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Abstract

In this paper, we show how a possibilistic description of uncertainty arises very naturally in statistical data analysis. In
combination with recent results in inverse uncertainty propagation and the consistent aggregation of marginal possibility
distributions, this estimation procedure enables a very general approach to possibilistic identification problems in the
framework of imprecise probabilities, i.e. the non-parametric estimation of possibility distributions of uncertain variables
from data with a clear interpretation.
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1 Introduction1

Frequently, when discussing ideas related to fuzzy set theory with researchers and practitioners working in uncertainty2

quantification, the question arises how the shape of the membership function ought to be assessed. Besides the widely3

accepted, yet seldom convincing, answer of so-called ’expert knowledge’, other options can usually not be provided.4

Especially, the case of inferring membership functions from data, which may be called ’possibilistic statistics’, has been5

addressed insufficiently and only selectively by the scientific community in the past.6

For instance, the idea of inferring possibilistic distributions from measurements appears in [1], where the inputs7

and outputs are assembled into fuzzy data and afterwards propagated backwards by means of (an approximate) inverse8

fuzzy arithmetic. The same idea is presented in [2], where the output data is fuzzified in a different manner. However,9

both approaches lack a convincing explanation for the choice of the shape of the membership functions. On the other10

hand, Serruier and Prade develop a maximum likelihood principle in fuzzy set theory [3] where the membership function11

is essentially the rescaled likelihood function of the data which in the authors view does not draw upon the whole12

expressiveness of possibility distributions. The construction of membership functions from for interval- or fuzzy-valued13

data, refer e.g. to [4, 5], shall not be discussed here, as we concentrate on the case of crisp data.14

We argue that by viewing fuzzy membership functions as possibility densities for a description of imprecise probabilities,15

a sensible estimation procedure arises very naturally and may be derived in a theoretically sound manner. A notable paper16

in this line of thought is that of Masson and Denoeux [6] who infer imprecise probability distributions of discrete variables17

from samples only and gather them in possibility distributions.18

The remainder of this paper is organized as follows. Section 2 briefly summarizes the framework of possibility theory.19

In Section 3, this framework is discussed with respect to its capabilities of representing imprecise probability distributions.20

In accordance with the view of possibility distributions as consonant randoms sets [7], Section 4 is intended to review some21

basic families of nested sets, and Section 5 discusses the estimation of membership functions thereon. This is the core22

of this contribution where we provide probabilistic reliability guarantees for the consistency of the obtained possibility23

distributions. Subsequently, Section 6 is concerned with the inclusion of precise and imprecise measurement models and,24

finally, in Section 7 an efficient algorithm for the computation of the main results is given. An exemplary application of the25

main results in Section 8 is followed by a concluding discussion in Section 9.26

The examples throughout the paper are intended to make the reader familiar with the theory, show the simplicity of the27

involved computations, and contribute to the understanding of this paper.28
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2 Possibilistic Representation of Uncertainty29

We will briefly recount the basic terminology of possibility theory here. A set-valued function Π : 2Ω→ [0,1] defined30

on the power set 2Ω of the universe of discourse Ω may be called a possibility measure if it satisfies three conditions31

similar to those of a probability measure. Explicitly, Π( /0) = 0, Π(Ω) = 1 and Π(
⋃

k Uk ) = supk Π(Uk) for countable32

collections of sets Uk ⊆ Ω have to be fulfilled. The dual necessity measure is defined by N(U) = 1−Π(Ω\U) for33

all U ⊆ Ω. In particular, the three conditions for a possibility measure are equivalent to requiring that the necessity34

measure fulfills N( /0) = 0, N(Ω) = 1 and N(
⋂

k Uk ) = infk N(Uk) for countable collections of sets Uk ⊆ Ω. Both35

descriptions are equivalent. An (X -valued) uncertain (random, fuzzy, etc.) variable X : Ω→X possesses a possibility36

distribution ΠX (U) = Π
(
X−1(U)

)
and a possibility density πX : X → [0,1] sufficing ΠX (U) = supx∈U πX (x) for all U ⊆37

X . This implies πX (x) = ΠX ({x}) for x ∈X . The sub-/superlevel sets are defined as L α−
ΠX

= {x ∈X : πX (x)≤ α}38

and L α+

ΠX
= {x ∈X : πX (x)≥ α}, respectively. The superlevel sets are also known as the α-cuts. Below, S (X ) denotes39

a σ -field on X . In practical applications, typically X ⊆ RN , and S (X ) is the corresponding Borel σ -algebra.40

3 Possibilities as Imprecise Probabilities41

Possibility theory offers a general framework for the analysis of imprecisely defined probabilities, i.e. for the analysis of42

sets of probability distributions. The fundamental principle of probability-possibility consistency was first introduced by43

Dubois and Prade in [8]. It states that a probability measure PX and a possibility measure ΠX are consistent if44

PX (U)≤ΠX (U) ∀U ∈S (X ) . (1)

This is equivalent to saying that the corresponding necessity measure NX and PX are consistent, i.e. NX (U)≤ PX (U) for45

all U ∈S (X ), which follows from PX (X \U) ≤ ΠX (X \U). However, in order to show consistency one does not46

need to check this condition for all possible events. Instead, one can infer that it suffices to check the condition for the47

super- or sublevel sets as shown in [9].48

Proposition 1. The following statements are equivalent:49

1. PX and ΠX are consistent, i.e. PX (U)≤ΠX (U) for all U ∈S (X ).50

2. PX and NX are consistent51

3. PX

(
L α−

ΠX

)
≤ α for all α ∈ [0,1].52

4. PX

(
L α+

ΠX

)
≥ 1−α for all α ∈ [0,1].53

Notice that consistency is not a one-to-one relationship. In particular, given a possibility measure ΠX , its credal set54

