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Abstract

Copulas allow a flexible and simultaneous modeling of complicated dependence struc-
tures together with various marginal distributions. Especially if the density function can
be represented as the product of the marginal density functions and the copula density
function, this leads to both an intuitive interpretation of the conditional distribution and
convenient estimation procedures. However, this is no longer the case for copula models
with mixed discrete and continuous marginal distributions, because the corresponding
density function cannot be decomposed so nicely. In this paper, we introduce a copula
transformation method that allows to represent the density function of a distribution
with mixed discrete and continuous marginals as the product of the marginal probabil-
ity mass/density functions and the copula density function. With the proposed method,
conditional distributions can be described analytically and the computational complexity
in the estimation procedure can be reduced depending on the type of copula used.

1 Introduction

Along with random effect methods, copula methods are a widely used tool to model mul-
tivariate distributions. In case of both, the univariate marginal distribution functions and
the copula associated with a (d + 1)-dimensional distribution function H, are absolutely
continuous, the density h of H fulfills

h(x, y1, . . . , yd) = c
(

F (x), G1(y1), . . . , Gd(yd)
)

f(x)

d
∏

i=1

gi(yi), (1)

where c denotes the copula density, F and Gi denote the univariate marginal distribution
functions and f and gi denote its corresponding density functions, i ∈ {1, . . . , d}. The copula
representation (1) enables the dependence structure to be separated from the marginal dis-
tributions. Such a complete separation not only provides a meaningful interpretation of the
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model but also allows a convenient estimation [Nelsen, 2006; Joe, 2014; Durante and Sempi,
2015]. However, this convenience is lost when discrete distributions appear in the model.
Then, in contrast to (1), the copula representation of the multivariate distribution no longer
provides a complete separation of the dependence structure from the marginal distributions in
the density function. Thus, the interpretation of the dependence structure becomes difficult
[Genest and Nešlehová, 2007], and the traditional statistical estimation procedures cannot
be directly applied [Song and Song, 2007]. For instance, when modeling d discrete random
variables, the evaluation of the likelihood function requires the calculation of 2d terms1 which
provoke computational difficulties in the estimation procedure and complicates an interpre-
tation of the dependence structure [Smith and Khaled, 2012; Zilko and Kurowicka, 2016].
Copula methods for mixed - discrete and continuous - marginals, mixed copula models for
short, suffer from similar difficulties.

In this paper we investigate mixed copula models with a single discrete and several absolutely
continuous variables and mainly focus on problems related to interpretation difficulties of the
(conditional) dependence structure and computational difficulties in estimation.

Often the dependence structure in the copula model is explained in terms of conditional dis-
tributions. For instance, a wide range of copula families including Archimedean copulas and
some elliptical copula families are closed under the operation of conditioning [Mesfioui and Quessy,
2008; Ding, 2016]. For such copula families, the conditional distribution has both an ana-
lytical and an intuitive interpretation. However, this convenience is lost in copula models
with discrete marginals. We note that the interpretability of conditional distributions when
conditioning with respect to a discrete random variable is important in several research ar-
eas including case-control studies in medicine [He et al., 2012; de Leon and Wu, 2011] and
frequency-severity models in insurance [Czado et al., 2012; Krämer et al., 2013].

A second problem that occurs in mixed copula models is the computational complexity
in the calculation of density functions [Kadhem and Nikoloulopoulos, 2019] since statisti-
cal estimation procedures require the evaluation of the corresponding joint density func-
tion for multiple terms. In the case of implicit copula models, for instance, the calcula-
tion of the density function requires numerical integration [Nikoloulopoulos and Karlis, 2009;
Kadhem and Nikoloulopoulos, 2019]. Such numerical difficulties may complicate the esti-
mation procedure mainly due to the computational difficulties in calculating the likelihood
functions and subsequent derivatives [Song and Song, 2007].

In the present paper we aim at providing a handy representation of the mixed copula model so
that both interpretation and calculation of the density function remain intuitive and simple.

To this end, we start with a rather naive question: Can we reformulate a mixed copula
model with some discrete distribution function F and some absolutely continuous distribution
functions G1, . . . , Gn, and find some closely related distribution whose density satisfies (1)?
An answer to that question requires a copula transformation that is presented in Section 2.
With the rather appealing form of the density in (1), we expect that the proposed distribution
may provide a meaningful interpretation and excellence in computation in the estimation

1 When pair copula construction is adapted, the computational burden of evaluating n-dimensional discrete
random variables only requires 2n(n− 1) terms [Panagiotelis et al., 2012].

2



procedure. A numerical analysis comparing the mixed copula model with the modified version
is presented in Section 3. As an application, we apply the proposed method to the collective
risk model, CRM for short, (Section 4) which plays a crucial role in insurance. The CRM
models the aggregate claim amount of a portfolio where the number of claims is random. In
particular, for the prediction of the fair premium, modeling the dependence structure in the
CRM is important. There are several ways to do this, whereby in this paper we focus on
two CRMs that were presented in the recent actuarial literature: two part frequency-severity
model (see, e.g., Frees et al. [2014]; Shi et al. [2015]; Garrido et al. [2016]; Park et al. [2018])
and copula-based CRM (see, e.g., Cossette et al. [2019]; Oh et al. [2020]). These two methods
were developed independently in different mathematical settings which makes the comparison
of the two models difficult. However, with the proposed copula transformation applied to
the copula-based CRM, we provide an example demonstrating the linkage between the two
models.

Throughout the paper we write I := [0, 1], N0 := N ∪ {0} and let d ≥ 2 be an integer which
will be kept fixed. Bold symbols are used for vectors, e.g., y = (y1, . . . yd) ∈ R

d, or vectors
of functions, e.g., f = (f1, . . . , fd). We denote by ζd the d-dimensional Lebesgue measure; in
case of d = 1 we simply write ζ.

2 Transformation of the mixed model

In this section, we consider a multivariate mixed model with a single discrete and several
absolutely continuous variables and present a modification of this model that allows both a
meaningful interpretation and a convenient estimation.

First, fix some probability space (Ω,A,P) and consider a random variable N (on this prob-
ability space) with distribution function F such that N follows a discrete distribution on
N0. Additionally, we consider a d-dimensional random vector Y (on the same probability
space) whose margins Yi, i ∈ {1, . . . , d}, follow an absolutely continuous distribution with
ζ– densities gi and distribution functions Gi, i ∈ {1, . . . , d}. Then, by Sklar’s Theorem (see,
e.g., ??), there exists some (d+ 1)-dimensional copula C such that the distribution function
H of (N,Y) satisfies

H(n,y) = C
(

F (n),G(y)
)

(2)

for every (n,y) ∈ N0 × R
d. Note that the copula C fails to be unique, in general. In the

following, we assume that C is absolutely continuous, i.e. there exists some ζd+1- density c
of C. Then, H has (µ⊗ ζd)- density (where µ denotes the counting measure on the power set
of N0) h satisfying

h(n,y) =

(

∂d

∂y
C
(

F (n),G(y)
)

−
∂d

∂y
C
(

F (n − 1),G(y)
)

) d
∏

i=1

gi(yi) (3)

=

(

∫

(F (n−1),F (n)]
c
(

u,G(y)
)

dζ(u)

)

d
∏

i=1

gi(yi)

for (µ⊗ ζd)– almost all (n,y) ∈ N0 ×R
d. While a model with a density function fulfilling (1)

allows a meaningful interpretation of the underlying dependence structure and the univariate
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marginal distributions, such a direct interpretation turns out to be difficult in a situation like
(3). In addition to that, the estimation in (3) is usually cumbersome since the calculation of
the likelihood function can be quite involved and may require numerical integration. There-
fore, we are interested in the following naive question (Q1): Can we find a (µ ⊗ ζd)- density
h∗ of the following form

(Q1) h∗(n,y) = c
(

F (n),G(y)
)

P[{N = n}]
d
∏

i=1

gi(yi)

for (µ ⊗ ζd)– almost all (n,y) ∈ N0 × R
d, and, if yes, what are the distributional properties

of h∗?

