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Abstract

We consider the problem of constructing a fuzzy betweenness relation

from a metric. More precisely, given a continuous Archimedean triangu-

lar norm, we present two construction methods for a fuzzy betweenness

relation from a metric by making use of the pseudo-inverse of either a con-

tinuous additive generator or a continuous multiplicative generator of the

triangular norm. In case the metric is bounded and given a 1-Lipschitz

continuous triangular norm, we present a third construction method for a

fuzzy betweenness relation from a metric by making use of the residual im-
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plication of the triangular norm. Since the  Lukasiewicz and product trian-

gular norms are both continuous Archimedean and 1-Lipschitz continuous,

all three construction methods may be used. Interestingly, the construc-

tion method based on the residual implication is proved to coincide with

that based on a continuous additive generator for the  Lukasiewicz triangu-

lar norm and with that based on a continuous multiplicative generator for

the product triangular norm. We end by noting that all three construc-

tion methods result in a fuzzy prebetweenness relation when considering

a pseudometric instead of a metric.

Keywords: Fuzzy betweenness relation; Metric; Triangular norm; Fuzzy

prebetweenness relation; Pseudometric

1 Introduction

The study of crisp betweenness relations is a classical topic in mathematics

that can be traced back as far as the nineteenth century [21]. Through the

years, many different axiomatizations of crisp betweenness relations have been

presented [1, 15, 16, 23], a key difference lying in the underlying structure with

which they are associated (e.g., metric spaces, posets, road systems, etc.). In

this work, we adhere to the definition of a crisp betweenness relation in the

sense of Pérez-Fernández and De Baets [22], which has been proven to admit a

characterization as a family of order relations [29].

In a recent paper [30], we studied the notion of a fuzzy betweenness relation

and established a connection between fuzzy betweenness relations and fuzzy or-

der relations, as in the crisp case. More precisely, we followed the two main

schools of thought in the study of fuzzy order relations (the one by Zadeh [28]

and the one initiated by Höhle and Blanchard [14] and popularized by Boden-

hofer [3, 4, 5]) and presented two types of fuzzy betweenness relations. Each of

these types admits a characterization as a family of fuzzy order relations in the

respective sense. Moreover, we established the connection between these two

types of fuzzy betweenness relations.
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Although it is admittedly true that crisp betweenness relations have been

historically linked to order relations, it is also true that crisp betweenness re-

lations have been linked to metrics [22]. Thus, it is natural at this point to

explore the connection between the types of fuzzy betweenness relations intro-

duced in [30] and metrics, especially bearing in mind that (pseudo)metrics have

been shown to be closely related to (binary) fuzzy relations. For instance, De

Baets and Mesiar studied the correspondence between pseudometrics and fuzzy

equivalence relations [7] and between metrics and fuzzy equality relations [8].

Interestingly, this correspondence is based on the use of additive generators of

triangular norms and serves as the main source of inspiration for the present

paper.

The aim of this paper is then to present some construction methods for

a fuzzy betweenness relation from a metric. In particular, any metric d on

a universe X naturally induces a crisp betweenness relation Bd on X [22], as

follows:

Bd = {(x, y, z) ∈ X3 | d(x, z) = d(x, y) + d(y, z)} .

It is expected that most of the triplets (x, y, z) do not fulfill the above metric

equality. In particular, if d is an ultrametric on X, then d(x, z) = d(x, y)+d(y, z)

is equivalent to the fact that x = y or y = z. That is to say, if d is an ultrametric

on X, then it holds that Bd is exactly the smallest betweenness relation on X,

defined as

B0 = {(x, y, z) ∈ X3 | x = y or y = z} .

At this point, one might wonder, given a metric d on X, how could the de-

gree to which y is in between x and z be measured for those triplets (x, y, z)

that do not fulfill the metric equality? The answer to this question requires to

develop some appropriate construction methods for obtaining a ∗-betweenness

relation from a metric. In the present paper, after recalling some preliminar-

ies in Section 2, we provide such construction methods in case ∗ is either a

continuous Archimedean t-norm (Section 3) or a 1-Lipschitz continuous t-norm
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(Section 4). More precisely, for continuous Archimedean t-norms, we measure

the degree to which the metric equality is (or is not) fulfilled when rewritten

as d(x, y) + d(y, z) − d(x, z) = 0 (see Subsection 3.2) or as d(x,z)
d(x,y)+d(y,z) = 1

(see Subsection 3.3). Similarly, for 1-Lipschitz continuous t-norms, we measure

the degree to which the metric equality is fulfilled when written in the classic

form d(x, y) + d(y, z) = d(x, z) by making use of the biresidual implication.

In the latter case, it is necessary that the considered metric is bounded in or-

der to permit rescaling to the unit interval. Furthermore, we provide similar

results for constructing a fuzzy prebetweenness relation from a pseudometric.

Section 5 provides some insights into the connection between the presented con-

struction methods in case the given t-norm is both continuous Archimedean

and 1-Lipschitz continuous. We end with some conclusions and suggestions for

future work in Section 6.

2 Preliminaries

Throughout this paper, X always denotes a nonempty set. In the following, we

recall some basic notions and results related to pseudometrics, triangular norms

and fuzzy betweenness relations.

2.1 On pseudometrics

A mapping d : X2 → [0,+∞[ is called a pseudometric on X if it satisfies the

following conditions [9]:

(i) Reflexivity: d(x, x) = 0, for any x ∈ X;

(ii) Symmetry: d(x, y) = d(y, x), for any x, y ∈ X;

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for any x, y, z ∈ X.

A pseudometric d on X is called a metric on X if it additionally satisfies the

identity of indiscernibles property (i.e., d(x, y) = 0 implies x = y, for any

x, y ∈ X). Additionally, a metric d on X is called an ultrametric on X if it
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satisfies the following stronger inequality (usually referred to as the ultrametric

inequality): d(x, z) ≤ max(d(x, y), d(y, z)), for any x, y, z ∈ X.

A pseudometric d on X is called bounded if there exists an upper bound of

d, i.e., there exists N > 0 such that, for any x, y ∈ X, it holds that d(x, y) ≤ N .

The following two propositions concerning pseudometrics will be used in the

next sections.

Proposition 1. Let d be a pseudometric on X and x, y, z ∈ X be such that

d(x, y) = 0. It holds that d(x, z) = d(y, z).

Proof. From the triangle inequality and the fact that d(x, y) = 0, it follows

that d(x, z) ≤ d(x, y) + d(y, z) = d(y, z). Similarly, it follows that d(y, z) ≤

d(y, x) + d(x, z) = d(x, z). We finally conclude that d(x, z) = d(y, z). �

Proposition 2. Let d be a pseudometric on X and o, x, y, z ∈ X be such that

d(o, x) + d(x, y) > 0, d(o, y) + d(y, z) > 0 and d(o, x) + d(x, z) > 0. It holds that

d(o, y)

d(o, x) + d(x, y)
· d(o, z)

d(o, y) + d(y, z)
≤ d(o, z)

d(o, x) + d(x, z)
.

Proof. The inequality trivially holds if d(o, y) = 0 or d(o, z) = 0. Suppose that

d(o, y) > 0 and d(o, z) > 0. By making use of the triangle inequality twice, it

follows that

d(o, y)

d(o, x) + d(x, y)
· d(o, z)

d(o, y) + d(y, z)

=
d(o, y) · d(o, z)

d(o, x) · d(o, y) + d(x, y) · d(o, y) + (d(o, x) + d(x, y)) · d(y, z)

≤ d(o, y) · d(o, z)

d(o, x) · d(o, y) + d(x, y) · d(o, y) + d(o, y) · d(y, z)

=
d(o, y) · d(o, z)

d(o, y) · d(o, x) + d(o, y) · (d(x, y) + d(y, z))

≤ d(o, y) · d(o, z)

d(o, y) · d(o, x) + d(o, y) · d(x, z)

=
d(o, z)

d(o, x) + d(x, z)
.

