
On some classes of nullnorms and h-pseudo homogeneity
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Abstract

Nullnorms are aggregation functions which generalize t-norms and t-conorms. For each nullnorm there
exists an annihilator element such that, below it, the function behaves like a t-conorm, and, above it, like
a t-norm. In this paper, we study some classes of nullnorms which naturally arise from well known classes
of t-norms and t-conorms, such as idempotent, Archimedean, cancellative, positive and nilpotent t-norms
and t-conorms. We also present the concept of h-pseudo-homogeneous nullnorm and we study when these
classes of nullnorms fullfill it.
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1. Introduction

Data aggregation are processes or methods that gather and summarize information. A way of formalizing
the aggregation of data given in terms of real numbers (usually with values in [0, 1]) is by means of the
so-called aggregation functions. Aggregation functions are increasing functions satisfying two boundary
conditions (f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1). There are several classes of aggregation functions, such as,
triangular norms (t-norms), triangular conorms (t-conorms), Choquet integrals, copulas, overlap functions
and nullnorms, among others.

The class of nullnorms is a specific class of aggregation functions that includes t-norms and t-conorms.
Since its introduction by Calvo et al [10], nullnorms have proved themselves very useful in neural networks
[16, 21] and decision making [26]. Furthermore, nullnorms are also interesting from a theoretical point of
view, because their structure is a combination of a t-norm and a t-conorm. Each nullnorm has an annihilator
element such that, below the annihilator, the function behaves like a t-conorm, and, above the annihilator,
it behaves like a t-norm. Intensive research on nullnorms has been made recently, for example, about the
migrativity property in [27, 30, 39], the commuting property in [22] and the generation of orders from
lattice-valued nullnorms in [18, 19].

Besides, homogeneity is an analytical property studied for many years (see, for example, [2]). Homo-
geneity and some generalizations of this notion have been applied in image processing and classification
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problems [8, 9, 11, 23]. In [37], Xie et al. introduced the idea of pseudo-homogeneity as a generalization of
homogeneity and study which classes of t-norms, t-conorms and proper uninorms are pseudo-homogeneous.
Since this seminal work, pseudo-homogeneity has been studied for overlap and grouping functions1 in [29],
and for t-subnorms in [25]. However, as we prove, there is no proper pseudo-homogeneous nullnorm. For
overcoming this limitation, we propose a new kind of homogeneity, namely h-pseudo homogeneity, which
generalizes pseudo-homogenity for t-norms and t-conorms.

In this paper, we introduce some new classes of nullnorms which are based on well-known classes of
t-norms and t-conorms. We study their properties and characteristics. We also investigate h-pseudo homo-
geneity for these classes of nullnorms.

The structure of this paper is as follows. In Section 2, we show some preliminary concepts and results
that are necessary for the remainder of the paper. In Section 3, we discuss the definition of nullnorm, some of
its properties and new classes of nullnorms. In section 4, we introduce the concept of h-pseudo homogeneous
and provide a characterization the nullnorms which are h-pseudo homogeneous. Finally, in Section 5, some
conclusions are presented.

2. Preliminaries

In this section, we recall some concepts and results which will be used in the text.

Definition 2.1. [20] A function T : [0, 1]2 → [0, 1] is a triangular norm, t-norm for short, if it is associative,
increasing, commutative and

T (x, 1) = x for all x ∈ [0, 1]. (1)

Example 2.1. The minimum, product,  Lukasiewicz and drastic t-norms are defined for all x, y ∈ [0, 1],
respectively, as TM (x, y) = min(x, y), TP (x, y) = xy, TL(x, y) = max(x+ y − 1, 0),

TD(x, y) =

{
min(x, y) , if max(x, y) = 1;
0 , otherwise.

In addition, we have the family of Schweizer-Sklar t-norms, defined for each β < 0 as

T βSS(x, y) =

{
(xβ + yβ − 1)

1
β , if min(x, y) > 0;

0 , otherwise.