We additionally focus on the conditional version of the distribution function H of (N,Y)
in (2). Then, for PN– almost every n ∈ N0, the conditional joint density h(.|n) of Y given
N = n equals

h(y|n) =
1

P[{N = n}]

(

∂d

∂y
C
(

F (n),G(y)
)

−
∂d

∂y
C
(

F (n− 1),G(y)
)

) d
∏

i=1

gi(yi) (4)

=
1

P[{N = n}]

(

∫

(F (n−1),F (n)]
c
(

u,G(y)
)

dζ(u)

)

d
∏

i=1

gi(yi)

for ζd– almost all y ∈ R
d. In contrast to the case (N,Y) would be absolutely continuous,

equation (4) does not lead to a practicable interpretation. Therefore, we are also interested
in the following naive question (Q2) related to (Q1): For PN– almost every n ∈ N0, can we
find a ζd- density h∗(.|n) conditional on N = n of the following form

(Q2) h∗(y|n) = c
(

F (n),G(y)
)

d
∏

i=1

gi(yi)

for ζd– almost all y ∈ R
d, and, if yes, what are the distributional properties of h∗(.|n)?

Remark. 2.1. If we assume c(u,G(y)) = c(F (n),G(y)) on (F (n − 1), F (n)] × R
d for all

n ∈ N0, then the identities h∗(n,y) = h(n,y) and h∗(y|n) = h(y|n) hold for (µ⊗ ζd)– almost
all (n,y) ∈ N0 × R

d. �

In the following, we use a generalization of the idea described in Remark 2.1 and construct
a ‘copula’-density that is, with respect to the first coordinate, partially constant and hence a
step function.

2.1 Transformation of the copula

For α ∈ (0, 1], we define the map ⌈.⌉α,F : (0, 1] → R by letting

⌈u⌉α,F :=
∑

n∈N0

Fα(n) 1(F (n−1),F (n)](u) (5)

4



where Fα : N0 → I is given by Fα(n) := (1 − α)F (n − 1) + αF (n), and canonically extend
⌈.⌉α,F to I by putting ⌈0⌉α,F := 0. Then, 0 ≤ ⌈u⌉α,F ≤ 1 for all u ∈ I.

Remark. 2.2. We note that the identity ⌈u⌉α,F = (Fα ◦ F←)(u) holds for all u ∈ (0, 1)
where F← : (0, 1) → R denotes the pseudo inverse of F given by F←(u) := inf{x ∈ R :
F (x) ≥ u}. �

For the copula C with density function c, we further define the map cα,F,C : I × I
d → R by

letting

cα,F,C(u,v) := c
(

⌈u⌉α,F ,v
)

. (6)

Then cα,F,C is positive, measurable and a ζd+1- density: Indeed, since ∂1C(u,1) = 1 holds for
ζ– almost all u ∈ I (where ∂1C denotes the partial derivative of C with respect to the first
coordinate), we obtain

∫

I×Id
cα,F,C(u,v) dζ

d+1(u,v) =

∫

I×Id
c
(

⌈u⌉α,F ,v
)

dζd+1(u,v) =

∫

I

∂1C(⌈u⌉α,F ,1) dζ(u) = 1.

The following result is immediate from Equations (5) and (6):

Corollary. 2.3. Consider v ∈ I
d.

• The identity cα,F,C(u,v) = c(Fα(n),v) holds for all n ∈ N0 and all u ∈ (F (n−1), F (n)].

• The map cα,F,C(.,v) is a positive step function.

The next example, in which we consider a pertubation of the independence copula Π (see,
e.g., ??), illustrates the construction principle and shows that cα,F,C fails to be a copula
density, in general:

Example. 2.4. For θ ∈ [−1, 1], consider the copula C : I× I
d → I given by

C(u,v) := Π(u,v) + θ u(1− u) v1(1− v1)

d
∏

i=2

vi

and the distribution function F : R → I given by

F (x) :=
1

3
1[1,2)(x) +

2

3
1[2,3)(x) + 1[3,∞)(x).

Then we have c(u,v) = 1 + θ (1− 2u)(1 − 2v1) for all (u,v) ∈ I× I
d and

Fα(n) =























α/3 n = 1;

1/3 + α/3 n = 2;

2/3 + α/3 n = 3;

1 n ≥ 4;

and ⌈u⌉α,F =























0 u = 0;

α/3 u ∈
(

0, 13
]

;

1/3 + α/3 u ∈
(

1
3 ,

2
3

]

;

2/3 + α/3 u ∈
(

2
3 , 1
]

.
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Thus, the density cα,F,C is a step function satisfying

cα,F,C(u,v) = 1 + θ (1− 2v1)























1 u = 0;
3−2α

3 u ∈
(

0, 13
]

;
1−2α

3 u ∈
(

1
3 ,

2
3

]

;
−1−2α

3 u ∈
(

2
3 , 1
]

,

for all v ∈ I
d. Since, for every α 6= 1/2 and θ 6= 0 and every v1 ∈ (0, 1),

∫

I×[0,v1]×Id−1

cα,F,C(s, t) dζ
d+1(s, t) = v1 + θ v1 (1− v1)

(

1− 2α

3

)

6= v1,

cα,F,C fails to be a copula density. �

Obviously, if cα,F,C fails to be a copula density, then cα,F,C 6= c. Note that the converse
implication is not true, in general. For instance, take α = 1/2 and θ 6= 0 in Example 2.4.
Then, it is straightforward to show that cα,F,C is a copula density but fails to coincide with
c. Nevertheless, there exist copulas satisfying cα,F,C = c.

Example. 2.5. Consider a d-dimensional copula A with ζd- density a and define the
map C : I × I

d → I by letting C(u,v) := uA(v). Then, by [?, Theorem 6.6.3], C is
a (d + 1)-dimensional copula with ζd+1- density c satisfying cα,F,C(u,v) = c

(

⌈u⌉α,F ,v
)

=
a(v) = c(u,v) for all (u,v) ∈ I× I

d. �

Since cα,F,C is a ζd+1- density, the map Cα,F,C : I× I
d → R given by

Cα,F,C(u,v) :=

∫

[0,u]×[0,v]
cα,F,C(s, t) dζ

d+1(s, t) (7)

is a distribution function on I
d+1 following an absolutely continuous distribution. In the next

lemma we gather some properties of Cα,F,C that turn out to be quite useful.

Lemma. 2.6. The identity

Cα,F,C(u,v) =
n−1
∑

k=0

∂1C(Fα(k),v)P[{N = k}] + ∂1C(Fα(n),v)
(

u− F (n − 1)
)

holds for all n ∈ N0 and all (u,v) ∈ (F (n − 1), F (n)] × I
d. In particular, we have

Cα,F,C(u,1) = u and Cα,F,C(1,v) = E
[

∂1C
(

Fα(N),v
)]

for all u ∈ I and all v ∈ I
d.