Therefore, the inequality holds. �
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2.2 On triangular norms

A triangular norm (t-norm) ∗ on [0, 1] [19] is a binary operation on [0, 1] that

is commutative (i.e., α ∗ β = β ∗ α, for any α, β ∈ [0, 1]), associative (i.e.,

α ∗ (β ∗ γ) = (α ∗ β) ∗ γ, for any α, β, γ ∈ [0, 1]), increasing (i.e., α ≤ β implies

α ∗ γ ≤ β ∗ γ, for any α, β, γ ∈ [0, 1]) and has neutral element 1 (i.e., α ∗ 1 = α,

for any α ∈ [0, 1]).

The four basic t-norms ∗M (minimum), ∗P (product), ∗L ( Lukasiewicz) and

∗D (drastic product) are defined as follows:

(i) minimum: x ∗M y = x ∧ y;

(ii) product: x ∗P y = x · y;

(iii)  Lukasiewicz: x ∗L y = 0 ∨ (x+ y − 1);

(iv) drastic product:

x ∗D y =

 x ∧ y, if 1 ∈ {x, y} ,

0, otherwise .

For two t-norms ∗1 and ∗2, ∗1 is said to be weaker than ∗2 (and, equivalently,

∗2 is said to be stronger than ∗1), denoted by ∗1 ≤ ∗2, if x ∗1 y ≤ x ∗2 y, for

any (x, y) ∈ [0, 1]2. We shall write ∗1 < ∗2 meaning that ∗1 ≤ ∗2 and there

exists (x0, y0) ∈ [0, 1]2 such that x0 ∗1 y0 < x0 ∗2 y0. It is known that the drastic

product is the weakest t-norm and the minimum is the strongest one. Actually,

it holds that ∗D < ∗L < ∗P < ∗M . From this result, it is immediate to see that

0 is an annihilator for any t-norm ∗ (i.e., α ∗ 0 = 0 for any α ∈ [0, 1]).

A t-norm ∗ is called continuous if it is continuous as a function in the usual

interval topology on [0, 1]2. Similarly, a t-norm ∗ is called left-continuous if it is

lower semicontinuous or, equivalently, left-continuous in its first component [10].

We recall that the minimum, the product and the  Lukasiewicz t-norms are all

continuous (and, thus, left-continuous), but the drastic product t-norm is not

left-continuous (and, thus, not continuous). A t-norm ∗ is called 1-Lipschitz
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continuous if, for any x1, x2, y1, y2 ∈ [0, 1], it holds that |x1 ∗ y1 − x2 ∗ y2| ≤

|x1 − x2|+ |y1 − y2|.

A t-norm ∗ is called Archimedean [19] if for any (x, y) ∈ ]0, 1[ 2, there exists

a positive integer n such that x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n

< y. In particular, a continuous

t-norm ∗ is Archimedean if and only if x ∗ x < x, for any x ∈ ]0, 1[ .

The minimum t-norm is 1-Lipschitz continuous but not Archimedean and

the t-norm ∗n (see [25]) defined as

x ∗n y =

 n
√
xn + yn − 1 , if xn + yn > 1 ,

0 , otherwise ,

is continuous Archimedean but not 1-Lipschitz continuous. Hence, there exists

no inclusion relation between the class of all continuous Archimedean t-norms

and that of all 1-Lipschitz continuous t-norms. However, the intersection of

these two classes is not empty since the product and  Lukasiewicz t-norms are

both continuous Archimedean and 1-Lipschitz continuous.

2.3 On fuzzy betweenness relations

A (binary) fuzzy relation R on X is a mapping R : X2 → [0, 1]. Similarly, a

ternary fuzzy relation T on X is a mapping T : X3 → [0, 1]. In this paper, we

are interested in the following properties of a fuzzy relation (see, e.g., [2, 20, 28]):

(i) reflexivity: R(x, x) = 1, for any x ∈ X;

(ii) symmetry: R(x, y) = R(y, x), for any x, y ∈ X;

(iii) ∗-transitivity (with ∗ being a t-norm): R(x, y) ∗ R(y, z) ≤ R(x, z), for

any x, y, z ∈ X.

A fuzzy relation R on X is said to be a ∗-equivalence relation1 if it is reflexive,

symmetric and ∗-transitive.

1There are several different names for ∗-equivalence relations in the literature, such as

similarity relations [28] and indistinguishability operators [24, 26].
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In [30], we presented the definitions of a ∗-E-betweenness relation and a

∗-betweenness relation in a lattice-theoretic setting. However, in order to con-

struct fuzzy betweenness relations from a metric, we only consider the lattice

to be the real unit interval [0, 1] throughout this paper.

Definition 1. [30] Let ∗ be a t-norm and E be a ∗-equivalence relation on X. A

ternary fuzzy relation B on X is called a ∗-E-betweenness relation if it satisfies

the following four conditions:

(i) Symmetry (w.r.t. the first and the third element): B(x, y, z) = B(z, y, x),

for any x, y, z ∈ X;

(ii) E-reflexivity (w.r.t. the second and the third element): E(y, z) ≤ B(x, y, z),

for any x, y, z ∈ X;

(iii) ∗-E-antisymmetry (w.r.t. the second and the third element): B(x, y, z)∗

B(x, z, y) ≤ E(y, z), for any x, y, z ∈ X;

(iv) ∗-transitivity (w.r.t. the second and the third element): B(o, x, y) ∗

B(o, y, z) ≤ B(o, x, z), for any o, x, y, z ∈ X.

Definition 2. [30] Let ∗ be a t-norm. A ternary fuzzy relation B on X is called

a ∗-betweenness relation if it satisfies the following four conditions:

(i) Symmetry (w.r.t. the first and the third element): B(x, y, z) = B(z, y, x),

for any x, y, z ∈ X;

(ii) Reflexivity (w.r.t. the second and the third element): B(x, y, y) = 1, for

any x, y ∈ X;

(iii) Crisp antisymmetry (w.r.t. the second and the third element): B(x, y, z) =

B(x, z, y) = 1 implies y = z, for any x, y, z ∈ X;

(iv) ∗-transitivity (w.r.t. the second and the third element): B(o, x, y) ∗

B(o, y, z) ≤ B(o, x, z), for any o, x, y, z ∈ X.
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Remark 1. A first notion of fuzzy betweenness relation is due to Jacas and Re-

casens [17, 18], yet with a stronger transitivity property and a weaker antisym-

metry property compared to Definition 2, thus yielding a notion incomparable

to that in Definition 2.

A symmetric, reflexive and ∗-transitive ternary fuzzy relation is called a

∗-prebetweenness relation.

The following proposition reveals the connection between ∗-E-betweenness

relations and ∗-prebetweenness relations.

Proposition 3. [30] Let ∗ be a t-norm, E be a binary fuzzy relation on X and

B be a ternary fuzzy relation on X. The following two statements are equivalent:

(i) E is a ∗-equivalence relation on X and B is a ∗-E-betweenness relation

on X;

(ii) B is a ∗-prebetweenness relation on X, E(x, y) = B(y, x, y), for any

x, y ∈ X, and

B(x, y, z) ∗B(x, z, y) ≤ B(y, z, y), for any x, y, z ∈ X .