C (ΠX ) = {PX : PX (U)≤ΠX (U) ∀U ∈S (X )} (2)

contains a potentially infinite number of elements. A detailed investigation of these elements is readily accessible in [10].55

One important observation is that the credal set of a possibility distribution Π1
X is included in that of a second one Π2

X ,56

i.e. C
(
Π1

X
)
⊆ C

(
Π2

X
)
, if π1

X (x)≤ π2
X (x) for all x ∈X . Then, Π1

X is said to be more specific than Π2
X .57

A possibility measure ΠX can be constructed to provide an outer approximation of an arbitrary set of probability58

distributions PX representing many common descriptions of imprecise probabilities by means of a probability-possibility59

transformation [9, 11, 12], e.g.60

Singletons specifying a precisely defined probability distribution, i.e. PX = {PX},61

P-boxes where the cumulative distribution function is bounded by a lower and an upper bound, F−X and F+
X , i.e. PX =62

{PX : F−(x)≤ PX (X ≤ x)≤ F+(x) ∀ x ∈ R}, refer e.g. to [13],63

Intervals restricting the support of the probability distribution to lie within a given interval [a,b] for real values a < b,64

i.e. PX = {PX : PX (X ∈ [a,b]) = 1}, refer e.g. to [14],65

Belief measures bounding the probability distribution through degrees of belief mX on certain sets, i.e. PX = {PX :66

∑
A⊆U

mX (A)≤ PX (U)≤ ∑
A∩U 6= /0

mX (A) ∀U ∈S (X )}, refer e.g. to [15],67

Lower previsions specifying the minimum selling and the maximum buying price, P and P, for a gamble, i.e. PX =68 {
PX : PX (U)≤ PX (U)≤ PX (U) ∀U ∈S (X )

}
, refer e.g. to [16],69

etc. refer e.g. to [17, 18, 19] for conceptual comparisons of the different representations of imprecise probabilities.70
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Therefore, it also provides a unified framework which all these alternative descriptions can be translated to in order to71

merge them for a combined analysis.72

Yet, even though it is possible, it is usually inefficient to represent a single probability distribution by a possibility73

distribution. Probability distributions are the most specific representations of uncertainty, whereas possibility distributions74

provide a very coarse description, and much information is lost during the transformation. For instance, it is generally75

impossible to reconstruct the original probability distribution from a possibility distribution [11]. The same is true for76

p-boxes, belief measures and lower previsions. Intervals, on the other hand, are represented without loss of information.77

Formally, these transformations correspond to selecting a parameterized family of nested sets Uβ ∈S (X ) for β ∈ [0,1]78

with U0 = X and Uβ1 ⊇Uβ2 if β1 ≤ β2, and to finding a necessity distribution NX such that NX
(
Uβ

)
≤ PX

(
Uβ

)
for79

all PX ∈PX and β ∈ [0,1] in order to ensure consistency, refer e.g. to [20]. The principle of maximum specificity, which80

is discussed e.g. in [21, 22], justifies choosing the tight lower bound81

µ
(
Uβ

)
= inf

PX∈PX
PX
(
Uβ

)
(3)

as the necessity. This is sufficient for defining82

NX (V ) = inf
β∈[0,1] :Uβ⊆V

µ
(
Uβ

)
∀V ∈S (X ) (4)

where the infimum of the empty set is defined to be zero.83

Proposition 2. NX is a necessity measure which is consistent with the credal set PX .84

Proof. From the definition, one immediately sees that N(X ) = infβ∈[0,1] :Uβ⊆X µ
(
Uβ

)
= µ (U0 = X ) = 1 and N( /0) = 0.85

Furthermore, let (Vk)k≥1 ⊆ X be a countable collections of sets, then the evaluation of the third condition yields86

that NX
(⋂

k≥1 Vk
)
= inf

β∈[0,1] :Uβ⊆(
⋂

k≥1 Vk) µ
(
Uβ

)
= infk≥1 infβ∈[0,1] :Uβ⊆Vk

µ
(
Uβ

)
= infk≥1 NX (Vk), i.e. all conditions of a87

necessity measure are met. From the nestedness of the Uβ it follows that NX
(
Uβ

)
= µ

(
Uβ

)
for all β ∈ [0,1]. Now, let PX ∈88

PX and V ∈S (X ), then the definition of β ∗ as the maximum β ∈ [0,1] for which Uβ ⊆V implies NX (V ) = µ
(
Uβ ∗

)
.89

The definition of µ yields µ
(
Uβ ∗

)
= infP′X∈PX

P′X
(

U∗
β

)
≤ PX

(
U∗

β

)
, and from Uβ ∗ ⊆V it follows that PX

(
Uβ ∗

)
≤ PX (V ).90

Hence, NX (V )≤ PX (V ) and all PX ∈PX are consistent with NX .91

As a consequence, the sets Uβ form the basis for the superlevel sets L α+

ΠX
of the resulting possibility distribution. In92

particular, L α+

ΠX
is the largest set Uβ satisfying µ

(
Uβ

)
≤ 1−α . The corresponding possibility distribution ΠX (V ) =93

supβ∈[0,1] :Uβ∩V= /0 1−µ
(
Uβ

)
for all V ⊆S (X ) induces the possibility density94

πX (x) = sup
β∈[0,1] :x/∈Uβ

1−µ
(
Uβ

)
∀x ∈X . (5)

which reduces to95

πX (x) = 1−µ
(
Uβ (x)

