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Abstract We address a salient issue arising in Glöckner’s two-step methodology for mo-
deling vague quantifiers: the design of quantifier fuzzification mechanisms (QFMs). These
are mechanisms to turn formal models of vague quantifiers operating only on crisp arguments
(semi-fuzzy quantifiers) into vague quantifiers accepting vague arguments as well (fully-fuzzy
quantifiers). We critically examine desiderata formulated by Glöckner for QFMs and also
point out that previous approaches to quantifier fuzzification largely ignored the question
whether the resulting quantifiers can be expressed in suitable extensions of t-norm based
fuzzy logics, in particular in  Lukasiewicz logic. We also introduce a new family of QFMs,
and assess it fares with respect to the mentioned desiderata. We exclusively focus on unary
quantifiers, in order to circumvent interference with vagueness related problems arising for
all truth functional accounts of quantifiers that refer to more than one argument formula.

1 Introduction

Fuzzy quantifiers have been a major topic in the research on approximate reasoning, almost since
the very inception of this field by Zadeh [37]. They model natural language expressions, like,
many, about half, about 100, almost all, etc, which are vague, but useful for concise and effective
communication. Formal models of such quantifier expressions within fuzzy logic have been first
studied in detail in Zadeh’s seminal [38]. Since then a huge amount of literature has been devoted
to the subject. Given the many facets of this topic and its importance for applications like linguistic
data summarization and fuzzy information retrieval, this continued interest should not come as a
surprise. We refer to Glöckner’s monograph [19] and the more recent survey paper [7] for references
and extensive discussions of the state of the art. Glöckner ’s approach is particularly interesting for
us, since he aimed at obtaining both computationally and linguistically adequate models of fuzzy
quantifiers, keeping a close connection with the well developed theory of generalized quantifiers
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[3,30] in the classical setting (see also the recent work [31] on the relation between fuzzy and
classical generalized quantifiers).

The approach consists of the following two-steps for modeling quantifiers: (1) define so-called
semi-fuzzy quantifiers, i.e. models of vague quantification where the scope formulas are crisp (bi-
valent), but the quantified statement may be evaluated to an intermediate degree of truth; (2)
lift semi-fuzzy quantifiers to fully-fuzzy ones, where also the scope formulas are fuzzy, in a syste-
matic manner. The two-step method is certainly very useful and has been followed also by other
researchers (see, e.g., [7,9]). However, we think that not all of the manifold problems that may
be encountered in the design of fully-fuzzy models of vague quantification are already adequately
addressed in the current literature.

One of the challenges left open by Glöckner and by other researchers in this area consists in
the fact that they define semi-fuzzy quantifier models for expressions like many, about half, almost
all, etc, in an ad hoc fashion. While design principles and specific requirements for the lifting of
semi-fuzzy to fully-fuzzy quantifiers are presented, no framework is offered that allows one to derive
semi-fuzzy quantifier models in a systematic manner from first principles. An attempt to derive
semi-fuzzy quantifier models from more basic reasoning principles using random sampling of wit-
ness elements in extensions of Giles’s game for  Lukasiewicz logic has been made in [13,14]. We will
not be concerned with the derivation of semi-fuzzy quantifiers here, but rather focus on challenges
arising for the second step of Glöckner’s approach, i.e. fuzzification. To address those challenges,
Glöckner devised a list of certain requirements or ‘axioms’ that any formal mechanism for fuzzifi-
cation should satisfy. While this amounts to a laudably systematic approach to this problem, we
argue that Glöckner’s specific axioms are problematic from the point of view of contemporary Mat-
hematical Fuzzy Logic (MFL), as documented, e.g., in the three already available volumes of the
handbook [6]. Indeed, one of our main motivations for revisiting the topic of quantifier fuzzification
is to try to bridge the current gap between MFL on the one side and research on fuzzy quantifiers
on the other side. The latter is mostly motivated by various applications, whereas the first seeks
to extend and deepen the logical foundations of reasoning with fuzzy propositions and predicates
in general.  Lukasiewicz logic turns out to play a central role in MFL. In contrast, Glöckner [19]
explicitly dismisses it as a base logic for fuzzy quantifiers, since taking the residuum of  Lukasiewicz
t-norm as truth function for implication is not compatible with his specific way of relating pro-
positional connectives and quantifiers. However, we think that this move might be too hasty. As
shown in [13,14], certain types of semi-fuzzy quantifiers fit very well into the game semantic fra-
mework for  Lukasiewicz logic provided by Giles [18]. Hence, it is natural to ask whether also fully
fuzzy quantifiers that arise from applying different forms of fuzzification mechanism to semi-fuzzy
quantifiers can be embedded into  Lukasiewicz logic in a systematic manner. For this reason we
will investigate for each of the quantifier fuzzification mechanisms considered in this paper how
the resulting fuzzy quantifiers can be expressed in appropriate extensions of  Lukasiewicz logic con-
taining the corresponding semi-fuzzy quantifiers. Admittedly, this is largely of theoretical interest,
in accordance with the overall research aims of MFL [6]. Nevertheless, these expressibility results
may potentially also be useful for automated reasoning or query answering systems that support
languages that feature fuzzy quantifiers not in isolation, but on top of an expressive deductive
fuzzy logic (see, e.g., [15] for an attempt to enrich a logical query language with certain semi-fuzzy
quantifiers, motivated by witness selection principles).

In this paper, we will not deal with the full realm of generalized quantifiers, but rather focus on
unary quantification over finite domains. The second restriction is readily motivated by the inten-



ded application of modeling natural language semantics: in ordinary (non-mathematical) language
the domain of quantification is usually assumed to consist of a finite number of concrete objects,
determined by the context of discourse. Likewise, query answering systems usually deal with finite
domains only. Correspondingly, we will ignore all worries that only arise for infinite domains, here.
The first restriction, amounting to the assumption that the quantifier scope consists in a single
formula (expressing a unary predicate), is less obvious and calls for a separate motivation. Typical
natural language statements like Many Swedes are tall or Most athletes are healthy feature binary
quantification. Consequently, following Glöckner [19], almost all papers on quantifier fuzzification
consider frameworks that generalize from unary to binary, and even more generally to n-ary quan-
tifiers. However, for the following three reasons we will focus on unary quantification, here: (1)
Binary (and higher arity) quantification poses a specific challenge to fuzzy quantifier models that
arises from possible semantic dependencies between vague range (i.e. domain restricting) predi-
cates and scope predicates. Such dependencies cannot be modeled directly in the usual fuzzy set
approach, as we will explain in more detail in Section 2. This vagueness related phenomenon is
usually ignored in fuzzy logic, with noteworthy exceptions, e.g. [8]. In any case, the challenge is well
recognized in linguistic literature (see, e.g., [2,22]). (2) Independently on whether one agrees on the
significance of the phenomenon of vagueness-induced range/scope dependencies, this issue can be
separated from the discussion of arguably more fundamental desiderata for generalizing semi-fuzzy
to fully-fuzzy quantifiers in a systematic manner. The latter can be discussed most transparently
for unary quantification, where, by definition, no range/scope dependencies can occur. (3) The
third motive for the restriction is a purely pragmatic one. The paper is already quite long as it is.
Since the issues that we want to address here already concern unary quantifiers, it is reasonable to
focus on that basic case and defer more detailed discussions of specific problems regarding more
general forms of quantification to another occasion. This has the additional benefit of admitting a
leaner, more concrete formal framework.

The paper is organized as follows. In Section 2, we present a useful classification of quanti-
fiers (or rather of quantification) with respect to the different components at which vagueness is
involved and try to sort out some terminological issues in the field. Section 3 critically reviews
Glöckner’s axioms for quantifier fuzzification mechanisms (QFMs). In particular, we will discuss
some additional and/or alternative desiderata for quantifier fuzzification, which are not covered by
Glöckner. In Section 4 we briefly introduce the language and standard semantics of  Lukasiewicz
logic. In Section 5 we revisit some of the main QFMs in the literature, investigate them from the
point of view of their expressibility in  Lukasiewicz logic and study their relation. In Section 6 we
introduce a new family of QFMs, and hint at some idea to go beyond Glöckner’s QFM framework.
The final Section 7 provides a compact summary of our findings and hints at directions for further
research.

2 Types of Quantification

In its most general form, a quantified sentence Qx1, . . . xn(P1, . . . , Pm) features a quantifier Q bin-
ding variables x1, . . . , xn that may occur in several argument predicates P1, . . . , Pm. Such quanti-
fiers are often said to be of Type 〈a1, . . . , am〉, where ai is the arity of the predicate Pi (1 ≤ i ≤ m).



In natural language, binary quantification4 (Type 〈1, 1〉 quantification) is the most common form.
This term refers to sentences of the form Qx(R,S), like All girls are clever and Most boys are diligent,
where the quantifier binds a single variable that occurs in both argument predicates, often called
the range (restricting) predicate R and the scope predicate S. In traditional mathematical logic
one usually focuses on unary quantification using the quantifiers ∀ (for all) and ∃ (there exists)
only. As is well known, in classical logic – and in many other logics for that matter – one can
reduce binary quantification for these quantifiers to unary quantification: ∀x(R(x), S(x)) can be
expressed as ∀x(R(x)→ S(x)) and ∃x(R(x), S(x)) as ∃x(R(x)∧S(x)). Such a reduction of binary
quantification to unary one by using propositional connectives is not possible for other quanti-
fiers, in general. However, as long as the range predicate R denotes an ordinary (crisp) set R,
binary quantification may still be reduced to unary quantification semantically by stipulating that
Qx(R,S) is to be evaluated as QxS, where the domain of discourse is restricted to the set R.

There is yet another challenge arising for binary quantification over vague predicates, that is
usually ignored in the literature on fuzzy quantifiers (with some relevant exceptions, such as [8]),
although linguists are certainly aware of it (see, e.g., [2,22]). If a vague predicate like heavy is joined
with another predicate through a binary quantifier then the second predicate often influences the
degrees of applicability of the first predicate. Consider, e.g., the following three sentences, occurring
in the same context (e.g., a very comprehensive ontology, bringing together all kinds of facts for
commonsense reasoning).

– Many coins are heavy.
– Many cars are heavy.
– Many ships are heavy.
– Many planets are heavy.

Obviously the range predicates (coin, car, ship, planet) create different standards for evaluating
the scope predicate heavy adequately. Note that ‘heavy’ is not ambiguous (in the sense that, e.g.,
‘bank’ is ambiguous, since it may either refer to a financial institution or to land next to a river).
Rather it is the vagueness of ‘heavy’, which results in what Shapiro [35,34] calls open-texture. This
property entails a specific form of context dependency that arises if a vague (scope) predicate
is joined with another, not necessarily vague, (range) predicate through quantification. For fuzzy
models of quantification this implies shifts in the interpretation of membership degrees of fuzzy sets
representing a scope predicate, that influence the overall truth value of quantified formula. This
phenomenon is absent for crisp predicates, like precisely defined legal or mathematical concepts.
Consequently, any quantifier fuzzification mechanism that derives the truth function for binary
fuzzy quantifiers solely from the truth function of a corresponding semi-fuzzy quantifier cannot be
fully adequate, in the sense of properly taking into account a well-recognized feature of natural
language. For our purposes, it suffices to point out that the outlined issue about vagueness-induced
range/scope dependencies, by definition, does not arise for strictly unary quantification. A related
fact is discussed in [11], where it is pointed out that vague range and scope predicates joined by
a binary quantifier may give rise to either dependent or independent standards of precisification,
which cannot be fully reflected by membership degrees, which proposes dependent and independent
voting models. To understand this phenomenon, consider the following sentences:

4 In [39] Zadeh speaks of a classification of quantifiers into the first kind, second kind, third kind, etc.,
rather than of unary, binary, ternary, etc., quantification. However, this is in conflict with Zadeh’s own
earlier terminology in [38], that we will mention later in this section.



– Every child is a child.
– Every child is poor.

The first sentence clearly should always be evaluated as true, independently of whether the universe
of discourse contains borderline cases of children or not. The second sentence may well also be fully
true in certain contexts of evaluation. However, widely shared intuitions on proper language use
require that in such contexts the predicate poor has to apply fully to every individual that is
considered to be a child to some positive degree. In other words: the second sentence should not
be accepted as fully true if there are borderline cases of individuals that are poor as well as
children. Consequently, the two sentences might well have to judged differently, even if the fuzzy
sets representing the predicates child and poor are identical (e.g., by assigning degree 0.5 to all
members of the universe).

One may summarize the linguist phenomena described above by saying that binary quantifica-
tion over vague predicates often shows an intensional behavior that cannot be adequately reflected
by a extensional (purely truth functional) framework, like that of fuzzy quantifiers. As already
indicated, linguists are well aware of this fact when modeling vagueness, e.g., by contextually shif-
ting standards of acceptance or rejection (see, e.g., [2]). For an assessment of this situation that
is closer to the concerns of (deductive) fuzzy logic, we refer to [11]. Of course, this does not mean
that the standard approach to binary fuzzy quantifiers is not useful. In fact, the models considered
in the literature on fuzzy quantifiers are mainly motivated by computational concerns and may
well be deemed adequate for certain types of applications. However, there is a trade off between
computational efficiency and full linguistic adequateness.5

In any case, it seems fair to say that in order to fully take into account also the intensional
aspects of vague quantification, one has to be prepared to consider more complex logical models
that enrich the extensional framework by modal features, as featured in standard linguist accounts
of vagueness; see, e.g., [2,16,21,22]. For the current purpose, it suffices to point out the indicated
challenges arising from intensional dependencies between range and scope predicates only arise
for binary and higher-arity quantifiers. Consequently, we will focus on unary quantification here,
leaving a more thorough discussion of the challenges and desiderata arising specifically for other
forms of quantification to future work.

While vagueness can be formally modeled in various different ways, in this paper we will follow
the fuzzy logic approach to model vague predicates and statements. In particular, there is a consi-
derable body of literature on fuzzy quantifiers, originating with Zadeh’s [38], which spawned a wide
range of follow up work. Most importantly, Glöckner devoted a comprehensive monograph [19] on
this topic, which remains an important milestone. More recent work, not yet covered in [19], is
surveyed in [7], in [8], and in [9]. Common to all models in this tradition is that a vague unary

predicate P is modeled as a fuzzy set P̃ : D → [0, 1], where each element of the domain D (a
non-empty crisp set) is mapped to a degree of membership from the unit interval [0, 1]. Throug-
hout this paper we assume that D is finite. This is justified by the intended applications, namely
models of ordinary language statements, where the relevant domain of discourse is concrete (crisp)

5 The situation is analogous to the well known dilemma arising at the propositional level for the conditi-
onal. Classical truth functional implication can hardly be viewed as a linguistically adequate model of
the if-then-construction as used in natural language. Such models rather call for intensional logics that
are capable of capturing causal or counter-factual aspects of the conditional. Nevertheless, there might
be good pragmatic reasons for sticking with the simple classical truth table for material implication in
many applications.



and finite. As we will see, this assumption supports a number of simplifications. For example, we
will not have to worry about whether a given set of domain elements can be ‘measured’ in some
suitable sense.