3 The case of continuous Archimedean t-norms

In this section, we first recall some basic notions and results related to addi-

tive and multiplicative generators of a continuous Archimedean t-norm. Subse-

quently, given a continuous Archimedean t-norm ∗, we present two construction

methods for a ∗-prebetweenness relation from a pseudometric by making use

of the pseudo-inverse of a continuous additive or a continuous multiplicative

generator of ∗. Furthermore, it is proved that a ∗-betweenness relation arises

if and only if a metric (rather than just a pseudometric) is considered. In-

terestingly, both construction methods are shown to result in different fuzzy

(pre)betweenness relations.
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3.1 On additive and multiplicative generators of a contin-

uous Archimedean t-norm

Let [a, b] and [c, d] be two closed subintervals of the extended real line [−∞,+∞]

and f : [a, b] → [c, d] be a monotone function. The pseudo-inverse f (−1) :

[c, d]→ [a, b] of f is defined by

f (−1)(y) = sup{x ∈ [a, b] | (f(x)− y)(f(b)− f(a)) < 0} ,

for any y ∈ [c, d], where it is assumed that sup ∅ = a.

In particular, if f(a) < f(b) (thus, f is increasing), then it holds that, for

any y ∈ [c, d],

f (−1)(y) = sup{x ∈ [a, b] | f(x) < y} .

Similarly, if f(a) > f(b) (thus, f is decreasing), then it holds that, for any

y ∈ [c, d],

f (−1)(y) = sup{x ∈ [a, b] | f(x) > y} .

Many t-norms can be characterized by an additive generator. Let Ran(t) denote

the range of a function t.

Definition 3. [19] A strictly decreasing function t : [0, 1] → [0,+∞] is said to

be an additive generator of a t-norm ∗ if it is right-continuous at 0, t(1) = 0,

and for any (x, y) ∈ [0, 1]2, it holds that

t(x) + t(y) ∈ Ran(t) ∪ [t(0),+∞]

and

x ∗ y = t(−1)(t(x) + t(y)) .

Examples of t-norms that have an additive generator are the product,  Lukasiewicz

and drastic product t-norms.

Example 1. (i) The function tP : [0, 1]→ [0,+∞] defined by tP (x) = − lnx is

an additive generator of the product t-norm.
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(ii) The function tL : [0, 1]→ [0,+∞] defined by tL(x) = 1−x is an additive

generator of the  Lukasiewicz t-norm.

(iii) The function tD : [0, 1]→ [0,+∞] defined by

tD(x) =

 2− x, if x ∈ [0, 1[ ,

0 , if x = 1 ,

is an additive generator of the drastic product t-norm.

Not all t-norms have an additive generator. An example of such a t-norm

is the minimum t-norm. For an extensive discussion on additive generators, we

refer to [27].

Similarly, many t-norms can be characterized by a multiplicative generator.

Interestingly, a function t : [0, 1] → [0,+∞] is an additive generator of a t-

norm ∗ if and only if the function θ : [0, 1]→ [0, 1] defined by θ(x) = e−t(x) is a

multiplicative generator of ∗.

Definition 4. [19] A strictly increasing function θ : [0, 1]→ [0, 1] is said to be

a multiplicative generator of a t-norm ∗ if it is right-continuous at 0, θ(1) = 1,

and for any (x, y) ∈ [0, 1]2, it holds that

θ(x) · θ(y) ∈ Ran(θ) ∪ [0, θ(0)]

and

x ∗ y = θ(−1)(θ(x) · θ(y)) .

Remark 2. (1) Examples of t-norms that have a multiplicative generator are

the product,  Lukasiewicz and drastic product t-norms:

(i) The function θP : [0, 1] → [0, 1] defined by θP (x) = x is a multiplicative

generator of the product t-norm;

(ii) The function θL : [0, 1]→ [0, 1] defined by θL(x) = ex−1 is a multiplica-

tive generator of the  Lukasiewicz t-norm;

(iii) The function θD : [0, 1]→ [0, 1] defined by

θD(x) =

 ex−2 , if x ∈ [0, 1[ ,

1 , if x = 1 ,
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is a multiplicative generator of the drastic product t-norm.

(2) Not all t-norms have a multiplicative generator. An example of such a

t-norm is the minimum t-norm.

Any t-norm with an additive (or, equivalently, a multiplicative) generator

is necessarily Archimedean. The converse is not true, but holds for continuous

t-norms.

Proposition 4. [19] For any t-norm ∗, the following statements are equivalent:

(i) ∗ is continuous Archimedean;

(ii) ∗ has a continuous additive generator, i.e., there exists a continuous and

strictly decreasing function t : [0, 1] → [0,+∞] with t(1) = 0, which is

uniquely determined up to a positive multiplicative constant, such that for

any (x, y) ∈ [0, 1]2, it holds that

x ∗ y = t(−1)(t(x) + t(y)) = t−1((t(x) + t(y)) ∧ t(0)) ;

(iii) ∗ has a continuous multiplicative generator, i.e., there exists a continuous

and strictly increasing function θ : [0, 1] → [0, 1] with θ(1) = 1, which is

uniquely determined up to a positive constant exponent, such that for any

(x, y) ∈ [0, 1]2, it holds that

x ∗ y = θ(−1)(θ(x) · θ(y)) = θ−1((θ(x) · θ(y)) ∨ θ(0)) .

3.2 The additive generator approach

For a given pseudometric d on X, we define the mapping Dd : X3 → [0,+∞[

by

Dd(x, y, z) = d(x, y) + d(y, z)− d(x, z) .

This mapping measures the deviation of d(x, y) + d(y, z) from d(x, z) when

rewriting the metric equality in the form d(x, y) + d(y, z) − d(x, z) = 0. Note

that Dd(x, y, z) = 0 if and only if (x, y, z) ∈ Bd.

The following proposition presents some properties of the mapping Dd.
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Proposition 5. Let d be a pseudometric on X. The mapping Dd has the

following properties:

(i) Dd(x, y, z) = Dd(z, y, x), for any x, y, z ∈ X;

(ii) Dd(x, x, y) = Dd(x, y, y) = 0, for any x, y ∈ X;

(iii) Dd(o, x, y) +Dd(o, y, z) ≥ Dd(o, x, z), for any o, x, y, z ∈ X;

(iv) Dd(x, y, z) +Dd(x, z, y) = Dd(y, z, y), for any x, y, z ∈ X;

(v) Dd(x, y, z) = Dd(x, z, y) = 0 if and only if d(y, z) = 0, for any x, y, z ∈ X.

Proof. The proofs of (i)-(iv) are straightforward. The left-to-right implication

of (v) follows from (iv), whereas the right-to-left implication of (v) follows from

Proposition 1. �

The main idea is now to transform the deviation of d(x, y) + d(y, z) from

d(x, z) into a degree of betweenness, where triplets fulfilling the triangle equality

(i.e. belonging to Bd) should obtain degree of betweenness 1. Inspired by [7,

8] and given the respective domains, we will explore the use of the pseudo-

inverse of an additive generator to that end. More explicitly, the following

theorem provides a method to construct a ∗-(pre)betweenness relation from a

given (pseudo)metric, with ∗ a continuous Archimedean t-norm, by making use

of a continuous additive generator of ∗.

Theorem 1. Let t be an additive generator of a t-norm ∗ and d be a pseudo-

metric on X. Define the ternary fuzzy relation Btd on X as follows:

Btd(x, y, z) = t(−1)(Dd(x, y, z)) .

The following results hold:

(i) Btd is symmetric and reflexive;

(ii) If Btd is crisp antisymmetric, then d is a metric on X. Moreover, if t is

continuous, Btd is crisp antisymmetric if and only if d is a metric on X;
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(iii) If t is continuous, then Btd is ∗-transitive;

(iv) If t is continuous, then Btd is a ∗-prebetweenness relation on X;

(v) If t is continuous, then Btd(x, y, z) ∗ Btd(x, z, y) = Btd(y, z, y), for any

(x, y, z) ∈ X3;

(vi) If t is continuous, then Btd is a ∗-betweenness relation on X if and only

if d is a metric on X.