)
∀x ∈X (6)

if an explicit representation β = β (x) that provides the supremum of all β ∈ [0,1] for which x 6∈Uβ is given.96

Example 3 (adopted from [10]). The sets Uβ = [log(β ),− log(β )] for β ∈ (0,1] and U0 = R are a family of nested sets97

of R. Let X be distributed with zero mean and unit variance, i.e. X ∼ PX ∈PX = {PX : EPX [X ] = 0,VPX [X ] = 1}. From98

Chebyshev’s inequality it follows that PX
(
Uβ

)
≥ 1− 1

log2(β )
for all PX ∈PX . Since β (x) = exp(−|x|) for all x ∈ R, the99

density function of the possibility distribution resulting from the transformation is depicted in Fig. 1 and given by100

πX (x) =
{ 1

x2 for |x|> 1 and
1 otherwise.

(7)

4 Families of Nested Sets101

Generally, the proposed procedure is not restricted to any family of nested sets
(
Uβ

)
β∈[0,1]. Consistency is always102

guaranteed by Proposition 2. However, depending on the application, some families are better suited than others for103

obtaining meaningful results. Below, several options for the choice of the family are presented.104

Preprint submitted to Fuzzy Sets and Systems 3
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Figure 1: Possibility density function in Example 3.

4.1 General Norms105

Let || · || be any norm on X , e.g. the Euclidean norm, the taxicab-norm, the maximum-norm, a general p-norm, a weighted106

norm, combinations thereof, etc., and denote by R > 0 the maximum distance to a pre-defined center point c ∈X , e.g. the107

expected value or the origin. A suitable family is then given by U0 = X and108

Uβ =

{
x ∈ RN : ||x− c||

(>)
< (1−β ) ·R

}
∀β ∈ (0,1]. (8)

Example 4 (adopted from [11]). Let PX = {PX = U (c− t,c+ t) : t ∈ (0,R]} be the set of all uniform probability109

distributions with a symmetric support about the center point c ∈ R and the maximum distance R > 0 therefrom. For the110

family of nested sets induced by c and R, one obtains β (x) = 1− |x−c|
R for all x ∈ R. The minimum probability µ

(
Uβ

)
=111

1−β for all β ∈ [0,1] is obtained by considering PX = U (c−R,c+R) ∈PX and therefore πX (x) = 1− |x−c|
R for |x| ≤ R112

and zero outside, i.e. a symmetric triangular possibility density on the same support and with nominal value c. Hence,113

the credal set of the triangular fuzzy number X with this possibility density (membership function) πX shown in Fig. 2114

contains all uniform probability distributions U (c− t,c+ t) for t ∈ (0,R].

c−R c c+R
0

0.2

0.4

0.6

0.8

1

x

π
X

Figure 2: Triangular possibility density in Example 4.
115

4.2 Superlevel Sets of Probability Densities116

Suppose the X -valued uncertain variable X is distributed with a Borel measurable and bounded probability density func-117

tion fX , i.e. PX is a singleton. The optimal probability-possibility transform preserving the shape of fX is presented in [11].118

Let f̄X = supx∈X fX (x) be the maximum density of the probability density and define Uβ =
{

x ∈X : fX (x)≥ β · f̄X
}

119

for β ∈ [0,1]. Then, the possibility density function πX (x) = 1−PX ({ξ ∈ (X) : fX (ξ ) ≥ fX (x)}) for all x ∈X is the120

optimal transformation. Dubois et al. show the following result in [11].121

Proposition 5. Let x1,x2 ∈X . If fX (x1) ≤ fX (x2), then it holds that πX (x1) ≤ πX (x2) for the possibility density πX122

obtained by the optimal transform.123

Example 6. Let X be an R-valued uncertain variable distributed with the probability distribution PX induced by the124

probability density function fX (a normalized combination of two normal distributions with means 1
4 and 1

2 and standard125

deviations 1
12 and 1

10 , respectively). Figure 3 exhibits the possibility density function πX obtained by the optimal transform.126

127

4.3 Cumulative Distribution Functions128

Jamison et al. argue in [23] that the cumulative distribution function of an R-valued uncertain variable X is a consistent129

possibility density which follows immediately e.g. from Uβ =
[
tanh−1( 1+β

2 ),∞
)

, where tanh−1 is the area hyperbolic130

Preprint submitted to Fuzzy Sets and Systems 4
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Figure 3: Probability and possibility density function in Example 6.

tangent. Then, β (x) = 2tanh(x)−1 and henceforth πX (x) = supPX∈PX
PX (X≤x) for all x ∈ R. The same holds true for131

the complementary cumulative distribution function.132

Example 7. Let PX = {PX : F−(x)≤ PX (X ≤ x)≤ F+(x) ∀ x ∈ R} be a p-box with a monotonously increasing lower133

and upper bound, F−X ,F+
X : R→ [0,1]. Then, both π

+
X (x) = F+

X (x) and π
−
X (x) = 1−F−X (x) for x ∈ R induce consistent134

possibility distributions. Notice that the two distributions are not equivalent though [10].135

