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FINAL SOLUTION TO THE PROBLEM OF RELATING A TRUE

COPULA TO AN IMPRECISE COPULA

MATJAŽ OMLADIČ AND NIK STOPAR

Abstract. In this paper we solve in the negative the problem proposed in
this journal (I. Montes et al., Sklar’s theorem in an imprecise setting, Fuzzy
Sets and Systems, 278 (2015), 48–66) whether an order interval defined by
an imprecise copula contains a copula. Namely, if C is a nonempty set of
copulas, then C = inf{C}C∈C and C = sup{C}C∈C are quasi-copulas and

the pair (C,C) is an imprecise copula according to the definition introduced
in the cited paper, following the ideas of p-boxes. We show that there is an
imprecise copula (A,B) in this sense such that there is no copula C whatsoever
satisfying A 6 C 6 B. So, it is questionable whether the proposed definition
of the imprecise copula is in accordance with the intentions of the initiators.
Our methods may be of independent interest: We upgrade the ideas of Dibala
et al. (Defects and transformations of quasi-copulas, Kybernetika, 52 (2016),
848–865) where possibly negative volumes of quasi-copulas as defects from
being copulas were studied.

1. Introduction

Dependence concepts play a crucial role in multivariate statistical literature since
it was recognized that the independence assumption cannot describe conveniently
the behavior of a stochastic system. One of the main tools in modeling these con-
cepts have eventually become copulas due to their theoretical omnipotence emerging
from [21] (see also the monographs [1, 8, 14]). Namely, they are used to represent
and construct joint distribution functions of random vectors in terms of the re-
lated one-dimensional marginal distribution functions. As a more general concept,
quasi-copulas were introduced in [2] and an equivalent definition was given later in
[9]. Quasi-copulas have interesting applications in several areas, such as fuzzy logic
[10, 20], fuzzy preference modeling [5, 6] or similarity measures [4]. Other deep
results concerning quasi-copulas can be found in [3, 11, 15].

While copulas are characterized (in the bivariate case) by the nonnegativity of
the volume of each subrectangle of the unit square I

2 (where I = [0, 1]) which
is a Cartesian product of two subintervals of I, this is no longer true for quasi-
copulas. This defect of quasi-copulas can be described in several ways, indicating
how far away they are from copulas. The authors of [7] introduce several such
descriptions and apply them to transform the original quasi-copulas. Note that
the sequence of iterative transformations always converges to a copula. This allows
them to introduce an equivalence relation on the set of quasi-copulas by grouping
quasi-copulas converging to the same copula into an equivalence class. They also
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give an interesting application of their approach to the so-called imprecise copulas
[12, 13, 17, 18, 22]. However, they do not answer one of the main questions proposed
there.

Let us recall Definition 1.7.1 in [8]: for quasi-copulas A and B we write A 6 B
in the pointwise order whenever A(u) 6 B(u) for all u ∈ I

2 (in [14, Definition
2.8.1] this order is denoted by A ≺ B and called the concordance ordering). If C
is any nonempty set of quasi-copulas, then C = inf{C}C∈C and C = sup{C}C∈C

are quasi-copulas by [14, Theorem 6.2.5]. In this respect the set of quasi-copulas
is a complete lattice and may be actually seen as an order completion of the set
of all copulas. Following the ideas of p-boxes one may consider in the case that
C contains copulas only, the pair (C,C) as an “imprecise copula” representing the
set of copulas C. While the authors of [13, 17, 18] introduce their definition of an
imprecise copula so that this is true, they propose a question in the other direction
whether every imprecise copula can be obtained in this way. The main purpose of
this paper is to answer this 6 years old question in the negative. Actually, we prove
much more: There is an imprecise copula (A,B) in their sense such that there is
no copula C whatsoever such that A 6 C 6 B (i.e. the order interval generated by
(A,B) contains C). In order to do that we need to use and extend substantially
the methods of [7].

The comment immediately following Definition 6 in [17] says: “We are using
the terminology imprecise copula in the definition above because we intend it as
a mathematical model for the imprecise knowledge of a copula.” This might be
questionable now that we know that the order interval of quasi-copulas defined by
an imprecise copula may contain no copula at all.

The paper is organized as follows. Section 2 gives a novel approach to discrete
copulas and quasi-copulas, an important tool we introduce to study the proposed
problem. In Section 3 we present and slightly extend the methods of [7], and give
an example in the (discrete) quasi-copula setting indicating that the desired coun-
terexample cannot be made using these methods only. (We believe that analogous
example can be done in a general setting but omit the lengthy calculations and
rather give later a more powerful example in details.) The methods of this section
are substantially upgraded in Section 4, where we present (among other things)
a necessary and sufficient condition for an imprecise copula (A,B) that the order
interval it generates contains a copula. The desired counterexample is then given
in Section 5 together with additional conditions that quasi-copula A equals the in-
fimum of copulas contained in this interval, respectively that quasi-copula B equals
the supremum of copulas contained in this interval.

2. Discrete copulas vs. continuous copulas

In this section we present discrete copulas in somewhat more general fashion
than in [19]. These copulas together with their interplay with the usual copulas
will play a crucial role in developing our main results later.

Actually, we need to start even in a bit more general way and consider real
functions A defined either on the unit square I

2, where I = [0, 1], or on a mesh
within this square ∆ = δx × δy determined by some points

δx = {0 = x0 < x1 < · · · < xp = 1} and δy = {0 = y0 < y1 < · · · < yq = 1}.
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Consider the rectangles whose corners are the intersections of verticals going through
two consecutive xi’s with horizontals going through two consecutive yj ’s. We will
say that the mesh ∆ is determined by these rectangles. So, we will either have
A : I2 → R or A : ∆ → R and call the first case the general case and the sec-
ond one the discrete case. For the function A we will often assume (1) that it is
1-increasing, i.e. that it is nondecreasing in each of the two variables, (2) that it is
continuous in the general case. Sometimes we will want to unify the two cases and
write D to either mean ∆ or I2.

Let us recall the definition of the bilinear interpolation on a rectangle and give
the proof of its uniqueness for the sake of completeness. Let R ⊆ I

2 be a positively
oriented rectangle defined by corners a,b, c, and d, with a as the southwest corner.
This will be assumed as a standard notation of corners of a rectangle unless specified
otherwise. Assume we know the values of a function A at the corners of R.

Proposition 1. Given the values of a 1-increasing function A at the corners of a
rectangle R there exists a unique function A on R such that

(a): its values coincide with the starting values at the corners;
(b): each one-dimensional section parallel to the axes is linear.

Proof. If the function is constant, then the proposition is easy. If not, then A(c) >
A(a) by the fact that A is 1-increasing. We assume with no loss that R = I

2, and
that A(0, 0) = 0 (after subtracting a constant from A, if necessary) and A(1, 1) = 1
(after multiplying A by a constant, if necessary). Let A(1, 0) = α and A(0, 1) = β
to write down the desired solution

A(x, y) = αx + βy + (1− α− β)xy.