Proof. (i) It follows from Proposition 5(i) and (ii).

(ii) We first prove the left-to-right implication. Suppose that Btd is crisp an-

tisymmetric. Let x, y ∈ X with d(x, y) = 0. It follows from (i) and Proposition

5(v) that Btd(x, x, y) = Btd(x, y, x) = 1. Hence, it holds that x = y and d is a

metric. We now prove the right-to-left implication. Suppose that d is a metric

on X. Let Btd(x, y, z) = Btd(x, z, y) = 1. It follows from the continuity of t that

Dd(x, y, z) = Dd(x, z, y) = 0 .

By Proposition 5(v), it holds that d(y, z) = 0, which implies y = z.

(iii) Suppose that t is continuous. In this case, it holds that

Btd(x, y, z) = t−1(Dd(x, y, z) ∧ t(0)) .

For any o, x, y, z ∈ X, it holds that

Btd(o, x, y) ∗Btd(o, y, z) = t−1((t(Btd(o, x, y)) + t(Btd(o, y, z))) ∧ t(0))

= t−1(((Dd(o, x, y) ∧ t(0)) + (Dd(o, y, z) ∧ t(0))) ∧ t(0))

= t−1((Dd(o, x, y) +Dd(o, y, z)) ∧ t(0)).

Hence, it follows from Proposition 5(iii) that

Btd(o, x, y) ∗Btd(o, y, z) ≤ t−1(Dd(o, x, z) ∧ t(0))

= Btd(o, x, z).

(iv) It follows from (i) and (iii).
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(v) It follows from the proof of (iii) and Proposition 5(iv).

(vi) The left-to-right implication follows from (ii). The right-to-left implica-

tion follows from (ii) and (iv). �

Exploiting the results of Theorem 1, the same ternary fuzzy relation Btd turns

out to be a ∗-E-betweenness relation for an appropriately defined ∗-equivalence

relation.

Theorem 2. Let t be a continuous additive generator of a continuous Archimedean

t-norm ∗, d be a pseudometric on X. The ternary fuzzy relation Btd is a ∗-E-

betweenness relation on X, where E : X2 → [0, 1] is defined by

E(x, y) = Btd(y, x, y) .

Proof. It follows from Theorem 1(iv), (v) and Proposition 3. �

Remark 3. The ∗-equivalence relation E in Theorem 2 is actually given by

E(x, y) = t(−1)(2d(x, y)) ,

and slightly differs from the following ∗-equivalence relation (see [7, 8]):

E(x, y) = t(−1)(d(x, y)) .

We give two examples to illustrate Theorems 1 and 2 with two prominent

continuous Archimedean t-norms (the product and  Lukasiewicz t-norms).

Example 2. For any k > 0, the function tP,k : [0, 1] → [0,+∞] defined by

tP,k(x) = −1

k
lnx is a continuous additive generator of the product t-norm ∗P .

Obviously, t
(−1)
P,k : [0,+∞]→ [0, 1] is given by t

(−1)
P,k (x) = e−kx. For any pseudo-

metric d on X, the ternary fuzzy relation B
tP,k

d on X given by

B
tP,k

d (x, y, z) = e−kDd(x,y,z) ,

is a ∗P -prebetweenness relation on X as well as a ∗P -E-betweenness relation

on X, where E : X2 → [0, 1] is given by

E(x, y) = e−2kd(x,y) .
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If d is a metric on X, then B
tP,k

d is a ∗P -betweenness relation on X.

Example 3. For any k > 0, the function tL,k : [0, 1] → [0,+∞] defined by

tL,k(x) =
1

k
(1 − x) is a continuous additive generator of the  Lukasiewicz t-

norm ∗L. Obviously, t
(−1)
L,k : [0,+∞]→ [0, 1] is given by

t
(−1)
L,k (x) =


1− kx , if 0 ≤ x < 1

k
,

0 , if x ≥ 1

k
.

For any pseudometric d on X, the ternary fuzzy relation B
tL,k

d on X, given by

B
tL,k

d (x, y, z) =

 1− kDd(x, y, z) , if Dd(x, y, z) <
1

k
,

0 , otherwise ,

is a ∗L-prebetweenness relation on X as well as a ∗L-E-betweenness relation

on X, where E : X2 → [0, 1] is given by

E(x, y) =

 1− 2kd(x, y) , if d(x, y) <
1

2k
,

0 , otherwise .

If d is a metric on X, then B
tL,k

d is a ∗L-betweenness relation on X.

The first of the following two examples shows that t does not necessarily

need to be continuous (as stated in Theorem 1(iii)) for Btd to be ∗-transitive,

and, hence, a ∗-betweenness relation. The second one shows that, if t is not

required to be continuous, Btd is no longer assured to be ∗-transitive.

Example 4. Let d be a two-valued metric on X, i.e., there exists N > 0 such

that

d(x, y) =

 0 , if x = y ,

N , if x 6= y .

For any additive generator t of a t-norm ∗, it holds that the ternary fuzzy

relation Btd is ∗-transitive.

Note that

Dd(x, y, z) =


0 , if (x = y) or (y = z) ,

2N , if (x 6= y) and (y 6= z) and (x = z) ,

N , otherwise .

16



Hence,

Btd(x, y, z) =


1 , if (x = y) or (y = z) ,

t(−1)(2N) , if (x 6= y) and (y 6= z) and (x = z) ,

t(−1)(N) , otherwise .

It is not difficult to verify that Btd is ∗M -transitive and, thus, ∗-transitive.

Example 5. Let X = {o, x, y, z} and d be the metric on X defined as follows:

d(u, v) =


0 , if u = v ,

2 , if {u, v} = {x, z} ,

1 , otherwise .

For the additive generator tD : [0, 1]→ [0,+∞] of the drastic product t-norm ∗D
shown in Example 1(iii), the pseudo-inverse t

(−1)
D is given by

t
(−1)
D (x) =


1 , if x ∈ [0, 1] ,

2− x , if x ∈ ]1, 2[ ,

0 , if x ∈ [2,+∞] .

Hence, it holds that

BtDd (o, x, y)∗DBtDd (o, y, z) = t
(−1)
D (1)∗Dt(−1)

D (1) = 1 > 0 = t
(−1)
D (2) = BtDd (o, x, z) .

This shows that BtDd is not ∗D-transitive.

3.3 The multiplicative generator approach

For a given pseudometric d on X, we define the mapping Qd : X3 → [0, 1] by

Qd(x, y, z) =


1 , if d(x, y) + d(y, z) = 0 ,

d(x, z)

d(x, y) + d(y, z)
, if d(x, y) + d(y, z) > 0 .

This mapping measures the deviation of d(x, y) + d(y, z) from d(x, z) when

rewriting the metric equality in the form d(x,z)
d(x,y)+d(y,z) = 1. Note thatQd(x, y, z) =

1 if and only if (x, y, z) ∈ Bd. As the range of Qd is [0, 1], it could be interpreted

as a fuzzy relation. However, we will need to further transform it to obtain a

proper fuzzy betweenness relation.

The following proposition presents some properties of the fuzzy relation Qd.
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Proposition 6. Let d be a pseudometric on X. The ternary fuzzy relation Qd

has the following properties:

(i) Qd(x, y, z) = Qd(z, y, x), for any x, y, z ∈ X;

(ii) Qd(x, x, y) = Qd(x, y, y) = 1, for any x, y ∈ X;

(iii) Qd(o, x, y) ·Qd(o, y, z) ≤ Qd(o, x, z), for any o, x, y, z ∈ X;

(iv) Qd(x, y, z) = Qd(x, z, y) = 1 if and only if d(y, z) = 0, for any x, y, z ∈

X.