In the literature on fuzzy quantifiers, one often conflates syntax and semantics: no explicit
distinction between a quantifier expression and its corresponding truth function is made. Likewise,
one does not distinguish between the formula (over some given object language) and the set or
relation that the formula denotes under a given interpretation. Since one of our main aims is
to embed quantifier models into formal deductive fuzzy logics — in particular into appropriate
extensions of  Lukasiewicz logic — we prefer to make the syntax/semantics distinction explicit, as
usual in Mathematical Fuzzy Logic.

An interpretation I assigns a fuzzy set P̃ to each unary predicate symbol P . Consequently,
the corresponding truth function vI(·) assigns the truth value (degree of truth) vI(P (c)) = P̃(c)
to the sentence (closed atomic formula) P (c), where c is a constant symbol that I maps to the
element c of the domain D. (In the rest of the paper we will identify domain elements with
corresponding constant symbols.) More generally, fuzzy relations are assigned to predicate symbols
of corresponding arity. Moreover, the predicate that serves as argument of a unary quantifier may
be presented by a compound formula F of some given logic. (We will formally introduce  Lukasiewicz
logic with the 4 operator for this purpose in Section 4). In the special case where all predicates
are crisp, we speak of a classical interpretation. For a quantified sentence QxF (x), we obtain a
truth degree vI(QxF (x)) by associating the quantifier Q with a function that maps every fuzzy
set, i.e. every denotation of the argument formula F (x)) into the set of truth values [0, 1]. Note
that, even if the formula F is classical, i.e. vI(F (c)) ∈ {0, 1} for all c ∈ D, vI(QxF (x)) may still
be an intermediate truth value: neither 0 nor 1. Below, we will write F̂ instead of F , whenever we
want to emphasize that the formula is classical.

Let us recall a useful classification, introduced by Liu and Kerre [24]:

Type I: the quantifier is crisp and its arguments are crisp;
Type II: the quantifier is crisp, but the arguments may be fuzzy;
Type III: the quantifier is fuzzy, but its arguments are crisp (semi-fuzzy);
Type IV: the quantifier as well as its arguments are fuzzy (fully-fuzzy).

These types are considered in a cumulative fashion: crispness is understood as a special case of
fuzziness (arising from restricting [0, 1] to {0, 1}) and thus every Type I sentence is of Type II and
Type III as well; moreover the latter are also of Type IV. However Type II and III are incomparable
and only share Type I as special cases. Strictly speaking, the types refer to quantified sentences and
not just to the used quantifier expressions. Nevertheless, we may speak of semi-fuzzy or (fully-)fuzzy
quantifiers, thus indicating whether the arguments are implicitly restricted to crisp predicates or
not.

Of particular importance are natural language expressions like almost all, about half, at least
(about) a third, at most (about) 10%, etc, which refer to the proportion of domain elements satisfying
the scope predicate. In contrast, quantifier expressions like about five, at least about hundred, much
more than ten, refer not to proportions, but to absolute numbers. We will speak of proportional
and absolute quantification, respectively.6

6 In [38] Zadeh speaks of quantifiers of the first kind and of the second kind, referring to ‘absolute
and relative counts’, respectively. As pointed out above, this is in conflict with Zadeh’s own (later)
terminology in [39]. We therefore follow Glöckner [19] in using the terms ‘absolute’ and ‘proportional’,
instead.



Note that proportion is only clearly defined for finite domains — corresponding to our setting, as
specified above — and for crisp predicates, i.e., for semi-fuzzy quantification. Similarly, (absolute)
cardinality is unambiguous only for predicates that correspond to crisp sets.

Definition 1. Given a classical interpretation I over the domain D and a formula F , we define

PropI(F ) =
|{c ∈ D : vI(F (c)) = 1}|

|D|
=

∑
c∈D vI(F (c))

|D|
.

We denote by Π the semi-fuzzy quantifier whose truth function is PropI , i.e. such that
vI(ΠxF (x)) = PropI(F ). The quantifier has been originally introduced in [13,14] as a random
choice quantifier, motivated in a game semantic framework via a non-strategic player, called Na-
ture, that samples witnessing elements for statements uniformly randomly, see also [5] for a more
comprehensive analysis.

In the following, we call a semi-fuzzy quantifier Q proportional if there exists a function
gQ : [0, 1] → [0, 1] such that, for any classical interpretation I, vI(QxF (x)) = gQ(vI(ΠxF (x)) =
gQ(PropI(F )).

Similarly, we call a semi-fuzzy quantifier Q absolute if there exists a function gQ such that for
any classical interpretation I, vI(QxF (x)) = gQ(|{c ∈ D : vI(F (c)) = 1}|.

The main challenge addressed in this paper is to find suitable generalizations of semi-fuzzy
(Type III) proportional and absolute quantification to a fully-fuzzy (Type IV) setting. At a first
glance, one might suppose that it suffices to generalize cardinality in the usual way by using the
Σ-count, i.e.

∑
c∈D vI(F (c)) instead of |{c ∈ D : vI(F (c)) = 1}|. Such measure induces for instance

a fully-fuzzy version of PropI(F ) =
∑
c∈D vI(F (c))

|D| and of the quantifier Π, which we denote by

the same symbol and interpret by vI(ΠxF (x)) = PropI . While this form of ‘lifting’ semi-fuzzy to
fuzzy quantification is technically straightforward, it is, unfortunately, linguistically inadequate, in
general. To see this, consider, e.g., the absolute quantifier exactly five applied to a fuzzy predicate F
over 10 domain elements. Replacing cardinality by the Σ-count in Definition 1, forces us to evaluate
the sentence Exactly five [of the 10 domain elements] are F as perfectly true in an interpretation
where vI(F (c)) = 0.5 for every c ∈ D. This is clearly inadequate. The phenomenon has been
generally called aggregative behavior of low truth values [19,9]. It occurs whenever many low truth
degrees are attributed to each element of the domain, but their aggregation in the evaluation of a
quantified sentence gives rise, counterintuitively, to a high truth degree.

A similar phenomenon occurs also for proportional quantification, as the case for the quantifier
expression half reveals: we would obtain the same truth value for Half [of the domain elements]
are F in an interpretation where vI(F (c)) = 0.5 for every c ∈ D as in an interpretation where
vI(F (c)) = 1 for exactly half of the domain elements and vI(F (c)) = 0 for the other half.

3 Desiderata for Quantifier Fuzzification Mechanisms

As already indicated in the introduction, Glöckner’s approach [19] to the challenge of designing
adequate and useful fuzzy models of vague natural language quantifiers remains of central im-
portance. In this section we review his desiderata for lifting semi-fuzzy quantifiers to fully-fuzzy
quantifiers, but also critically discuss some potential problems and alternative principles. We will
occasionally also suggest more suitable names for important postulates. The central notion is the
following.



Definition 2. A quantifier fuzzification mechanism (QFM) F assigns to each semi-fuzzy quantifier
Q a corresponding fully-fuzzy quantifier F(Q).

Glöckner imposes six requirements (‘axioms’) for QFMs, two of which concern the relation be-
tween unary quantifiers and related quantifiers with more than one argument formula. As already
pointed out in the introduction, we think that Glöckner’s specific way of extending unary quanti-
fiers to quantifiers with more than one arguments, at least potentially, runs into serious problems
with respect to adequately capturing vagueness related issues arising for higher-arity quantifica-
tion due to intensional relations between different argument predicates. In this paper we put those
issues aside and solely discuss various options for generalizing unary Type III (and, later, also
Type II) quantification to unary fully-fuzzy (Type IV) quantification. However, Glöckner aimed at
an axiomatic characterization of the preferred QFMs, where the axioms are pairwise independent.
Consequently, some of his own desiderata are not directly reflected in the axioms, since correspon-
ding properties can be derived from the six stated axioms. Since we also want to bring alternative
lifting principles in view, we will have to discuss also some of these derived properties.

As already mentioned in Section 2 Glöckner obliterates the distinction between a quantifier
expression (a syntactic object) and the corresponding truth function (semantics). Accordingly,
there also is no explicit distinction between predicate symbols and their denotations. As long as
one does not aim at embedding the quantifier models in deductive logic, this syntax/semantic
conflation is harmless and leads to shorter formulas. When speaking of a ‘quantifier’, we will also
leave it to the context to disambiguate between a quantifier expression and its corresponding truth
function. Similarly, we will simply speak of a (fuzzy or crisp) predicate or argument, without
always making explicit whether we refer to an (atomic or compound) formula of some formal logic
or to its denotation. However — keeping in mind the embeddability of quantifier models in full-
fledged deductive fuzzy logics — we will usually make the reference to an interpretation I and the
corresponding evaluation function vI(·) explicit.

In the following, F will always denote the QFM in question. Glöckner calls the following prin-
ciple “perhaps the most important axiom”:

Correct Generalization: For every crisp formula F̂ : vI(F(Q)xF̂ (x)) = vI(QxF̂ (x))

This principle expresses that the fuzzified quantifier F(Q) should coincide with the semi-fuzzy
quantifier Q on crisp arguments. We will see later, in Section 6.1, that even this seemingly innocent
principle may have to be dropped for certain models that actually arise not from directly lifting
semi-fuzzy quantifiers to fully-fuzzy ones, but that rather take Type I quantification as a starting
point for devising a fuzzy quantification model.

For the following definition, remember that we identify domain elements with constants.

Definition 3. For any crisp formula F̂ and any c ∈ D, we define the Type I projection quanti-
fier 4c by vI(4cxF̂ (x)) = vI(F̂ (c)).

Note that 4cxF̂ (x) is classical (bivalent). Glöckner postulates the following axiom for lifting
4c to fuzzy predicates.

Projection Quantifiers: For every formula F : vI(F(4c)xF (x)) = vI(F (c)).

While this stipulation is certainly natural, it may be questioned whether there is a need to introduce
projection quantifiers at all. Obviously, Glöckner’s corresponding axiom only makes sense if we



insist on representations of vague predicates as fuzzy formulas. While this is certainly open to
discussion from a linguistic point of view, we will take it for granted here.

Except for the projection quantifier, all quantifiers that we want to discuss here are logical, in
the sense that the truth value of a quantified statement does not depend on the order of domain
elements, but only on quantitative aspects of the argument predicate. This can be expressed in
various ways. Following [30], we will take the following property as the hallmark of logicality.

Definition 4. A semi-fuzzy7 or fuzzy quantifier Q is called quantitative if for every automor-
phism8 ξ : D → D and every formula F , vI(QxF (x)) = vIξ(QxF (x)), where the interpretation Iξ
results from the interpretation I by mapping every c ∈ D into ξ(c).

Preservation of Quantitativity: If Q is quantitative then F(Q) is quantitative, too.

Another basic desideratum for quantifier fuzzification is called ‘extensionality’ in [19]. It refers
to the fact that the interpretation of quantifiers usually shows some kind of context insensitivity:
embedding a smaller model into a larger one does not affect evaluations. Clearly, this property
should be preserved under fuzzification. Our logic based approach guarantees that this principle is
already built into the formal setting and does not even have to be formulated explicitly.

Let us now formulate a principle that can easily be confused with extensionality, but actually
refers to a quite different property. It is useful to first introduce the following notions.

Definition 5. We call the interpretation I ′ a conservative extension of I and say that I ′ con-
servatively extends I if I ′ results from I by (possibly) adding further elements to the domain D
without changing the interpretation of predicates over D itself (i.e., vI′(·) and vI(·) agree on D).
Moreover, we call D-based variants of I, any two conservative extensions of I.

Definition 6. A (semi-fuzzy or fuzzy) quantifier Q is called non-decreasing under extension if for
every formula F , vI(QxF (x)) ≤ vI′(QxF (x)), whenever I ′ conservatively extends I. It is called
non-increasing under extension if, under the same condition, vI(QxF (x)) ≥ vI′(QxF (x)).

Note that neither proportional nor absolute quantifiers are non-decreasing or non-increasing
under extension, in general. However, the classical existential quantifier and, more generally, Type
I quantifiers expressing at least k (k > 0) are non-decreasing under extension, while the quantifiers
expressing none or at most k (k > 0) are non-increasing under extension. Although neither is con-
sidered by Glöckner [19] nor by Delgado et al. [7], it is not unreasonable to ask for the preservation
of these properties under fuzzification.

Preservation of Monotonicity under Conservative Extension: If Q is non-decreasing
(non-increasing) under extension then F(Q) is non-decreasing (non-increasing) under exten-
sion, too.

Glöckner wants to generalize the dualities of syllogistic reasoning expressed in Aristotle’s square
from classical to fuzzy logic (see Section 3.5 of [19]). This requires not only the presence of a
connective for negation (¬), but also of antonymic quantifiers. Since we are only interested in
unary quantifiers, the corresponding definition is straightforward.

7 In the following we will tacitly assume that whenever Q is a semi-fuzzy quantifier then the corresponding
scope formula is crisp, even if that is not indicated explicitly by our notation.

8 In our case this is just a bijection of D into itself, i.e., a permutation of the domain.



Definition 7. For any quantifier Q its antonym Q¬ is given by vI(Q¬xF (x)) = vI(Qx¬F (x)).
The negated quantifier ¬Q is given by vI(¬QxF (x)) = vI(¬QxF (x)). Moreover, the dual quantifier
Qd is defined by vI(QdxF (x)) = vI(¬Qx¬F (x)). In other words, the dual quantifier is the negated
antonym of the given quantifier.

The following corresponding desiderata arise for a QFM F and semi-fuzzy Q:

Internal Negation: For any formula F : vI(F(Q¬)xF (x)) = vI(F(Q)x¬F (x)).
External Negation: For any formula F : vI(F(¬Q)xF (x)) = vI(¬F(Q)xF (x)).

In the context of his other axioms, Glöckner only needs to formulate the following desideratum
explicitly:

Dualization: For every formula F : vI(F(Qd)xF (x)) = vI(F(Q)
d
xF (x)).

As already indicated, Dualization presupposes the existence of a unique negation operator. Glöckner
tackles this problem by introducing a mechanism for deriving truth functions for propositional
connectives from QFMs. While he speaks of a ‘canonical construction’ we emphasize that the set
of truth functions preferred by Glöckner for negation, disjunction, conjunction and implication are
incompatible with those of either  Lukasiewicz, Gödel, or Product logic.

More generally, Glöckner’s approach to propositional connectives is incompatible with a more
recent approach to deductive fuzzy logics [20,6,5], where one starts with a (left-)continuous t-norm
for conjunction, uses its residuum for implication and derives all other connectives from these in a
canonical fashion.