�

The function on R obtained in this way will be called a bilinear interpolation

of A through its values at the corners. For any rectangle R ⊆ I
2 with standard

corners a,b, c, and d, and any function A defined at least on these corners we let
the volume of R with respect to A be equal to

VA(R) = A(a) +A(c)−A(b) −A(d).

Corollary 2. The bilinear interpolation A of a 1-increasing function defined on
the corners of R is 1-increasing. Moreover, for every subrectangle R1 ⊆ R we have:

(a): VA(R1) > 0 if and only if VA(R) > 0
(b): VA(R1) < 0 if and only if VA(R) < 0
(c): VA(R1) = 0 if and only if VA(R) = 0

Proof. Again we assume with no loss that R = I
2 and that the values of A on

the corners are as assumed in the proof of Proposition 1. Recall the formula from
that proof to see that the first partial derivatives of A are respectively equal to
α+ (1−α− β)y (which is no smaller than zero if and only if A is increasing in the
direction of x) and β + (1−α− β)x (which is no smaller than zero if and only if A
is increasing in the direction of y). The second mixed partial derivative of A equals
1− α− β which is exactly VA(R). So, the 2-volume of any rectangle R1 ⊆ R with
sides of length γ and δ equals (1 − α− β)γδ and the corollary follows. �

From now on all our functions will be 1-increasing. If A is defined on I
2 we get

a function defined on a mesh ∆ = δx× δy simply by taking the restriction A|∆. On
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the other hand, if A is defined on the mesh ∆ we can extend it to a function on I
2

by taking the bilinear interpolation of A on each of the rectangles determined by
the mesh; we will denote this interpolation by ABL. Observe that this definition
depends also on the mesh, but we are not pointing that out in this notation when
the mesh is understood.

Proposition 3. If A is defined on the mesh ∆ = δx×δy, then ABL is an absolutely
continuous function on I

2 and ABL|∆ = A.

For a function A (whether general or discrete) we will say that

(A): A is grounded if A(x, 0) = 0 and A(0, y) = 0 for all x, y such that
(x, 0), (0, y) ∈ D;

(B): number 1 is its neutral element if A(x, 1) = x and A(1, y) = y for all
x, y such that (x, 1), (1, y) ∈ D;

(C): A is 2-increasing if the volume of every rectangle with corners in D is
nonnegative;

(D): A is quasi-2-increasing if this condition is fulfilled for all rectangles with
corners in D that have non-empty intersection with the sides of the unit
square I

2.

Now, if D = I
2 and A is grounded, has 1 as a neutral element and is 2-increasing,

then A is called a copula. It is called a quasi-copula if it is grounded, has 1 as a
neutral element and is quasi-2-increasing. If D = ∆ then in the two respective cases
A is called a discrete copula, respectively a discrete quasi-copula. Observe that our
notion of discrete copula is slightly more general than the one introduced in [8,
Section 3.1.1] and our notion of discrete quasi-copula is slightly more general than
the one introduced in [19]. Recall that in the definition of a quasi-copula condition
(D) can be equivalently replaced by (cf. [14, p. 236])

(D’): A is increasing and 1-Lipschitz in each variable.

We shall not study this approach in details.

Proposition 4. Let A be a function defined on ∆, then

(a): A is grounded if and only if ABL is grounded;
(b): 1 is a neutral element for A if and only if 1 is a neutral element for ABL;
(c): A is 2-increasing if and only if ABL is 2-increasing;
(d): A is quasi-2-increasing if and only if ABL is quasi-2-increasing;
(e): A is a discrete copula if and only if ABL is a copula;
(f): A is a discrete quasi-copula if and only if ABL is a quasi-copula;

Proof. (a) and (b) are trivial consequences of the definition. (c): If A is 2-
increasing, then, in particular, the rectangles that belong to the mesh all have
nonnegative ABL-volume. However, every rectangle is a union of rectangles that
are subrectangles of those that belong to the mesh and we are done by Corollary 2.
The opposite implication is clear. Now, one implication of part (d) is clear again.
For the proof in the other direction we choose an arbitrary rectangle R ⊆ I

2 whose
intersection with one of the sides of I2 is nonempty. We will only treat the case
when the intersection with the south side is nonempty since the other four cases
go similarly. Denote by a, b, c, and d, the defining corners of R, by x1 the first
coordinate of a respectively d, by x2 the first coordinate of b respectively c, and
by y the second coordinate of c respectively d, while the second coordinate of a
respectively b is zero. By definition VABL(R) is a linear function in each of the
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variables x1, x2, y, the first two coming from two respective intervals each made
of two consecutive members of the mesh δx, the third one coming in an analogous
way from δy. Now, a multilinear function can have at most one zero on any seg-
ment parallel to any of the edges. By assumption it is nonnegative at the corners,
consequently on any edge, therefore on any face and finally anywhere within this
3-dimensional rectangular cuboid. Parts (e) and (f) follow easily from the previous
assertions. �

Remark. Note that the “easier” part, i.e. the “if” part, of all these claims
remains true when ABL is replaced by an arbitrary real valued function, say Ă, on
I
2 such that Ă|∆ = A.

Observe in passing that our assumption of functions being 1-increasing in order
to be able to make bilinear interpolation of the discrete functions defined on the
mesh under consideration does not narrow down the applications of our results
since most of our functions will be quasi-copulas which are always 1-increasing by
[8, Theorem 7.2.1].

Following [13] (cf. also [7, 16]) we call a pair (A,B) of functions on D an imprecise
copula if (A) they are grounded, (B) each of them has 1 as a neutral element, and

(IC1): A(a) +B(c)−A(b) −A(d) > 0;
(IC2): B(a) +A(c) −A(b) −A(d) > 0;
(IC3): B(a) +B(c) −B(b)−A(d) > 0;
(IC4): B(a) +B(c) −A(b)−B(d) > 0

for each rectangle R ⊆ D defined by corners a,b, c, and d in the standard way.
In the general case it is known [13, 7, 16] and not difficult to verify that, for each
imprecise copula (A,B), we have that A and B are quasi-copulas and A 6 B.

Observe that formally the same verification that yields this result for the general
case, gives also the analogous result for the discrete case. So, complying with the
above approach to discrete versions of copulas and quasi-copulas we introduce a
discrete imprecise copula as a pair of functions (A,B) defined on a mesh ∆ satisfying
axioms (A), (B), (IC1), (IC2), (IC3), and (IC4). As the first justification for
introducing this notion we give

Proposition 5. If a pair (A,B) defined on a mesh ∆ is a discrete imprecise copula,
then the pair (ABL, BBL) is an imprecise copula. Also, if (A,B) is an imprecise
copula, then (A|∆, B|∆) is a discrete imprecise copula.