Definition 2.2. [20] A function S : [0, 1]2 → [0, 1] is a triangular conorm, t-conorm for short, when is
associative, increasing, commutative and

S(x, 0) = x for all x ∈ [0, 1]. (2)

Example 2.2. The maximum, probabilistic sum,  Lukasiewicz (also called bounded sum) and drastic sum
t-conorms are defined for all x, y ∈ [0, 1], respectively, as SM (x, y) = max(x, y), SP (x, y) = x + y − xy,
SL(x, y) = min(x+ y, 1) and

SD(x, y) =

{
max(x, y) , if min(x, y) = 0;
1 , otherwise.

Here we present some classes of t-norms and t-conorms which can be found in the literature. They will
serve as a basis for the development of this work.

Definition 2.3. [20] Let T be a t-norm. Then

1For more details on overlaps and grouping functions see [8, 12, 13, 28].
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1. T is called strict if it is continuous and, for each x, y, z ∈ [0, 1] with 0 < x and y < z, we have that
T (x, y) < T (x, z);

2. T is called idempotent if T (x, x) = x for each x ∈ [0, 1];

3. T is called nilpotent if it is continuous and, for each x ∈ (0, 1), there is n ∈ N such that x
(n)
T = 0,

where x
(0)
T = 1 and x

(n+1)
T = T (x, x

(n)
T );

4. T is called positive if it holds that T (x, y) = 0 if and only if x = 0 or y = 0;

5. T is called Archimedean if, for all x, y ∈ (0, 1), there exists n ∈ N such that x
(n)
T < y;

6. T is called cancellative if, for all x, y, z ∈ [0, 1], T (x, y) = T (x, z) ⇒ x = 0 or y = z.

Notice that positive t-norms are just t-norms with no zero divisors, i.e., t-norms for which there is no
element x ∈ (0, 1] such that T (x, y) = 0 for some y ∈ (0, 1].

Definition 2.4. [20] Let S be a t-conorm. Then

1. S is called strict if itis continuous and, for each x, y, z ∈ [0, 1] with x < 1 and y < z, we have that
S(x, y) < S(x, z);

2. S is called idempotent if S(x, x) = x for each x ∈ [0, 1];

3. S is called nilpotent whenever it is continuous and, for each x ∈ (0, 1), there is n ∈ N such that

x
(n)
S = 1, where x

(0)
S = 0 and x

(n+1)
S = S(x, x

(n)
S );

4. S is called positive if it holds that S(x, y) = 1 if and only if x = 1 or y = 1;

5. S is called Archimedean if, for all x, y ∈ (0, 1), there exists n ∈ N such that x
(n)
S > y;

6. S is called cancellative if, for all x, y, z ∈ [0, 1], S(x, y) = S(x, z) ⇒ x = 1 or y = z.

Remark 2.1. [20] The unique idempotent t-norm is TM and the unique idempotent t-conorm is Sm.

In addition, k ∈ [0, 1] is an annihilator element of a function F : [0, 1]2 → [0, 1] if, for each x ∈ [0, 1],
F (x, k) = F (k, x) = k. Thus, by monotonicity and from (1) and (2), we have that 0 and 1 are annihilator
elements for t-norms and t-conorms, respectively.

Bijective and increasing functions ρ : [0, 1] → [0, 1] are called automorphisms. As it is well known,
the set of automorphisms with the composition is a group. The action of an automorphism on a function
F : [0, 1]n → [0, 1] is the function F ρ : [0, 1]n → [0, 1] defined by

F ρ(x1, . . . , xn) = ρ−1(F (ρ(x1), . . . , ρ(xn))) for all x, y ∈ [0, 1], (3)

also called conjugate of F or isomorphic to F [31].

Definition 2.5. [37] Let F : [0, 1]2 → [0, 1] be a continuous and increasing function such that F (x, 1) =
0⇔ x = 0 and let T be a t-norm. Then T is pseudo-homogeneous with respect to F whenever T (λx, λy) =
F (λ, T (x, y)) for all x, y, λ ∈ [0, 1].