The next principle focuses on an important subclass of quantifiers.

Definition 8. A quantifier Q is called non-increasing if vI(F (c)) ≤ vI(F ′(c)) for every c ∈ D
implies vI(QxF (x)) ≥ vI(QxF ′(x)).

Note that in the case of crisp formulas F̂ and F̂ ′, the condition that vI(F̂ (c)) ≤ vI(F̂ ′(c)) for
every c ∈ D expresses that the extension of F̂ is a subset of the extension of F̂ ′. In this restricted
form, monotonicity of quantifiers is often discussed in linguistic literature (see, e.g., [30]). For
example, for any constant k the Type I quantifier at most k is non-increasing; but also the vague
quantifiers few and less than about half are non-increasing. Thus it is understandable that Glöckner
wants to preserve this property in lifting from semi-fuzzy to fully-fuzzy quantifiers.

Preservation of Monotonicity (≥): If Q is non-increasing then F(Q) is non-increasing, too.

Note that, following Glöckner, monotonicity is only formulated for one direction of the inequality
here. However the following property is just as important.

Definition 9. A quantifier Q is called non-decreasing if vI(F (c)) ≤ vI(F ′(c)) for every c ∈ D
implies vI(QxF (x)) ≤ vI(QxF ′(x)).

Accordingly, one should augment Preservation of Monotonicity as follows.

Preservation of Monotonicity (≤): If Q is non-decreasing then F(Q) is non-decreasing, too.

Glöckner does not include the latter postulate among his axioms because it is entailed by the
Preservation of Monotonicity for non-increasing quantifiers and Dualization. In contrast, we argue
that these monotonicity conditions should be kept independent of the particular choice of the
negation connective.

For semi-fuzzy quantifiers, we may consider the following alternative definition of monotonicity
that only refers to proportions (see Definition 1).



Definition 10. A semi-fuzzy quantifier Q is called non-decreasing in proportion, if vI(QxF̂ (x)) ≤
vI(QxĜ(x)), whenever PropI(F̂ ) ≤ PropI(Ĝ). Analogously, we call Q non-increasing in propor-
tion, if vI(QxF̂ (x)) ≥ vI(QxĜ(x)), under the same condition.

The following lemma follows from the fact that the condition for monotonicity in proportion is
weaker than the one for ordinary monotonicity.

Lemma 1. If a semi-fuzzy quantifier Q is non-increasing (non-decreasing) in proportion, then it
is also non-increasing (non-decreasing).

The converse direction holds for all logical quantifiers, i.e. for quantitative quantifiers in the
sense of Definition 4, as the following lemma demonstrates.

Lemma 2. If a quantitative semi-fuzzy quantifier Q is non-increasing (non-decreasing), then it is
also non-increasing (non-decreasing) in proportion.

Proof. Let G1 and G2 be two formulas that fulfill PropI(G1) ≤ PropI(G2). We define two for-
mulas H1 and H2 such that PropI(H1) = PropI(G1) and PropI(H2) = PropI(G2) and moreover
vI(H1(c)) ≤ vI(H2(c)) for every c ∈ D. Note this is always possible by introducing new monadic
predicate symbols for H1 and H2.

Since Q is quantitative and non-decreasing, it follows that vI(QxH1(x)) ≤ vI(QxH2(x)). It
therefore remains to observe, that vI(QxH1(x)) = vI(QxG1(x)) and vI(QxH2(x)) = vI(QxG2(x)),
which is clear since Q is quantitative and PropI(H1) = PropI(G1), as well as PropI(H2) =
PropI(G2).

The case for non-increasing quantifiers is analogous.

Glöckner singles out QFMs that fulfill the four above mentioned postulates (‘axioms’ in his
terminology): Correct Generalization, Projection Quantifiers, Dualization, Preservation of Monto-
nicity (≥). Moreover, he formulates axioms called ‘Internal Joins’ and ‘Functional Application’,
which are only relevant for quantifiers with more than one argument position. A QFM that satis-
fies these six postulates is called a determiner fuzzification scheme (DFS) in [19]. Glöckner states
that DFSs “capture all important aspects of systematic and coherent interpretations”. As we will
see, this claim is problematic, since it neglects some features that might well be considered highly
desirable, in particular from the point of view of linguistic adequateness.

We have already pointed out that Preservation of Monotonicity for non-decreasing quantifiers
follows from Preservation of Monotonicity for non-increasing quantifiers if Dualization is assumed.
But, as indicated above, Dualization might be considered problematic. Therefore it is better to
explicitly consider both versions of Preservation of Monotonicity.

Another form of preserving monotonicity is called ‘Monotonicity in the Quantifier’ by Glöckner.
It is not concerned with the truth degrees of the respective argument formulas, but rather with
the relative degrees of truth resulting from different quantifiers applied to the same arguments. We
suggest an alternative name for the relevant property and the corresponding principle.

Definition 11. A quantifier Q1 is called at least as strong as a quantifier Q2 — in signs: Q1 ≥ Q2

— if for every formula F vI(Q1xF (x)) ≥ vI(Q2xF (x)).

Again, the corresponding postulate already follows from others, when one is willing to follow
Glöckner’s (problematic) detour via non-monadic quantifiers. We prefer to state it explicitly.



Preservation of Quantifier Strength: If Q1 ≥ Q2 then F(Q1) ≥ F(Q2).

A further rather natural principle calls for a certain ‘robustness’ in evaluating quantified fuzzy
statements. It seeks to capture the intuition that small variations in the truth values of the (in-
stantiated) argument formula should only lead to small changes of the truth value of the quantified
formula.

Continuity in the Argument: For any semi-fuzzy Q the truth function of the corresponding
fuzzy version F(Q) is continuous. More precisely, the following holds for all formulas F and
F ′: for every ε > 0 there exists δ > 0 such that supc∈D |vI(F (c)) − vI(F ′(c))| < δ implies
|vI(F(Q)xF (x))− vI(F(Q)F ′(x))| < ε.

Glöckner states that this condition on F (called arg-continuity in [19]) “is crucial to the utility”
and “must be possessed by every practical model”. Nevertheless he does not include it in his list
of axioms, although it is not derivable from his axioms, explaining that he aims for a level of
generality that encompasses discontinuous cases.

A further desideratum, not considered explicitly by Glöckner, is called ‘Coherence with Logic’
in [8]. This postulate is specific to universal and existential quantification. For monadic quantifica-
tion, it just states that the truth functions for ∀ and for ∃ are given by the infimum and supremum
of the truth values of the argument formulas, respectively. Note that, while this is obvious for crisp
arguments (i.e. ordinary classical logic), it amounts to an explicit desideratum for fuzzy (Type II)
versions of ∀ and ∃. The name ‘Coherence with Logic’ for this simple principle becomes under-
standable only if one considers binary quantifiers and additionally requires that binary universal
and existential quantification is reduced to the unary case by strict analogy to classical logic, using
implication and conjunction, respectively.

A similar kind of principle is introduced in [9] under the name ‘Average Property for the Iden-
tity Quantifier’. The identity quantifier in [9] is basically our Π and the property in our setting
amounts to vI(F(Π)xF (x)) = PropIF . We combine ‘Coherence with Logic’ with the ‘Average
Property for the Identity Quantifier’ and speak of the ‘Infimum/Supremum/Average principle´.

Infimum/Supremum/Average principle: The following hold
– (Infimum) vI(F(∀)xF (x)) = infc∈D vI(F (c))
– (Supremum) vI(F(∃)xF (x)) = supc∈D vI(F (c))
– (Average) vI(F(Π)F (x)) = PropIF

In the rest of the paper, following what is customary in Mathematical Fuzzy Logic, the symbols
∀ and ∃ will denote both the semi-fuzzy and the fully-fuzzy quantifiers interpreted by the infi-
mum and the supremum function, respectively. We also use the symbol Π for both semi-fuzzy
and the fully-fuzzy quantifiers interpreted by the PropI function (see above). Hence the Supre-
mum/Infimum/Average principle can be equivalently formulated as vI(F(∀)xF (x)) = vI(∀xF (x)),
vI(F(∃)xF (x)) = vI(∃xF (x)), vI(F(Π)xF (x)) = vI(ΠxF (x)) .

Finally, for the last desideratum, we consider sets of semi-fuzzy quantifiers which can be seen
as fuzzy partitions [33] of a given domain. Recall that the concept of fuzzy partition arise naturally
in approaches which interpret intermediate degrees of truth as probabilities that certain given
labels are adequate, see e.g. [23]. A fuzzy partition determined by quantifiers is called a quantified
partition and is just a collection of quantifiers which exhaust all possible adequate labels for a set.



As an informal example, one might consider the quantified partition clearly less than half / about
half / clearly more than half. A precise rendering of the idea in our logical setting is given by the
following.

Definition 12. A set of semi-fuzzy quantifiers {Q1, . . . ,Qn} is a quantified partition iff for every
interpretation I, classical formula F , we have vI(Q1xF (x)) + · · ·+ vI(QnxF (x)) = 1

It is straightforward to extend the definition above to fuzzy quantifiers and fuzzy sets. The
following desideratum requests then that the fuzzification of a quantified partition is a quantified
partition as well.

Preservation of quantified partitions: If {Q1, . . . ,Qn} is a quantified partition, then
{F(Q1), . . . ,F(Qn)} is a quantified partition, too.

We emphasize that the above list of desiderata for fuzzification mechanisms is not exhaustive.
Remember that we restrict attention to unary quantification, here. This renders postulates like
Glöckner’s axioms for ‘internal joins’ and ‘functional application’, but also ‘argument insertion’ ir-
relevant to our context. But even for unary quantifiers, further principles might be relevant, at least
for particular application scenarios. In fact, we suggest that certain more general methodological
principles for the design of fuzzy quantifier models should be respected as well. Most importantly,
we think that ideally such models should be embeddable into certain full-fledged (deductive) fuzzy
logics.

Definition 13. We call a QFM F expressible in a given logic over a language L, if for every
semi-fuzzy quantifier Q there is a formula in the language L extended by Q that specifies the truth
function of F(Q).

In particular, we argue that it is desirable for a QFM to be expressible in  Lukasiewicz logic  L
or at least in some conservative extension of  L, like the one arising by adding the 4-operator or
the basic random choice quantifier Π, introduced in [13]. Note that  L is distinguished among all
the t-norm based fuzzy logic as the only one, where the truth functions for all connectives are
continuous. However, Glöckner (in a footnote on page 156 of [19]) explicitly dismisses the choice
of the residuum of the  Lukasiewicz t-norm for modeling implication, citing the desirability of ‘pre-
serving Aristotelian squares’, which is incompatible with  Lukasiewicz logic under the suggested
generalization of Aristotelian concepts to the fuzzy setting. (We refer to [25,26,28] for an alterna-
tive generalization based on fuzzy type theory, which extends  Lukasiewicz logic to a higher order
setting.)

That properly extended  Lukasiewicz logic should indeed be considered as a distinguished basis
for modeling reasoning with vague notions, including quantifier expressions has been argued, e.g.,
by Novak [27]. Another important reason why compatibility with  L is highly desirable has been
discussed at length in [14]: Giles [18] introduced a game based model of approximate reasoning
that allows one to derive the truth functions of  L from first principles, rather than to just stipulate
them. In [14] and, more recently, in [1], this game based interpretation of  L has been extended to
derive (rather than just impose) truth functions for certain families of semi-fuzzy quantifiers, based
on randomized choices of witness elements. The quantifier models for fully-fuzzy quantification
introduced below do not directly depend on (extensions of) Giles’s game; however they are partly
inspired by this semantic framework, as we will point out at some places.



4  Lukasiewicz logic with Delta:  L4

For reasons explained in the previous section, we take  L4, i.e. first order  Lukasiewicz logic extended
with the Delta operator (4) as our base logic (cf. [6]). The syntax of  L4 formulas can be specified
as follows:

γ ::= ⊥ | R(t) | ¬γ | 4γ | γ ∧ γ | γ ∨ γ | γ � γ | γ ⊕ γ | γ → γ | γ ↔ γ | ∃vγ | ∀vγ,

where R is our meta variable for predicate symbols and t denotes a sequence of terms (either
constant symbols or object variables) matching the arity of the preceding predicate symbol; v is
our meta variable for object variables, which we usually name x, y, . . . .

As usual, an interpretation I assigns truth values in [0, 1] to atomic formulas. More precisely,

I fixes a finite domain D and maps every predicate symbol P of arity n into a fuzzy relation P̃I
over Dn, i.e., a function P̃ : Dn → [0, 1]. We identify the elements of D with constant symbols. I
also contains a variable assignment ξI that sends every object variable into an element of D. We
define

vI(P (t1, . . . , tn)) = P̃I(c1, . . . , cn),

where ci = ξI(ti), if ti is a variable and ci = ti if ti is constant symbol, i.e., an element of D.
The special atomic formula ⊥ is interpreted as (absolute) falsity, hence we set vI(⊥) = 0. The
evaluation function is extended from atomic to compound formulas as follows:

vI(4F ) = 1 if vI(F ) = 1, else vI(F ) = 0 vI(¬F ) = 1− vI(F )
vI(F → G) = min(1, 1− vI(F ) + vI(G)) vI(F ↔ G) = 1− |vI(F )− vI(G)|
vI(F ∧G) = min(vI(F ), vI(G)) vI(F ∨G) = max(vI(F ), vI(G))
vI(F �G) = max(0, vI(F ) + vI(G)− 1) vI(F ⊕G) = min(1, vI(F ) + vI(G))
vI(∀xF (x)) = minc∈DvI(F (c)) vI(∃xF (x)) = maxc∈DvI(F (c))

Actually, as is well known, there is a lot of redundancy in the definition of vI(·). For example,
negation (¬), weak and strong conjunction (∧ and �), weak and strong disjunction (∨ and ⊕),
as well as the biconditional (↔) can all be defined in terms of implication (→) and falsity (⊥).
Moreover, the universal quantifier (∀) can be defined using negation and the existential quantifier
(∃), or vice versa, just like in classical logic.

In the remainder of this paper, we use the notation  L4(Q) to denote the expansion of the logic
 L4 with the quantifier Q. Such expansions will be handy when discussing various QFMs. As we will
see below, for certain QFMs F ,  L4(Q) is not sufficiently expressive to define formulas of the form
F(Q)xF (x) in the given language. We will therefore introduce further extensions of  Lukasiewicz
logic as needed. Throughout the rest of the paper, we will simply speak of ‘formulas’, when we
refer to either a  L4 formula or to a formula of some appropriate extension of  L4, depending on
the given context.