Proof. Assume (A,B) is a discrete imprecise copula on a mesh, let R be any rec-
tangle in I

2 with corners denoted standardly by a,b, c, and d, and let C(R) be the
lefthand side of any of the conditions (ICi) for i ∈ {1, 2, 3, 4} in which A is replaced
by ABL and B is replaced by BBL. By assumption C(R) > 0 if the four corners are
determined by the mesh. Now, assume b′ is another corner of the mesh, horizon-
tally adjacent to b, and c′ is horizontally adjacent to c. Define bt = tb′ +(1− t)b,
and ct = c′ + (1− t)c, and let Rt be the rectangle with corners a,bt, ct, and d for
t ∈ I. When t moves from 0 to 1, Rt changes from R to the rectangle obtained
from R by shifting the east side one grid further. Since C(Rt) is nonnegative at
the endpoints t = 0 and t = 1 and since it is a linear function of t between the
two points, it has to be nonnegative throughout since a linear function cannot have
more than one zero on a segment. Using a similar argument one can conclude that
the point ct can be moved vertically northwards (and d simultaneously in the same
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way) without changing the sign of C(Rt). Once we establish that c can be assumed
arbitrary, we do the same for a. The other implication is clear. �

3. Bounds of an imprecise copula determined by defects

It is our aim in this section to apply the theory presented in Dibala et al. [7] on
some examples of imprecise copulas. In the next section we will develop this theory
further and it will become an important ingredient on the way to our main results.
In [7] the authors introduce defects of quasi-copulas and give an extensive study of
this notion which helps understanding how far a quasi-copula is from a copula. We
start this section by a brief summary of symbols, definitions and some key results
of that paper to be needed in the sequel. This way we want to assist an interested
reader in following our considerations.

The authors of [7] first introduce four mappings associating each point of the unit
square I2 to a set of rectangles contained in I

2. Let R mean the set of all rectangles
R ⊆ I

2 and denote for any rectangle R its standard corners by aR,bR, cR, and dR.
Next, for any x ∈ I

2 we let

Rր(x) = {R ∈ R; s.t. x = aR}, Rւ(x) = {R ∈ R; s.t. x = cR},

Rց(x) = {R ∈ R; s.t. x = dR}, Rտ(x) = {R ∈ R; s.t. x = bR}.
(1)

Furthermore, for any function C : D → R, where D = I
2, the full unit square,

they introduce six measures that show how far a function (if quasi-copula) is from
a copula

DC
ր(x) = inf

R∈Rր(x)
VC(R), DC

ւ(x) = inf
R∈Rւ(x)

VC(R),

DC
ց(x) = inf

R∈Rց(x)
VC(R), DC

տ(x) = inf
R∈Rտ(x)

VC(R);

as well as
DC

M = DC
ր ∧DC

ւ and DC
O = DC

ց ∧DC
տ.

These measures are called suggestively in the above order the northeast, the south-
west, the southeast, the northwest, the main, and the opposite defect. It is easy to
see that in these definitions and in considerations to follow one can replace D = I

2,
the full unit square, by D = ∆ = δx × δy, a fixed finite mesh within it. It turns out
that ([7, Proposition 3.2]) in case that C is a quasi-copula, then it is a copula if
and only if one (and, subsequently each) of the defect functions DC

ր, DC
ւ, DC

ց, and

DC
տ is identically zero.
For a quasi-copula C they also introduce

Cր = C −DC
ր Cց = C +DC

ց CM = C −DC
M

Cւ = C −DC
ւ Cտ = C +DC

տ CO = C +DC
O

They show, among other things, that ([7, Theorem 4.3]) in case that C is a quasi-
copula each of the six functions Cր, Cւ, Cց, Cտ, CM , and CO is a quasi-copula.
For a quasi-copula C they observe immediately after that theorem that

CO 6 C 6 CM .

So, to any imprecise copula (A,B) one can introduce quasi-copulas AM and BO

such that A 6 AM and BO 6 B. Actually in [7, Theorem 5.2] they prove that
a pair (A,B) of quasi-copulas is an imprecise copula if and only if B > AM and
BO > A. Their theory extends easily to the discrete case introduced in Section 2.
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We will expand their tools further and prove somewhat more. However, let us start
with an auxiliary result.

For any function C : D → R, where either D = I
2, the full unit square, or

D = ∆ = δx × δy, a fixed finite mesh within it, we can reflect one of the variables
by sending either x 7→ 1 − x or y 7→ 1 − y. It is easy to compute the resulting
function, i.e. adjust this operation so that the function stays grounded and has 1
as a neutral element also after the reflection (cf. [14, Theorem 2.4.4] and also [8,
Section 1.7.3]). If C is a quasi-copula one can perform the same adjustment; in
both cases we denote the result by Cσ. We do the same in the discrete case, where
we need to adjust the mesh according to the transformation, if necessary. It turns
out that in all the four cases we have formally either

Cσ(x, y) = y − C(1− x, y), or Cσ(x, y) = x− C(x, 1− y).

Lemma 6. Let C be an arbitrary quasi-copula, then every reflection σ exchanges
the main and the opposite role of every corner of any rectangle and consequently:

(a): (Cσ)M = (CO)
σ

(b): (Cσ)O = (CM )σ

Proof. Transformation σ : x 7→ 1 − x sends a rectangle R with standard cor-
ners aR,bR, cR, and dR into the rectangle σ(R) with standard corners aσ(R) =
σ(bR),bσ(R) = σ(aR), cσ(R) = σ(dR), and dσ(R) = σ(cR). So, when a point x
is sent to σ(x), the corresponding sets (1) of rectangles exchange their role. In
particular, the rectangles of Rր and Rտ exchange and similarly the rectangles
of Rց and Rւ do. We compute the defects before and after the transformation
and compare the results. After going through the above definition of defects we
come up with the fact that DC

M and DC
O are exchanged. For the other reflection

σ : y 7→ 1 − y the particularities of the proof are analogous, but the conclusion is
the same. �

Theorem 7. For arbitrary quasi-copulas A and B the pairs (A,AM ) and (BO, B)
are imprecise copulas.

Proof. The proof of the desired fact for the pair (A,AM ) follows from the proof of
the analogous fact for the pair (BO, B) by Lemma 6. So, it suffices to show it for
the latter case. Choose any quasi-copula B and observe that by [7, Theorem 5.2]
the pair (BO, B) will be an imprecise copula as soon as we prove that (BO)M 6 B.
After denoting Q = BO we use considerations of [7] to get

QM = Q−DQ
M = Q−DQ

ր ∧DQ
ւ = (Q −DQ

ր) ∨ (Q −DQ
ւ) = Qր ∨Qւ.