Proof. The proofs of (i) and (ii) are straightforward.

(iii) For any o, x, y, z ∈ X, we distinguish the following cases:

(a) If d(o, x) + d(x, z) = 0, then the inequality trivially holds.

(b) If d(o, x)+d(x, z) > 0 and d(o, x)+d(x, y) = 0, then d(o, x) = 0. Hence,

it follows from Proposition 1 that Qd(o, x, z) = 1. The inequality holds.

(c) If d(o, x) + d(x, z) > 0, d(o, x) + d(x, y) > 0 and d(o, y) + d(y, z) = 0,

then d(o, y) = 0. Hence, Qd(o, x, y) = 0. The inequality holds.

(d) If d(o, x) + d(x, z) > 0, d(o, x) + d(x, y) > 0 and d(o, y) + d(y, z) > 0,

then it follows from Proposition 2 that the inequality holds.

(iv) For the left-to-right implication, suppose thatQd(x, y, z) = Qd(x, z, y) =

1. We distinguish two cases. If d(x, y)+d(y, z) = 0 or d(x, z)+d(z, y) = 0, then

it holds that d(y, z) = 0. Otherwise, it holds that d(x, z) = d(x, y) + d(y, z) and

d(x, y) = d(x, z) + d(z, y), and, thus, d(y, z) = 0. The right-to-left implication

trivially follows from Proposition 1. �

The following theorem provides a method to construct a ∗-(pre)betweenness

relation from a given (pseudo)metric, with ∗ a continuous Archimedean t-norm,

by making use of a continuous multiplicative generator of ∗.
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Theorem 3. Let θ be a multiplicative generator of a t-norm ∗ and d be a

pseudometric on X. Define the ternary fuzzy relation Bθd on X as follows:

Bθd(x, y, z) = θ(−1)(Qd(x, y, z)) .

The following results hold:

(i) Bθd is symmetric and reflexive;

(ii) If Bθd is crisp antisymmetric, then d is a metric on X. Moreover, if θ is

continuous, Bθd is crisp antisymmetric if and only if d is a metric on X;

(iii) If θ is continuous, then Bθd is ∗-transitive;

(iv) If θ is continuous, then Bθd is a ∗-prebetweenness relation on X;

(v) If θ is continuous, then Bθd is a ∗-betweenness relation on X if and only

if d is a metric on X.

Proof. (i) It follows from Proposition 6(i) and (ii).

(ii) We first prove the left-to-right implication. Suppose that Bθd is crisp an-

tisymmetric. Let x, y ∈ X with d(x, y) = 0. It follows from (i) and Proposition

6(iv) that Bθd(x, x, y) = Bθd(x, y, x) = 1. Hence, it holds that x = y and d is a

metric. We now prove the right-to-left implication. Suppose that d is a metric.

Let Bθd(x, y, z) = Bθd(x, z, y) = 1. It follows from the continuity of θ that

Qd(x, y, z) = Qd(x, z, y) = 1 .

By Proposition 6(iv), it holds that d(y, z) = 0, which implies y = z.

(iii) Suppose that θ is continuous. In this case, it holds that

Bθd(x, y, z) = θ−1(Qd(x, y, z) ∨ θ(0)) .

For any o, x, y, z ∈ X, it holds that

Bθd(o, x, y) ∗Bθd(o, y, z) = θ−1((θ(Bθd(o, x, y)) · θ(Btd(o, y, z))) ∨ θ(0))

= θ−1(((Qd(o, x, y) ∨ θ(0)) · (Qd(o, y, z) ∨ θ(0))) ∨ θ(0))

= θ−1((Qd(o, x, y) ·Qd(o, y, z)) ∨ θ(0)) .
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Hence, it follows from Proposition 6(iii) that

Bθd(o, x, y) ∗Bθd(o, y, z) ≤ θ−1(Qd(o, x, z) ∨ θ(0))

= Bθd(o, x, z) .

(iv) It follows from (i) and (iii).

(v) The left-to-right implication follows from (ii). The right-to-left implica-

tion follows from (ii) and (iv). �

We give two examples to illustrate Theorem 3 with two prominent continuous

Archimedean t-norms (the product and  Lukasiewicz t-norms).

Example 6. For any k > 0, the function θP,k : [0, 1] → [0, 1] defined by

θP,k(x) = x
1
k is a continuous multiplicative generator of the product t-norm ∗P .

Obviously, θ
(−1)
P,k : [0, 1]→ [0, 1] is given by θ

(−1)
P,k (x) = xk. For any pseudometric

d on X, the ternary fuzzy relation B
θP,k

d given by

B
θP,k

d (x, y, z) =


1 , if d(x, y) + d(y, z) = 0 ,(

d(x, z)

d(x, y) + d(y, z)

)k
, if d(x, y) + d(y, z) > 0 ,

is a ∗P -prebetweenness relation on X. If d is a metric on X, then B
θP,k

d is a

∗P -betweenness relation on X.

Remark 4. If d is a metric on X, then for any pairwisely different x, y, z ∈ X,

it holds that

B
θP,k

d (x, y, z) ∗P B
θP,k

d (x, z, y) > 0 = B
θP,k

d (y, z, y) .

This shows that B
θP,k

d is not a ∗P -E-betweenness relation on X (see Propo-

sition 3). We conclude from Theorem 2 that Theorems 1 and 3 present two

different construction methods for a ∗-(pre)betweenness relation.

Example 7. For any k > 0, the function θL,k : [0, 1] → [0, 1] defined by

θL,k(x) = e
1
k (x−1) is a continuous multiplicative generator of the  Lukasiewicz
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t-norm ∗L. Obviously, θ
(−1)
L,k : [0, 1]→ [0, 1] is given by

θ
(−1)
L,k (x) =

 0 , if 0 ≤ x ≤ e− 1
k ,

1 + k lnx , if e−
1
k < x ≤ 1 .

For any pseudometric d on X, the ternary fuzzy relation B
θL,k

d given by

B
θL,k

d (x, y, z) =


1 , if d(x, y) + d(y, z) = 0 ,

1 + k ln
d(x, z)

d(x, y) + d(y, z)
, if

d(x, z)

d(x, y) + d(y, z)
> e−

1
k ,

0 , otherwise ,

is a ∗L-prebetweenness relation on X. If d is a metric on X, then B
θL,k

d is a

∗L-betweenness relation on X.

The first of the following two examples shows that θ does not necessarily

need to be continuous (as stated in Theorem 3(iii)) for Bθd to be ∗-transitive,

and, hence, a ∗-betweenness relation. The second one shows that, if θ is not

required to be continuous, Bθd is no longer assured to be ∗-transitive.

Example 8. Let d be a two-valued metric on X (see Example 4). For any

multiplicative generator θ of a t-norm ∗, it holds that Bθd is ∗-transitive.

Note that

Qd(x, y, z) =


1 , if (x = y) or (y = z) ,

0 , if (x 6= y) and (y 6= z) and (x = z) ,

1
2 , otherwise .

Hence,

Bθd(x, y, z) =


1 , if (x = y) or (y = z) ,

0 , if (x 6= y) and (y 6= z) and (x = z) ,

θ(−1)

(
1

2

)
, otherwise .

It is not difficult to verify that Bθd is ∗M -transitive and, thus, ∗-transitive.

Example 9. Let X and d be defined as in Example 5. For the multiplica-

tive generator θD : [0, 1] → [0, 1] of the drastic product t-norm ∗D defined in
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Remark 2(1), the pseudo-inverse θ
(−1)
D : [0, 1]→ [0, 1] is given by

θ
(−1)
D (x) =


0 , if x ∈ [0, e−2] ,

2 + lnx , if x ∈ ]e−2, e−1[ ,

1 , if x ∈ [e−1, 1] .