5 Expressibility of Quantifier Fuzzification Mechanisms

In this section we will recall the most well-behaved Quantifier Fuzzification Mechanisms (QFMs) in-
troduced in the literature, and we discuss how to express them in suitable expansions of  Lukasiewicz
logic, and whether they fulfill the additional desideratum of Preservation of Monotonicity under
conservative extensions, that we introduced in the previous section. We will focus our attention on



three particularly well-behaved QFMs, which are introduced by Glöckner and qualify as Determi-
ner Fuzzification Schemes (DFS). Such QFMs are originally denoted by Glöckner by M, MCX ,
FOWA, but here we will use FM,FCX ,FOWA instead, for coherence.

Let us consider first some expansions of the language of  L4, in preparation for the discussion
of expressibility of the QFMs. First, we consider extensions of the language with (countably many)
propositional variables, which we usually denote by p, q, . . . . This enables us to refer to all possible
truth values, avoiding the use of an explicit, uncountable, additional set of truth constants.

Definition 14. For any atomic formula A we define:

vI[p→α](A) =

{
α ifA = p

vI(A) otherwise

For arbitrary formulas F , we obtain vI[p→α](F ) by ordinary truth-functional extension.

We can then define the following propositional version of the object quantifiers ∃,∀, Π.

Definition 15. For any interpretation I, formula F we define:

vI(∃pF (p)) = sup
α∈[0,1]

vI[p→α](F (p))

vI(∀pF (p)) = inf
α∈[0,1]

vI[p→α](F (p))

vI(ΠpF (p)) =

∫ 1

0

vI[p→α](F (p))dα.

Let us also introduce some compact notation which will result useful in the following.

Definition 16. Let F and G be formulas. We denote by F≥G the formula 4(G → F ), and by
F≤G the formula 4(F → G). We let also F>G := ¬F≤G, F<G := ¬F≥G and F=G := F≤G∧F≥G.
Let F (x) be a formula, with x variable occurring in F . To simplify the notation, we will denote the
formulas of kind F (x)≥F (y), F (x)≥F (c) by F≥y(x) and F≥c(x), respectively.

Before going into the technical details of expressibility, let us stress that we will think of
fuzzification mechanisms from an angle slightly different than the usual one in the literature: we
take a QFM F to be a way of reducing the evaluation of a formula F(Q)xF (x) over a fuzzy
interpretation I to the evaluation of semi-fuzzy quantified sentences of the kind QxF̂ (x) over a
set of classical interpretations. Following the terminology used in supervaluationist accounts of
vagueness [12,17], we call such a set of interpretations the admissible precisifications of I. Note
that, despite the fact that a precisification evaluates the argument formulas classically, the valuation
under a precisification of a formula involving a semi-fuzzy quantifier might be an intermediate value
in [0, 1]. Informally, admissible precisifications are the ‘reasonable’ ways of turning I into a precise
(i.e. classical) interpretation of F (x). As an example, consider a natural language predicate such
as young. This is a inherently vague notion, but for some purposes (e.g. in legal contexts), one
might need to deal with an artificially precise counterpart of it. We might then consider admissible
precisifications of young, such as the sharply defined young1:=set of people of age < 18, young2:=set
of people of age < 16, and so on. In our framework, since we model vague predicate as fuzzy sets,
a natural candidate for the set of admissible precisifications is obtained by considering various



α-cuts: for any fuzzy set F̃ over domain D and any α ∈ [0, 1], the α-cut F̃≥α is defined as the crisp

set {c | F̃(c) ≥ α}.
Glöckner criticizes approaches based on α-cuts [19] and suggests instead a more complex route:

first, he fixes a “cautiousness parameter” γ ∈ [0, 1], which determines two extreme α-cuts, a lower
and an upper bound, and selects then all the precisifications included within the two bounds. The
results obtained for each choice of the parameter γ ∈ [0, 1] are then aggregated by way of different
operations. More formally, we can render Glöckner’s approach in our setting as follows. Given a
formula F (x) a quantifier Q and a fuzzy interpretation I we let:

Cγ(F I) = {I ′ | F I
≥0.5+0.5γ

⊆ F I
′
⊆ F I

>0.5−0.5γ

} for γ 6= 0

C0(F I) = {I≥0.5, I>0.5}

where γ is the cautiousness parameter and all the I ′ are precisifications of I, i.e. they have the
same domain of I and evaluate the predicate F classically.

We introduce then the following notation, standing for the maximum and a minimum value of
semi-fuzzy quantified expressions over Cγ , respectively:

⊥Q(Cγ(F I)) = inf
I′∈Cγ(FI)

vI′(QxF (x))

>Q(Cγ(F I)) = sup
I′∈Cγ(FI)

vI′(QxF (x)).

Different QFMs can be then defined, by aggregating the values ⊥Q(Cγ(F I)) and >Q(Cγ(F I))
over the different choices of γ ∈ [0, 1]. Let us start from the QFM FM (see [19], Def. 7.22 ). In
such mechanism, one computes first the fuzzy median med(>Q(Cγ(F I)),⊥Q(Cγ(F I))), for each γ.
Recall that the fuzzy median is a function med : [0, 1]2 → [0, 1], defined by:

med(x, y) =


min(x, y) if min(x, y) > 0.5

max(x, y) if max(x, y) < 0.5

0.5 otherwise

(1)

The evaluation of the QFM is then obtained by integrating over all the values of γ in [0, 1]. We
get thus the following:

vI(FM(Q)xF (x)) =

∫ 1

0

med(⊥Q(Cγ(F I)) , >Q(Cγ(F I)))dγ

Let us now investigate how to express FM in expansions of  L4. First, we note that the fuzzy
median is expressible in  L4 expanded with a truth constant 0.5 such that vI(0.5) = 0.5, for every
interpretation I. We then let, for any formulas α, β

α ∗ β := ((α ∧ β) ∧ (α ∧ β)≤0.5) ∨ ((α ∨ β) ∧ (α ∨ β)≤0.5) ∨ 0.5

It is then straightforward to check that vI(α ∗ β) = vI(α) med vI(β).
Unfortunately, we are already stuck when trying to express ⊥Q(Cγ(F I)) and ⊥Q(Cγ(F I)).

Indeed, we are not able to quantify over all precisifications in Cγ(F I), unless we are willing to
move to the setting of second-order logic. Let us thus consider only the special case of monotone



quantifiers. There, recalling the definition of Cγ(F I) and of ⊥Q and >Q, we get, for non-decreasing
quantifiers:

⊥Q(Cγ(F I)) = vI′(QxF (x)) where F I
′

= F I
≥0.5+0.5γ

>Q(Cγ(F I)) = vI′(QxF (x)) where F I
′

= F I
>0.5−0.5γ

while for non-increasing quantifiers the values ⊥Q(Cγ(F I)) and >Q(Cγ(F I)) are just the other
way round. In both cases the two values reduce then to α-cuts based precisifications.

In order to express such α-cuts in  L4 we need to be able to express the truth value 0.5, and
the product of the truth value of a formula by 0.5. Both are not expressible in  Lukasiewicz logic,
while this is possible in well-known expansions of it, such as Rational  Lukasiewicz logic [4] and
the expansion with the the propositional random choice connective π investigated in [11]. Here,
however, we prefer to use the more expressive device of propositional quantifiers, since we will need
them anyway in the following. Letting then 0.5 := Πp p, we get:

vI(0.5) = vI(Πp p) =

∫ 1

0

vI[p→α]
(p)dα = 0.5

Similarly, letting
0.5α := ∃p(α=p⊕p ∧ p)

we get that vI(0.5α) = 0.5 · vI(α). Let now:

Q(∨,p)xF (x) := (QxF≥0.5⊕0.5p(x) ∨ QxF>0.5	0.5p(x) ∧ ¬p=0.5) ∨ (QxF≥0.5(x) ∨ QxF>0.5(x) ∧ p=0.5)

Q(∧,p)xF (x) := (QxF≥0.5⊕0.5p(x) ∧ QxF>0.5	0.5p(x) ∧ ¬p=0.5) ∨ (QxF≥0.5(x) ∧ QxF>0.5(x) ∧ p=0.5).

By straightforward checks, one gets:

vI[p→γ](Q(∨,p)xF (x)) = >Q(Cγ(F I))

vI[p→γ](Q(∧,p)xF (x)) = ⊥Q(Cγ(F I)).

In the light of the previous discussions, we finally obtain the following.

Theorem 1. The QFM FM is expressible in  L4(Π) for monotone quantifiers. In particular, for
each monotone semi-fuzzy quantifier Q, formula F , interpretation I we have :

vI(FM(Q)xF (x)) = vI(Πp(Q(∨,p)xF (x) ∗ Q(∧,p)xF (x)))

Let us move now to the next DFS, FOWA. Translating within our terminology the Definition
8.13 in [19], we get

vI(FOWA(Q)xF (x)) = 0.5

1∫
0

⊥Q(Cγ(F I))dγ + 0.5

1∫
0

>Q(Cγ(F I))dγ

In the light of what we have done for FM, we obtain then the following for FOWA.



Theorem 2. The QFM FOWA is expressible in  L4(Π). In particular, for each monotone semi-
fuzzy quantifier Q, formula F , interpretation I we have :

vI(FOWA(Q)xF (x)) = vI(0.5ΠpQ(∧,p)xF (x)⊕ 0.5ΠpQ(∨,p)xF (x))

We note in particular that, for non-decreasing quantifiers, it is shown in [19] that FOWA coin-
cides with the methods based on the Choquet integral [7,19], i.e.

FOWA(Q)xF (x) =

∫ 1

0

vI[p→α](QxF≥p(x))dα

The function obtained above for FOWA in the case of non-decreasing quantifiers can also be
taken as a QFM on its own, which can be applied to non-increasing quantifiers as well. For further
reference we denote it by FR and let

vI(FR(Q)xF (x)) =

∫ 1

0

vI[p→α](QxF≥p(x))dα)) (2)

We can express FR (or, equivalently FOWA over non-decreasing quantifier) with a simpler
formula than that in Theorem 2, although we still need to resort to the quite expressive language
of  L4(Π). Indeed, we obtain the following.

Theorem 3. The QFM FR is expressible in the logic  L4(Π). In particular, for any semi-fuzzy
quantifier Q, and formula F , we have:

vI(FR(Q)xF (x)) = vI(ΠpQxF≥p(x)).

Proof. Straightforward computation.

The QFM FR has also a game-semantic reading, as we show in the following.

Example 1. Let D be a domain such that |D| = 4, and assume that the four objects from the
domain represent balls. Two such balls are fully black , i.e., for a fuzzy predicate B, standing for
the property of being black, we have vI(B(c1)) = vI(B(c2)) = 1, while the remaining two are grey,
or putting it differently, black to a certain degree. We label those two grey balls c3 and c4, with
vI(B(c3)) = 0.9 and vI(B(c4)) = 0.7. Let us consider now the Type III quantifier Π.

Game semantically, the evaluation of FR(Π)xB(x), based on a randomly sampled threshold
value, can be interpreted as follows. Nature samples an assignment vI[p→α]() to the propositional
variable p, and the proponent player has to accept the payoff associated to asserting ΠxB≥p(x),
with respect to this assignment to p. This payoff corresponds to the (possibly) intermediate truth
value, as Π is a semi-fuzzy quantifier. Then, the overall truth value is the average of the individual
results. The result is straightforward and yields the truth value 0.9.

We conclude the discussion of the QFMs FM,FOWA and FR, by showing that they comply
with our additional desideratum of Preservation of Monotonicity under Conservative Extension.
For the other desiderata, we refer the reader to [7,9].

Theorem 4. The QFMs FM, FOWA and FR comply with Preservation of Monotonicity under
Conservative Extension.



Proof. We show the non-decreasing case of Preservation of Monotonicity under Conservative
Extension.
Let Q be a semi-fuzzy quantifier and assume I ′ conservatively extends I, and that
for all crisp formulas F̂ we have that vI(QxF̂ (x)) ≤ vI′(QxF̂ (x)). It then holds that
vI[p→α](QxF≥p(x)) ≤ vI′[p→α](QxF≥p(x)), under any assignment to p. As a conse-

quence, vI[p→α](Q(∨,p)xF≥p(x)) ≤ vI′[p→α](Q(∨,p)xF≥p(x)) and vI[p→α](Q(∧,p)xF≥p(x)) ≤
vI′[p→α](Q(∧,p)xF≥p(x)). Hence, we have that vI(FM(Q)xF (x)) ≤ vI′(FM(Q)xF (x)),
vI(FOWA(Q)xF (x)) ≤ vI′(FOWA(Q)xF (x)), and also vI(FR(Q)xF (x)) ≤ vI′(FR(Q)xF (x)).
The non-increasing case is similar.

Before proceeding to the last of Glöckner’s main QFMs, we note that our logical framework
immediately suggest a variant of FR, which take α-cuts at the level of atomic formulas, rather
than of the whole argument. Let us first introduce the following.

Definition 17. For any α ∈ [0, 1], let Iat≥α be the interpretation, such that for any atomic formula
A, vIat≥α(A) = 1 if vI(A) ≥ α and vIat≥α(A) = 0 otherwise.

The precisifications such as those in the Definition above can also be represented syntactically
via the following formulas, in analogy with Definition 16.

Definition 18. Let F,G be formulas. We denote by F≥Gat the formula obtained replacing any

atomic formula A in F by 4(G→ A). Similarly, we define F>Gat ,F≤Gat , F<Gat ,F=G
at .

We now introduce another QFM, based on atomic-level α-cuts.

Definition 19 (QFM FL). Let Q be any semi-fuzzy quantifier, F formula. We let:

vI(FL(Q)xF (x)) =

∫ 1

0

vIat≥α(QxF (x))dα (3)

The following requires then just an easy check.

Theorem 5. The QFM FL is expressible in  L4(Π), as follows:

vI(FL(Q)xF (x)) = vI(ΠpQxF≥pat (x))

Since the QFM FL takes α-cuts already at the atomic level, all the connectives of the formula
in the argument of the quantifier behave as the classical ones: in this sense the mechanism can
be seen as a special case of the level-based generalized quantification mechanism [32], which is
in turn inspired by the notion of gradual element [10]. Note that, however, contrary to [32], in
our formulation the QFM fails to comply with the Desideratum of Correct Generalization, as the
following theorem shows. This is due to our different framework, which includes in the language
also the connective 4.

Example 2. Assume D = {c1, c2} with vI(A(c1)) = 0.2 and vI(A(c2)) = 1 and let F̂ (x) = 4A(x).
Clearly, vI(∀xF̂ (x)) = 0. On the other hand, for any ε > 0, we have vI(FR(∀)xF̂ (x)) = 0.2 ·
vI≥0.2

(∀xF̂ (x)) + 0.8 · vI≥0.2+ε
(∀xF̂ (x)) = 0.2 · 1 + 0.8 · 0 = 0.2 6= 0.