So, in order to show that QM 6 B we need to show that both Qր 6 B and
Qւ 6 B. Observe that by the definition of the mapping Q 7→ Qր and of Q = BO

we get

Qր = Q−DQ
ր = B +DB

O −DBO

ր .

In order to show that Qր 6 B, it suffices to prove that

(2) DB
O(x) 6 DBO

ր (x), for all x ∈ [0, 1]2.

For a fixed point x ∈ [0, 1]2 we denote following the notation of [7, Section 3]
by Rր(x) the set of rectangles (contained in I

2 of course) with the southwest
corner equal to x. The right-hand side of Inequality (2) equals the infimum of the
volumes with respect to quasi-copula BO of all rectangles Rր(x). Now, we choose
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a rectangle R whose corners are denoted by a = x,b, c,d in the standard way.
Using the definition of BO and of the volume we compute
(3)
DB

O(x)−VBO
(R) = DB

O(x)−VB(R)−VDB

O

(R) = −VB(R)−DB
O(c)+DB

O(b)+DB
O(d).

We want to show that the right-hand side of (3) is non-positive. By the remark
following Definition 3.1 in [7] we know that defect DB

O(c) is attained at some rec-
tangle P ∈ Rտ(c) ∪ Rց(c) so that DB

O(c) = VB(P ). We will consider only the
case that P ∈ Rտ(c) since it turns out that the other one goes in a similar way.
We denote by y the southwest corner of P and consider two cases. Assume first
that y lies on the line segment connecting d and c. Divide the rectangle R into
two rectangles R1 and R2 so that y is the northeast corner of R1 and therefore the
northwest corner of R2. Note that

VB(R) +DB
O(c) = VB(R) + VB(P ) = VB(R1) + VB(R2 ∪ P ) > DB

O(d) +DB
O(b)

implying that the right-hand side of (3) is non-positive in this case. Now, if y does
not lie on the line segment connecting d and c, then d lies on the line segment
connecting y and c, so we can divide the rectangle P into two rectangles P1 and
P2 so that d is the southeast corner of P1 and therefore the southwest corner of P2.
Consequently, we have in this case

VB(R) +DB
O(c) = VB(P1) + VB(P2 ∪R) > DB

O(d) +DB
O(b)

so that the left-hand side of (3) is always non-positive. When taking the infimum
over all rectangles R ∈ Rր(x), one gets (2) and we are done. �

We will call an imprecise copula (C,D) an imprecise subcopula of the imprecise
copula (A,B) if

A 6 C 6 D 6 B

Corollary 8. For any imprecise copula (A,B) there exist two imprecise subcopulas,
one with the same lower bound (A,AM ), one with the same upper bound (BO, B).

We will now concentrate on the question proposed in [13, 18] and studied in [7].
The general case of the following fact is shown in these papers, while the discrete
case follows easily using analogous considerations.

Lemma 9. Let (Ci)i∈I be a family of copulas, either general or discrete. Then the
functions C,C : D → I defined by

C =
∧

i∈I

Ci and C =
∨

i∈I

Ci

give rise to an imprecise copula (C,C).

So, there are imprecise copulas (A,B) containing copulas in the ordered interval
from A to B, i.e.

[A,B] = {C ; A 6 C 6 B}.

The question is whether all imprecise copulas can be obtained in the way given in
the lemma above. Even more, it is not known whether for every imprecise copula
(A,B) there is a copula C ∈ [A,B]. Theorem 7 suggests a method to get the desired
copula C provided that it exists. Start with an arbitrary imprecise copula (A,B),
general or discrete. Then (1) Define B′ = AM and observe that A 6 B′ 6 B and
that (A,B′) is an imprecise copula by Theorem 7. (2) Define A′ = B′

O and observe
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that A 6 A′ 6 B′ 6 B and that (A′, B′) is an imprecise copula by Theorem 7.
Using this procedure repeatedly we get a sequence of imprecise copulas (An, Bn),
where

(4) An+1 = (Bn+1)O and Bn+1 = (An)M .

Proposition 10. Let (A,B) be an imprecise copula and define sequences An and
Bn by A0 = A, B0 = B, and Equation (4) above. Then we have

(a): The sequence An is increasing, the sequence Bn is decreasing and they

are uniformly converging. Denote their respective limits by Ă and B̆.
(b): Each pair (An, Bn) is an imprecise subcopula of (An−1, Bn−1).

(c): The limiting pair (Ă, B̆) is also an imprecise subcopula of each (An, Bn),

and has the property (Ă)M = B̆ and (B̆)O = Ă.

Proof. Since the sequence of the left-hand sides An is a point-wise increasing se-
quence of quasi-copulas and bounded above (by the Fréchet Hoeffding upper bound,

say), it converges to a quasi-copula to be denoted by Ă. Similarly the sequence of
the right-hand sides Bn is point-wise decreasing, bounded below (by the Fréchet

Hoeffding lower bound, say), so its limit exists, will be denoted by B̆ and is a quasi-

copula. Furthermore, it is not hard to see that (Ă, B̆) is an imprecise subcopula of
all imprecise copulas in this sequence which are imprecise subcopulas of each other.
A standard consideration shows that the sequences An → Ă and Bn → B̆ converge
uniformly. There is a general theorem [8, Theorem 1.7.6] saying that point-wise
convergence yields uniform convergence for copulas. Furthermore, everything that
is needed in the proof of this theorem is valid for quasi-copulas as well (cf. [8,
Chapter 7]). Now, the fact that

An → Ă uniformly, implies DAn

ր → DĂ
ր and DAn

ւ → DĂ
ւ so that DAn

M → DĂ
M .

Consequently,

Bn+1 = (An)M = An −DAn

M → Ă−DĂ
M = (Ă)M .

We have thus seen that B̆ = (Ă)M and we can prove similarly that Ă = (B̆)O. �

Now, if Ă = B̆, this must be a true copula, so that we have found the desired
copula between A and B. On the other hand, if Ă 6= B̆, this means that one cannot
find a copula between A and B only by means of the methods described in this
section. We believe we can find an example of a general copula with this property
using Proposition 10. However, we omit the lengthy calculations and present a
more valuable example in Section 5, although we may decide to publish it in a
forthcoming paper if the interest for that develops.

Here, let us present an example of a discrete imprecise copula with this property.

We fix a mesh ∆ = δx × δy where xk = yk =
k

7
for k = 0, 1, . . . , 7, and let the value

of a discrete imprecise copula (〈A〉, 〈B〉) be given by

〈A〉

(

j

7
,
k

7

)

= [A]j+1,k+1 and 〈B〉

(

j

7
,
k

7

)

= [B]j+1,k+1 for j, k = 0, 1, . . . , 7,
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where [A] and [B] are matrices
(5)

[A] =
1

7

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 2 2
0 0 0 0 1 2 2 3
0 0 0 1 2 2 3 4
0 0 1 2 2 3 4 5
0 1 2 2 3 4 5 6
0 1 2 3 4 5 6 7

























, [B] =
1

7

























0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 2 2 2
0 0 0 1 2 2 3 3
0 0 1 2 2 3 4 4
0 1 2 2 3 4 4 5
0 1 2 3 4 4 5 6
0 1 2 3 4 5 6 7

























.