Hence, it holds that

BθDd (o, x, y) ∗D BθDd (o, y, z) = θ
(−1)
D

(
1

2

)
∗D θ

(−1)
D

(
1

2

)
= 1

> 2− ln 3 = θ
(−1)
D

(
1

3

)
= BθDd (o, x, z) .

This shows that BθDd is not ∗D-transitive.

4 The case of 1-Lipschitz continuous t-norms for

a bounded (pseudo)metric

In this section, we first recall some basic notions and results related to the

residual implication of a left-continuous t-norm. Next, we propose a construc-

tion method for a ∗-(pre)betweenness relation from a bounded (pseudo)metric

by making use of the residual implication of a 1-Lipschitz continuous t-norm.

4.1 On (bi)residual implications

The residual implication [11, 19] I∗ of a left-continuous t-norm ∗ is defined as

follows:

I∗(a, b) = sup{x ∈ [0, 1] | a ∗ x ≤ b} = max{x ∈ [0, 1] | a ∗ x ≤ b} .

Throughout this section, we will make use of the following properties of I∗ [11,

19]:

(i) a ≤ b ⇐⇒ I∗(a, b) = 1, for any a, b ∈ [0, 1];

(ii) (∗-transitivity) I∗(a, b) ∗ I∗(b, c) ≤ I∗(a, c), for any a, b, c ∈ [0, 1];

(iii) I∗(1, a) = a, for any a ∈ [0, 1];

22



(iv) a ∗ b ≤ c ⇐⇒ a ≤ I∗(b, c), for any a, b, c ∈ [0, 1];

(v) I∗ is decreasing with respect to the first variable, but increasing with

respect to the second one.

The residual implication I∗ of a left-continuous t-norm ∗ is called special [12, 25]

if, for any a, b, c ∈ [0, 1] such that a+ c, b+ c ∈ [0, 1], it holds that

I∗(a, b) ≤ I∗(a+ c, b+ c) .

Interestingly, the residual implications of the three most prominent (left-)continuous

t-norms (i.e., ∗M , ∗P and ∗L) are all special.

Sainio et al. [25] gave several characterizations of special residual impli-

cations. One such characterization states that the residual implication of a

left-continuous t-norm ∗ is special if and only if ∗ is 1-Lipschitz continuous.

Note that a t-norm ∗ is 1-Lipschitz continuous if and only if it is an associative

copula [13].

The residual implication I∗ of a left-continuous t-norm ∗ is called antispe-

cial [12] if, for any b ∈ [0, 1[ and a, c ∈ ]0, 1[ such that a + c, b + c ∈ [0, 1] and

a > b, it holds that

I∗(a, b) > I∗(a+ c, b+ c) .

For any positive integer n > 1, the residual implication of the continuous t-

norm ∗n (see Section 2) is antispecial (see [25]). In particular, the corresponding

residual implication I∗n is given by

I∗n
(a, b) =

 1 , if a ≤ b ,
n
√

1− an + bn , otherwise .

As the terminology suggests, an antispecial residual implication is not special.

The following proposition gives an equivalent characterization of special

residual implications, which will be crucial in the proof of the ∗-transitivity

of ternary fuzzy relations induced by a bounded pseudometric in the next sub-

section.
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Proposition 7. Let ∗ be a left-continuous t-norm. It holds that I∗ is special if

and only if, for any a, b, c, d, e ∈ [0, 1] such that a + c, a + d, b + e ∈ [0, 1] and

c− d ≤ e, it holds that I∗(a+ d, b) ≤ I∗(a+ c, b+ e).

Proof. Necessity: Suppose that I∗ is special. Consider a, b, c, d, e ∈ [0, 1] such

that a+ c, a+ d, b+ e ∈ [0, 1] and c− d ≤ e. We distinguish two cases:

(i) If c ≤ d, then I∗(a+ d, b) ≤ I∗(a+ c, b) ≤ I∗(a+ c, b+ e).

(ii) If c > d, then I∗(a+d, b) ≤ I∗(a+d+(c−d), b+(c−d)) ≤ I∗(a+c, b+e).

Sufficiency: Consider a, b, c ∈ [0, 1] such that a+ c, b+ c ∈ [0, 1], and let d = 0

and e = c. It holds that a + d ∈ [0, 1], b + e ∈ [0, 1] and c − d ≤ e. From

the assumption, we conclude that I∗(a + d, b) ≤ I∗(a + c, b + e) and, thus,

I∗(a, b) ≤ I∗(a+ c, b+ c). �

In a similar way as a residual implication measures the degree to which an

inequality for two numbers in the unit interval (typically truth values) holds,

a biresidual implication measures the degree to which an equality between two

numbers in the unit interval (typically truth values) holds [8]. Formally, the

biresidual implication E∗ of a left-continuous t-norm ∗ is defined as follows:

E∗(a, b) = min(I∗(a, b), I∗(b, a)) = I∗(a, b) ∗ I∗(b, a) .

4.2 The residual implication approach

Let ∗ be a left-continuous t-norm and d be a bounded pseudometric on X with

N > 0 as upper bound. As in the previous section, we aim at measuring the

deviation of d(x, y) + d(y, z) from d(x, z), now when the triangle equality is

written in the classic form d(x, y) + d(y, z) = d(x, z) by making use of the

biresidual implication. Note that, in order to use the biresidual implication, we

need to rescale to the unit interval (thus the reason why the pseudometric now

needs to be bounded).
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For measuring the degree to which d(x, y)+d(y, z) equals d(x, z), we consider

the biresidual implication as follows:

E∗
(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
= min

(
I∗

(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
, I∗

(
d(x, z)

2N
,
d(x, y)

2N
+
d(y, z)

2N

))
.

Due to property (i) of a residual implication, the above expression can be re-

duced to the following one:

E∗
(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
= I∗

(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
.

We thus define the ternary fuzzy relation BNd,∗ : X3 → [0, 1] on X by

BNd,∗(x, y, z) = I∗

(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
.

The following proposition presents some properties of BNd,∗.

Proposition 8. Let ∗ be a left-continuous t-norm and d be a bounded pseudo-

metric on X with N > 0 as upper bound. The ternary fuzzy relation BNd,∗ has

the following properties:

(i) BNd,∗(x, y, z) = 1 if and only if d(x, z) = d(x, y)+d(y, z), for any x, y, z ∈

X;

(ii) If d is a metric, then BNd,∗(x, y, z) = 0 implies that x = z and x 6= y, for

any x, y, z ∈ X;

(iii) If d is a metric, then x 6= z and d(x, z) < d(x, y) + d(y, z) imply that

0 < BNd,∗(x, y, z) < 1, for any x, y, z ∈ X.

Proof. (i) Consider any x, y, z ∈ X. By definition BNd,∗(x, y, z) = 1 is equivalent

to

I∗

(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
= 1 ,

which, by property (i) of a residual implication, occurs if and only if it holds

that

d(x, y)

2N
+
d(y, z)

2N
≤ d(x, z)

2N
,
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or, equivalently,

d(x, y) + d(y, z) ≤ d(x, z) .

Due to the triangle inequality, the above is equivalent to

d(x, z) = d(x, y) + d(y, z) .

(ii) Consider x, y, z ∈ X such that BNd,∗(x, y, z) = 0, i.e.,

I∗

(
d(x, y)

2N
+
d(y, z)

2N
,
d(x, z)

2N

)
= 0 .