This already tells us that FL and FR cannot coincide, since FR complies instead with the
desideratum of correct generalization. We provide an explicit counterexample that shows that they
are different, thus correcting what has been claimed in [1].

Example 3. Assume that D = {c}, and Q is either ∀,∃ or Π. A(x) and B(x) are fuzzy atoms, with
0.1 = a = vI(A(c)) < vI(B(c)) = b = 0.2. Then we look at F (x) defined as A(x)⊕B(x), and plug
it into the QFMs:

vI(FL(Q)xF (x)) = vI(Πp(A(c)≥p ⊕B(c)≥p))

=

∫ 1

0

vI[p→α](A(c)≥p ⊕B(c)≥p)dα =

∫ a

0

1dα+

∫ b

a

1dα+

∫ 1

b

0dα = b

vI(FR(Q)xF (x)) = vI(Πp(A(c)⊕B(c))≥p)

=

∫ 1

0

vI[p→α]((A(c)⊕B(c))≥p)dα =

∫ a+b

0

1dα+

∫ 1

a+b

0dα = min(1, a+ b)

Since b = 0.2 and min(1, a+ b) = 0.3, we get that vI(FR(Q)xF (x)) 6= vI(FL(Q)xF (x)).

Let us now conclude this section, discussing Glöckner’s DFS FCX [19]. In our terminology,
which slightly departs from Glöckner’s, we define it as :

vI(FCX (Q)xF (x)) = sup{min(ΞI1,I2(QxF (x)), vI1,I2(QxF (x))) | I1, I2 precisification, F I1 ⊆ F I2}

where

ΞI1,I2(QxF (x)) = min(inf{vI(F (c)) | c ∈ F I1}, inf{1− vI(F (c)) | c 6∈ F I2})
= min(inf{vI(F (c)) | c ∈ F I1}, 1− sup{vI(F (c)) | c 6∈ F I2})

and
vI1,I2(QxF (x)) = inf{vI′(QxF (x)) | I ′ precisification , F I1 ⊆ F I

′
⊆ F I2}.

As for FM and FOWA we investigate expressibility, focusing our attention on monotone quantifiers.
We refer the reader to [19,9] for the remaining desiderata.

Before proceeding, let us fix some notation. Given a formula F and interpretation I, we let
α0 = 0 ≤ α1 < α2 < · · · < αn ≤ αn+1 = 1 where α1, . . . , αn are the n distinct truth values taken
by vI(F (x)). Let ci be constants (domain elements) such that αi = vI(F (ci)), hence in particular
vI(F (ci) ≤ vI(F (ci+1)). Slightly abusing notation, for simplicity, we let also F (c0) stand for ⊥
and F (cn+1) for >. We can prove the following.

Lemma 3. Let Q be a monotone quantifier, I an interpretation, F a formula. If Q is non-
decreasing, we have :

vI(FCX(Q)F (x)) = max
0≤i≤n+1

min(vI(F (ci)), vI(QxF≥ci(x)))

while, if Q is nonincreasing

vI(FCX(Q)xF (x)) = min
0≤i≤n+1

max(1− vI(F (ci)), vI(QxF≥ci(x)))



Proof. We can reduce the choice of the precisifications I1, I2 to the choice of two elements ci, cj
such that i ≥ j, vI1(F (c)) = 1 iff vI(F (c)) ≥ vI(F (ci)) and vI2(F (c)) = 1 iff vI(F (c)) ≥ vI(F (cj)).
Hence, we get:

ΞI1,I2(QxF (x)) = min(inf{vI(F (c)) | c ∈ F I1}, 1− sup{vI(F (c)) | c 6∈ F I2})
= min(vI(F (ci)), 1− vI(F (cj−1))).

Now, if Q is a non-decreasing semi-fuzzy quantifier, we get

vI1,I2(QxF (x)) = vI1(QxF (x))) = vI(QxF≥ci(x))

hence:

vI(FCX (Q)xF (x)) = max
0≤j≤i≤n+1

min(vI(F (ci)), 1− vI(F (cj−1)), vI(QxF≥ci(x)))

Note that, for every choice of ci the highest value of 1− vI(F (cj−1)) is obtained for j = 1, which
implies min(vI(F (ci)), 1− vI(F (c0))) = min(vI(F (ci)), 1) = vI(F (ci)). We obtain thus :

vI(FCX (Q)xF (x)) = max
0≤i≤n+1

min(vI(F (ci)), vI(QxF≥ci(x)))

If Q is non-increasing, we have that the quantifier ¬Q is non-decreasing, and since FCX complies
with preservation of external negation, we obtain:

vI(FCX (Q)xF (x)) = 1− vI(¬FCX (Q)xF (x)) = 1− vI(FCX (¬Q)xF (x))

= 1− max
0≤i≤n+1

min(vI(F (ci)), 1− vI(QxF≥ci(x)))

= min
0≤i≤n+1

max(1− vI(F (ci)), vI(QxF≥ci(x)))

The representation of FCX that we obtained can also be reformulated in terms of α-cut based
precisifications, as we show in the following.

Lemma 4. Let I be an interpretation, F a formula, Q be a monotone quantifier. If Q is non-
decreasing, we have:

(1) vI(FCX(Q)xF (x)) = sup
α∈[0,1]

min(α, vI[p→α](QxF≥p(x))

If Q is non-increasing, we have:

(2) vI(FCX(Q)xF (x)) = inf
α∈[0,1]

max(1− α, vI[p→α](QxF≥p(x)))

Proof. Let us prove (1). By the definition of the αi, it follows that, for any α in (αi−1, αi], we get
vI[p→α](QxF≥p(x)) = vI[p→αi](QxF≥p(x)). We have then:

sup
α∈(αi−1,ai]

min(α, vI[p→α](QxF≥p(x)) =

min( sup
α∈(αi−1,ai]

α, vI[p→αi](QxF≥p(x)) ) =

min(αi, vI[p→αi](QxF≥p(x))).



From this we get that supα∈[0,1] min(α, vI[p→α](QxF≥p(x))) is equal to:

max(min(α0, vI[p→α0](QxF≥p(x))), max
1≤i≤n+1

( sup
α∈(ai−1,αi]

min(α, vI[p→α](QxF≥p(x))))

= max
0≤i≤n+1

min(αi, vI[p→αi](QxF≥p(x)))

= max
0≤i≤n+1

min(vI(F (ci)), vI(QxF≥ci(x))) = vI(FCX (Q)F (x)).

where the last equation is given by Lemma 3. The statement in (2) is shown in a similar fashion,
applying Lemma 3 to the case of non-increasing quantifiers.

We can now easily obtain the expressibility of FCX , using either propositional quantifiers or
only  L4, at the price of a somewhat more complex representation.

Theorem 6. The QFM FCX is expressible in the logics  L4(∃) and  L4 for monotone quantifiers.
In particular, for any non-decreasing semi-fuzzy quantifier Q, and formula F , we have:

vI(FCX(Q)xF (x)) = vI(∃p(p ∧ QxF≥p(x)))

vI(FCX(Q)xF (x)) = vI(∃y(F (y) ∧ QxF≥y(x)) ∨ Qx4F (x)).

On the other hand, for non-increasing semi-fuzzy quantifiers we have:

vI(FCX(Q)xF (x)) = vI(∀p(¬p ∨ QxF≥p(x)))

vI(FCX(Q)xF (x)) = vI(∀y(¬F (y) ∨ QxF≥y(x)) ∧ Qx4F (x)).

Proof. Both in the case of non-decreasing and non-increasing quantifiers, the first claim follows
from Lemma 4, while the second is a direct consequence of the Lemma 3.

Let us show now the Preservation of Monotonicity under Conservative Extension.

Theorem 7. The QFM FCX complies with the desideratum of Preservation of Monotonicity under
Conservative Extension.

Proof. We show the the case of Preservation of Monotonicity under Conservative Extension for
non-decreasing quantifier. Other cases are similar.

Let Q be a semi-fuzzy quantifier and assume I ′ conservatively extends I, as well as for all crisp
formulas F̂ we have that vI(QxF̂ (x)) ≤ vI′(QxF̂ (x)). It then holds that vI[p→α](QxF≥p(x)) ≤
vI′[p→α](QxF≥p(x)), under any assignment to p. Hence, it also holds:

vI[p→α](p ∧ QxF≥p(x)) ≤ vI′[p→α](p ∧ QxF≥p(x)),

under any assignment to p. Therefore:

vI(∃p(p ∧ QxF≥p(x))) ≤ vI′(∃p(p ∧ QxF≥p(x))).



Note that the function we obtained above for FCX in case of non-decreasing quantifiers has a
quite transparent reading: the fuzzy argument F , of a semi-fuzzy quantifier Q, is cut at various
level α ∈ [0, 1], determining suitable precisifications, where truth values of at least α are rendered
true while all others are projected to false. The idea is then to pick an optimal threshold α which
maximizes the truth value of the semi-fuzzy quantifier over the corresponding precisification, in
conjunction with the threshold value α itself. This, as shown also in [19], is a reformulation of the
Sugeno integral, which falls under the broader family of “possibilistic method” for QFMs [7]. Let
us discuss some examples of FCX over non-decreasing quantifiers.

Example 4. Let us get back to the setting of Example 1. From a game semantic perspective, we
can understand the functioning of FCX over a non-decreasing quantifier as follows. If we evaluate
FCX (Π)xB(x), the proponent player has to decide how many of the grey balls are accepted as
black balls. If the threshold value is chosen as 0.9, 3 of the 4 balls are accepted as black. If the
proponent also accepts the last ball, c4, as black, he would have all 4 balls to qualify as black, but
the conjunction in FCX with the threshold value 0.7 would make that a non-rational move. Hence,
vI(FCX (Π)xB(x)) = 0.75.

Example 5. Let us fix the domain D such that | D | = 4. Regarding Q, we use the quantifier
“at least 50%”, modeled as Type III quantifier. It is non-decreasing and denoted by Q[≥ 1

2 ]
, with:

vI(Q[≥ 1
2 ]
xF̂ (x)) = min(1, 2 · PropIF̂ ), for a crisp formula F̂ . Also, we assume that there are two

fuzzy predicates A and B, with the following truth value distribution: vI(A(c1)) = vI(A(c2)) =
1, vI(A(c3)) = vI(A(c4)) = 0, and vI(B(c1)) = vI(B(c2)) = vI(B(c3)) = vI(B(c4)) = 0.7.
Hence, PropIA = 0.5 ≤ 0.7 = PropIB. This means that, although there are more fully true
witnesses for A than for B, the proportion of objects fulfilling A is lower than the one of B. Still,
vI(FCX Q[≥ 1

2 ]
xA(x)), which is 1, is greater than vI(FCX Q[≥ 1

2 ]
xB(x)), which is 0.7.

This shows also that it is not immediate to extend Lemma 2 to fully fuzzy quantifiers. Indeed,
although the quantifier FCX (Q[≥ 1

2 ]
) is non-decreasing, since FCX preserves monotonicity, it is

not non-decreasing in proportion. The role of proportions for fully fuzzy quantifier is indeed less
central than for semi-fuzzy ones: even in principle, we do not expect that the fuzzified version of
a proportional semi-fuzzy quantifier is proportional, see Definition 1 and the discussion thereafter.
This also explains why we confine ourselves to “preservation of monotonicity” as a desideratum,
and we would rather not consider “preservation of monotonicity in proportion” as such.

Given its rather transparent reading, one might wonder whether the function we derived by
restricting FCX to the special case of non-decreasing quantifier could be treated as a QFM on
its own right, to be applied to any semi-fuzzy quantifier. However, if we apply the function (a)
(equivalently (b)) in Lemma 3 rather than (c) (equivalently (d)) to the case of non-increasing
quantifiers, we would obtain the following, degenerate, case:

vI(∃p(p ∧ QxF≥p(x))) = vI(QxF≥1(x)).

As an immediate consequence of this fact, we also see that preservation of internal and external
negation cannot be fulfilled, even when the function is applied to a non-decreasing quantifier Q.
Indeed both Q¬ and ¬Q are then non-increasing quantifiers, and we would obtain, for the internal
negation condition:

vI(∃p(p ∧ Q¬xF≥p(x))) = vI(Q¬xF≥1(x)) 6= vI(∃p(p ∧ Qx(¬F )
≥p

(x)))



and, similarly, for external negation:

vI(∃p(p ∧ ¬QxF≥p(x))) = vI(¬QxF≥1(x)) 6= vI(¬∃p(p ∧ QxF≥p(x))).

Note that, since the dual of a nondecreasing quantifier is itself non-decreasing, it follows from Glöck-
ner results on FCX , that the desideratum of dualization is instead satisfied by ∃p(p∧QxF≥p(x)).

To conclude this section, we consider two further issues. First, let us consider what happens
when we further restrict the QFMs considered so far to non-decreasing Type I quantifiers. We can
show that FCX there coincides with FR, and hence with FOWA.

Theorem 8. For any formula F , and non-decreasing Type I quantifier Q, we have:

vI(FCX(Q)xF (x)) = vI(FOWA(Q)xF (x)) = vI(FR(Q)xF (x)).

Proof. First, note that the quantifiers we consider are either quantitative or of the form ∆c

for some c ∈ D. For the latter, the claim holds, since, by Theorem 4 and Theorem 7, we have
vI(FCX (∆c)xF (x)) = vI(F (c)) = vI(FR(∆c)xF (x)).

Let us assume now that Q is a quantitative quantifier. Then, by Lemma 2, Q is non-decreasing
in proportion. If vI(QxF̂ (x)) = 0 for any interpretation I, then the claim is obvious. Let us assume
that under some interpretation I, vI(QxF̂ (x)) = 1. Then, since Q is non-decreasing in proportion
there is a value k ∈ {0, 1, . . . , n} such that, for any crisp formula F̂ , if PropIF̂ ≥ k

n then we also

have vI(QxF̂ (x)) = 1. Let α0, . . . , αn+1 be as in Lemma 3. We define the set IQ = {k, . . . , n} and
the indicator function I{x∈A}, which is 1, if x ∈ A and 0 otherwise. We have:

(1) vI(FR(Q)xF (x)) =
∑n
i=0(αi+1 − αi) · I{n−j∈IQ}, and

(2) vI(FCX (Q)xF (x)) = max(i∈{1,...,n+1})(min(αi, I{n−(i−1)∈IQ}))).

For (1), the indicator function is 1, if n − i ≥ k, which is equivalent to k ≤ n − i, and for (2) the
indicator function is 1, if n− (i− 1) ≥ k, which is equivalent to j ≤ n− k + 1. Hence:

(1) vI(FR(Q)xF (x)) =
∑n−k
i=0 (αi+1 − αi) = αn−k+1, and

(2) vI(FCX (Q)xF (x)) = αn−k+1.