Example 11. There exists a discrete imprecise copula (〈A〉, 〈B〉), actually we may
consider the one obtained from (5), such that 〈A〉 6= 〈B〉, 〈A〉M = 〈B〉 and 〈B〉O =
〈A〉.

4. Existence of a copula inside an imprecise copula

It is time to develop the main tools needed on the way to our main results. Let
A and B be a pair of real valued functions such that A 6 B. This assumption will
later be narrowed down to quasi-copulas but until then we do not assume even that
they are 1-increasing. As before, we assume that they are defined on D which is
either I2 in the general case or a mesh ∆ in the discrete case. For a rectangle R with
distinct standard vertices a,b, c,d we define the main corner set M(R) = {a, c}
and the opposite corner set O(R) = {b,d}. Given a rectangle R we define for any
point x ∈ I

2 its multiplicity by

mR(x) =







1, if x ∈ M(R);
−1, if x ∈ O(R);
0, otherwise.

Let us extend this definition to anyR ∈ R, the set of all disjoint unions of rectangles,
i.e. if {Ri}ni=1 is an arbitrary finite set of rectangles, then an element of R is of the
form R =

⊔n

i=1 Ri, where
⊔

denotes the disjoint union, and we let mR(x) =
∑n

i=1 mRi
(x). We are now in position to give the definition for the volume of an

element R ∈ R corresponding to the real valued function A

VA(R) =
∑

x∈I2

A(x)mR(x)

and in the same way for B. It is obvious that this sum is actually finite. It is also
clear that when specializing to quasi-copulas and rectangles this definition coincides
with the usual definition of the volume.

Lemma 12. The multiplicity of a given point and the volume corresponding to a
given real valued function A are additive:

(a): mR1⊔R2
(x) = mR1

(x) +mR2
(x);

(b): VA(R1 ⊔R2) = VA(R1) + VA(R2).
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Let us define a function L of R ∈ R, and functions PM and PO of x ∈ I
2, all

depending also on the real valued functions A and B

L(A,B)(R) =
∑

y∈I
2

mR(y)>0

B(y)mR(y) +
∑

y∈I
2

mR(y)<0

A(y)mR(y)

P
(A,B)
M (x) = inf

R∈R

mR(x)>0

L(A,B)(R)

mR(x)
and P

(A,B)
O (x) = inf

R∈R

mR(x)<0

L(A,B)(R)

−mR(x)
,

(6)

where infimum of an empty set is assumed equal to +∞.
In the following propositions we will assume two conditions on the pair of real

valued functions (A,B) (to be later specialized to an imprecise copula):

(Q1): A 6 B, and
(Q2): L(A,B)(R) > 0 for all R ∈ R.

In the following proposition we need the function γ(A,B)(x) = min{P
(A,B)
O (x), B(x)−

A(x)} defined for x ∈ D.

Proposition 13. Let the pair of real valued functions (A,B) satisfy Conditions
(Q1), (Q2) and let there exist an x ∈ D such that t0 = γ(A,B)(x) > 0. Then the
pair of real valued functions (A′, B), where

A′(y) =

{

A(x) + t, if y = x;
A(y), otherwise;

satisfies conditions (Q1), (Q2) for any t, 0 < t 6 t0. If we choose t = t0, then

γ(A′,B)(x) = 0.

Proof. Clearly, we only need to show (Q2). Choose any R ∈ R and assume first

that mR(x) > 0. Then L(A′,B)(R) = L(A,B)(R) > 0 because functions A and A′

differ only at the chosen point x which appears in L only as an argument of B by
(6). Now, if mR(x) < 0, then

t 6 t0 6 P
(A,B)
O (x) 6

L(A,B)(R)

−mR(x)

so that

L(A′,B)(R) = L(A,B)(R) + tmR(x) > 0.

Choose t = t0. If t0 = B(x) − A(x), then B(x) − A′(x) = 0 and we are done.

If t0 = P
(A,B)
O (x) then for every ε > 0 there is an R ∈ R such that mR(x) < 0

and that L(A,B)(R) 6 −mR(x)(t0 + ε) so that L(A′,B)(R) 6 −mR(x)ε. Therefore,

P
(A′,B)
O (x) 6 ε for all ε > 0 and we are done again. �

Remark. Note that even if we started with quasi-copulas (A,B) the function
A′ would not be a quasi-copula in general.

Proposition 14. Under the conditions (Q1), (Q2) we have

P
(A,B)
M (x) + P

(A,B)
O (x) > B(x) −A(x)

for all x ∈ [0, 1]2.
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Proof. Let R1, R2 ∈ R be such that mR1
(x) < 0 and mR2

(x) > 0. Let us observe
that

(7)
L(A,B)(R1)

−mR1
(x)

+
L(A,B)(R2)

mR2
(x)

− (B(x) −A(x)) =
S(R1, R2)

(−mR1
(x))mR2

(x)
,

where

S(R1, R2) = mR2
(x)L(A,B)(R1) + (−mR1

(x))L(A,B)(R2)

− (−mR1
(x))mR2

(x)(B(x) −A(x)).

After introducing

R3 =





mR2
(x)

⊔

i=1

R1



 ⊔





−mR1
(x)

⊔

j=1

R2





we want to show that

(8) S(R1, R2) > L(A,B)(R3)

the right-hand side of which is no smaller than zero by (Q2); the proposition will
then follow after taking the infima of the two quotients on the left-hand side of (7).
Using the fact that multiplicity of corners is additive by Lemma 12(a) we observe
that mR3

(y) = mR2
(x)mR1

(y) + (−mR1
(x))mR2

(y) for any point y. Recall the
definition (6) of functions L to see that the first two terms of the function S can
be expanded as

∑

mR1
(y)>0

mR2
(x)B(y)mR1

(y) +
∑

mR1
(y)<0

mR2
(x)A(y)mR1

(y)+

∑

mR2
(y)>0

(−mR1
(x))B(y)mR2

(y) +
∑

mR2
(y)<0

(−mR1
(x))A(y)mR2

(y).

With respect to the point y 6= x in these sums we will consider four cases. Assume
at first mR1

(y) > 0 and mR2
(y) > 0. Then the contribution of y to S equals

B(y)(mR2
(x)mR1

(y) + (−mR1
(x))mR2

(y))

which is exactly equal to the contribution of y to the right-hand side of (8). Next,
assume mR1

(y) > 0 and mR2
(y) 6 0 to get that the contribution of y to S equals

B(y)mR2
(x)mR1

(y) +A(y)(−mR1
(x))mR2

(y).