5 Set Membership Estimation136

Often, information about the distribution of an uncertain variable has to be inferred from measurements instead of137

employing probability-possibility transformations. Regarding the elicitation of distributions of uncertain variables, the138

authors argue as follows – well-aware that this opinion may be viewed as controversial:139

In parameter estimation, a clear distinction between epistemic and aleatoric uncertainties has to be made, but the140

analysis has to commence on the basis of a purely stochastic analysis. The data-generating process itself is only subject141

to stochastic variability. Following the realization of a random variable therein, any imprecision about the variable’s142

probability distribution vanishes. Consequently, data – sparse or not – exhibit only random variability and, therefore,143

possess a precise probability distribution. Inferring information about this distribution, is the task of the practitioner. Given144

data as well as a model which is supposed to explain their interplay, epistemic uncertainty is only introduced by the choice145

of the estimation procedure – and should always be reported. However, epistemic uncertainty is something that cannot be146

estimated from the data because it rather stems from the limitations inherent to the estimation process itself, such as the147

limited number of data. Even if the data set is big, it is not infinite, and therefore some epistemic uncertainty about the true148

probability distribution – as small as it may be – remains. The point of this paper is to show that possibility theory is well149

suited to account for both the variability due to the underlying probability distribution to be inferred and for the epistemic150

uncertainty introduced by the statistical estimation procedure. Before doing so in the second part of this section, some151

preliminary deliberations are in order.152

In this section, only the direct case is considered, where the uncertain variable itself is measured. We assume that NS153

realizations (ξi)
NS
i=1 of the iid (independent and identically distributed) uncertain variables X1, . . . ,XNS ∼ PX with unknown154

probability distribution PX are given,
(
Uβ

)
β∈[0,1] is a given family of nested sets and β ∈ [0,1] is fixed.155

In the following, the reader may find it useful to keep in mind that the presented estimation methods basically count156

the number of samples that fall inside of any of these sets, and then assign a membership value to this set on the basis of157

probabilistic arguments about binomial distributions – a simple and intuitive idea.158

5.1 Best Estimation159

For a singleton credal set, the infimum in Eq. (3) vanishes, yet µ
(
Uβ

)
= PX

(
Uβ

)
cannot be computed but needs to be160

estimated. The aim is to provide a reliable estimate of this probability by a function µ̂ .161

To answer this question, consider the {0,1}-valued uncertain variable Yβ = IUβ
(X), where IUβ

is the indicator function162

of Uβ , assuming one if X ∈Uβ and zero otherwise. It is Bernoulli distributed with the success probability PX
(
Uβ

)
, and the163

Preprint submitted to Fuzzy Sets and Systems 5
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Figure 4: Reference probability density and kernel density estimates for different sample sizes NS in Example 8.
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Figure 5: Reference and (best) estimated possibility densities for different sample sizes NS in Example 8.

relative frequency of realizations with ξi ∈Uβ , i.e.164

µ̂
(
Uβ

)
=

1
NS

NS

∑
i=1

IUβ
(ξi) , (9)

provides an unbiased estimator of PX
(
Uβ

)
with uniform convergence according to Borel’s strong law of large numbers.165

Hence, approximating µ in Eq. (4) by µ̂ yields a possibility distribution Π̂X which is asymptotically consistent with PX .166

Refer to [24] for a more extensive discussion.167

Example 8 (Continuation of Example 6). Let ξ1, . . . ,ξNS be realizations of the R-valued uncertain variables X1, . . . ,XNS168

distributed with the bimodal probability distribution PX from Example 6. Since the true probability distribution PX is169

assumed to be unavailable, one cannot construct the Uβ precisely as explained there. However, an approximation of these170

sets may be obtained by replacing the probability density by a kernel density estimator f̂X with the bandwidth chosen171

according to Silverman’s rule of thumb. The kernel density estimate is not used in the estimation of µ , only for the172

construction of the Uβ = {x ∈X : f̂X (x)≥ β · supx∈R f̂X (x)} for β ∈ [0,1]. Due to the non-normality of the distribution,173

convergence of the approximated density to the true density is rather poor as shown in Fig. 4. However, the convergence of174

the estimated possibility distribution to the reference possibility distribution on the respective nested set family is quite175

agreeable as a visual inspection of Fig. 5 suggests.176

Even though possibility density estimation promises to be less involved than probability density estimation, convergence177

can be very poor for small numbers of NS as Example 8 shows. This source of imprecision is neither accounted for nor178

indicated. Additionally, the estimation procedure presented above is a suboptimal choice since essentially one is trying to179

Preprint submitted to Fuzzy Sets and Systems 6
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find the possibility transform of a singleton credal set as if the relationship was indeed one-to-one. Yet, the possibility180

measure Π̂X yields only the interval PX
(
Uβ

)
∈ [µ̂

(
Uβ

)
,1] as the respective bounds for the probability. Therefore, it is181

unnecessary to achieve equality of µ̂
(
Uβ

)
and PX

(
Uβ

)
. Instead, one can take advantage of the whole expressiveness of182

possibility distributions as explained in the next subsection.183

5.2 Reliable Estimation184

An arguably better idea for the set membership estimation is to construct µ̂γ such that µ̂γ
(
Uβ

)
actually serves as a reliable185

lower bound for PX
(
Uβ

)
, thereby accounting for the imprecision due to limited number of data. This problem is connected186

to finding (one-sided) confidence intervals Cγ = [µ̂γ
(
Uβ

)
,1] for the success probability p = PX

(
Uβ

)
of a binomial187

distribution given kβ = ∑
NS
i=1 IUβ

(ξi) successes for a sample size of n = NS. The associated level of confidence γ ∈ [0,1]188

requires Cγ =Cγ(k) to be chosen such that the coverage probability is greater than this level of confidence, i.e.189