Finally, let us stress that no major technical obstacle arises when extending the above expressi-
bility results to the case of n-ary semi-fuzzy quantifiers, provided that they satisfy suitable form of
monotonicity with the respect to their arguments. In particular, our results on FM and FOWA can
be straightforwardly adapted to semi-fuzzy quantifiers which are monotone in all their arguments.
The same holds for FCX , but only for the representation in terms of propositional quantifiers,
in Theorem 6. On the other hand, possible contextual dependencies between the arguments of
semi-fuzzy quantifiers might make such a straightforward extension problematic from a linguistic
point of view (see the discussion in Section 2). A possible way to address this problem has been
presented, e.g., in the maximum dependence FMD and the maximal independence model FI in [8],
which collapse to FR and FOWA in the unary case. These models do not pose additional challenges
for expressibility over  L4(Π).



6 Fuzzification mechanisms based on closeness measures: FC,FC′

We now introduce a new family of QFMs, the closeness-based ones. The core idea is to evaluate a
Type IV sentence by picking a precisification which maximizes the evaluation of the corresponding
semi-fuzzy quantifier and the “closeness” of the precisification to the original fuzzy interpretation.
Let us give the following schematic definition of a closeness-based QFM.

Definition 20 (Scheme for closeness-based QFMs). Let I be a fuzzy interpretation, F (x) a
formula in the language of  L4, Q a semi-fuzzy quantifier. A closeness-based QFM F is determined
by the following parameters:

(i) the set of admissible precisifications CI(F (x)) associated to the fuzzy interpretation I,

(ii) a measure evaluating, for any precisification I ′ ∈ CI(F (x)), how close the (classical) set F I
′

interpreting F in I ′ is to the fuzzy set F I , interpreting F in I
(iii) a t-norm operation combining the measure of closeness and the evaluation of a semi-fuzzy

quantified sentence.

Once the parameters are settled, the evaluation of the fully-fuzzy sentence F(Q)xF (x) is obtained
by picking in CI(F (x)) (parameter (i)) the precisification I ′ which maximizes the value of closeness
(parameter (ii)) “and”(parameter (iii)) the evaluation of vI′(QxF (x)).

As a first concrete study case, we consider the fuzzification mechanism FC introduced in [1]. The
set of admissible precisification (i) is reduced to the set of threshold values in [0, 1] or, equivalently,
the elements of the domain, acting as thresholds, as we did in the previous section. Using the
notation of Definition 16, in this setting precisifications are identified with crisp formulas of the
form F≥c(x).

Since precisifications are expressed as formulas F≥c(x), the closeness measure (item (ii)) reduces
to the closeness between the formulas F≥c(x) and F (x). Recall that we have an obvious way to
measure the closeness of (the evaluation of) two propositional formulas A and B in  Lukasiewicz
logic, that is by evaluating the formula A↔ B. What about two first-order formulas such as F≥c(x)
and F (x)? Given an interpretation I, the QFM FC takes the closeness of F (x) and F≥c(x) to
be their average closeness i.e. PropI(F ↔ F≥c). Note that other legitimate options might be the
minimum or the maximum closeness between the two formulas, i.e. to let vI(∀x(F (x)↔ F≥c(x))
or vI(∃x(F (x)↔ F≥c(x)) stand for the measure of closeness.

Finally, for item (iii), the evaluation of the semi-fuzzy quantified sentence and the evaluation
of closeness are combined using the  Lukasiewicz conjunction � (another reasonable option would
be to use the weak conjunction ∧). To summarize, FC instantiates the parameters in Definition
20 with:

(i) F≥c(x) for any c ∈ D, with the addition of F≥>(x) for the set of precisifications.

(ii) The average PropI(F ↔ F≥c) for the measure of closeness.

(iii) The  Lukasiewicz conjunction �.

We have then the following definition.



Definition 21 (QFM FC). Let Q be a semi-fuzzy quantifier, F a formula. The QFM FC is
defined as follows9:

vI(FC(Q)xF (x)) = max
c∈D∪{>}

(
vI(QxF≥c(x))� PropI(F≥c ↔ F )

)
.

As shown in [1], FC has the important advantage of providing quantifiers expressible in the
logic  L4(Π).

Theorem 9. [1] The QFM FC(Q) is expressible in the logic  L4. In particular, for any semi-fuzzy
quantifier Q and formula F , we have that vI(FC(Q)xF (x)) is equal to:

vI(∃z(QxF≥z(x)�Πy(F≥z(y)↔ F (y))) ∨ (Qx(4F (x))�Πy(F (y)↔4F (y))))

Note that the second disjunct in the formula above corresponds to the choice of > as a threshold
value for a precisification.

While intuitively plausible, FC does not square very well with most of the desiderata for
QFMs discussed in Section 3, see [29]. Let us consider, for instance, the desiderata of preservation
of monotonicity, testing it on the semi-fuzzy quantifier Q[≥ 1

2 ]
standing for At least half, whose

truth function is given by vI(Q[≥ 1
2 ]
xF̂ (x))) = min(1, 2PropIF̂ ). Q[≥ 1

2 ]
is clearly a non-decreasing

quantifier, hence one would expect the corresponding fuzzy quantifier to be also non-decreasing.
This is, however, not the case, as we show in the next example.

Example 6. Let D = {c1, . . . , c4}, and consider two unary predicates F (x) and G(x), such that
vI(F (c1)) = vI(F (c2)) = 0.1, vI(F (c3)) = vI(F (c4)) = 0.9, and vI(G(c1)) = vI(G(c2)) = 0.4,
vI(G(c3)) = vI(G(c4)) = 0.9. Note that vI(F (c)) ≤ vI(G(c)) for any c ∈ D.

The supremum in vI(FC(Q[≥ 1
2 ]

)xF (x)) and in vI(FC(Q[≥ 1
2 ]

)xG(x)) is obtained by choo-

sing the precisification determined by c3, or equivalently by c4. We have vI(Q[≥ 1
2 ]
xF≥c4(x)) =

vI(Q[≥ 1
2 ]
xG≥c4(x)) = 1. We obtain instead different results on the closeness measure, which lead

to different values for vI(FC(Q[≥ 1
2 ]

)xF (x)) and vI(FC(Q[≥ 1
2 ]

)xG(x)), i.e.

vI(FC(Q[≥ 1
2 ]

)xF (x)) = 1� vI(ΠyF≥c4(y)↔ F (y)) =
0.9 + 0.9 + 0.9 + 0.9

4
= 0.9

vI(FC(Q[≥ 1
2 ]

)xG(x)) = 1� vI(Πy(G≥c4(y)↔ G(y)) =
0.6 + 0.6 + 0.9 + 0.9

4
= 0.75.

The problem in the example above is that, when evaluating how close G(x) is to the precisifica-
tionG≥c4(x), we take into account also those elements (c1 and c2) for which vI(G≥c4(x)) = 0. These
values should be indifferent for the evaluation of At least 1

2 . A possible way to address this problem
with monotonicity, also presented in [1], is to measure closeness by PropI(F → F≥c) for non-
decreasing quantifier, by PropI(F≥c → F ) for non-increasing quantifier, and use PropI(F ↔ F≥c)
for the remaining quantifiers. As shown in [1], in this way the desiderata of preservation of mo-
notonicity is satisfied, and at the same time the expressibility in  L4(Π) is retained. The solution
is, however, in some respects, unsatisfactory. It is instructive to see why, considering also what
happens with the projection quantifier, in the following example.

9 Note that here, and elsewhere in this section, with a slight abuse of notation, we use the same symbol �
for the connective in α� β and for the truth-function interpreting it, i.e. vI(α)� vI(β) = max(vI(α) +
vI(β)− 1, 0).



Example 7. Let I be an interpretation with domain D = {c1, c2} such that vI(F (c1)) = 0.1,
vI(F (c2)) = 0.9. A maximal value in vI(FC(4c1)xF (x)) is obtained by considering the precisifi-
cation determined by F≥c1(x). Indeed we have vI(4c1xF≥c1(x)) = 1 and PropI(F≥c1 ↔ F ) =
(0.1 + 0.9)/2 = 0.5, hence vI(FC(4c1)xF (x)) = 0.5 6= vI(F (c1)).

Here the problem is that we would expect that only the truth value of F (c1) should be relevant
in evaluating both 4c1 and F(4c1), but the closeness measure considered takes into account the
truth value of F (c2) as well. Using PropI(F → F≥c) as a measure of closeness would return exactly
the same value.

Therefore, we do not investigate further the properties of FC and its variants, as we aim at
a more systematic and principled approach. Note that, in both examples above, the core of the
problem is that the measure of closeness should be restricted to a suitable subset of the domain.

Let us introduce then a second instance of closeness-based fuzzification mechanism, FC′ , which
deals with this issue and meets more of the desiderata discussed in Section 3. The price to pay w.r.t.
FC is that FC′ does not, at least in the general case, provide quantifiers expressible in expansions
of  L4.

The closeness mechanism FC′ is obtained by instantiating the parameters of Definition 20 as
follows. Let us start from item (i).

Definition 22. Let I be an interpretation, F a formula, I ′ a classical interpretation over the
same domain of I. If I ′ satisfies the conditions:

1. For any c ∈ D, if vI(F (c)) ∈ {0, 1} then vI′(F (c)) = vI(F (c)) (I ′ respects the classical truth
values).

2. For any c1, c2 ∈ D, if vI(F (c1)) < vI(F (c2)) then vI′(F (c1)) ≤ vI′(F (c2)) (I ′ respects the
strict ordering of truth values).

then I ′ is said to be a coherent precisification10 of I over F (x). We denote by CI(F (x)) the set
of coherent precisifications of I over F (x).

For the measure of closeness, i.e. item (ii) in Definition 20, the idea is to evaluate closeness
only on some subsets of the domain, which are determined by the semi-fuzzy quantifier and the
precisification at hand. We formalize the idea by the following definition.

Definition 23. Let I be a fuzzy interpretation, Q a semi-fuzzy quantifier, F (x) a first-order for-
mula in the language of  L4, and I ′ be a precisification in CI(F (x)). A Q-kernel of I ′ is a minimal
(w.r.t. to the ordered set (P(D),⊆)) nonempty subset D′ of the domain D such that any D′-based
variant I ′′ of I ′ (see Definition 5) satisfies vI′′(QxF (x)) ≥ vI′(QxF (x)).

A Q-kernel D′ of I ′ is said to be positive if vI′(F (c)) = 1 for any c ∈ D′ and negative if
vI′(F (c)) = 0 for any c ∈ D′.

We denote by KI′(QxF (x)) the set of Q-kernels of I ′. Despite its apparently complicated
definition, the kernel can be usually easily read off from the semi-fuzzy quantifier at hand, as we
illustrate in the next examples.

10 Note that not all the threshold-based precisifications determined by formulas F≥c(x) are coherent. In
particular, any formulas F≥c(x) where vI(F (c)) = 0 does not determine a coherent precisification,
since it does not satisfy 1. in the Definition 22. On the other hand, threshold-based precisifications
satisfy a property stronger than 2. , namely that, for any c1, c2 ∈ D, if vI(F (c1)) ≤ vI(F (c2)), then
vI′(F (c1)) ≤ vI′(F (c2)). This means that the threshold-based precisifications F≥c(x), differently from
the coherent precisifications, need to preserve also the equality of truth values in I.



Example 8. Consider the projection quantifier 4c and a precisification I ′ of I such that
vI′(4cxF (x)) = 1. The only 4c-kernel of I ′ is the subset {c} of the domain.

Let us now consider the semi-fuzzy quantifiers Q[≥j], standing for At least j and their propor-

tional counterpart Q[≥ kr ]
, standing for At least k

r , whose truth functions are:

vI(Q[≥j]xF̂ (x)) = min(1, |D|j PropI(F̂ ))

vI(Q[≥ kr ]
xF̂ (x))) = min(1, rkPropI(F̂ ))

For Q[≥j]xF (x) and any coherent precisification I ′ such that vI′(Q[≥j]xF (x)) = 1, the kernels
of I ′ are those subsets D′ such that |D′| = j and vI′(F (c)) = 1 for any c ∈ D′. Similarly, for
Q[≥ kn ]xF (x), if we pick a coherent precisification I ′ such that vI′(Q[≥ kn ]xF (x)) = 1, the kernels

are subsets D′ such that |D′| = k
n ∗ |D| and vI′(F (c)) = 1, for any c ∈ D′.

We now define the measure of closeness (item (ii) in Definition 20) for the fuzzification mecha-
nism FC′ . The idea is to restrict it only to elements in a kernel. For this we introduce another
piece of notation: given two interpretations I, I ′ over the same domain D, a formula F (x), and
D′ ⊆ D, we let:

CLD′(F
I , F I

′
) =

∑
c∈D′ 1− |vI(F (c))− vI′(F (c))|

|D′|
.

We will keep using the conjunction � (item (iii) in Definition 20) for combining the measure of
closeness and the evaluation of the semi-fuzzy quantifier.

In summary, given a fuzzy interpretation I, vI(FC′(Q)xF (x)) is obtained by picking a coherent
precisification I ′ in CI(F (x)) and a kernel D′ in KI′(QxF (x)), such that the closeness measure
CLD′(F

I , F I
′
) and the evaluation vI′(QxF (x)) are maximized. Formally, we have the following

definition.

Definition 24 (QFM FC′). Let Q be a semi-fuzzy quantifier,I a fuzzy interpretation, F (x) a
formula. The QFM FC′ is defined by:

vI(FC
′
(Q)xF (x)) = max

I′∈CI(F (x))
D′∈KI′ (QxF (x))

vI′(QxF (x))� CLD′(F I , F I
′
).

Before proceeding, let us show an important lemma on kernels for monotone quantifiers.

Lemma 5. If Q is a non-decreasing quantifier, then any Q-kernel D′ is positive. Similarly, if Q
is a non-increasing quantifier, any Q-kernel D′ is negative.

Proof. Let I be a fuzzy interpretation, Q be a non-decreasing semi-fuzzy quantifier, F (x) a first-
order formula in the language of  L4, and I ′ ∈ CI(F (x)). Assume that D′ is a Q-kernel of I ′ which
is not positive, i.e. vI′(F (c)) = 0 for some c′ ∈ D′. We show that, given any D′\{c′}-based variant
I ′′ of I ′, it holds that vI′′(QxF (x)) ≥ vI′(QxF (x)), thus contradicting the minimality of the kernel
D′. Assume first that vI′′(F (c)) = vI′(F (c)) = 0. Then I ′′ is already a D′-based variant of I ′,
and vI′′(QxF (x)) ≥ vI′(QxF (x)). In case vI′′(F (c)) = 1, since Q non-decreasing, we also have
vI′′(QxF (x)) ≥ vI′(QxF (x)).

By similar reasoning we can show that the kernel of a non-decreasing quantifier need to be
negative.