In this case we are making this expression not greater when we replace either B(y)
with A(y) or A(y) with B(y). So, this is not smaller than the contribution of
y to the right-hand side of (8). The case that mR1

(y) 6 0 and mR2
(y) > 0 goes

similarly. Now, if mR1
(y) 6 0 and mR2

(y) 6 0. Then the contribution of y to S
equals

A(y)(mR2
(x)mR1

(y) + (−mR1
(x))mR2

(y))

which is exactly equal to the contribution of y to the right-hand side of (8). Finally,
if y = x, then we get zero contribution on both sides of the desired inequality which
finishes the proof. �

Theorem 15. If under the conditions (Q1), (Q2) we have

(9) min{P
(A,B)
O (x), B(x) −A(x)} = 0 for all x,

then VA(R) > 0 for all rectangles R.
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Proof. We will prove this by contradiction. So, assume that (Q1), (Q2), and (9)
hold and that there exists a rectangle R such that VA(R) = v < 0. Let x1

respectively x2 be the southwest respectively the northeast corner of R. Since

min{P
(A,B)
O (x1), B(x1) − A(x1)} = 0 we have either P

(A,B)
O (x1) = 0 or B(x1) −

A(x1) = 0. If P
(A,B)
O (x1) = 0 we have by Proposition 14 that

P
(A,B)
M (x1) > B(x1)−A(x1).

If B(x1)−A(x1) = 0 then we get the same conclusion by (Q1). Since mR(x1) = 1
it follows immediately that

L(A,B)(R) > P
(A,B)
M (x1) > B(x1)−A(x1).

By the definition of L this inequality is equivalent to

B(x2)−A(x2) > −v > 0.

Assumption (9) implies that P
(A,B)
O (x2) = 0 and similar arguments yield P

(A,B)
O (x1) =

0. By the definition of this function there exist elements R1, R2 ∈ R such that
mR1

(x1) < 0, mR2
(x2) < 0, and such that

(10)
L(A,B)(R1)

−mR1
(x1)

< −
v

2
and

L(A,B)(R2)

−mR2
(x2)

< −
v

2
.

We want to show that mR2
(x1) 6 0. We will prove this by a contradiction. Assume

that mR2
(x1) > 0 and introduce

R3 = R2 ⊔





−mR2
(x2)

⊔

i=1

R





so that mR3
(x1) = mR2

(x1) + (−mR2
(x2)) > 0 and consequently

(11) P
(A,B)
M (x1) 6

L(A,B)(R3)

mR3
(x1)

.

Recall the considerations of the proof of Proposition 14 and estimate contributions
of points y similarly to get

L(A,B)(R3) 6 L(A,B)(R2) + (B(x1)−A(x1) + VA(R))(−mR2
(x2)),

where we use the right one of the estimates (10) and the fact that VA(R) = v to
get

(12) L(A,B)(R3) <
(v

2
+B(x1)−A(x1)

)

(−mR2
(x2)).

Using Proposition 14 and combining inequalities (11) and (12) we get

0 = P
(A,B)
O (x1) > −P

(A,B)
M (x1) +B(x1)− A(x1)

>
mR2

(x2)

mR3
(x1)

(v

2
+ B(x1)−A(x1)

)

+B(x1)−A(x1)

=
mR2

(x2)

mR3
(x1)

v

2
+

mR2
(x2) +mR3

(x1)

mR3
(x1)

(B(x1)−A(x1)) > 0.

This contradiction proves that mR2
(x1) 6 0. Similarly we get mR1

(x2) 6 0.
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On the final step of the proof we introduce

R4 =





−mR2
(x2)

⊔

i=1

R1



 ⊔





−mR1
(x1)

⊔

j=1

R2



 ⊔





(−mR1
(x1))(−mR2

(x2))
⊔

k=1

R



 .

Note thatmR4
(x1) = (−mR1

(x1))mR2
(x1) 6 0 andmR4

(x2) = (−mR2
(x2))mR1

(x2) 6
0. Using the usual considerations of the detailed contributions of points and esti-
mates (10) we get

L(A,B)(R4) 6 (−mR2
(x2))L

(A,B)(R1) + (−mR1
(x1))L

(A,B)(R2) +mR1
(x1)mR2

(x2)VA(R)

< (−mR2
(x2))mR1

(x1)
v

2
+ (−mR1

(x1))mR2
(x2)

v

2
+mR1

(x1)mR2
(x2)v = 0

in contradiction with (Q2) thus proving the desired result. �

In the following proposition we fix a mesh ∆ = δx × δy. In the set of unions of
rectangles R we will consider only those made of rectangles with vertices from the
mesh.

Proposition 16. Let A 6 B be discrete quasi-copulas. Then, there exists a discrete
copula C with A 6 C 6 B if and only if

L(A,B)(R) > 0

for all R ∈ R.

Proof. We first assume that a copula C like that exists. Then for every R ∈ R we
estimate

L(A,B)(R) > L(C,C)(R) = VC(R) > 0.

So, our condition is necessary. Let us show that it is also sufficient. Assume that

L(A,B)(R) > 0. This implies that the function γ(A,B)(x) = min{P
(A,B)
O (x), B(x) −

A(x)} is nonnegative for all x in the mesh.
Note that any C such that A 6 C 6 B is automatically grounded and has 1

as a neutral element since A and B have these properties. So, we only have to
show nonnegativity of the volumes of rectangles. Choose a point x0 ∈ ∆ such that
t = γ(A,B)(x0) > 0. If no such point exists, we have reached the desired conclusion
by Theorem 15. By Proposition 13 we can replace function A by function A′ defined
by A′(x0) = A(x0) + t and A′(x) = A(x) for all x 6= x0 in the mesh. It follows

clearly that B > A′ > A and therefore L(A,B)(R) > L(A′,B)(R), P
(A,B)
O (x) >

P
(A′,B)
O (x) and γ(A,B)(x) > γ(A′,B)(x) for all R and x. Proposition 13 implies

L(A′,B)(R) > 0 for all R, hence P
(A′,B)
O (x) > 0 and γ(A′,B)(x) > 0 for all x. In

addition, γ(A′,B)(x0) = 0 again by Proposition 13. We can repeat this procedure
for any x0 such that γ(A,B)(x0) > 0. Since the mesh is finite we are done in a finite
number of steps. �

Theorem 17. Let A 6 B be quasi-copulas. Then, there exists a copula C with
A 6 C 6 B if and only if

L(A,B)(R) > 0

for all R ∈ R.
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Proof. We first assume that there exists a copula C such that A 6 C 6 B and
choose an R ∈ R. Note that R is made of a finite number of rectangles that have
a finite union of all possible corners. So, there exists a mesh ∆ containing all
these corners. Now, observe that 〈A〉 = A|∆ and 〈B〉 = B|∆ are quasi-copulas,
that 〈C〉 = C|∆ is a copula by the remark immediately following the statement of
Proposition 4, and that 〈A〉 6 〈C〉 6 〈B〉. So, the desired conclusion follows by
Proposition 16.