Proof. For every n ∈ N0 and every u ∈ (F (n− 1), F (n)], Corollary 2.3 yields

∫

[0,u]
cα,F,C(s,v) dζ(s) =

∫

[0,u]
c
(

⌈s⌉α,F ,v
)

dζ(s)

6



=
n−1
∑

k=0

∫

(F (k−1),F (k)]
c(Fα(k),v) dζ(s) +

∫

(F (n−1),u]
c(Fα(n),v) dζ(s)

=
n−1
∑

k=0

c(Fα(k),v)
(

F (k)− F (k − 1)
)

+ c(Fα(n),v)
(

u− F (n− 1)
)

=

n−1
∑

k=0

c(Fα(k),v)P[{N = k}] + c(Fα(n),v)
(

u− F (n− 1)
)

for ζd– almost all v ∈ I
d. This proves the assertion. �

From a probabilistic viewpoint, if a random vector (U,V) is distributed according to Cα,F,C ,
then it follows from Lemma 2.6 that U is uniformly distributed, i.e.

P[{U ≤ u}] = u

for all u ∈ I, and that the identity

P[{V ≤ v}] = E
[

∂1C
(

Fα(N),v
)]

holds for all v ∈ I
d.

We illustrate the construction principle by completing Example 2.4.

Example. 2.7. For θ ∈ [−1, 1], consider the copula C and the distribution function F
discussed in Example 2.4. Then

Cα,F,C(u,v) = Π(u,v) + θ v1(1− v1)
d
∏

i=2

vi























0 u = 0
(

3−2α
3

)

u u ∈
(

0, 13
]

2
9 +

(

1−2α
3

)

u u ∈
(

1
3 ,

2
3

]

6
9 +

(

−1−2α
3

)

u u ∈
(

2
3 , 1
]

for all v ∈ I
d and hence Cα,F,C(u,1) = u for every u ∈ I as well as

Cα,F,C(1,v) = E
[

∂1C
(

Fα(N),v
)]

=
d
∏

i=1

vi + θ v1(1− v1)
d
∏

i=2

vi

(

1− 2α

3

)

∈ I

for every v ∈ I
d. Since, for every α 6= 1/2 and θ 6= 0 and every v1 ∈ (0, 1)

Cα,F,C

(

1, (v1,1)
)

= v1 + θ v1(1− v1)

(

1− 2α

3

)

6= v1,

Cα,F,C fails to be a copula. �

Choosing θ = 0 in the previous example yields C = Π and hence Cα,F,C = Π = C. A more
general result is given by the following example which extends Example 2.5.

Example. 2.8. Consider a d-dimensional copula A with ζd- density and the copula
C : I× I

d → I given by C(u,v) := uA(v). Then, Cα,F,C = C. In particular, Cα,F,Π = Π. �

7



2.2 Transformation of the random vector

Although the copula transformation Cα,F,C of C fails to be a copula, in general, it is a dis-
tribution function on I

d+1 whose first coordinate is distributed uniformly. In this subsection
we will use this copula transformation in combination with Sklar’s theorem to construct a
distribution function that helps answering questions (Q1) and (Q2).

For α ∈ (0, 1], the copula C with density function c, the discrete distribution function F and
absolutely continuous distribution functions G1, . . . , Gd, we define the function Hα,F,G,C :
R× R

d → I by letting

Hα,F,G,C(x,y) := Cα,F,C

(

F (x),G(y)
)

.

Then it is straightforward to verify that Hα,F,G,C is a distribution function satisfying

lim
t→∞

Hα,F,G,C(x, t) = F (x) and lim
s→∞

Hα,F,G,C(s,y) = E
[

∂1C
(

Fα(N),G(y)
)]

.

The next result is immediate from Corollary 2.3 and solves question (Q1).

Theorem. 2.9. The (µ⊗ ζd)- density hα,F,G,C of Hα,F,G,C satisfies

hα,F,G,C(n,y) = c
(

Fα(n),G(y)
)

P[{N = n}]

d
∏

i=1

gi(yi)

for (µ⊗ ζd)- almost all (n,y) ∈ N0 × R
d.

From a probabilistic viewpoint, if a random vector (M,T) is distributed according to Hα,F,G,C ,
then Lemma 2.6 shows that M is a random variable whose distribution function FM equals

FM = F

and that the distribution function FT of T satisfies

FT = E
[

∂1C
(

Fα(N),G(.)
)]

.

Note that FTi
6= Gi, i ∈ {1, . . . , d}, in general; see Example 2.7. Now, we answer question

(Q2).

Theorem. 2.10. Consider a random vector (M,T) distributed according to Hα,F,G,C.
Then, for PM– almost every n ∈ N0, the conditional joint density hα,F,G,C(.|n) of T given
M = n satisfies

hα,F,G,C(t|n) = c
(

Fα(n),G(t)
)

d
∏

i=1

gi(ti) (8)

for ζd– almost all t ∈ R
d.

Remark. 2.11. In the special case α = 1, the results in Theorems 2.9 and 2.10 reduce to

hα,F,G,C(n,y) = c
(

F (n),G(y)
)

P[{N = n}]
d
∏

i=1

gi(yi)

8



and

hα,F,G,C(y|n) = c
(

F (n),G(y)
)

d
∏

i=1

gi(yi)

for (µ⊗ ζd)– almost all (n,y) ∈ N0 ×R
d. �

3 Numerical Analysis

In this section, we perform a numerical study illustrating the impact of the copula transfor-
mation method suggested in Section 2.1 by measuring the distance between the copula C and
its transformed version Cα,F,C .

As distance measure we use the Kullback-Leibler divergence (KL divergence for short); see,
e.g., Kullback and Leibler [1951]; Kullback [1997]. For two k-dimensional joint distribution
functions P and Q having p and q as probability density functions, the KL divergence from
P to Q is defined as

D(P,Q) :=

∫

Rk

p(x) log

(

p(x)

q(x)

)

dζk(x).

We note that D(P,Q) ≥ 0 where equality holds if and only if P = Q. In addition, since
D(P,Q) 6= D(Q,P ), KL divergence fails to be symmetric, in general.

In the first part of our numerical analysis, we consider bivariate copulas Cθ from various
parametric copula families (Gaussian, Student t, Clayton and Gumbel) and put

P = Cθ and Q = Cα,F,Cθ

where F denotes a Poisson distribution with mean ζ. The parameter θ is choosen in such
way that it corresponds to a certain value of bivariate Kendall’s tau and hence indicates the
degree of dependence represented by Cθ. We measure the KL divergence from P to Q under
various scenarios which are combinations of α = 0.25, 0.5, 0.75, 1.0, ζ = 0.1, 0.5, 1.0, 5.0, 10.0
and θ given in Table 1.

Kendall’s tau -0.8 -0.3 -0.1 0 0.1 0.3 0.8

θ

Gaussian / Student t -0.951 -0.454 -0.156 0.000 0.156 0.454 0.951
Clayton - - - 0.000 0.222 0.857 8.000
Gumbel - - - 1.000 1.111 1.429 5.000

Table 1: Copula parameter θ corresponding to bivariate Kendall’s tau

For each scenario, we further calculate the values of Spearman’s rho

ρ(P ) and ρ(Q)

to illustrate how the dependence structure of the copula changes with the proposed transfor-
mation; recall that Spearman’s rho of a bivariate distribution function H with marginals F
and G is defined as

ρ(H) := 12

∫

R2

F (x)G(y) dH(x, y)− 3

9



In the second part of the numerical analysis, we leave the bivariate setting and consider 3-
dimensional copulas. Here, we restrict ourselves to positive dependence (symmetric Gaussian
and Clayton copulas) whereas the parameter θ is chosen in such a way that it corresponds
to a certain value of the bivariate Kendall’s tau as in Table 1.