Using the previous lemma, we can greatly simplify the evaluation of FC′ for monotone quan-
tifiers. Let us introduce first some additional notation.

Let Q be a non-decreasing quantifier, F (x) a formula, I a fuzzy interpretation over a dom-
ain D. Henceforth we assume that D = {c1, . . . , cn} where, w.l.o.g. vI(F (c1)) ≤ vI(F (c2)) ≤
· · · ≤ vI(F (cn)). Let us denote by IF↑m a coherent precisification such that vIF↑m(F (cn) =
vIF↑m(F (cn−1)) = · · · = vIF↑m(F (cn−m+1)) = 1 and vIF↑m(F (c1)) = · · · = vIF↑m(F (cn−m)) = 0.
In other words, IF↑m evaluates F (c) as true for m elements of the domain for which vI(F (c)) is
highest.

We let κ+I (QxF (x)) be the set of the integers m such that the coherent precisification IF↑m
has {cn−m+1, . . . , cn} as its unique, positive Q kernel.

Similarly, if Q is a non-increasing quantifier, we denote by IF↓m a coherent precisification such
that vIF↓m(F (c1)) = · · · = vIF↓m(F (cm)) = 0 and vIF↓m(F (cm+1)) = · · · = vIF↓m(F (cn)) = 1,

and we let κ−I (QxF (x)) be the set of the integers m such that the coherent precisification I↓n has
{c1, . . . , cm} as its unique, negative Q-kernel.

Lemma 6. Let I be a fuzzy interpretation, Q a semi-fuzzy quantifier, F (x) a first-order formula
in the language of  L4. If Q is a non-decreasing quantifier, we have:

vI(FC
′
(Q)xF (x)) = max

m∈κ+
I (QxF (x))

vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

|m|
.

and, if Q is a non-increasing quantifier:

vI(FC
′
(Q)xF (x)) = max

m∈κ−I (QxF (x))
vIF↓m(QxF (x))�

m∑
i=1

1− vI(F (ci))

|m|
.

Proof. Throughout the proof, we assume that the quantifier Q is quantitative. We refer to the
proof of Theorem 10 for the case of the quantifier 4c. Let us show the case for a non-decreasing
(quantitative) quantifier. It is easy to see that:

vI(FC
′
(Q)xF (x)) = max

I′∈CI(F (x))
D′∈KI′ (QxF (x))

vI′(QxF (x))� CLD′(F I , F I
′
)

≥ max
m∈κ+

I (QxF (x))
vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

|m|

This holds, since any element in the range of the maximum in the last expression is also in the
range of the maximum in the second expression. Indeed, a few straightforward computations reveal,
in particular:

CL{cn−m+1,...,cn}(F
I , F IF↑m) =

n∑
i=n−m+1

vI(F (ci))

|m|
.

We now show the other inequality. Let I ′ be a precisification in CI(F (x)) and D′ a kernel such
that:

vI(FC
′
(Q)xF (x)) = vI′(QxF (x))� CLD′(F I , F I

′
)



Assume |D′| = m and |F I′ | = m + k. From Lemma 5 and some straightforward computations, it
follows:

CLD′(F
I , F I

′
) =

∑
c∈D′ vI(F (c))

m
.

Since Q is quantitative, we have that ifD′ is a positive kernel for I ′, then the set {cn−m+1, . . . , cn} ⊆
D (which has the same cardinality as D′) is a kernel as well, for the precisification IF↑m. Therefore
m ∈ κ+I (QxF (x)) and, by assumption, for any cj ∈ D′, ci ∈ {cn−m+1, . . . , cn}, we have vI(F (cj)) ≤
vI(F (ci)). Hence we obtain

CLD′(F
I , F I

′
) =

∑
cj∈D′ vI(F (cj))

m
≤

n∑
i=n−m+1

vI(F (ci))

m
.

Now, consider the precisification IF↑m+k. Since {cn−m−k+1, . . . , cn} has the same cardina-

lity as F I
′

and Q is quantitative, we have vIF↑m+k
(QxF (x)) = vI′(QxF (x)). Moreover IF↑m

is a {cn−m+1, . . . , cn}-based variant of IF↑m+k. Since {cn−m+1, . . . , cn} is a kernel, by Defini-
tion 5 we have vIF↑m+k

(QxF (x)) ≤ vIF↑m(QxF (x)). On the other hand, we have vI′(QxF (x)) =
vIF↑m+k

(QxF (x)), hence vI′(QxF (x)) ≤ vIF↑m(QxF (x)). Finally, we obtain:

vI(FC
′
(Q)xF (x)) = vI′(QxF (x))� CLD′(F I , F I

′
)

≤ vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

m

≤ max
m∈κ+

I

vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

|m|
.

The case for non-increasing quantifiers is similar.

We are now ready to discuss the desiderata satisfied by the QFM FC′ .

Theorem 10. The fuzzification mechanism FC′ satisfies the desiderata of preservation of quanti-
tativity, correct generalization, projection quantifier, internal negation, preservation of monotoni-
city in the argument, continuity. Moreover, it preserves quantifier strength for monotone quanti-
fiers.

Proof. Preservation of quantitativity is obvious. For correct generalization, note that, if I is already
a classical interpretation, then the only coherent precisification is I itself. Hence, we obtain:

vI(FC
′
(Q)xF (x)) = max

I′∈CI(F (x))
D′∈KI′ (QxF (x)

(vI′(QxF̂ (x))� CLD′(F I , F I
′
)

= vI(QxF̂ (x))� CLD′(F I , F I) = vI(QxF̂ (x)).

(note that,whatever kernel D′ is considered, CLD′(F
I , F I) = 1).

For the projection quantifier, we show that vI(FC′(4c)xF (x)) = vI(F (c)). Recall the definition
of vI(FC′(4c)xF (x)) above. We distinguish two cases. If vI(F (c)) = 0, then, for all coherent



precisifications I ′ in CI(F (x)) we have vI′(F (c)) = 0. Hence, in particular vI′(4cF (x)) = 0, and
vI(FC′(4c)xF (x)) = 0 = vI(F (c)). Let us consider now the case vI(F (c)) 6= 0. As4c is essentially
a Type I quantifier, we obtain a maximum value in the evaluation of vI(FC′(4c)xF (x)) for the
coherent precisification I ′ ∈ CI(F (x)) such that vI′(F (c)) = 1, with kernel {c}. Hence, we obtain

vI(FC
′
(4c)xF (x)) = vI′(4cxF (x))� CL{c}(F I , F I

′
) = 1� vI(F (c))

|{c}|
= vI(F (c)).

For internal negation, first note that any coherent precisification I ′ in CI(F (x)), is also a co-
herent precisification in (CI(¬F (x)), and vice versa. Moreover, we have that CLD′(F

I , F I
′
) =

CLD′((¬F )I , (¬F )I
′
). Hence we obtain:

vI(FC
′
(Q¬)xF (x)) = max

I′∈CI(F (x))
D′∈KI′ (Q

¬xF (x))

vI′(Q¬xF (x))� CLD′(F I , F I
′
)

= max
I′∈CI(¬F (x))

D′∈KI′ (Qx¬F (x))

vI′(Qx¬F (x))� CLD′(¬F I ,¬F I
′
)

= vI(FC
′
(Q)x¬F (x)) = vI((FC

′
(Q))¬xF (x)).

For preservation of monotonicity, let Q be a non-decreasing quantifier and assume that
vI(F (c)) ≤ vI(G(c)) for any c ∈ D. Recall that we assumed that vI(F (c1)) ≤ · · · ≤ vI(F (cn)).
To avoid further complications in the notation, let us further assume that, for a permutation σ,
vI(G(cσ(1))) ≤ · · · ≤ vI(G(cσ(n))). Recalling Lemma 6, let m be the integer in κ+I (QxF (x)) such
that:

vI(FC
′
(Q)xF (x)) = vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

m
.

Since Q is non-decreasing, we have vIF↑m(QxF (x)) ≤ vIG↑m(QxG(x)). Moreover, we have
vI(F (ci)) ≤ vI(G(ci)), hence we obtain:

vI(FC
′
(Q)xF (x)) = vIF↑m(QxF (x))�

n∑
i=n−m+1

vI(F (ci))

m

≤ vIG↑m(QxG(x))�

n∑
i=n−m+1

vI(G(ci))

m

≤ vIG↑m(QxG(x))�

n∑
i=n−m+1

vI(G(cσ(i)))

m

≤ vI(FC
′
(Q)xG(x)).

For continuity, note that for any I ′ ∈ CI(QxF (x)), D′ ∈ KQ(I ′) the function vI′(QxF (x)) �
CLD′(F

I , F I
′
) is continuous, in the sense explained above for continuity in the argument. Hence

vI(FC′(Q)xF (x)) is continuous as well.



Finally, assume that Q1 and Q2 are semi-fuzzy non-decreasing quantifier, with Q1 ≤ Q2. Assume

vI(FC
′
(Q1)xF (x)) = vIF↑m1

(Q1xF (x))�

n∑
i=n−m1+1

vI(F (ci))

m1
.

Now, IF↑m1 is also a coherent precisification of Q2xF (x), but {cn−m1+1, . . . , cn} need not be a Q2-
kernel. Since Q2 is non-decreasing, a kernel of IF↑m1 w.r.t. to Q2 can only be positive, hence it is
a subset of {cn−m1+1, . . . , cn}, say of cardinality m2 ≤ m1. Consider now IF↑m2

. We have

n∑
i=n−m1+1

vI(F (ci))

m1
≤

n∑
i=n−m2+1

vI(F (ci))

m2
.

Finally, recalling that Q1 ≤ Q2, we get:

vI(FC
′
(Q1)xF (x)) = vI′(Q1xF (x))�

n∑
i=n−m1+1

vI(F (ci))

m1

≤ vI′(Q2xF (x))�

n∑
i=n−m2+1

vI(F (ci))

m2

≤ vI(FC
′
(Q2)xF (x)).

The latter shows that FC′ preserves quantifier strength, when Q1 and Q2 are non-decreasing
quantifiers. The case for non-increasing quantifiers is similar.

As we show below, FC′ also satisfies preservation of monotonicity under conservative extension,
provided that additional conditions on the kernels of the involved quantifiers are imposed.

Definition 25. Let Q be a quantifier, I an interpretation and I1 a conservative extension of I.
We say that Q has extensive kernels if KQ(I1) ⊇ KQ(I) and that Q has restrictive kernels if,
instead, KQ(I1) ⊆ KQ(I).

Theorem 11. Let Q be a semi-fuzzy quantifier non-decreasing (non-increasing) in extension .
Then FC′(Q) is non-decreasing (non-increasing), provided that Q has extensive(restrictive) kernels.

Proof. let Q be a quantifier non-decreasing in extension, F (x) any formula, I a fuzzy interpretation
with domain D and I1 with domain D1 a conservative extension of I.

Let I ′ be the precisification of I and D′ ∈ KQ(I ′) the kernel such that vI(FC′QxF (x)) =
vI′(QxF (x))� CLD′(F I

′
, F I)

Consider a coherent precisification I ′1 of I1, which is also a conservative extension of I ′. Hence
in particular CLD′(F

I′ , F I) = CLD′(F
I′1 , F I1). Note that since Q has extensive kernel, D′ is a

Q-kernel for I ′1 as well. Moreover, as Q is non-decreasing in extension, we get vI′1(QxF (x)) ≥
vI′(QxF (x)). Hence, putting the pieces together we obtain

vI(FC
′
QxF (x)) = vI′(QxF (x))� CLD′(F I

′
, F I)

≤ vI′1(QxF (x))� CLD′(F I
′
1 , F I1)

≤ vI1(FC
′
QxF (x)).



Let us now focus on the desiderata which are not satisfied by FC′ .

Theorem 12. The supremum/infimum principle is not fully satisfied by FC′ . In particular, the
supremum part of the principle holds, i.e.

vI(FC
′
(∃)xF (x)) = sup

c∈D
vI(F (c))

while the infimum and average part does not, i.e.

vI(FC
′
(∀)xF (x)) 6= inf

c∈D
vI(F (c))

and
vI(FC

′
(Π)xF (x)) 6= PropIvI(F (c))

The desiderata of Dualization, external negation and quantified partition are also not satisfied
by FC′ .

Proof. Let us first prove that the supremum principle holds. For any precisification I ′, we have
either vI′(∃xF (x)) = 0 or vI′(∃xF (x)) = 1. Hence, recalling that we assumed vI(F (c1) ≤ · · · ≤
vI(F (cn)), we obtain a maximum in vI(FC′(∃)xF (x)), for the precisification IF↑1, with kernel

{cn}. Thus, vI(FC′(∃)xF (x)) boils down to maxc∈D vI(F (c)). Now let us show a counterexample
to the infimum principle.

For ∀, again any precisification behaves as a Type I quantifier. Now, we have IF↑n as a coherent
precisification of I we would obtain vIF↑n(∀xF (x)) = 1, since vIF↑n(F (c1)) = · · · = vIF↑n(F (cn)) =
1. Recalling that the kernel associated with IF↑n is D and |D| = n we get :

vI(FC
′
(∀)xF (x)) = vIF↑n(∀xF (x))�

∑
c∈D vI(F (c))

n
= PropI(F ) 6= inf

c∈D
vI(F (c)).

Let us show a counterexample to the average principle. Assume |D| = 10 and let F be a
predicate, I an interpretation such that vI(F (c10)) = 1, vI(F (c9)) = 0.1 and vI(F (ci) = 0 for
each i = 1, . . . , 8. We get PropIF = 1.1/10 = 0.11. On the other hand, the only two coherent
precisifications are IF↑1 and IF↑2, for which we get vIF↑1(ΠxF (x)) = 0.1 and vIF↑2(ΠxF (x)) =
0.2. Recalling that Π is a nondecreasing, we obtain:

vI(FC
′
(Π)xF (x)) = max

m∈κ+
I (ΠxF (x))

vIF↑m(ΠxF (x))�

n∑
i=n−m+1

vI(F (ci))

m

= max (0.1� vI(F (c1)), 0.2� vI(F (c1)) + vI(F (c2)

2
)

= max(0.1� 1, 0.2� 1.1

2
) = 0.1

Hence vI(FC′(Π)xF (x)) 6= PropI .



A counterexample to the Dualization desideratum can be obtained from what we showed for
the Infimum principle. Indeed, we have

vI((FC
′
(∃d))xF (x)) = vI(FC

′
(∀)xF (x)) = PropI(F ),

while vI(FC
′
(∃)

d
xF (x)) = 1− sup

c∈D
1− vI(F (c)) = inf

c∈D
vI(F (c)).

Let us now assume that FC′ satisfies external negation. Since, by Theorem 10, FC′ satisfies internal
negation, this would imply that FC′ satisfies dualization as well, but this is in contradiction with
what we just showed above. Finally, quantified partition cannot hold, since external negation would
follow as a consequence (just take the quantifiers Q and ¬Q as a quantified partition).