Lemma 2.1. [37, Lemma 1] Each pseudo-homogeneous t-norm is continuous.

Theorem 2.2. [37, Theorem 3.1] Let T be a t-norm and F : [0, 1]2 → [0, 1] be a continuous and increasing
function such that F (x, 1) = 0⇔ x = 0. Then, T is a pseudo-homogeneous t-norm with respect to F and F
is commutative if and only if T = TM and F = TP .

Theorem 2.3. [37, Theorem 3.2] Let T be a t-norm and F : [0, 1]2 → [0, 1] be a continuous and increasing
function such that F (x, 1) = 0 ⇔ x = 0. T is a pseudo-homogeneous t-norm with respect to F satisfying
T (x, x) < x for each x ∈ [0, 1] if and only if one of the following items holds.

1. T = TP and F (x, y) = x2y for each x, y ∈ [0, 1];
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2. for some β > 0, T and F are defined for each x, y ∈ [0, 1] as follows:

T (x, y) =

{
(xβ + yβ − 1)

1
β , if x, y > 0;

0 , otherwise.

F (x, y) =

{
((xy)β + xβ − 1)

1
β , if x, y > 0;

0 , otherwise.

Theorem 2.4. [37, Theorem 3.3] If T is a pseudo-homogeneous t-norm, then T can not be a non-trivial
ordinal sum of continuous Archimedean t-norms.

Definition 2.6. [37] Let F : [0, 1]2 → [0, 1] be an increasing function and let S be a t-conorm. Then S is
pseudo-homogeneous with respect to F whenever S(λx, λy) = F (λ, S(x, y)) for all x, y, λ ∈ [0, 1].

Theorem 2.5. [37, Theorem 4.1] Let S be a t-norm and F : [0, 1]2 → [0, 1] be an increasing function. Then
S is a pseudo-homogeneous t-conorm with respect to F if and only if S = Sm and F = TP .

3. Nullnorms

Nullnorms are generalizations of t-norms and t-conorms defined as follows.

Definition 3.1. [10] A nullnorm is a function V : [0, 1]2 → [0, 1] which is associative, increasing, commu-
tative, and has an annihilator element k ∈ [0, 1] such that

V (0, x) = x for all x ≤ k, (4)

V (1, x) = x for all x ≥ k. (5)

Remark 3.1. Observe for k = 0, we recover t-norms, while for k = 1 we recover t-conorms. Thus, each
t-norm and each t-conorm is a nullnorm. Nullnorms with annihilator element k ∈ (0, 1) are called proper
nullnorms.

The following theorem shows that nullnorms are built up from a t-norm, a t-conorm and an annihilator
element.

Theorem 3.1. [10, Prop. 2] Let k ∈ [0, 1]. A function V : [0, 1]2 → [0, 1] is a nullnorm with annihilator
element k if and only if there exist a t-norm T and a t-conorm S such that

V (x, y) =

 S∗(x, y) , if (x, y) ∈ [0, k)2;
T ∗(x, y) , if (x, y) ∈ (k, 1]2;
k otherwise ,

(6)

where for each x, y ∈ [0, k), S∗(x, y) = ϕ−1(S(ϕ(x), ϕ(y))) with ϕ(x) = x/k and for each x, y ∈ (k, 1],
T ∗(x, y) = ψ−1(T (ψ(x), ψ(y))) with ψ(x) = (x − k)/(1 − k). Furthermore, if k 6= 1, then the underlying
t-norm of V is defined in Eq. (7); and, if k 6= 0, the underlying t-conorm of V is defined in Eq. (8).