Since I∗ is decreasing with respect to the first variable (see property (v) of a

residual implication) and I∗(1, a) = a for any a ∈ [0, 1] (see property (iii) of a

residual implication), it follows that
d(x, z)

2N
= 0 and

d(x, y)

2N
+
d(y, z)

2N
6= 0. We

conclude that, if d is a metric, then it holds that x = z and x 6= y.

(iii) It follows from (i) and (ii). �

The following theorem provides a method to construct a ∗-betweenness re-

lation from a bounded metric by making use of the residual implication I∗ of a

1-Lipschitz continuous t-norm ∗ (i.e., a special residual implication I∗).

Theorem 4. Let ∗ be a left-continuous t-norm and d be a bounded pseudometric

on X with N > 0 as upper bound. The following results hold

(i) BNd,∗ is symmetric and reflexive;

(ii) BNd,∗ is crisp antisymmetric if and only if d is a metric on X;

(iii) If I∗ is special, then BNd,∗ is ∗-transitive;

(iv) If I∗ is special, then BNd,∗ is a ∗-prebetweenness relation on X;

(v) If I∗ is special, then BNd,∗ is a ∗-betweenness relation on X if and only

if d is a metric on X.

Proof. (i) It follows from the symmetry of a pseudometric that BNd,∗ is sym-

metric and from Proposition 8(i) that BNd,∗ is reflexive.
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(ii) Necessity: Suppose that BNd,∗ is crisp antisymmetric. Consider x, y ∈ X

such that d(x, y) = 0. It follows from (i) and Proposition 8(i) that

BNd,∗(x, x, y) = BNd,∗(x, y, x) = 1 .

Hence, from the crisp antisymmetry of BNd,∗, we conclude that x = y. Thus, d

is a metric.

Sufficiency: Suppose that d is a metric on X. Consider x, y, z ∈ X such that

BNd,∗(x, y, z) = BNd,∗(x, z, y) = 1 .

It follows from Proposition 8(i) that d(x, z) = d(x, y) + d(y, z) and d(x, y) =

d(x, z) + d(z, y), which together imply that d(y, z) = 0 and, thus, y = z. We

conclude that BNd,∗ is crisp antisymmetric.

(iii) Suppose that I∗ is special. For any o, x, y, z ∈ X, let a =
d(o, x)

2N
,

b =
d(o, y)

2N
, c =

d(x, z)

2N
, d =

d(x, y)

2N
and e =

d(y, z)

2N
. It holds that a, b, c, d, e ∈

[0, 1], a+ c, a+ d, b+ e ∈ [0, 1] and c− d ≤ e.

It follows from Proposition 7 that

BNd,∗(o, x, y) = I∗

(
d(o, x)

2N
+
d(x, y)

2N
,
d(o, y)

2N

)
≤ I∗

(
d(o, x)

2N
+
d(x, z)

2N
,
d(o, y)

2N
+
d(y, z)

2N

)
.

Hence, it follows from this inequality and the ∗-transitivity of I∗ (see property

(ii) of a residual implication) that

BNd,∗(o, x, y) ∗BNd,∗(o, y, z)

≤ I∗
(
d(o, x)

2N
+
d(x, z)

2N
,
d(o, y)

2N
+
d(y, z)

2N

)
∗ I∗

(
d(o, y)

2N
+
d(y, z)

2N
,
d(o, z)

2N

)
≤ I∗

(
d(o, x)

2N
+
d(x, z)

2N
,
d(o, z)

2N

)
= BNd,∗(o, x, z) .

Therefore, BNd,∗ is ∗-transitive.

(iv) It follows from (i) and (iii).
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(v) The left-to-right implication follows from (ii). The right-to-left implica-

tion follows from (ii) and (iv). �

The following example gives the explicit expressions of the fuzzy betweenness

relations BNd,∗ induced by the three most prominent special residual implications.

Example 10. Let d be a bounded pseudometric on X with N > 0 as upper

bound.

(1) If ∗ = ∗M , then BNd,∗ can be computed as follows:

BNd,∗M
(x, y, z) =

 1 , if d(x, z) = d(x, y) + d(y, z) ,

d(x, z)

2N
, if d(x, z) < d(x, y) + d(y, z) .

(2) If ∗ = ∗P , then BNd,∗ can be computed as follows:

BNd,∗P
(x, y, z) =


1 , if d(x, z) = d(x, y) + d(y, z) ,

d(x, z)

d(x, y) + d(y, z)
, if d(x, z) < d(x, y) + d(y, z) .

(3) If ∗ = ∗L, then BNd,∗ can be computed as follows:

BNd,∗L
(x, y, z) =

 1 , if d(x, z) = d(x, y) + d(y, z) ,

1− d(x, y) + d(y, z)− d(x, z)

2N
, if d(x, z) < d(x, y) + d(y, z) .

Remark 5. (1) BNd,∗M
(x, y, z) is decreasing with respect to N .

(2) BNd,∗P
(x, y, z) is constant with respect to N .

(3) BNd,∗L
(x, y, z) is increasing with respect to N .

The first of the following two examples shows that I∗ does not necessarily

need to be special (as stated in Theorem 4(iii)) for BNd,∗ to be ∗-transitive, and,

hence, a ∗-betweenness relation. The second one shows that, if I∗ is not required

to be special, BNd,∗ is no longer assured to be ∗-transitive.

Example 11. Let ∗ be a left-continuous t-norm and d be a two-valued metric

on X (see Example 4). After some computations, BNd,∗ can be expressed as
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follows:

BNd,∗(x, y, z) =


1 , if (x = y) or (y = z) ,

0 , if (x 6= y) and (y 6= z) and (x = z) ,
1

2
, otherwise .

It is easy to verify that BNd,∗ is ∗M -transitive and, thus, ∗-transitive.

Example 12. Let X = {o, x, y, z} and ∗ be a left-continuous t-norm with I∗

being antispecial. Consider the metric d on X defined as follows:

d(o, o) = d(x, x) = d(y, y) = d(z, z) = 0 ,

d(o, x) = d(x, o) = d(o, y) = d(y, o) = d(x, y) = d(y, x) = d(y, z) = d(z, y) =
1

5
,

d(o, z) = d(z, o) = d(x, z) = d(z, x) =
2

5
.

Obviously, N =
1

2
is an upper bound of d. After some computations, one

can verify that BNd,∗(o, x, y) = I∗

(
2

5
,

1

5

)
, BNd,∗(o, y, z) = I∗

(
2

5
,

2

5

)
= 1 and

BNd,∗(o, x, z) = I∗

(
3

5
,

2

5

)
. Hence,

BNd,∗(o, x, y)∗BNd,∗(o, y, z) = I∗

(
2

5
,

1

5

)
> I∗

(
2

5
+

1

5
,

1

5
+

1

5

)
= BNd,∗(o, x, z) .

This implies that BNd,∗ is not ∗-transitive.

5 The case of continuous Archimedean and 1-

Lipschitz continuous t-norms

As mentioned in Section 2, there exist t-norms that are both continuous Archi-

medean and 1-Lipschitz continuous (for instance, the product and  Lukasiewicz

t-norms). In this section, we explore how the construction methods in the

previous two sections relate to each other for such t-norms.

We first prove that when we restrict to the  Lukasiewicz t-norm, the con-

struction method presented in Section 4 amounts to the construction method

presented in Subsection 3.2 for a carefully-chosen additive generator.
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Theorem 5. Let X be a set with cardinality |X| ≥ 3 and ∗ be a continuous

Archimedean t-norm with t : [0, 1]→ [0,+∞] being a continuous additive gener-

ator. It holds that BNd,∗ = Btd for any bounded pseudometric d on X with N > 0

as upper bound if and only if t is defined by t(x) = 2N(1− x) (thus, ∗ = ∗L).

