)

(
diam[y0]α +

∫ t

0
diam[b(s)]αe−z(s)ds

)
+ diam[b(t)]α.

In the particular case where b is a real function, then diam[b(t)]α = 0, for
every t and α, so that the diameter of the level sets of the DI-solution is
nonincreasing, which is consistent with Remark 4.3 (it is (ii)-solution).

If the initial condition is y(0) = y0, when t increases, the monotonicity
of the diameter of the level sets of the DI-solution in a neighborhood of
t = 0 depends on a, b and y0. In the following section, we present Examples
6.1 and 6.2, where the diameter of the level sets of the DI-solution first
decreases and then increases, and Example 6.3, where it increases and then
decreases, alternating its monotonicity indefinitely. The number of changes
in the monotonicity of the solution itself also depends on these parameters
a, b and y0.

In Examples 6.1 and 6.2, we take b(t) = γt, thus [b(0)]α is a singleton
and hence, for every α ∈ [0, 1], diam[b(0)]α = 0. Then, by Remark 5.7, the
diameter of the α-level set of the DI-solution is decreasing near t = 0, for
every α ∈ [0, 1] with diam[y0]α > 0 (the initial condition is taken such that
y0 6∈ R). However, in Example 6.3, the behavior is different.

6. Examples

Example 6.1. Let us consider the initial value problem for first order fuzzy
differential equations

y′(t) = −y(t) + γt, t ≥ 0, y(0) = δ, (21)

where γ, δ ∈ RF and [γ]α = [α2 + 1, 2 − α
2 ], [δ]α = [α2 , 1 −

α
2 ], ∀α ∈ [0, 1].

Fig. 1 shows the plots of the supports of (i)-solution and DI-solution on the
interval [0, 2] and (ii)-solution on the interval [0, 1]. It is easy to check that
this problem satisfies the requirements in Theorems 5.1, 5.4 and 5.6, as well
as Remarks 5.3 and 5.5. Concerning Remark 5.7, we have

φ′α(t) = −e−t(1− α)

(
1 +

∫ t

0
sesds

)
+ t(1− α) = (1− α)(1− 2e−t),
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which implies that the diameter of the core of the DI-solution is constant
(α = 1) and the diameter of the α-level sets (α < 1) of the DI-solution
decreases near t = 0 and it is increasing after t = ln 2. Besides, the (ii)-
differentiable solution exists only on [0, 1] (other approach to continue the
solution consists in taking into account the switching points in generalized
differentiability [33]). If we consider the critical point of the diameter of the
level sets of the DI-solution, φ′α(t) = 0, we get t = ln 2, which is different
from the switching point t = 1 corresponding to the strongly generalized
differentiability concept.

0.5 1 1.5 2
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1

2

Figure 1: Endpoints of the support of (i)-solution (green dot-dashed curves) and DI-
solution (red dashed curves) to problem (21) on [0, 2] and support of (ii)-solution (blue
solid curves) only on [0, 1].

What can also be observed in Example 6.1 is that we can not guarantee
the existence of the (ii)-solution in the interval where φα is decreasing.

Example 6.2. Consider the first order fuzzy differential equation with ini-
tial condition

y′(t) = −y(t)− γt, t ≥ 0, y(0) = δ, (22)

where γ, δ are the same as in Example 6.1. In Fig. 2, we show the plots of
the supports of (i)-solution and DI-solution on the interval [0, 2] and (ii)-
solution on [0, 1]. The study of the monotonicity of the diameter of the level
sets of the DI-solution is similar to Example 6.2.
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Figure 2: Endpoints of the support of (i)-solution (green dot-dashed curves), (ii)-solution
(blue solid curves) and DI-solution (red dashed curves) to problem (22) ((ii)-solution
defined only on [0, 1]).

Example 6.3. Consider the first order fuzzy differential equation with ini-
tial condition

y′(t) = −y(t) + γ(1 + cos t), t ≥ 0, y(0) = δ, (23)

where γ, δ are the same as in Example 6.1. In this case,

φ′α(t) = −e−t(1− α)

(
1 +

∫ t

0
(1 + cos s)esds

)
+ (1 + cos t)(1− α)

= (1− α)
1

2
(cos t− sin t),

which implies that the diameter of the core of the DI-solution is constant
(α = 1) and the diameter of the α-level sets (α < 1) of the DI-solution is
increasing in [0, π4 ) ∪ {(5π

4 + 2kπ, 9π
4 + 2kπ) : k ∈ N} and decreasing in

{(π4 + 2kπ, 5π
4 + 2kπ) : k ∈ N}.

In Fig. 3, we show the plots of the supports of (i)-solution and DI-
solution on [0, 2] and (ii)-solution on [0, ν], where ν is the solution of et(1 +
1
2(sin t+ cos t)) = 5

2 , that is, ν ' 0.41. Again, ν < π
4 .
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Figure 3: Endpoints of the support of (i)-solution (green dot-dashed curves), (ii)-solution
(blue solid curves) and DI-solution (red dashed curves) to problem (23) ((ii)-solution
defined on [0, ν]).

7. Conclusions

In this paper, we have considered first order linear fuzzy differential equa-
tions under strongly generalized differentiability concept and differential in-
clusion’s approach and some relations between the solutions corresponding
to different methods have been presented. It is observed that the solution
under differential inclusion’s approach exists always and lies between (i)-
solution and (ii)-solution. If the independent term b is nonreal, then the
DI-solution is fuzzier than (ii)-solution but it is less fuzzy than (i)-solution.
We have also studied the behavior of the diameter of the level sets of the
DI-solution, in contrast with the context of strongly generalized differentia-
bility. Considering fuzzy differential equations under differential inclusions’
approach, we can study some properties already important for the solutions
to ordinary differential equations. In future works, we will consider some
properties of DI-solutions related to the theory of ODEs.

Acknowledgements

The authors are grateful to the Editor and the anonymous Referees for
their interesting comments and suggestions towards the improvement of this

25



manuscript.
The research has been partially supported by AEI of Spain under grant

MTM2016-75140-P, and Xunta de Galicia under grants GRC2015/004 and
R2016-022.

References

[1] T. Allahviranloo, M. Shafiee, Y. Nejatbakhsh, A note on fuzzy differ-
ential equations and the extension principle, Information Sciences, 179
(2009) 2049–2051.

[2] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin,
1984.

[3] B. Bede, S.G. Gal, Almost periodic fuzzy-number-valued functions,
Fuzzy Sets and Systems, 147 (2004) 385–403.

[4] B. Bede, S.G. Gal, Generalizations of the differentibility of fuzzy number
value functions with applications to fuzzy differential equations, Fuzzy
Sets and Systems, 151 (2005) 581–599.

[5] B. Bede, I.J. Rudas, A.L. Bencsik, First order linear fuzzy differential
equations under generalized differentiability, Information Sciences, 177
(2007) 1648–1662.

[6] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued func-
tions, Fuzzy Sets and Systems, 230 (2013) 119–141.

[7] J.J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and
Systems, 110 (2000) 43–54.

[8] Y. Chalco-Cano, A. Khastan, R. Rodŕıguez-López, Normalized expres-
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