TV (x, y) =
V (x(1−k)+k, y(1−k)+k)−k

1− k
for all x, y ∈ [0, 1] (7)

SV (x, y) =
V (kx, ky)

k
for all x, y ∈ [0, 1]. (8)
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Remark 3.2. Observe that, for each proper nullnorm V , there exist a unique t-conorm S, a unique t-norm
T and a unique k ∈ (0, 1) such that Equation (6) holds. In addition, if k = 1, Equation (6) holds for a
unique t-conorm S and for any t-norm T . In fact, in this case V = S. Analogously, if k = 0, Equation (6)
holds for a unique t-norm T and for any t-conorm S since V = T . A triple (S, T, k) satisfying Equation (6)
for a nullnorm V will be called of generator triple of V . For the sake of clarity, we will also use the notation
VS,T,k for meaning that VS,T,k is a nullnorm with (S, T, k) as generator triple.

The following corollaries are straightforward from the characterization Theorem 3.1.

Example 3.1. Let k ∈ [0, 1]. Then the nullnorm having (SM , TM , k) as generator triple is:

V kM (x, y) =

 max(x, y) , if (x, y) ∈ [0, k]2;
min(x, y) , if (x, y) ∈ [k, 1]2;
k , otherwise.

(9)

The nullnorm having (SP , TP , k) as generator triple is:

V kP (x, y) =


x+ y − xy

k , if (x, y) ∈ [0, k]2;
(x−k)(y−k)

1−k + k , if (x, y) ∈ [k, 1]2;

k , otherwise.

(10)

The nullnorm having (SL, TL, k) as generator triple is:

V kL (x, y) =

 x+ y , if x+ y < k;
x+ y − 1 , if x+ y > 1 + k;
k , otherwise.

(11)

The nullnorm having (SD, TD, k) as generator triple is:

V kD(x, y) =

 max(x, y) , if min(x, y) = 0 and max(x, y) < k;
min(x, y) , if max(x, y) = 1 and min(x, y) > k;
k , otherwise.

(12)

Observe that a nullnorm can be composed from any pair of a t-norm and a t-conorm, which need not to be
dual. For example,

V kMP (x, y) =


max(x, y) , if (x, y) ∈ [0, k]2;
(x−k)(y−k)

1−k + k , if (x, y) ∈ [k, 1]2;

k , otherwise,

(13)

is the nullnorm which has (SM , TP , k) as generator triple.

Corollary 3.1. ([10]) Let V be a nullnorm with k ∈ [0, 1] as annihilator element. Then, for each x ∈ [0, 1]

1. V (0, x) = min(x, k);

2. V (1, x) = max(x, k).

Remark 3.3. Let V be a nullnorm with (S, T, k) as generator triple. From Remark 3.2, we observe that,
if k = 0, then T = TV ; and, if k = 1 then S = SV . In addition, if k ∈ (0, 1), then S = SV and T = TV .
Therefore, (SV , TV , k) is the generator triple of V .
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3.1. Conjugates of nullnorms

The action of automorphisms (in an algebraic sense [36]) over a class of operators generates, in general,
operators of the same class. In particular, it is so for the main classes of operators in fuzzy theory, s.t.
aggregation functions, t-norms, t-conorms, overlap functions, fuzzy implications, fuzzy negations, copulas,
etc. In the following proposition we prove that this is also the case for nullnorms.

Proposition 3.1. Let V : [0, 1]2 → [0, 1] be a nullnorm with k ∈ [0, 1] as annihilator element. Then, for
each automorphism ρ, V ρ is also a nullnorm with annihilator element ρ−1(k).

Proof: Since V is commutative and increasing and both ρ and ρ−1 are also increasing, trivially, V ρ is
commutative and increasing. Let x, y, z ∈ [0, 1]. Then:

V ρ(x, V ρ(y, z)) = ρ−1(V (ρ(x), ρ(ρ−1(V (ρ(y), ρ(z))))))

= ρ−1(V (V (ρ(x), ρ(y)), ρ(z)))

= V ρ(V ρ(x, y), z),

and therefore, V ρ is associative.
As V ρ(x, ρ−1(k)) = ρ−1(V (ρ(x), k)) = ρ−1(k), then ρ−1(k) is an annihilator element of V ρ.
If x ≤ ρ−1(k), then, since ρ is increasing, ρ(x) ≤ k and therefore, V ρ(0, x) = ρ−1(V (0, ρ(x))) = ρ−1(ρ(x)) =
x. Analogously, if x ≥ ρ−1(k), since ρ is increasing, ρ(x) ≥ k, and therefore, V ρ(1, x) = ρ−1(V (1, ρ(x))) =
ρ−1(ρ(x)) = x. �

Note that if (S, T, k) is the generator triple of V , then (Sρ, T ρ, ρ−1(k)) can not be the generator
triple of the nullnorm V ρ. For example, take the automorphism ρ(x) = sin

(
π
2x
)

and k = 0.5. Then

(V kL )ρ(0.2, 0.2) = ρ−1(V kL (0.1π, 0.1π)) = ρ−1(k) = 1
3 and (V kL )(ρ)(0.2, 0.2) = ρ−1(k)SρL

(
0.2

ρ−1(k) ,
0.2

ρ−1(k)

)
=

ρ−1(SL(ρ(0.6),ρ(0.6)))
3 ≈ 0.0067. Therefore, (V 0.5

L )ρ 6= (V 0.5
L )(ρ). But, by Theorem 3.1, (Sρ, T ρ, ρ−1(k)) is the

generator triple of some nullnorm. This leads to the following definition.

Definition 3.2. Let V be a nullnorm having (S, T, k) as generator triple. A nullnorm with (Sρ, T ρ, ρ−1(k))
as generator triple for some automorphism ρ is called indirect conjugate nullnorm of V and it is denoted by
V (ρ).

Remark 3.4. For each nullnorm V and automorphism ρ, V = (V ρ)ρ
−1

= (V (ρ))(ρ
−1).

Clearly if k = 0 or k = 1, then V ρ = V (ρ) for any automorphism ρ. The following proposition gives
sufficient conditions for the conjugate and the indirect conjugate of a proper nullnorm to agree.

Proposition 3.2. Let V be a nullnorm with k ∈ (0, 1) as annihilator element and let ρ be an automorphism
such that ρ(ρ−1(k)x) = kρ(x) for each x ∈ [0, 1]. Then V ρ = V (ρ) if and only if TV ρ = (TV )ρ.

Proof: First, observe that for each x ∈ [0, 1], ρ−1(x) = ρ−1(kx)
ρ−1(k) .

(⇒) Direct.
(⇐) By Eq. (8), for each x, y ∈ [0, 1], we have that

SV ρ(x, y) = V ρ(ρ−1(k)x,ρ−1(k)y)
ρ−1(k)

= ρ−1(V (kρ(x),kρ(y)))
ρ−1(k)

= ρ−1
(
V (kρ(x),kρ(y)))

k

)
= (SV )ρ(x, y).

Since TV ρ = (TV )ρ, we have that (SV ρ , TV ρ , ρ
−1(k)) = ((SV )ρ, (TV )ρ, ρ−1(k)) and hence V ρ = V (ρ). �

The Proposition 3.2 provides a sufficient condition to guarantee that V ρ = V (ρ) for a proper nullnorm V .
Note that automorphisms of the form ρ(x) = xr, for some real number r > 0, verify such condition. However,

this condition is not necessary. In fact, for any automorphism ρ and k ∈ [0, 1], we have that (V kM )ρ = V
ρ−1(k)
M

and therefore (SM , TM , ρ
−1(k)) is the generator triple of (V kM )ρ. This implies that (V kM )ρ = (V kM )(ρ) for any

automorphism ρ. Analogously, for any automorphism ρ we have that (V kD)ρ = (V kD)(ρ).
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Corollary 3.2. Let S be a t-conorm, k ∈ [0, 1) and take ρ(x) = xr for some fixed real number r. Then,
(V(S,TD,k))

ρ = (V(S,TD,k))
(ρ) and (V(S,TM ,k))

ρ = (V(S,TM ,k))
(ρ).

3.2. Idempotent nullnorms

In this subsection, we recall the notion of idempotent nullnorm and some well known facts related to it.

Definition 3.3. [7] A nullnorm V is idempotent if V (x, x) = x for all x ∈ [0, 1].