Remark 1. The failure of the average principle is due to the use of the  Lukasiewicz t-norm in item
(iii) of Definition 20. It is easy to show that, replacing it by the product t-norm, the principle
would be satisfied.

Remark 2. The result on the supremum principle might struck one as a rather implausible conse-
quence of the fuzzification mechanism FC′ . Is there a sense in which PropI(F ) can be seen as a
reasonable truth function for the natural language quantifier all in a fuzzy setting?

From the logical point of view this move seems costly, as PropI(F ) does not enjoy the logical
properties we would expect from a quantifier standing for all: there is no connection with a con-
junction connective, and all usual axioms relating the quantifier all with the implication connective
turn out to be invalid.

On the other hand, it is disputable whether the usual truth function inf can provide a good
model for the quantifier all in the fuzzy setting. Consider a domain D = {c1, . . . , c100}, predicate
F (x) and an interpretation I. If, say vI(F (c1)) = · · · = vI(F (c99)) = 1 and vI(F (c100)) = 0,
we would obtain vI(∀xF (x)) = 0, while on other hand PropI(F ) = 0.99. We contend that, in
this setting, the latter is at least as plausible as a choice for the truth value of the sentence All
(the elements of the domain) are F. Indeed, reframing the issue in terms of hedging, we imagine
that a competent speaker would accept the sentence It is almost true that all (the elements of the
domain) are F. This is consistent with the reading of the quantifier as PropI(F ), but not as the
usual infimum.

Moreover, in case vI(F (c)) = 1 for every element c of the domain, we have anyway
vI(∀xF (x)) = PropI(F ) = 1. Note that, in any case, this result of the fuzzification mechanism can
be easily put aside: both infimum and PropI(F ) are anyway expressible in the language of  L4(Π)
and can be both used, according to the situation to be modeled.

To conclude the section, we note that the QFM FCX can also be seen as an instance of the clo-
seness based fuzzification mechanism, for monotone quantifiers. It can be obtained by instantiating
the schema on Definition 20 as follows:

(i) The set of precisifications is identified with the crisp predicates F≥c(x), for any c ∈ D .

(ii) The closeness is measured as inf (F (x)↔ F≥c(x)), where inf ranges over the kernels of the
quantifier at hand.

(iii) The conjunction ∧.



This determines the value

max
c∈D∪{>}

D′∈K≥c(QxF (x))

vI(QxF≥c(x)) ∧ inf
d∈D′

(F≥c(d)↔ F (d))

where the K≥c(QxF (x)) is a shorthand for KI′(QxF (x)), for I ′ a precisification such that
vI′(F (d)) = 1 if vI(F (d)) ≥ vI(F (c)), vI′(F (d)) = 0 otherwise.

Theorem 13. Let Q be a monotone semi-fuzzy quantifier, F (x) a formula, I a fuzzy interpreta-
tion. We have :

vI(FCX(Q)xF (x)) = max
c∈D∪{>}

D′∈K≥c(QxF (x))

vI(QxF≥c(x)) ∧ ( inf
d∈D′

F≥c(d)↔ F (d)).

Proof. Let us show the case for non-decreasing quantifiers. By Lemma 6, any kernel D′ is positive,
i.e. vI(F≥c(d)) = 1 for any d ∈ D′.

Hence by straightforward computations we obtain:

inf
d∈D′

(vI(F≥c(d)↔ F (d))) = inf
d∈D′

(vI(F≥c(d)→ F (d))) = min
d∈D′

vI(F (d))

Assume that the latter equals vI(F (c′)) for a certain c′ ∈ D′ Note that, since D′ is a positive
kernel in K≥c(QxF (x)), we have that F≥c

′
(d) determines a D′-based variant of F≥c(d). Hence we

have vI(QxF≥c
′
(x)) ≥ vI(QxF≥c(x)). We thus get

vI(QxF≥c(x)) ∧ inf
d∈D′

(vI(F≥c(d)↔ F (d))) = vI(QxF≥c(x) ∧ F (c′)) ≤ vI(QxF≥c
′
(x) ∧ F (c′)).

Hence, we finally obtain:

max
c∈D∪{>}

D′∈K≥c(QxF (x))

vI(QxF≥c(x)) ∧ ( inf
d∈D′

F≥c(d)↔ F (d)) = max
c′∈D∪{>}

vI(QxF≥c
′
(x) ∧ F (c′))

= vI(FCX (Q)xF (x)).

To conclude, let us note that, regarding closeness-based QFMs, only the closeness measure
CLD′ is strictly calibrated for the case of unary quantifiers. In order to extend our results to n-ary
quantifiers, one has to consider suitable extensions of such a closeness measure to the n-ary case.
As for previous cases, however, the biggest challenges would actually be assessing the adequacy of
the n-ary fuzzy quantifiers thus obtained for linguistic modeling.

6.1 Applying Closeness-based QFMs to Type I Quantifiers

So far, following Glöckner, we assumed that functions interpreting semi-fuzzy quantifiers were
given and we showed possible ways of lifting such functions to the fully fuzzy case. However,
modeling semi-fuzzy quantifiers is, in itself, a nontrivial task, difficult to ground on purely linguistic
considerations. As mentioned in the introduction, the problem has usually been ignored, with the
notable exception of [14], where functions for semi-fuzzy quantifiers are systematically introduced,



on the basis of games semantics principles. In this section we show an alternative approach to such
issues.

We consider a variant of our closeness-based fuzzification mechanism, to be applied to quan-
tifiers of Type I, rather than to semi-fuzzy quantifiers. This way, we obtain models of semi-fuzzy
quantifiers, which can be also directly applied to the fully-fuzzy case.

In particular, we show that some of the models of semi-fuzzy quantifiers introduced in [14] can
be rediscovered in this way.

Clearly, QFMs satisfying correct generalization will not work for our purpose: no proper semi-
fuzzy quantifier can be obtained if we insist that over a crisp input, the quantifier should output
the same truth value as in the original Type I case.

For this reason, we need to consider a variant of our last QFM FC′ , dropping the condition
that the precisifications should be coherent. Given a Type I quantifier Q, a formula F (x) and an
interpretation I, we consider the set Id(Qx(F (x)) containing every classical interpretation I ′ over
the same domain of I, such that vI′(QxF (x)) = 1, no matter what the original fuzzy interpretation
I was. Here, rather than precisifications of I, we should speak of ideal interpretations, hence the
name Id. We have the following.

Definition 26. Let Q be a Type I quantifier, I, a fuzzy interpretation. We define:

vI(FId(Q)xF (x)) = max
I′∈Id(QxF (x))
D′∈KI′ (QxF (x)

CLD′(F
I , F I

′
).

In the definition above, KI′(QxF (x)) and CLD′(F
I , F I

′
) are as in the previous section. Com-

paring FId with FC′ , note that, in the former, the conjunction with vI′(QxF (x)) is missing: this
is because, differently than for CI , by definition vI′(QxF (x)) = 1 for every I ′ ∈ Id(QxF (x)).

Let us consider now what happens with the quantifiers Q[≥j] and Q[≥ kn ]. If we treat them as

Type I quantifiers, their truth function is uniquely determined, in the obvious way, in terms of
cardinality of their arguments. Let I be an interpretation over a domain D, F (x) a first-order
formula in the language of  L4.

Recall, from Example 8, that the kernel of a precisification I ′, such that vI′(Q[≥j]xF (x)) =
1, is a positive kernel D′ such that |D′| = j. Let us assume, as in the previous section that
D = {c1, . . . , cn} with vI(F (c1)) ≤ · · · ≤ vI(F (cn)). Hence, recalling Lemma 6, the maximum in
vI(FId(Q[≥j])xF (x)) is obtained for the precisification IF↑j , i.e. we have

vI(FId(Q[≥j])xF (x)) =

n∑
i=n−j+1

vI(F (ci))

j
.

That is, FId(Q[≥j])xF (x) is the average truth value of the j elements of the domain for which
vI(F (c)) is highest. We then obtain:

vI(FId(Q[≥ k
m ])xF (x)) = vI(FId(Q[≥j])xF (x)) for j = d(k/m) · |D|e.

Let us now recall the models of semi-fuzzy quantifiers proposed in [14]. Consider the family of
quantifiers Gkm introduced in [14] on the basis of game theoretical principles, which are meant to
provide models for linguistic expressions such as at least k/m. Their truth function is given by

vI(GkmxF̂ (x)) = min{1,max{0, (k +m)Prop(F̂ )− k + 1}}.



For the particular case k = 1, we get

vI(G1
mxF̂ (x)) = min{1, (1 +m)Prop(F̂ )}}.

On the other hand, if |D| = n is divisible by (m+ 1), we have:

vI(FId(Q[≥ 1
m+1 ]

)xF̂ (x)) =

n∑
i=n−n/(m+1)+1

vI(F̂ (ci))

n/(m+ 1)

=

{
1 if Prop(F ) ≥ 1/(m+ 1)

(m+ 1) · Prop(F̂ ) otherwise.

That is, G1
m coincides with FC′(Q[≥ 1

1+m ]). In the general case, we will not have that Gkm coincides

with FId(Q[≥ k
k+m ]), as we get:

vI(FId(Q[≥ k
k+m ])xF̂ (x)) =

n∑
i=n−nk/(k+m)+1

vI(F̂ (ci))

nk/(k +m)

=

{
1 if Prop(F ) ≥ k

k+m

Prop(F ) · m+k
k otherwise.

To obtain the truth function of Gkm in the general case, we can introduce a strictness parameter
in the evaluation of closeness for FC′(Q[≥ k

k+m ]). Given a quantifier Q, let us denote by FIds the

fuzzification mechanism obtained by letting:

vI(FIds(Q)xF (x)) = max
I′∈Id(QxF (x))
D′∈KI′ (QxF (x)

(CLsD′(F
I , F I

′
))

where the power s is taken w.r.t. to the  Lukasiewicz conjunction �. We have that:

vI(FIds(Q[≥ kn ])xF (x)) = max(0, s · vI(FId(Q[≥ kn ])xF (x))− (s− 1))

and in particular

vI(FIdk(Q[≥ k
k+m ])xF (x)) = max(0, k · vI(FId(Q[≥ k

k+m ])xF (x))− k + 1)

= min(1,max(0, k · Prop(F ) · m+ k

k
− k + 1)) = vI(GkmxF (x)).

7 Summary and Conclusion

In this paper we have revisited and analyzed Glöckner’s desiderata for quantifiers fuzzification
mechanisms [19]. As discussed in the introduction, we focused on unary quantification. This move



allowed us to set aside broader concerns with truth functionality, which are pressing issues alre-
ady in the case of binary quantifiers, where vagueness related dependencies between range and
scope predicates should be respected in linguistically adequate models. Moreover, the restriction
to unary quantification allowed a more focused analysis of Glöckner’s desiderata for QFMs. We
also emphasized that Glöckner’s approach is incompatible with a central paradigm of contemporary
Mathematical Fuzzy Logic: t-norm based truth functions, in particular including (full)  Lukasiewicz
logic.

Desiderata FC′

Correct Generalization X

Projection Quantifiers X

Quantitativity X

Internal Negation X

External Negation Ö

Dualization Ö

Monotonicity (argument) X

Quantifier strength (X)a

Continuity X

Supremum/Infimum/Average (X)b

Quantified partitions Ö

Table 1. Desiderata satisfied by FC′

a For monotone quantifiers, see Theorem 10.
b Only the supremum part, see Theorem 12.

Expressibility

FM  L4(Π)a

FOWA  L4(Π) b

FR  L4(Π)

FL  L4(Π)

FCX  L4

FC  L4

FC′
Ö

Monotonicity (cons. extension)

FM X

FOWA X

FR X

FL X

FCX X

FC′ (X)c.

Table 2. Our two new desiderata: expressibility and
monotonicity under conservative extension

a For monotone quantifiers.
b For monotone quantifiers.
c For quantifiers with extensive kernels, see Theo-

rem 11

We have investigated the main DFS introduced by Glockner and showed how they fared with
the respect to expressibility. We focused in particular on the case of monotone quantifiers, where
the DFS FOWA and FCX coincide with previously known QFMs in the literature, i.e. those based
on the Choquet and the Sugeno integral, respectively. While FM and FOWA required the use of
propositional quantifiers, FCX turned out to be the only DFS already expressible in  L4.

In Section 6 we then introduced a new family of QFM, which we called “closeness-based”. The
core principle for these QFMs is to evaluate a fully fuzzy sentence by picking a precisification which
maximizes the evaluation of a corresponding semi-fuzzy quantified sentence and the “closeness” of



the precisification to the original fuzzy interpretation. Various QFMs can in principle be introduced
by concrete instantiations of this idea, in particular by suitable choices of the measure of closeness.

In this setting, we recalled the QFM FC from [1] and saw its shortcomings: essential desiderata
such as correct generalization and monotonicity are not satisfied. Investigating the reason for
such failures, we ended up with our last QFM, FC′ , which, to the best of our knowledge, was
not previously discussed in the literature. We contend that the models it provides are intuitively
appealing, despite not fulfilling all of the given desiderata. From our perspective, a particularly
important issue is that this QFM may not be expressible in suitable expansions of  Lukasiewicz
logic, at least in the general case. This is a topic for future research.

In Table 1 and Table 2 we provide a summary of our investigations.
Concerning future work, we believe that the concept of closeness-based models establishes a

different research direction for modeling quantifiers. In particular, as we hinted in Section 6.1, one
could follow a path different from that of Glöckner, and model fully-fuzzy quantifiers directly from
generalized classical quantifiers, avoiding the intermediate step of modeling semi-fuzzy quantifiers.
This results in a reduced arbitrariness in the modeling choice: in contrast to the case of semi-fuzzy
quantifiers, truth functions for generalized classical quantifiers can be read off more transparently
from their linguistic specification. We believe that fruitful insights for this kind of investigation
can come from modeling truth values as distances from prototypes and counterexamples [36].

We also plan to further explore the advantages of embedding fuzzy quantifiers models into
logical calculi, in particular for t-norm based logics. An axiomatization and a proof-theoretic study
of semi-fuzzy and fuzzy quantifiers is still lacking, even for the “basic” logic  L(Π). Promising
steps in this direction consider modal counterparts of quantifiers, e.g. along the lines suggested
in Chapter 8 of Hajek’s monograph [20]. Finally, another task for future research arises from the
linguistic phenomenon of vagueness-induced dependencies between different predicates involved
in higher-arity quantification, discussed in Section 2. Models that take corresponding contextual
shifts in memberships degrees into full account will no longer be truth-functional, but rather call
for extending the machinery of quantifier fuzzification mechanisms by intensional components, akin
to modal logic.
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