The results of the numerical analysis are summarized in Table 2 to 11:
• Table 2 to 5: KL divergence for Gaussian, Student t, Clayton and Gumbel copula in

dimension 2.
• Table 6 to 9: Spearmans’s rho for Gaussian, Student t, Clayton and Gumbel copula in

dimension 2.
• Table 10 and 11: KL divergence for the 3-dimensional Gaussian and Clayton copula.

From Table 2 and 3, one may observe that, for each α and ζ, the values of KL divergence are
symmetric about 0 with respect to θ which is due to the fact that the density functions of
two Gaussian copulas (t-copulas) having parameters of opposite signs, ±ρ, are reflection of
each other over the horizon line x = 0.5. Similarly, from Table 6 and 7, one may also observe
that, for each α and ζ, the values ρ(P ) and ρ(Q) are symmetric about 0.

As expected from the definition of the transformation Cα,F,Cθ
, we observe that copulas with

weaker dependence tend to have smaller KL divergence and smaller discrepancy between
ρ(P ) and ρ(Q). We also observe that for each θ, as ζ increases, KL divergence decreases
and the discrepancy is diminished, which is also an expected result from the definition of the
transformation Cα,F,Cθ

. However, one interesting phenomenon discovered in this numerical
analysis is that, around α = 0.5, we observe the smallest KL divergence for each combination
of ζ and θ. Finally, as can be shown in Table 10 and 11, we note that 3-dimensional copulas
show similar patterns as in 2-dimensional copulas.

4 Application to Collective Risk Model

In this section, we apply the proposed copula transformation method to the collective risk
model (CRM, for short). In the CRM, the aggregate severity in insurance portfolio is modelled
as the random sum of individual severities. Specifically, for the nonnegative integer valued
random variable N and the positive random variables Yj, the aggregate severity S is defined
by

S :=











N
∑

j=1
Yj , if N = n ∈ N;

0, if N = 0.

Note that the aggregate severity can be expressed as S = MN where M is the average
severity given by

M :=











1

N

N
∑

j=1
Yj, if N = n ∈ N;

0, if N = 0.

We first review two CRMs in the insurance literature. The first model that we will revisit is
so called the two part CRM where dependence between frequency and severity is induced by
using the frequency as an explanatory variable of the severities; see, e.g, Frees et al. [2014];

10



Shi et al. [2015]; Garrido et al. [2016]; Park et al. [2018]. As a result, in this model the
distribution of the aggregate severity can be easily determined. However, it is known that the
dependence structure in the two part model is quite limited; see, e.g., Liu and Wang [2017];
Shi et al. [2020]. The second model that we will revisit is the copula-based CRM, which can
cover the full spectrum of dependencies by describing the dependence for the frequency and
the individual severities based on copula function [Cossette et al., 2019; Oh et al., 2020]. Note
that the description of the aggregate severity, which is the main concern of insurance industry,
under the copula-based CRM can be inconvenient as will be explained below. Finally, we
apply the proposed copula transformation to the copula based CRM which enables convenient
handling of the distribution of the aggregate severity, and we provide an example where the
linkage between the two CRMs is demonstrated.

4.1 Two part CRM for frequency and aggregate severity

Model. 4.1. The two part CRM for frequency and aggregate severity

(N,M)

is defined within the framework of the exponential dispersion family (EDF) as follows (see
Frees et al. [2014]; Garrido et al. [2016]):
(i) We specify the frequency component N as

N ∼ F (9)

where F can be any discrete distribution function on N0.
(ii) We specify the conditional distribution of the average severity conditional on the number

of claims N = n ∈ N as
M
∣

∣N = n
i.i.d.
∼ ED

(

µn, σ
2
n

)

(10)

where ED
(

µn, σ
2
n

)

is the reproductive exponential dispersion model with mean µn and
dispersion parameter σ2n; see, e.g., Jørgensen [1987]; Jorgensen [1997]. Here, the mean
parameter µn is implicitly given by η1 (µn) = β1+ψ1(n) for properly chosen function ψ1

and link function η1, and the dispersion parameter is given by

σ2n :=
σ20
n
. (11)

The choice of the dispersion parameter in (11) can be justified by the following distributional
assumption on the individual severities

Y1, . . . , Yn|N = n
i.i.d.
∼ ED

(

µn, σ
2
0

)

n ∈ N (12)

which implies (10) by the convolutionary property of EDF. As a result, one may replace
the description of the average severity in Model 4.1 with the description of the individual
severities in (12). We call such model as the two part CRM for frequency and the individual
severities. However, while convenient in many ways, the conditional independence assumption
in (12) is a rather restrictive dependence assumption of frequency and individual severities as
pointed out in Liu and Wang [2017] and Shi et al. [2020]. Therefore, the two part CRM with
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the functional form of the dispersion parameter in (11) can accommodate only restrictive
dependence structures of frequency and individual severities.

Alternatively, one may choose a more complicated functional form of σn as mentioned in
Lee et al. [2019] to consider more general dependence structures in the CRM. Depending on
the purpose of the data analysis, one may use, for instance, advanced regression modeling
strategies such as non-parametric regression or additive modeling; see, e.g., Hastie and Tibshirani
[1990]; Faraway [2005]. However, in such a case the important linkage between the average
severity in (10) and the individual severities in (12) is violated, in general.

4.2 The copula-based CRM for the frequency and the individual severities

We now consider the copula-based CRM for the frequency and the individual severities dis-
cussed in Cossette et al. [2019] and Oh et al. [2020] where a wider variety of dependence
structures is possible depending on the particular choice of the used copula family.

Model. 4.2. The copula-based CRM for frequency and individual severities

(N,Y1, Y2, . . . , YN )

is defined as follows:
(i) We specify the frequency component N as

N ∼ F (13)

where F can be any discrete distribution function on N0; compare (9).
(ii) We specify the conditional distribution of the vector of individual severities (Y1, · · · , Yn)

conditional on the number of claims N = n ∈ N as

(Y1, . . . , Yn)
∣

∣N = n ∼W(n) (14)

for some distribution function W(n) given by

W(n)(y1, . . . , yn) :=
C(n)

(

F (n), G(y1), . . . , G(yn)
)

− C(n)

(

F (n − 1), G(y1), . . . , G(yn)
)

P[{N = n}]

with C(n) being an absolutely continuous (n + 1)-dimensional copula.

In this model, the density function of (Y1, Y2, · · · , Yn) at point (y1, y2, · · · , yn) conditional on
N = n ∈ N satisfies

∂n

∂y1 . . . ∂yn
W(n)(y1, . . . , yn) =

(

∫

(F (n−1),F (n)]
c(n)
(

u,G(y1), . . . , G(yn)
)

dζ(u)

)

∏n
i=1 g(yi)

P[{N = n}]
.

(15)
Hence, loosely speaking, the copula-based CRM can be understood as

(N,Y1, . . . , YN ) ∼ C(N)(F,G, . . . , G). (16)

We refer to Cossette et al. [2019] and Oh et al. [2020] for the natural linkage between (15)
and the density function in (16).
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The copula-based CRM allows modeling both, the dependence among the individual severities
and the dependence between frequency and severities. Hence, in terms of the dependence
structure, the copula-based CRM provides a wider range of dependence than the two part
CRM. But while the main interest of insurance industry lies in the aggregate severity S,
the copula-based CRM does not allow an analytical interpretation of S, in general. For an
analysis of S one may consider to use the conditional distribution in (14). However, mainly
due to the non-continuous nature of the frequency N , an analytical interpretation of the
conditional distribution in (14) or equivalently in (15) is difficult, in general.