Remark 3.5. For all k ∈ [0, 1], the unique idempotent nullnorm with k as annihilator element is V kM [7, 15].
Therefore, a nullnorm is idempotent if and only if its underlying t-norm and t-conorm are idempotent. It
is worth to note that any conjugate of V kM is equal to V kM . The indirect conjugate of V kM is idempotent only
for the identity automorphism.

3.3. Nilpotent nullnorms

In this subsection we introduce the notion of nilpotent nullnorm and comment some trivial facts about
it.

An element x ∈ (0, 1) is a nilpotent element of a nullnorm V with annihilator element k ∈ [0, 1] if there

exists n ∈ N such that x
(n)
V = k, where x

(0)
V = x and x

(n+1)
V = V (x, x

(n)
V ). A nullnorm V which is continuous

and every x ∈ (0, 1) is a nilpotent element of V is called of Nilpotent.
Observe that each x ∈ (0, 1) is a nilpotent element of V kD, trivially. But V kD is not a nilpotent nullnorm

because it is not continuous.

Remark 3.6. Given a nullnorm V and an automorphism ρ the following statements are equivalent:

1. V is nilpotent;

2. SV (case k 6= 0) and TV (case k 6= 1) are nilpotent;

3. V ρ is nilpotent;

4. V (ρ) is nilpotent.

3.4. Positive nullnorms

In this subsection, we introduce the notion of positive nullnorm, as a natural generalization of positive
t-norms and positive t-conorms.

Observe that, from Theorem 3.1, if V is a nullnorm with an annihilator element k ∈ [0, 1] and min(x, y) ≤
k ≤ max(x, y) then V (x, y) = k. However, there may exist x, y ∈ (k, 1] or x, y ∈ [0, k) such that V (x, y) = k.
This fact leads to the following definition.

Definition 3.4. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. V is positive if

V (x, y) = k ⇔ min(x, y) ≤ k ≤ max(x, y).

Remark 3.7. Let V be a nullnorm with an annihilator element k ∈ [0, 1] and let ρ be an automorphism.
The following statements are equivalent:

1. V is positive;

2. SV (case k 6= 0) and TV (case k 6= 1) are positive;

3. V ρ is positive;

4. V (ρ) is positive.
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3.5. Archimedean nullnorms

In abstract algebra and analysis, an ordered algebraic structure is Archimedean if it has not “in-
finitely large” or “infinitely small” elements. The notion of Archimedean t-norm was studied in [34],
and Archimedean overlap functions were considered in [12]. In the following, we introduce the notion
of Archimedean nullnorm. In particular, we consider the underlying t-norm and t-conorm as well as the
conjugates of Archimedean nullnorms.

Definition 3.5. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. V is Archimedean if, for each

x, y ∈ (0, k), there exists n ∈ N such that x
(n)
V > y; and, for each x, y ∈ (k, 1), there exists n ∈ N such that

x
(n)
V < y.

Remark 3.8. Let V be a nullnorm with an annihilator element k ∈ [0, 1] and let ρ be an automorphism.
The following statements are equivalent:

1. V is Archimedean;

2. SV (case k 6= 0) and TV (case k 6= 1) are Archimedeans;

3. V ρ is Archimedean;

4. V (ρ) is Archimedean.

3.6. Cancellative nullnorms

In Mathematics, the notion of cancellativity is a generalization of the notion of invertibility. In an
algebraic structure M with a binary commutative operation ·, the cancellation law holds if, for each x, y, z ∈
M , x ·y = x ·z only if y = z. In the case of t-norms, since 0 is an annihilator, there is no t-norm verifying the
cancellative law in the above sense. Nevertheless, the cancellative law has been adapted making an exception
when x is the annihilator element. With this in mind, we give the following definition of cancellative law
for nullnorms:

Definition 3.6. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. V satisfies the cancellative law
(or it is cancellative) if V (x, y) = V (x, z)⇒ y = z or x = k whenever x, y, z ∈ [0, k] or x, y, z ∈ [k, 1].