Pp (k ∈ {0, . . . ,n} | p ∈Cγ(k))≥ γ ∀ p ∈ [0,1]. (10)

In other words, the true success probability PX
(
Uβ

)
should be included in the confidence interval in γ ·100% of all given190

scenarios for the actual number of successes. This topic is covered in most statistics text books and statistics courses,191

refer e.g. to [25], and a plethora of options for constructing such confidence intervals is available, refer to [26] for a192

comprehensive review.193

Together with the normal approximation, the Pearson-Clopper interval [27] is one of the most prominent methods and,194

especially in the case of sparse data, it is often taken as a reference due to the guaranteed coverage probability. Many195

scholars, such as Agresti et al. in [28], argue – with good reason – that it can make sense to consider intervals for which the196

level of confidence is only approximately guaranteed. In the present setting however, the authors disagree. As mentioned197

above, possibility theory is a coarse description of uncertainty and should – in the authors’ opinion – only be used for198

computing robust and reliable bounds, especially in the presence of few samples. Hence, it would be counterintuitive to199

employ approximations. Against this background, a one-sided variant of the Pearson-Clopper interval for a given level of200

confidence γ ∈ [0,1] is considered here. Its lower bound µ̂γ is defined through201

B(kβ −1 | µ̂γ
(
Uβ

)
,NS) = γ (11)

for kβ > 0 and µ̂γ
(
Uβ

)
= 0 otherwise. Therein, the Binomial cumulative distribution function is defined as B(k | p,n) =202

∑
k
i=0
(n

i

)
pi(1− p)n−i. The solution to Eq. (11) may be computed e.g. by means of the inverse of the beta cumulative203

distribution function via204

µ̂
γ
(
Uβ

)
=

{
betainv

(
1− γ,kβ ,NS− kβ +1

)
if kβ > 0 and

0 otherwise, (12)

and the level of confidence γ may be viewed as the probability of consistency.205

Theorem 9. The estimated possibility distribution Π̂
γ

X is consistent with PX with a guaranteed coverage probability of γ ,206

i.e. PX1,...,XNS

(
PX (V )≤ Π̂

γ

X (V )
)
≥ γ for all V ∈S (X ).207

Proof. The one-sided Clopper-Pearson confidence interval has a coverage probability greater than γ , see Proposition 14 in208

the Appendix, i.e. PX1,...,XNS
(N̂γ

X

(
Uβ

)
≤ PX

(
Uβ

)
)≥ γ for all β ∈ [0,1]. Let V ∈S (X ) and β ∗ be the maximum β ∈ [0,1]209

for which Uβ ⊆V . From the proof of Proposition 2 we know that from N̂γ

X

(
Uβ ∗

)
≤ PX

(
Uβ ∗

)
it follows that N̂γ

X (V )≤210

PX (V ). Therefore, the probability of the latter condition being fulfilled is greater than the probability of the former condition211

being fulfilled, i.e. PX1,...,XNS
(N̂γ

X (V )≤ PX (V ))≥ PX1,...,XNS
(N̂γ

X

(
Uβ ∗

)
≤ PX

(
Uβ ∗

)
)≥ γ , proving the theorem.212

Of course, it is tempting to choose γ = 1. However, this will generally lead to the least specific description of uncertainty,213

the uniform possibility distribution on X . Still, the estimated possibility distribution quickly gains in specificity by214

marginally lowering γ . It should also be noted that π̂
γ

X (x)> 0 for all x∈X . Even for Uβ with kβ =NS, i.e. which contain all215

samples, the lower probability µ̂γ(Uβ ) does not equal one – except for U0 by assumption. There is always a chance that the216

next sample will lie outside due to the limited number of data at hand, which is nicely reflected by Π̂
γ

X (U)≥ Pres(NS,γ)> 0217

for all U ⊆X . The actual values of this residual probability Pres depending on NS and γ are depicted in Fig. 6. This should218

be considered when deciding on the confidence level γ .219

Example 10 (Continuation of Example 8). Again, let ξ1, . . . ,ξNS be realizations of the R-valued uncertain variables X1, . . . ,XNS220

distributed with the bimodal probability distribution PX from Example 6 and let Uβ be the level sets of the kernel density221

estimates in Fig. 4. A selection of possibility densities of the reliable estimated possibility distributions Π̂
γ

X for different222

values of NS and γ is shown in Figs. 7, 8 and 9. Notice that the possibility distributions Π̂
γ

X become less specific with223

increasing γ and, in turn, are more likely to include the reference optimal transform and, hence, are more likely to be224

consistent with the true probability distribution.225
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Figure 6: Residual probability Pres in the reliable estimation procedure.
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Figure 7: Reference and (reliable) estimated possibility densities depending on γ for NS = 10 in Example 10.