4.3 The transformed copula-based CRM for the frequency and the indi-

vidual severities

In the following, we provide an example where the proposed copula transformation method
allows an analytical interpretation of the conditional dependence among severities in (14)
as well as the dependence between frequency and individual severities. The following model
is a modification of the previous copula-based CRM where the copula C is replaced by its
transformed version Cα,F,C(n)

.

Model. 4.3. For α ∈ (0, 1), the transformed copula-based CRM for

(N,Y1, Y2, . . . , YN )

is defined as follows:

(i) We specify the frequency component N as

N ∼ F (17)

where F can be any discrete distribution function on N0; compare (9) and (13).
(ii) We specify the conditional distribution of the vector of individual severities (Y1, . . . , Yn)

conditional on the number of claims N = n ∈ N as

(Y1, . . . , Yn)
∣

∣N = n ∼W ∗(n) (18)

for some distribution function W ∗(n) given by

W ∗(n) (y1, . . . , yn) :=
Cα,F,C(n)

(

F (n), G(y1), . . . , G(yn)
)

− Cα,F,C(n)

(

F (n− 1), G(y1), . . . , G(yn)
)

P[{N = n}]
(19)

with C(n) being an absolutely continuous (n + 1)-dimensional copula.

Note that, due to Theorem 2.10, the conditional distribution function in (18) can be repre-
sented as

W ∗(n)(y1, . . . , yn) = ∂1C(n)

(

Fα(n), G(y1), . . . , G(yn)
)

and the corresponding density function at (y1, y2, · · · , yn) conditional on N = n ∈ N satisfies

∂n

∂y1 . . . ∂yn
W ∗(n)(y1, . . . , yn) = c(n)

(

Fα(n), G(y1), · · · , G(yn)
)

n
∏

i=1

g(yi) (20)
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Similar to the case of copula-based CRM, the transformed copula-based CRM can be under-
stood as

(N,Y1, . . . , YN ) ∼ Cα,F,C(N)
(F,G, . . . , G) (21)

Now we are ready to provide an example which shows a link between two part CRM and
copula-based CRM. First, we define the following matrices for ρ1, ρ2 ∈ [−1, 1]:

(i) For k ∈ N and l ∈ {1, 2}, define the k × k matrix Σ
[k,l]
ρ2 by letting

[

Σ[k,1]
ρ2

]

i,j
:=

{

1, if i = j;

ρ2, if i 6= j;

and
[

Σ[k,2]
ρ2

]

i,j
:=

{

1, if i = j;

ρ
|i−j|
2 , if i 6= j.

(ii) For k ∈ N and l ∈ {1, 2}, define the (k + 1) × (k + 1) matrix Σ
[k,l]
ρ1,ρ2 by letting

Σ[k,l]
ρ1,ρ2

:=











(

1 ρ1 (1k)
T

ρ11k Σ
[k,l]
ρ2

)

, k ∈ N;

1, k = 0;

where 1k is a column vector with entries 1 of length k.
As shown in Oh et al. [2020], the condition

(ρ1, ρ2) ∈
{

(ρ1, ρ2) ∈ (−1, 1)2
∣

∣ ρ21 < ρ2 < 1
}

(22)

implies positive definiteness of the matrix Σ
[k,1]
ρ1,ρ2 for every k ∈ N0. Similarly, using the well

known result on the Schur complement of a block matrix [Haynsworth, 1968], the matrix

Σ
[k,2]
ρ1,ρ2 is positive definite for any ρ1, ρ2 ∈ (−1, 1) satisfying

1− ρ21 (k (1− ρ2) + 2ρ2) (1− ρ2) > 0. (23)

We denote by C
(

·;Σ
[n,l]
ρ1,ρ2

)

the (n + 1)-dimensional Gaussian copula with correlation matrix

Σ
[n,l]
ρ1,ρ2 and by c

(

·;Σ
[n,l]
ρ1,ρ2

)

its density.

In the sequel, we consider Model 4.3 for (N,Y1, Y2, · · · , YN ) assuming a symmetric dependence
structure for the individual severities:

Assumption. 4.4.

• ρ1 and ρ2 satisfy condition (22).

• C(n) is an (n+ 1)-dimensional Gaussian copula with correlation matrix Σ
[n,1]
ρ1,ρ2.

• G is a normal distribution with mean ξ and variance σ2.

In this case, the conditional density function of (Y1, Y2, · · · , Yn) conditional on N = n ∈ N

satisfies

∂n

∂y1 . . . ∂yn
W ∗(n)(y1, · · · , yn) = c(n)

(

Fα(n),Φξ,σ2(y1), . . . ,Φξ,σ2(yn);Σ
[n,1]
ρ1,ρ2

)

n
∏

i=1

φξ,σ2(yi)

(24)
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and part i of Lemma A.1 shows that, for n ∈ N, (Y1, · · · , Yn) conditional on N = n follows a
multivariate normal distribution with mean

(

ξ + σρ1Φ
−1
0,1(Fα(n))

)

1n and covariance matrix

σ2
(

Σ[n,1]
ρ2

− ρ21Jn×n

)

where Jn×n denotes an n × n matrix with entries 1. By the convolutionary property of the
multivariate normal distribution, we then obtain

Y1 + · · ·+ Yn
n

∣

∣

∣
N = n ∼ N

(

µn, σ
2
n

)

where

µn = ξ + σρ1Φ
−1
0,1(Fα(n)) and σ2n =

1

n
σ2
(

(n− 1)ρ2 − nρ21 + 1
)

As a result, the distribution of S can be expressed in closed form which in turn allows a
closed form expression for subsequent statistics of S. Specifically, for s ≥ 0, we have

P [{S ≤ s}] =

∞
∑

n=0

P [{S ≤ s}|{N = n}]P [{N = n}]

= F (0) +

∞
∑

n=1

Φ

(

s/n− µn
σn

)

P [{N = n}]

Additionally, we obtain

E [S] = E [N E [M |N ]] =

∞
∑

n=1

nµn P [{N = n}]

and
Var [S] = E

[

N2 Var [M |N ]
]

+Var [N E [M |N ]]

=

∞
∑

n=1

(

n2σ2n + n2µ2n
)

P [{N = n}]−

(

∞
∑

n=1

nµn P [{N = n}]

)2

.

Note that, while the dependence structure of the conditional severities in (12) under two part
CRM is restricted to conditional independence, the dependence structure of the conditional
severities in (19) under transformed copula-based CRM allows more general dependence struc-
tures. In Lemma A.1, we also provide the condition where two part CRM and transformed
copula-based CRM are equivalent.

Finally, we consider Model 4.3 for (N,Y1, Y2, · · · , YN ) assuming an autoregressive dependence
structure for the individual severities.

Assumption. 4.5.

• F is a discrete distribution function with finite support on N0 having κ0 ∈ N as the
essential supremum of F .

• k = κ0 satisfies (23).

• C(n) is an (n+1)-dimensional Gaussian copula with correlation matrix Σ
[n,2]
ρ1,ρ2 for n ≤ κ0.
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• G is a normal distribution with mean ξ and variance σ2.