Proof. We first prove the right-to-left implication. In case ∗ is continuous

Archimedean (with continuous additive generator t), the residual implication I∗

can be written as follows [6]:

I∗(a, b) =

 1 , if a ≤ b ,

t(−1)(t(b)− t(a)) , otherwise .

=

 1 , if a ≤ b ,

t−1(t(b)− t(a)) , otherwise .

Thus, the mapping BNd,∗ : X3 → [0, 1] can be rewritten as

BNd,∗(x, y, z) =

 1 , if d(x, z) = d(x, y) + d(y, z) ,

t−1
(
t
(
d(x,z)
2N

)
− t
(
d(x,y)
2N + d(y,z)

2N

))
, otherwise .

Recall that, for any k > 0, the function tL,k : [0, 1] → [0,+∞] defined by

tL,k(x) =
1

k
(1 − x) is a continuous additive generator of the  Lukasiewicz t-

norm ∗L. Consider k = 1
2N . It is thus easy to verify that, for any x, y, z ∈ X,

BNd,∗L
(x, y, z) = B

t
L, 1

2N

d (x, y, z) ,

where BNd,∗L
(x, y, z) is defined as in Theorem 4 and B

t
L, 1

2N

d (x, y, z) is defined as

in Theorem 1 (see also Example 3).

Now we prove the left-to-right implication. Let {a, b, c} ⊆ X with cardinal-

ity 3. For any x ∈ ]0, 1], let dx be the metric on X defined as follows:

dx(u, v) =


0 , if u = v ,

Nx , if {u, v} = {a, c} ,

N , otherwise .

It follows from BNdx,∗(a, b, c) = Btdx(a, b, c) that t(
x

2
)− t(1) = (2N −Nx)∧ t(0).

Note that t(1) = 0 and t(
x

2
) < t(0). We obtain that t(

x

2
) = 2N(1− x

2
).
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For any x ∈ ]0, 1], let mx be the metric on X defined as follows:

mx(u, v) =

 0 , if u = v ,

Nx , otherwise .

It follows from BNmx,∗(a, b, c) = Btmx
(a, b, c) that t(

x

2
) − t(x) = (Nx) ∧ t(0).

Note that t(
x

2
) < t(0). We have t(

x

2
)− t(x) = Nx. Since t(

x

2
) = 2N(1− x

2
), it

follows that t(x) = t(
x

2
)−Nx = 2N(1− x

2
)−Nx = 2N(1− x). Note that t is

continuous. We thus have that t(x) = 2N(1− x) for any x ∈ [0, 1]. �

Interestingly, in case we consider the product t-norm and its continuous

additive generator tP : [0, 1] → [0,+∞] defined by tP (x) = − lnx, we do not

obtain BtPd (x, y, z) after computing BNd,∗P
(x, y, z). Instead, when we restrict to

the product t-norm, the construction method presented in Section 4 amounts

to the construction method presented in Subsection 3.3 for a carefully-chosen

multiplicative generator.

Theorem 6. Let X be a set with cardinality |X| ≥ 3 and ∗ be a continuous

Archimedean t-norm with θ : [0, 1] → [0, 1] being a continuous multiplicative

generator. It holds that BNd,∗ = Bθd for any bounded pseudometric d on X with

N > 0 as upper bound if and only if θ is defined by θ(x) = x (thus, ∗ = ∗P ).

Proof. We first prove the right-to-left implication. In case ∗ is continuous

Archimedean (with continuous multiplicative generator θ), the residual impli-

cation I∗ can be written as follows [6]:

I∗(a, b) =


1 , if a ≤ b ,

θ(−1)(
θ(b)

θ(a)
) , otherwise .

=


1 , if a ≤ b ,

θ−1(
θ(b)

θ(a)
) , otherwise .
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Thus, the mapping BNd,∗ : X3 → [0, 1] can be rewritten as

BNd,∗(x, y, z) =


1 , if d(x, z) = d(x, y) + d(y, z) ,

θ−1

 θ
(
d(x,z)
2N

)
θ
(
d(x,y)
2N + d(y,z)

2N

)
 , otherwise .

Recall that, for any k > 0, the function θP,k : [0, 1]→ [0, 1] defined by θP,k(x) =

x
1
k is a continuous multiplicative generator of the product t-norm ∗P . Consider

k = 1. It is thus easy to verify that, for any x, y, z ∈ X,

BNd,∗P
(x, y, z) = B

θP,1

d (x, y, z) ,

where BNd,∗P
(x, y, z) is defined as in Theorem 4 and B

θP,1

d (x, y, z) is defined as

in Theorem 3 (see also Example 6).

Now we prove the left-to-right implication. Let {a, b, c} ⊆ X with cardinal-

ity 3. For any x ∈ ]0, 1], let dx be the metric on X defined as follows:

dx(u, v) =


0 , if u = v ,

Nx , if {u, v} = {a, c} ,

N , otherwise .

It follows from BNdx,∗(a, b, c) = Bθdx(a, b, c) that
θ( x

2 )

θ(1) = xN
2N ∨ θ(0). Note that

θ(1) = 1 and θ(x2 ) > θ(0). We obtain that θ(x2 ) = x
2 .

For any x ∈ ]0, 1], let mx be the metric on X defined as follows:

mx(u, v) =

 0 , if u = v ,

Nx , otherwise .

It follows from BNmx,∗(a, b, c) = Bθmx
(a, b, c) that

θ( x
2 )

θ(x) = xN
2xN ∨ θ(0). Note that

θ(x2 ) > θ(0). We have
θ( x

2 )

θ(x) = 1
2 . Since θ(x2 ) = x

2 , it follows that θ(x) = x. Note

that θ is continuous. We thus have that θ(x) = x for any x ∈ [0, 1]. �

The results above are oddly satisfying. In particular, we see that the con-

struction method presented in Section 4 is not substitutable with any of the

two methods presented in Section 3, however, some similarities between the
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former and the latter construction methods do exist. For instance, when we re-

strict to the  Lukasiewicz t-norm, the construction method presented in Section 4

amounts to the construction method presented in Subsection 3.2 for a carefully-

chosen additive generator and differs from the construction method presented in

Subsection 3.3 for any multiplicative generator. Analogously, when we restrict

to the product t-norm, the construction method presented in Section 4 amounts

to the construction method presented in Subsection 3.3 for a carefully-chosen

multiplicative generator and differs from the construction method presented in

Subsection 3.2 for any additive generator.

6 Conclusions and future work

In this paper, we have presented different methods for constructing a fuzzy be-

tweenness relation from a metric given a continuous Archimedean t-norm or a

1-Lipschitz continuous t-norm. More precisely, given a continuous Archimedean

t-norm, we have developed two construction methods by making use of ei-

ther the pseudo-inverse of a continuous additive generator of the continuous

Archimedean t-norm (see Theorems 1 and 2) or the pseudo-inverse of a con-

tinuous multiplicative generator of the continuous Archimedean t-norm (see

Theorem 3). Interestingly, these two construction methods yield different fuzzy

betweenness relations (see Remark 4). In case the metric is bounded and the

given t-norm is 1-Lipschitz continuous, we have developed a third construction

method by making use of the residual implication of the 1-Lipschitz continuous

t-norm (see Theorem 4).

It remains as future work how to relax the conditions of these theorems.

More specifically, conditions (1) the generator of the t-norm is continuous and

(2) the residual implication of the t-norm is special, are shown to be not nec-

essary for assuring the construction of a fuzzy betweenness relation from a

metric. Furthermore, a construction method for a fuzzy betweenness relation

from a metric is still to be developed for t-norms that are neither continuous

Archimedean, nor 1-Lipschitz continuous. A further study subject concerns how
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to construct fuzzy betweenness relations from fuzzy metrics.
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