6 Inclusion of Measurement Models226

So far, only the direct case providing measurements of the uncertain variable to be identified has been considered. Yet, in227

many cases only the Y -valued uncertain variable Y = Y (X) can be measured. Below, it is therefore assumed that only ΠY228

is available, either explicitly or by estimation as Π̂
γ

Y or Π̂Y . Consequently, results from inverse possibilistic uncertainty229

propagation are necessary in order to estimate ΠX .230

6.1 Precisely Specified Measurement Models231

For now, suppose the probability distribution PY is known and the measurement function φ : X → Y is a precisely known232

surjective and (X ,Y )-measurable function. Then, there exists a (possibly infinite) number of probability distributions PX233

yielding this pushforward distribution under φ . These extensions may be gathered in the set of inverse probability234

distributions I φ

PY
=
{

PX : PY (UY ) = PX
(
φ−1 (UY )

)
∀UY ∈S (Y )

}
.235

An analogous set of inverse possibility distributions of the possibility distribution ΠY may also be defined. However,236

it is possible to account for this whole set by just one possibility distribution. The minimum specific inverse possibility237

distribution is given by238

Π
inv.
X (UX ) = ΠY (φ (UX )) ∀UX ∈S (X ) . (13)

In [29], it is shown that this possibility distribution possesses several properties. For instance, it is the least specific239

possibility distribution in the corresponding set of inverse possibility distributions. The perhaps most important result is240

that Πinv.
X is consistent with any probability distribution PX ∈I φ

PY
from the set of inverse probability distributions of all241

probability distributions PY ∈ C (ΠY ) which are consistent with ΠY .242

The significance of these results for establishing a theory of inverse problems in possibility theory is e.g. discussed243

in [24]. In particular, therein it is argued that replacing ΠY by Π̂Y yields a consistent possibility distribution Π̂inv.
X in the244

limit case for NS → ∞ since the minimum specific inverse possibility distribution preserves consistency. Analogously,245

replacing ΠY by Π̂
γ

Y preserves the probability of consistency for Π̂
γ,inv.
X .246
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Figure 8: Reference and (reliable) estimated possibility densities depending on γ for NS = 100 in Example 10.
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Figure 9: Reference and (reliable) estimated possibility densities depending on γ for NS = 1000 in Example 10.

Example 11. Suppose Y = X2 possesses the possibility density πY (y) = 1−y for y∈ [0,1] and zero outside, i.e. a one-sided247

triangular possibility density with zero as nominal value and a radius or one to the right and zero to the left. Then, the248

possibility density of the minimum specific inverse possibility distribution of X is given by π inv.
X (x) = 1−x2 for x ∈ [−1,1]249

and zero outside, see Fig. 10.250

6.2 Imprecisely Specified Measurement Models251

However, the solution to this precise measurement problem is of little practical relevance as the measurement function252

itself is often subject to uncertainty, e.g. measurement noise etc., which needs to be accounted for as well in order to253

establish a sensible procedure for possibilistic parameter estimation. The measurement model is then given through254

the (X ×W ,Y )-measurable function φ as255

Y = φ (X ,W ) , (14)

the marginal possibility distributions ΠY and ΠW of Y and the W -valued uncertain variable W are assumed to be known or256

to have been estimated, and the possibility distribution of X is to be inferred. Many scholars have recognized the need for a257

solution to this problem, refer e.g. to [30] for a review of the special case where φ is bilinear in X and W . Recent results258

in [31] facilitate the establishment of such a theory.259

At best, the joint distribution ΠW,Y is available. Yet, this is usually not the case. Instead, a consistent aggregation has to260

be performed. In [31], it is shown how probability-possibility consistency of the joint distributions may be maintained261

when only the marginal distributions are known. In particular, in the case of unknown copulas between the (certainly not262
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Figure 10: Possibility density of the minimum specific inverse possibility distribution of X in Example 11.

independent!) uncertain variables W and Y , the general aggregation operator yields263

ΠW,Y (T,V ) = min(1,2 ·ΠW (T ) ,2 ·ΠY (V )) ∀T ⊆W ,V ⊆ Y . (15)

Therein, the correction of Zadeh’s aggregation operator (the basic minimum) by the factor 2 accounts for the uncertainty264

dimension, i.e. the number of uncertain variables aggregated. Next, one can formally define265

ψ : X ×W → Y ×W , (x,w) 7→ (φ(x,w),w) (16)

and compute the minimum specific inverse possibility distribution Πinv.
X ,W under ψ . The marginalization266

Π
inv.
X (U) = Π

inv.
X ,W (U,W ) ∀U ⊆X (17)

then yields a consistent possibility distribution on X since all the above steps preserve consistency as explained above, or267

in [32] for the marginalization. The expression in Eq. (17) may be expressed on the basis of possibility densities as268

π
inv.
X (x) = sup

w∈W
min(1,2 ·πW (w) ,2 ·πY (φ (x,w))) ∀x ∈X . (18)

Note that this translates loosely to Case 4 in [30], when the general aggregation operator instead of Zadeh’s non-interactive269

aggregation operator is applied and when φ is bilinear in its two arguments.270

In the case of simple addition with a given fuzzy-valued sum and one fuzzy-valued summand, one might be tempted271

to look for an equivalence to the Hukuhara difference [33] for fuzzy sets. However, this is not so straight-forward since272

the Hukuhara difference aims at finding the inverse of the extension principle, and the presented approach follows the273

paradigm of preserving consistency which, generally, leads to different results.274

Example 12. Reconsider Example 11, only this time Y = X2 +W is subject to a measurement error W with a symmetric275

triangular possibility density πW (w) = 1−|w| for |w| ≤ 1 and zero elsewhere (center c = 0 and radius r = 1 in Fig. 2).276

Then the above described inference procedure yields the possibility density (see Fig. 11)277

π
inv.
X (x) =


1 if |x| ≤ 1,

2− x2 if 1≤ |x| ≤
√

2 and
0 otherwise.

(19)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

π
in
v
.