To get the inverse implication, assume that the condition of the theorem is
fulfilled for all R ∈ R. Choose a sequence of meshes ∆n ⊆ ∆n+1 for n ∈ N whose
union of corners is dense in I

2. (One may choose, say, ∆n = δxn × δyn determined
by points

δxn = δyn =

{

k

2n

}2n

k=0

.

for n = 1, 2, . . ..) Now, fix an n ∈ N, let Rn be the set of disjoint unions of
rectangles with corners in ∆n, and let 〈A〉n = A|∆n

and 〈B〉n = B|∆n
. Then, these

objects satisfy the assumptions of Proposition 16, so that there exists a discrete
copula Cn on ∆n such that 〈A〉n 6 Cn 6 〈B〉n. For any n ∈ N extend the discrete

copula Cn to a general copula C̆n = (Cn)
BL. Since the set of copulas is compact

by [8, Theorem 1.7.7] there exists a subsequence C̆nk
, k ∈ N, converging uniformly

to a copula C. Now,

Ăn = 〈A〉BL
n 6 C̆n 6 〈B〉BL

n = B̆n

on D = I
2 and by going twice to subsequences, if necessary, we may assume with

no loss that Ănk
respectively B̆nk

also converge to, say, Ă respectively B̆, so that,
necessarily,

Ă 6 C 6 B̆.

It remains to show that Ă = A and B̆ = B in order to finish the proof of the
theorem. On the way to see that we fix a k ∈ N and choose a point x ∈ ∆nk

.
Clearly,

Ă(x) = Ănk
(x) = A|∆nk

(x) = A(x) and similarly B̆(x) = B(x).

Since the union of all points of the kind is dense in D = I
2 the desired result follows

by the fact that quasi-copulas have the 1-Lipschitz property. Indeed, for any ε > 0
we may choose k ∈ N large enough such that all distances of the points in either δx

or δy are no greater than
ε

4
. For any x ∈ I

2 we may then choose its closest point

y in ∆nk
and estimate

|Ă(x)−A(x)| 6 |Ă(x)−Ă(y)|+|Ă(y)−A(y)|+|A(y)−A(x)| 6
ε

4
+
ε

4
+0+

ε

4
+
ε

4
= ε.

Now, the leftmost expression of this display is independent of k, while the rightmost
one can be made arbitrary small with k going to infinity. This implies Ă(x) = A(x)
and similarly for B. �

5. The main results

Using the theory developed so far we are now in position to give an example of
an imprecise copula (A,B) such that there is no copula C between A and B. Let us
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formulate the problem presented at the very end of [7] (cf. also [18, 13]) precisely.
Define

C(A,B) = {C |C copula, A 6 C 6 B} = [A,B] ∪ C,

where C is the set of all copulas and the ordered interval [A,B] was defined in
Section 3 immediately after Lemma 9. Observe that in this definition we only need
A and B to be functions on I

2 such that A 6 B which is fulfilled, in particular,
whenever (A,B) is an imprecise copula. Let us propose the question in three steps:

Q.I When is C(A,B) nonempty? In particular, can it be empty for some impre-
cise copula (A,B)?

Q.II If C(A,B) 6= ∅ is it possible that
∨

C(A,B) = B?

Q.III If C(A,B) 6= ∅ is it possible that
∧

C(A,B) = A?

Theorem 17 gives a quite general answer to Q.I, saying that a pair of quasi-
copulas A,B with A 6 B has C(A,B) nonempty if an only if L(A,B)(R) > 0. To
answer the proposed question it suffices to solve the discrete version of the problem.
Indeed, if we find a discrete imprecise copula (〈A〉, 〈B〉) such that there is no discrete
copula 〈C〉 with the property 〈A〉 6 〈C〉 6 〈B〉, then we know by Proposition 16
that there exists a disjoint union of rectangles R (with corners in the corresponding
mesh) such that L(〈A〉,〈B〉)(R) � 0. It now suffices to extend this discrete imprecise
copula to a general one, say, by defining

A = 〈A〉BL and B = 〈B〉BL

to get

(13) L(A,B)(R) = L(〈A〉,〈B〉)(R) � 0

and the imprecise copula (A,B) has the desired property by Theorem 17.

Towards the discrete example we fix a mesh ∆ = δx × δy where xk = yk =
k

10
for k = 0, 1, . . . , 10, and let the value of a discrete imprecise copula (〈A〉, 〈B〉) be
given firstly by

〈A〉

(

j

10
,
k

10

)

= [A]j+1,k+1 for j, k = 0, 1, . . . , 10,

where [A] is the matrix

A =
1

50





































0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 3 4 5 5 5 5 5
0 1 2 3 3 4 5 10 10 10 10
0 2 2 5 7 7 8 13 15 15 15
0 3 3 6 7 7 8 13 18 20 20
0 4 4 6 9 11 11 16 21 25 25
0 5 5 7 9 11 11 16 21 26 30
0 5 10 12 14 16 16 21 26 31 35
0 5 10 15 19 21 21 26 31 36 40
0 5 10 15 20 25 26 31 36 41 45
0 5 10 15 20 25 30 35 40 45 50





































,
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and secondly, by defining 〈B〉 = 〈A〉M . A short computation reveals that the matrix

corresponding to D
〈A〉
M equals

[

D
〈A〉
M

]

=
1

50





































0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 0 0 0 0 0
0 −1 0 0 −1 −1 −1 0 0 0 0
0 −1 −1 −1 0 −1 −1 −1 0 0 0
0 −1 −1 0 −1 −1 −1 −1 0 0 0
0 −1 −1 −1 0 0 −1 −1 −1 0 0
0 0 −1 −1 −1 −1 −1 −1 −1 0 0
0 0 0 −1 −1 −1 −1 −1 −1 0 0
0 0 0 0 0 0 −1 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0





































,

so that

〈B〉

(

j

10
,
k

10

)

= [B]j+1,k+1 for j, k = 0, 1, . . . , 10,

where [B] is the matrix

[B] = [A]−
[

D
〈A〉
M

]

=
1

50





































0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 5 5 5 5 5
0 2 2 3 4 5 6 10 10 10 10
0 3 3 6 7 8 9 14 15 15 15
0 4 4 6 8 8 9 14 18 20 20
0 5 5 7 9 11 12 17 22 25 25
0 5 6 8 10 12 12 17 22 26 30
0 5 10 13 15 17 17 22 27 31 35
0 5 10 15 19 21 22 27 32 36 40
0 5 10 15 20 25 26 31 36 41 45
0 5 10 15 20 25 30 35 40 45 50





































.