Following the same procedure as above for n ∈ N yields

Y1 + · · ·+ YN
n

∣

∣

∣
N = n ∼ N

(

µn, σ
2
n

)

(25)

where

µn = ξ + σρ1Φ
−1(Fα(n)) and σ2n =

(

1− nρ21
)

n
+

2

n2
ρ22

1− ρ22

(

ρn−12 − 1
)

.

Again, the distribution of S can be expressed in closed form which in turn allows a closed
form expression for subsequent statistics of S.
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A Appendix

Lemma. A.1. Consider α ∈ (0, 1), a random vector (N,Y1, . . . , YN ) from a transformed
copula-based CRM (Model 4.3) satisfying Assumption 4.4. Then, we have following proper-
ties:

i. For n ∈ N, consider a random vector (Z0, Z1, · · · , Zn) following a multivariate normal

distribution with mean
(

0, ξ, · · · , ξ
)T

and covariance matrix

diag (1, σ, . . . , σ)Σ[n,1]
ρ1,ρ2

diag (1, σ, . . . , σ)

where Jn×n denotes an n× n matrix with entries 1. Then, the conditional distribution
of (Y1, · · · , Yn) conditional on N = n equals the conditional distribution of (Z1, · · · , Zn)
conditional on Z0 = Φ−10,1 (Fα(n)) which satisfies

(Z1, · · · , Zn) |Z0 = Φ−10,1 (Fα(n))

∼ MVN
((

ξ + σρ1Φ
−1
0,1 (Fα(n))

)

1n, σ
2
(

Σ[n,1]
ρ2

− ρ21Jn×n

)) (26)

ii. Consider a random vector (X,Y1, · · · , YX) from a two part CRM (Model 4.1) and as-

sume that X
d
= N shares the same distribution function F with N ∼ F . If we further

assume ρ1 = ρ22 and that µn and σ20 in (12) satisfying

µn = σρ1Φ
−1 (Fα(n)) and σ20 = σ2

(

1− ρ21
)

for X = n ∈ N, then the two random vectors (N,Y1, · · · , YN ) and (X,Y1, · · · , YX) have
the same distribution.
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Proof. We first prove part i. By Oh et al. [2020], the matrix Σ
[n,1]
ρ1,ρ2 is positive definite.

Furthermore, since the corresponding marginals and copula function of a multivariate nor-
mal distribution are normal distributions and Gaussian copula, respectively, the conditional
density function of (Z1, . . . , Zn) at point (z1, . . . , zn) conditional on Z0 = z0 equals

c(n)

(

Φ0,1(z0),Φξ,σ2 (z1) , . . . ,Φξ,σ2 (zn) ;Σ
[n,1]
ρ1,ρ2

)

n
∏

i=1

φξ,σ2 (zi) . (27)

On the other hand, the conditional distribution of (Z1, · · · , Zn) conditional on Z0 = z0
satisfies

(Z1, · · · , Zn) |Z0 = z0 ∼ MVN
(

(ξ + ρ1σz0)1n, σ
2
(

Σ[n,1]
ρ2

− ρ21Jn×n

))

(28)

Since (27) and (28) describe the same distribution, the conditional distribution of (Y1, . . . , Yn)
conditional on N = n and the conditional distribution of (Z1, . . . , Zn) conditional on Z0 =
Φ−10,1 (Fα(n)) coincide which follows from (24). This proves part i. The proof of part ii is
immediate from part i. �
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Table 2: KL divergence D(P,Q) from P to Q under various parameter settings for Gaussian
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 4.532 1.932 0.998 0.149 0.072
-0.454 0.124 0.053 0.028 0.004 0.002
-0.156 0.012 0.005 0.003 0 0

0 0 0 0 0 0
0.156 0.012 0.005 0.003 0 0
0.454 0.124 0.054 0.028 0.004 0.002
0.951 4.526 1.932 1.004 0.149 0.071

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 3.142 1.422 0.731 0.089 0.042
-0.454 0.087 0.039 0.020 0.002 0.001
-0.156 0.008 0.004 0.002 0 0

0 0 0 0 0 0
0.156 0.008 0.004 0.002 0 0
0.454 0.086 0.039 0.020 0.002 0.001
0.951 3.156 1.417 0.726 0.088 0.041

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 4.962 2.246 1.153 0.153 0.072
-0.454 0.135 0.062 0.031 0.004 0.002
-0.156 0.013 0.006 0.003 0 0

0 0 0 0 0 0
0.156 0.013 0.006 0.003 0 0
0.454 0.136 0.062 0.032 0.004 0.002
0.951 4.955 2.244 1.150 0.153 0.072

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 13.068 4.369 2.174 0.334 0.161
-0.454 0.359 0.119 0.060 0.009 0.004
-0.156 0.034 0.012 0.006 0.001 0

0 0 0 0 0 0
0.156 0.035 0.012 0.006 0.001 0
0.454 0.358 0.120 0.060 0.009 0.004
0.951 13.074 4.375 2.166 0.335 0.162
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Table 3: KL divergence D(P,Q) from P to Q under various parameter settings for Student
t copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 2.559 1.450 0.878 0.165 0.081
-0.454 0.139 0.069 0.040 0.006 0.003
-0.156 0.026 0.017 0.012 0.002 0.001

0 0 0 0 0 0
0.156 0.025 0.017 0.012 0.002 0.001
0.454 0.138 0.069 0.040 0.006 0.003
0.951 2.562 1.447 0.879 0.166 0.081

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

-0.951 2.025 1.079 0.638 0.103 0.047
-0.454 0.112 0.060 0.035 0.004 0.002
-0.156 0.026 0.018 0.011 0.001 0

0 0 0 0 0 0
0.156 0.026 0.017 0.012 0.001 0
0.454 0.113 0.060 0.035 0.004 0.002
0.951 2.027 1.078 0.642 0.103 0.048

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 2.472 1.419 0.893 0.174 0.082
-0.454 0.151 0.086 0.051 0.007 0.003
-0.156 0.028 0.023 0.016 0.002 0.001

0 0 0 0 0 0
0.156 0.028 0.022 0.016 0.002 0.001
0.454 0.151 0.085 0.050 0.006 0.003
0.951 2.477 1.423 0.892 0.171 0.082

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 4.576 2.454 1.568 0.361 0.181
-0.454 0.328 0.146 0.085 0.013 0.006
-0.156 0.057 0.033 0.024 0.004 0.002

0 0 0 0 0 0
0.156 0.057 0.032 0.023 0.004 0.002
0.454 0.327 0.146 0.085 0.013 0.006
0.951 4.572 2.447 1.565 0.360 0.181
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Table 4: KL divergence D(P,Q) from P to Q under various parameter settings for Clayton
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.019 0.013 0.008 0.001 0
0.857 0.192 0.131 0.083 0.010 0.004
8 5.041 3.459 2.306 0.462 0.224

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.020 0.013 0.008 0.001 0
0.857 0.196 0.131 0.082 0.007 0.003
8 3.953 2.697 1.770 0.313 0.143

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.027 0.019 0.012 0.001 0
0.857 0.268 0.183 0.114 0.012 0.005
8 4.892 3.354 2.257 0.481 0.235

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.036 0.025 0.016 0.002 0.001
0.857 0.357 0.242 0.156 0.020 0.009
8 6.447 4.482 3.114 0.821 0.441
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Table 5: KL divergence D(P,Q) from P to Q under various parameter settings for Gumbel
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.247 0.168 0.107 0.013 0.006
1.111 0.293 0.197 0.126 0.016 0.007
1.429 0.434 0.295 0.188 0.024 0.010
5 2.749 1.872 1.226 0.211 0.097