X

Figure 11: Possibility density of the minimum specific inverse possibility distribution of X in Example 12.
278
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7 Computational Aspects279

A key step in the estimation of the possibility distribution of the unknown input variable is the computation of the minimum280

specific inverse possibility distribution. A conceptually simple and elegant technique can be derived from the recursive281

SIVIA (Set Inversion via Interval Analysis) algorithm in [14]. An efficient implementation is described below.282

Let Πinv.
X be the minimum specific inverse possibility distribution with respect to the output possibility distribution ΠY283

and the measurement function φ : X →Y . The argument in the following also works in the ’imprecise measurement’ case.284

The FSIVIA (Fuzzy Set Inversion via Interval Analysis) Algorithm 1 is – just like the SIVIA algorithm – fundamentally285

based on inclusion functions [φ ] which provide an outer approximation of the image of intervals (or N-dimensional286

boxes) [x] under φ . A detailed explanation on how to construct those would go beyond the scope of this paper and interested287

readers are referred to Chapter 2.4 in [14]. Here, interval arithmetic is used.288

Algorithm 1: Fuzzy Set Inversion via Interval Analysis Algorithm FSIVIA.
input :Initial set [x], Inclusion function [φ ], Inclusion output possibility density function [πY ], Tolerances επ and εx
output :Subpavings L−

Πinv.
X

and L+
Πinv.

X

1 [y]← [φ ] ([x]);
2 [π]← [πY ] ([y]);
3 if width([π])< επ or width([x])< εx then
4 α−←max([π]);
5 L−

Πinv.
X
←{([x] ,α−)};

6 α+←min([π]);
7 L+

Πinv.
X
←{([x] ,α+)};

8 else
9 ([x]1, [x]2)← bisect [x] where width([x]) is maximal;

10
(
L−1 ,L

+
1

)
← FSIVIA([x]1, [φ ], [πY ],επ ,εx);

11
(
L−2 ,L

+
2

)
← FSIVIA([x]2, [φ ], [πY ],επ ,εx);

12 L−
Πinv.

X
← L−1 ∪L−2 ;

13 L+
Πinv.

X
← L+

1 ∪L+
2 ;

14 end

289

Notice that the superlevel sets of Πinv.
X and ΠY are linked through290

L α+

Πinv.
X

=
{

x ∈X : π
inv.
X (x)≥ α

}
= {x ∈X : πY (φ(x))≥ α}= φ

−1
(
L α+

ΠY

)
∀α ∈ [0,1]. (20)

The same holds true for the sublevel sets, i.e. L α−
Πinv.

X
= φ−1(L α−

ΠY
). Therefore, one can simply apply the original SIVIA291

algorithm on the basis of the superlevel sets in order to obtain subpavings (partitions) L−
Πinv.

X
and L+

Πinv.
X

thereof. These292

subpavings are partitions of an initial interval (box) [x]⊆X where each subset is characterized by an associated α-value293

according to which sub- and superlevel set it belongs to. If the inclusion function of the output possibility density computes294

the membership values [πY ]([y]) = [πY ]([φ ]([x])) = [α1,α2], then it is clear that [x] belongs to L α2
−

Πinv.
X

and ([x],α2) ∈ L−
Πinv.

X
.295

Similarly, because all x ∈ [x] have a membership greater than α1, it holds that ([x],α1) ∈ L+
Πinv.

X
. The tolerances επ and εx296

limit the imprecision resolution and the spatial resolution, respectively, but other termination criteria are also possible.297

The sublevel subpaving may be used to reconstruct the possibility distribution via298

Π
inv.
X (U) = sup

([x],α)∈L−
Πinv.

X
:U∩[x]6= /0

α ∀U ⊆X (21)

and therefore it is convenient to store the subpavings in a binary tree-like structure which enables an efficient search e.g.299

for the marginalization in the ’imprecise measurement’ case and the computation of the possibility density via300

π
inv.
X (x) = sup

([x],α)∈L−
Πinv.

X
:x∈[x]

α ∀x ∈X . (22)

Example 13 (adapted from Example 3.2 in [14]). Suppose the possibility densities of two symmetric and triangular fuzzy301

variables with respective centers c1 = 10.5 and c2 = 67 and radii R1 = 0.5 and R2 = 5 (see Fig. 2) are given by302

πY1 (y1) =

{
1− |10.5−y1|

0.5 if y1 ∈ [10,11]
0 otherwise

and πY2 (y2) =

{
1− |67−y2|

5 if y2 ∈ [62,72]
0 otherwise.

(23)
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They are considered non-interactive, hence Zadeh’s min-aggregation303

πY1,Y2 (y1,y2) = min(πY1 (y1) ,πY2 (y2)) ∀y1,y2 ∈ R (24)

gives the joint possiblity density. The measurement function is assumed to be304

φ(x1,x2) =

(
exp(x1)+ exp(x2)

exp(2x1)+ exp(2x2)

)
∀x1,x2 ∈ R. (25)

The inclusion functions [πY1,Y2 ] and [φ ] may be obtained by the application of elementary interval arithmetic, refer to [14]305

or [34]. The FSIVIA algorithm is initialized on [x] = [0,2.5]× [0,2.5] with επ = 0.01 and εx = 0.01, and the subpavings306

of the minimum specific inverse possibility distribution shown in Fig. 12 are computed. The sublevel subpaving and the307

superlevel subpaving provide an upper and lower approximation of the possibility density, respectively. The projection308

of the sublevel set subpaving on the x1- and x2-axis, indicating the possibility densities of the marginalized possibility309

distributions Πinv.
X1

and Πinv.
X2

, can be seen in Fig. 13.310
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Figure 12: Level set subpavings of Πinv.
X1,X2

in Example 13.