The pair (〈A〉, 〈B〉) is a discrete imprecise copula by Theorem 7. It remains to find
a disjoint union R of rectangles with corners in this mesh such that Condition (13)
is fulfilled. In order to find the right R we write down the volumes with respect to
A of the small rectangles determining the mesh:

V =
1

50

































0 1 1 1 1 1 0 0 0 0
1 0 0 −1 0 0 5 0 0 0
1 −1 2 2 −1 0 0 2 0 0
1 0 0 −1 0 0 0 3 2 0
1 0 −1 2 2 −1 0 0 2 0
1 0 0 −1 0 0 0 0 1 4
0 5 0 0 0 0 0 0 0 0
0 0 3 2 0 0 0 0 0 0
0 0 0 1 3 1 0 0 0 0
0 0 0 0 0 4 0 0 0 1

































We can think of the entries of this matrix as a representation of the discrete quasi-
copula in question on the given mesh. However, due to its matrix presentation
the position of the main and the opposite corners seems to be interchanged. For
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example, the most northwest corner of the shaded region in the above image of
matrix V is a main one.

We observe two “hills” of hight 2/50, presented as two holes in the shaded
region, surrounded by seven depressions of depth −1/50, which are all contained
in the shaded region. The rest of the volumes were chosen in such a way that
they allowed us to construct the above pair of quasi-copulas. The R that satisfies
Condition (13) is represented by the shaded region. So, it is defined exactly as
the union of 21 small squares (i.e. of those that are determining the mesh) of the
region and the desired fact now follows by a simple calculation. Observe that
V〈A〉(R) = −7 and R has 6 corners with positive multiplicity, all with multiplicity

1, and the value of D
〈A〉
M at all these corners is −1. Hence

L(〈A〉,〈B〉)(R) =
∑

mR(y) 6=0

〈A〉(y)mR(y) +
∑

mR(y)>0

(〈B〉(y) − 〈A〉(y))mR(y) =

= V〈A〉(R) +
∑

mR(y)>0

(−D
〈A〉
M (y))mR(y) = −7 + 6 = −1.

Example 18. There exists an imprecise copula (A,B) such that C(A,B) = ∅.

We now give answers to Q.II and Q.III.

Theorem 19. Let A 6 B be quasi-copulas and C(A,B) 6= ∅. Then

(a) B =
∨

C(A,B) if and only if B(x) −A(x) 6 P
(A,B)
O (x) for all x ∈ I

2.

(b) A =
∧

C(A,B) if and only if B(x)−A(x) 6 P
(A,B)
M (x) for all x ∈ I

2.

Proof. Let us start by the proof of (a). Recall that the condition of Theorem 17

is fulfilled. Assume first that condition B(x) − A(x) 6 P
(A,B)
O (x) is satisfied at

a certain point x ∈ I
2. Choose a mesh, say ∆n containing this point, recall the

notation γ(A,B)(x) = min{P
(A,B)
O (x), B(x) −A(x)} of Proposition 13, and observe

that γ(A,B)(x) = B(x) − A(x) in our case. So, using this proposition we may
replace A by A′ such that A′(x) = B(x) and A′ = A at all other points of the
mesh. As in (the main part of) the proof of Theorem 17 we continue correcting
the values of A′ at other points of the mesh until we find a discrete copula Cn such
that A|∆n

6 Cn 6 B|∆n
and at the same time Cn(x) = B(x). Continue as in

that proof by a sequence of meshes each contained in the next one whose union of
corners is dense in I

2 and by an according sequence of discrete copulas Cn extended
to a sequence of general copulas (Cn)

BL. By going to a subsequence, if necessary,
we may achieve a uniformly convergent sequence and a limit copula C such that
A 6 C 6 B and at the same time, C(x) = B(x), thus proving one direction of (a).

To get the proof of (a) in the other direction assume that B =
∨

C(A,B), choose
x ∈ I

2, ε > 0, and C ∈ C(A,B) such that

C(x) > B(x)− ε.

It is clear that P
(A,B)
O (x) > P

(A,C)
O (x). We want to show that

(14) P
(A,C)
O (x) > C(x) −A(x).

This will imply P
(A,B)
O (x) > B(x)−A(x)− ε and the desired conlusion will follow

by the fact that ε can be chosen arbitrarily small. In the proof of (14) we first
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recall that

P
(A,C)
O (x) = inf

R∈R

mR(x)<0

L(A,C)(R)

−mR(x)
,

where

L(A,C)(R) =
∑

mR(y)>0

C(y)mR(y) +
∑

mR(y)<0

A(y)mR(y).

We add to and subtract from these sums the sum of C(y)mR(y) over y ∈ I
2 with

mR(y) < 0 to get

L(A,C)(R) = VC(R) +
∑

mR(y)<0

(C(y)−A(y))(−mR(y)) > (C(x)−A(x))(−mR(x))

because all the summands of the above sum are nonnegative and they also contain
the summand with y = x. This implies Equation (14) thus finishing the proof of
(a).

The proof of (b) follows by taking the reflection on the case (a) mutatis mutandis,
i.e. once the necessary changes have been made. In particular, applying, say, σ :
(x, y) 7→ (1− x, y) on Equations (6) and noting that a reflection is exchanging the
order on the lattice of quasi-copulas and by Lemma 6 also the main and opposite
role of the corners of rectangles we first get

L(Bσ,Aσ)(σ(R)) = L(A,B)(R)

and then

P
(Bσ,Aσ)
O (σ(x)) = P

(A,B)
M (x) and P

(Bσ ,Aσ)
M (σ(x)) = P

(A,B)
O (x).

So, the reflected (a) becomes

Bσ =
∧

C(Bσ, Aσ) if and only if Aσ(σ(x))−Bσ(σ(x)) 6 P
(Bσ,Aσ)
M (σ(x)) for all x ∈ I

2

which is exactly (b). So, we are done by the first part of the proof. �

Conclusion

Example 18 gives an imprecise copula according to the definition in [13] such
that there is no copula contained in the order interval generated by it. So, as we
pointed out in the abstract and explained further in the introduction, it is question-
able whether the definition of an imprecise copula proposed there is in accordance
with the intentions of the initiators. Of course, their Theorem 2(a) is still valid.
Our approach through the functions L, PM , and PO might be helpful in improving
their technique since Theorem 19 suggests a possible upgrade of their definition.
However, the problem may be deeper since the authors of [13] never had the sec-
ond half of the Sklar’s theorem in the imprecise setting and developing a full scale
imprecise theorem of Sklar’s type would be a possible goal to attack. Actually, we
believe that this is achievable with some more work, namely, one would also need
to reconsider the definition of a coherent bivariate p-box as introduced in [18].
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