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.247 0.166 0.103 0.009 0.004
1.111 0.289 0.196 0.123 0.011 0.004
1.429 0.422 0.282 0.179 0.017 0.006
5 2.239 1.513 0.977 0.144 0.062

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.341 0.230 0.146 0.016 0.006
1.111 0.399 0.271 0.171 0.018 0.007
1.429 0.571 0.387 0.246 0.029 0.011
5 2.864 1.955 1.284 0.231 0.105

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.452 0.308 0.199 0.027 0.012
1.111 0.530 0.357 0.231 0.032 0.014
1.429 0.757 0.517 0.337 0.049 0.022
5 3.774 2.597 1.762 0.399 0.198
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Table 6: Spearman’s rho values ρ(P ) / ρ(Q) under various parameter settings for Gaussian
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.946 / -0.259 -0.946 / -0.746 -0.946 / -0.884 -0.946 / -0.939 -0.946 / -0.943
-0.454 -0.438 / -0.148 -0.437 / -0.358 -0.437 / -0.411 -0.439 / -0.438 -0.439 / -0.437
-0.156 -0.150 / -0.053 -0.149 / -0.123 -0.150/ -0.147 -0.149 / -0.149 -0.151 / -0.149

0 0 / -0.001 -0.001 / 0 -0.001 / 0 0 / 0.001 0.001 / 0.006
0.156 0.150 / 0.053 0.148 / 0.118 0.147 / 0.143 0.149 / 0.145 0.149 / 0.148
0.454 0.436 / 0.156 0.438 / 0.366 0.437 / 0.413 0.438 / 0.437 0.437 / 0.437
0.951 0.946 / 0.258 0.947 / 0.747 0.947 / 0.881 0.946 / 0.934 0.946 / 0.945

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.946 / -0.256 -0.946 / -0.745 -0.946 / -0.876 -0.946 / -0.934 -0.947 / -0.942
-0.454 -0.437 / -0.128 -0.438 / -0.304 -0.439 / -0.369 -0.437 / -0.428 -0.438 / -0.433
-0.156 -0.150 / -0.041 -0.150 / -0.103 -0.148 / -0.121 -0.149 / -0.149 -0.149 / -0.149

0 0 / 0 0.001 / 0 0.001 / -0.001 0 / -0.003 0 / -0.004
0.156 0.149 / 0.038 0.149 / 0.104 0.149 / 0.121 0.148 / 0.145 0.149 / 0.147
0.454 0.439 / 0.125 0.437 / 0.308 0.438 / 0.364 0.436 / 0.426 0.437 / 0.435
0.951 0.946 / 0.256 0.946 / 0.749 0.946 / 0.881 0.946 / 0.938 0.946 / 0.944

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.946 / -0.26 -0.946 / -0.739 -0.946 / -0.872 -0.947 / -0.936 -0.946 / -0.939
-0.454 -0.437 / -0.104 -0.437 / -0.280 -0.436 / -0.353 -0.436 / -0.425 -0.438 / -0.430
-0.156 -0.150 / -0.035 -0.148 / -0.097 -0.150 / -0.116 -0.150/ -0.144 -0.149 / -0.149

0 0 / 0.004 -0.002 / 0.003 -0.001 / 0.001 0.002 / -0.001 0.001 / 0.003
0.156 0.148 / 0.034 0.150 / 0.087 0.149 / 0.116 0.148 / 0.144 0.150 / 0.137
0.454 0.437 / 0.105 0.438 / 0.278 0.436 / 0.356 0.437 / 0.420 0.437 / 0.434
0.951 0.947 / 0.263 0.946 / 0.737 0.946 / 0.871 0.946 / 0.933 0.947 / 0.943

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.946 / -0.259 -0.946 / -0.737 -0.947 / -0.873 -0.946 / -0.934 -0.946 / -0.942
-0.454 -0.439 / -0.099 -0.438 / -0.271 -0.438 / -0.355 -0.438 / -0.425 -0.438 / -0.430
-0.156 -0.152 / -0.027 -0.149 / -0.089 -0.151 / -0.114 -0.150 / -0.141 -0.148 / -0.144

0 0.001 / 0.002 -0.001 / 0.003 -0.001 / -0.006 -0.001 / 0 0 / -0.002
0.156 0.149 / 0.033 0.150 / 0.092 0.149 / 0.122 0.150 / 0.144 0.150 / 0.148
0.454 0.437 / 0.099 0.437 / 0.276 0.437 / 0.348 0.437 / 0.423 0.438 / 0.431
0.951 0.947 / 0.249 0.946 / 0.737 0.946 / 0.877 0.946 / 0.937 0.947 / 0.941

24



Table 7: Spearman’s rho values ρ(P ) / ρ(Q) under various parameter settings for Student t
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.942 / -0.258 -0.942 / -0.743 -0.942 / -0.879 -0.942 / -0.935 -0.942 / -0.938
-0.454 -0.427 / -0.144 -0.427 / -0.353 -0.427 / -0.407 -0.427 / -0.425 -0.426 / -0.428
-0.156 -0.144 / -0.050 -0.145 / -0.115 -0.144 / -0.136 -0.144 / -0.143 -0.148 / -0.143

0 -0.001 / 0.001 -0.002 / -0.002 -0.002 / -0.005 0 / 0.004 0 / -0.004
0.156 0.147 / 0.053 0.146 / 0.121 0.146 / 0.141 0.147 / 0.144 0.145 / 0.146
0.454 0.428 / 0.145 0.428 / 0.352 0.426 / 0.407 0.429 / 0.429 0.427 / 0.430
0.951 0.942 / 0.256 0.942 / 0.742 0.942 / 0.871 0.942 / 0.936 0.943 / 0.936

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.942 / -0.258 -0.942 / -0.739 -0.942 / -0.869 -0.942 / -0.930 -0.942 / -0.937
-0.454 -0.426 / -0.122 -0.427 / -0.302 -0.426 / -0.364 -0.427 / -0.419 -0.425 / -0.425
-0.156 -0.146 / -0.043 -0.146 / -0.106 -0.146 / -0.120 -0.145 / -0.144 -0.145 / -0.141

0 0 / -0.002 0.001 / -0.003 -0.001 / 0 -0.001 / -0.004 0.001 / 0.002
0.156 0.145 / 0.048 0.145 / 0.101 0.147 / 0.123 0.146 / 0.141 0.145 / 0.141
0.454 0.426 / 0.125 0.426 / 0.304 0.427 / 0.366 0.427 / 0.418 0.427 / 0.420
0.951 0.942 / 0.249 0.942 / 0.737 0.942 / 0.871 0.942 / 0.935 0.942 / 0.933

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.942 / -0.256 -0.942 / -0.731 -0.942 / -0.865 -0.942 / -0.932 -0.942 / -0.935
-0.454 -0.428 / -0.117 -0.428 / -0.286 -0.426 / -0.351 -0.428 / -0.415 -0.428 / -0.421
-0.156 -0.145 / -0.039 -0.147 / -0.096 -0.145 / -0.121 -0.145 / -0.144 -0.145 / -0.145