8 Possibility Distribution Estimation311

Papaioannou et al. pose a benchmark problem for the quantification of polymorphic uncertainties in [35]. Therein, the312

probability of the failure of a wide flange steel column is investigated under aleatory as well as epistemic uncertainties,313

and several approaches to its solution in different frameworks are provided and compared. The problem itself is based on314

Example 2 in [36] and considers a column which is “subjected to a compressive load P consisting of two components P =315

Pp +Pe, where Pp denotes the permanent load and Pe the environmental load.” [35]316

A complete solution to the problems posed therein would go beyond the scope of this paper. However, an exemplary317

analysis on the basis of possibility theory with an emphasis on estimation problems shall be pursued in the following.318

One uncertain variable in the mechanical model under consideration is the environmental load modeling the annual319

maximum snow load Pe. Its probability distribution is unknown, yet 20 measurements from consecutive years are provided320

to enable an estimation thereof, see Table 1. For simplicity, all approaches in [35] assume the load to follow a Gumbel321

distribution for which only the location and the scale parameter need to be identified. This is accomplished by several322

variants of Bayesian inference and maximum likelihood estimation. However, the authors of the present paper argue323

that 20 data points are very little to be able to assume a Gumbel distribution in good faith and one ought to pursue a324

non-parametric approach for the distribution estimation as described in Section 5. Further imprecision is introduced325
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Figure 13: Marginal possibility densities obtained from projection of the sublevel set subpaving L−
Πinv.

X
in Example 13.

Table 1: Annual maximum observed snow load given in [35].

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Max load [kN] 175.6 341.3 275.2 267.6 245.2 445.5 186.1 327.7 158.3 231.7

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Max load [kN] 150.0 269.8 263.1 246.3 272.3 202.9 191.2 191.6 245.2 176.5

by to the obvious rounding to the nearest 100 N of the data. Hence, an input variable W with an interval possibility326

distribution on [−50 N,50 N] perturbing the measured output is present. Figure 14 exhibits the corresponding reliable327

estimates of a consistent possibility distribution based on the ’imprecise measurement methodology’ with the nested set328

family Uβ = [0,− log(β )] for β ∈ (0,1] and U0 = R+
0 . For reference, also the possibility density resulting from the ’best329

estimation’ procedure without the assumed measurement noise is given.330

Above all, the estimated distributions indicate that as few as 20 samples are very little to arrive at sufficiently precise331

conclusions. This becomes apparent e.g. in the high residual probability Pres(20, ·). Under this approach, the possibilistic332

answer to Challenge 1 in [35], posing the question if a failure probability below 1.3 ·10−6 can be guaranteed, has to be a333

clear ’no’, since the system will always fail for an environmental load which is high enough. Yet, the estimated possibility334

distribution for all but the lowest levels of confidence γ does not render this event improbable enough with a sufficiently335

low possibility.336

9 Conclusions337

In this paper, a possibilistic approach to data-based inference has been presented in an effort to address one of the remaining338

issues in possibility theory to become a general theory of polymorphic uncertainties. It is conceptually simple and easy to339

implement since essentially it reduces to counting how many samples fall into which of the nested sets. Again, the choice340

of the Uβ is completely arbitrary and the main degree of freedom. But, it is a choice between ’good’ and ’better’, for341

consistency is always guaranteed.342

Some remaining issues concern e.g. the identification or estimation of reference values, i.e. system parameters such as343

masses, stiffnesses, etc. in a possibilistic framework. The authors hope to have made a helpful contribution to the question344

on how such a problem could be approached. Apart from this, the presented results should also provide a meaningful345

approach to fuzzy-valued regression problems in the context of imprecise probabilities. Many scholars have investigated346

this topic, e.g. in [37, 38, 39, 40, 41, 42, 43, 44], but to the authors’ knowledge none of them have pursued those by347

rigorously interpreting fuzzy membership functions as possibility densities of imprecisely defined probability distributions.348
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Figure 14: Reliable and best estimated possibility densities for the maximum annual snow load.

Appendix349

Proposition 14 (Coverage Probability of the One-Sided Clopper-Pearson Confidence Interval). The one-sided Clopper-350

Pearson confidence interval Cγ(k) = [p(k),1] defined by B(k−1|p(k),n) = γ for k = 1, . . . ,n and p(0) = 0 has a coverage351

probability greater than γ .352

Proof. To see this, let k ∈ {1, . . . ,n−1}. From B(k−1 | p(k),n) = γ = B(k | p(k+1),n), it follows that B(k−1 | p(k),n)≥353

B(k−1 | p(k+1),n). Since B is decreasing in p, p is monotonously increasing in k, i.e. p(k)≤ p(k+1). Trivially, this354

is also fulfilled for k = 0. Now, let p ∈ [0,1] and let J be the largest j such that p≥ p( j). Hence, p(J)≤ p≤ p(J +1).355

The coverage probability Pp (k ∈ {0, . . . ,n} | p ∈Cγ(k)) is then one for J = n and otherwise it reads Pp (k ∈ {0, . . . ,J}) =356

B(J | p,n). Once more appreciating that B is decreasing in p, it follows that B(J | p,n)≥ B(J | p(J+1),n) = γ .357
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