0 0 / 0.001 0 / 0 0.001 / 0 0 / 0.004 0.001 / 0.003
0.156 0.146 / 0.035 0.146 / 0.089 0.146 / 0.121 0.146 / 0.140 0.144 / 0.146
0.454 0.429 / 0.111 0.429 / 0.277 0.428 / 0.352 0.429 / 0.411 0.427 / 0.424
0.951 0.942 / 0.257 0.942 / 0.725 0.942 / 0.866 0.942 / 0.932 0.942 / 0.934

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

-0.951 -0.942 / -0.255 -0.942 / -0.730 -0.942 / -0.867 -0.942 / -0.930 -0.942 / -0.935
-0.454 -0.428 / -0.108 -0.428 / -0.283 -0.428 / -0.355 -0.427 / -0.415 -0.428 / -0.417
-0.156 -0.147 / -0.039 -0.146 / -0.095 -0.146 / -0.118 -0.146 / -0.141 -0.145 / -0.136

0 0 / 0.001 0.001 / 0.001 -0.001 / 0.001 0 / 0.003 -0.002 / -0.001
0.156 0.146 / 0.033 0.147 / 0.096 0.147 / 0.119 0.147 / 0.143 0.146 / 0.143
0.454 0.428 / 0.115 0.428 / 0.282 0.427 / 0.354 0.426 / 0.416 0.427 / 0.421
0.951 0.942 / 0.252 0.942 / 0.729 0.942 / 0.866 0.942 / 0.933 0.942 / 0.939
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Table 8: Spearman’s rho values ρ(P ) / ρ(Q) under various parameter settings for Clayton
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 -0.001 / 0.004 0 / 0 -0.001 / -0.001 0 / 0.001 -0.001 / -0.004
0.222 0.148 / 0.035 0.149 / 0.117 0.149 / 0.153 0.149 / 0.158 0.149 / 0.156
0.857 0.434 / 0.117 0.435 / 0.375 0.435 / 0.454 0.434 / 0.461 0.434 / 0.454
8 0.941 / 0.262 0.941 / 0.738 0.941 / 0.874 0.941 / 0.945 0.941 / 0.939

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 -0.001 / -0.006 0 / 0.001 0.001 / 0.001 0 / -0.003 0 / -0.001
0.222 0.149 / 0.021 0.148 / 0.071 0.149 / 0.104 0.149 / 0.147 0.150 / 0.151
0.857 0.434 / 0.060 0.435 / 0.241 0.433 / 0.337 0.433 / 0.427 0.435 / 0.429
8 0.941 / 0.248 0.941 / 0.729 0.941 / 0.864 0.941 / 0.928 0.941 / 0.936

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 -0.002 / 0 0 / -0.001 -0.001 / -0.005 0.002 / 0.003 0 / -0.003
0.222 0.148 / 0.013 0.147 / 0.049 0.150 / 0.080 0.148 / 0.136 0.150 / 0.136
0.857 0.434 / 0.030 0.435 / 0.162 0.435 / 0.271 0.434 / 0.393 0.433 / 0.411
8 0.941 / 0.202 0.941 / 0.698 0.941 / 0.839 0.941 / 0.920 0.941 / 0.924

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0.001 / 0.003 0 / 0.004 0.001 / -0.004 -0.001 / 0.009 -0.001 / -0.001
0.222 0.149 / 0.003 0.150 / 0.031 0.148 / 0.062 0.149 / 0.123 0.149 / 0.134
0.857 0.435 / 0.012 0.434 / 0.111 0.435 / 0.214 0.435 / 0.368 0.433 / 0.390
8 0.941 / 0.067 0.941 / 0.611 0.941 / 0.798 0.941 / 0.904 0.941 / 0.924
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Table 9: Spearman’s rho values ρ(P ) / ρ(Q) under various parameter settings for Gumbel
copula

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.479 / 0.137 0.480 / 0.414 0.478 / 0.508 0.479 / 0.506 0.479 / 0.499
1.111 0.510 / 0.146 0.510 / 0.439 0.509 / 0.534 0.510 / 0.535 0.508 / 0.533
1.429 0.584 / 0.173 0.583 / 0.516 0.586 / 0.613 0.585 / 0.602 0.585 / 0.602
5 0.884 / 0.252 0.885 / 0.734 0.885 / 0.847 0.885 / 0.891 0.884 / 0.896

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.479 / 0.072 0.477 / 0.270 0.478 / 0.374 0.477 / 0.469 0.479 / 0.472
1.111 0.510 / 0.083 0.511 / 0.296 0.508 / 0.414 0.509 / 0.497 0.511 / 0.504
1.429 0.585 / 0.096 0.583 / 0.360 0.586 / 0.491 0.585 / 0.572 0.585 / 0.585
5 0.885 / 0.231 0.884 / 0.695 0.884 / 0.820 0.885 / 0.874 0.885 / 0.877

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.478 / 0.041 0.479 / 0.185 0.478 / 0.301 0.480 / 0.441 0.478 / 0.455
1.111 0.509 / 0.043 0.510 / 0.197 0.509 / 0.333 0.509 / 0.464 0.510 / 0.477
1.429 0.585 / 0.048 0.584 / 0.259 0.584 / 0.401 0.585 / 0.542 0.584 / 0.558
5 0.885 / 0.151 0.885 / 0.603 0.884 / 0.772 0.885 / 0.857 0.885 / 0.870

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

1 0.479 / 0.013 0.479 / 0.122 0.478 / 0.247 0.476 / 0.411 0.479 / 0.430
1.111 0.509 / 0.014 0.510 / 0.130 0.508 / 0.265 0.509 / 0.444 0.510 / 0.465
1.429 0.583 / 0.016 0.585 / 0.168 0.584 / 0.328 0.584 / 0.512 0.585 / 0.538
5 0.884 / 0.044 0.884 / 0.466 0.884 / 0.713 0.885 / 0.832 0.884 / 0.848
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Table 10: KL divergence D(P,Q) from P to Q under various parameter settings for Gaussian
copula of dimension 3

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.156 0.022 0.009 0.005 0.001 0
0.454 0.190 0.081 0.042 0.006 0.003
0.951 6.091 2.597 1.347 0.200 0.096

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.156 0.015 0.007 0.003 0 0
0.454 0.132 0.059 0.030 0.004 0.002
0.951 4.224 1.907 0.977 0.118 0.056

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.156 0.023 0.011 0.005 0.001 0
0.454 0.207 0.094 0.048 0.006 0.003
0.951 6.675 3.023 1.553 0.204 0.097

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.156 0.061 0.020 0.010 0.002 0.001
0.454 0.547 0.182 0.092 0.014 0.007
0.951 17.564 5.877 2.914 0.451 0.218
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Table 11: KL divergence D(P,Q) from P to Q under various parameter settings for Clayton
copula of dimension 3

(a) α = 0.25

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.033 0.023 0.014 0.002 0.001
0.857 0.298 0.203 0.130 0.016 0.007
8 8.277 5.678 3.806 0.795 0.381

(b) α = 0.5

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.033 0.022 0.014 0.001 0
0.857 0.270 0.182 0.114 0.011 0.004
8 4.757 3.257 2.176 0.435 0.206

(c) α = 0.75

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.047 0.032 0.020 0.002 0.001
0.857 0.369 0.251 0.160 0.018 0.007
8 5.235 3.611 2.466 0.583 0.303

(d) α = 1.0

ζ

0.1 0.5 1.0 5.0 10.0

θ

0 0 0 0 0 0
0.222 0.061 0.042 0.027 0.003 0.001
0.857 0.489 0.335 0.214 0.032 0.014
8 6.816 4.771 3.383 0.976 0.546
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