Remark 3.9. Let V be a nullnorm with an annihilator element k ∈ [0, 1] and let ρ be an automorphism.
The following statements are equivalent:

1. V is cancellative;

2. SV (case k 6= 0) and TV (case k 6= 1) are cancellative;

3. V ρ is cancellative;

4. V (ρ) is cancellative.

4. Pseudo-homogeneous nullnorms

Homogeneous functions are those which preserve a multiplicative scaling. That is, if all the arguments are
multiplied by a fixed factor, then their output is also multiplied by the same factor (up to a power) [32]. The
only homogenous t-norms and t-conorms are TP , TM and SM [1]. In [37], it was proposed a flexibilization
of the notion of homogeneity of functions by means of the concept of pseudo-homogeneous function for t-
norms and t-conorms. It was shown that the class of pseudo-homogeneous t-norms is greater than the class
of homogeneous t-norms (c.f. Theorems 2.2 and 2.3). However, the class of pseudo-homogeneous t-conorms
is the same as the class of homogeneous t-conorms, i.e. the unique pseudo-homogeneous t-conorm is SM (c.f.
Theorem 2.5). This notion was also adapted and investigated for other classes of aggregation functions, such
as overlap functions in [29], t-subnorms in [25] or even interval-valued uninorms, t-norms and t-conorms in
[23, 24].

In this section, we consider the definition of pseudo-homogeneous nullnorms and a generalization of them.
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Definition 4.1. Let V be a nullnorm. V is called pseudo-homogeneous if it satisfies

V (λx, λy) = G(λ, V (x, y)) for all x, y, λ ∈ [0, 1],

for a function G : [0, 1]2 → [0, 1].

Since t-norms and t-conorms are nullnorms, this notion can also be used for t-norms and t-conorms. But,
it must be noted that the pseudo-homogeneity proposed by [37] for t-norms, is more restrictive, because it
requires the continuity of G and the condition G(x, 1) = 0 ⇔ x = 0. Therefore, each pseudo-homogeneous
t-norm and t-conorm in the sense of [37] is a pseudo-homogeneous nullnorm. However, are there proper
nullnorms, i.e. nullnorms which are neither t-norms nor t-conorms, and which are pseudo-homogeneous for
some function G?

The following proposition shows that the answer to the previous question is negative.

Proposition 4.1. Let V be a proper nullnorm with an annihilator element k ∈ (0, 1). Then V is not
pseudo-homogenous for any G : [0, 1]2 → [0, 1].

Proof: Suppose that V is pseudo-homogenous for some G : [0, 1]2 → [0, 1]. Then, on the one hand,
by Definition 4.1 and Theorem 3.1, G(k, k) = G(k, V (1, k)) = V (k, k2) = k; and, on the other hand, by
Definition 4.1, G(k, k) = G(k, V (0, k)) = V (0, k2) = k2, which is a contradiction. �

This lack of pseudo-homogeneous proper nullnorms leads us to the introduction of a broader notion of
pseudo-homogeneity for nullnorms. A first natural approach to such definition is based on considering the
pseudo-homogeneity of the underlying t-norm and t-conorm.

Definition 4.2. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. Then V is called underlying
pseudo-homogeneous if TV and SV are pseudo-homogeneous for some function F : [0, 1]2 → [0, 1] and
G : [0, 1]2 → [0, 1], respectively.

Obviously, if V is a t-norm or a t-conorm, this notion coincides with the definitions 2.5 and 2.6. The
following theorem provides a necessary condition for a nullnorm to be underlying pseudo-homogeneous.

Theorem 4.1. Let V be a proper nullnorm. If V is underlying pseudo-homogeneous, then SV = SM and
TV is continuous and can not be a non-trivial ordinal sum of continuous Archimedean t-norms.

Proof: Straightforward from Lemma 2.1 and Theorems 3.1, 2.4 and 2.5. �
Although more general than Definition 4.1, Definition 4.2 is very limited, because the underlying t-conorm

of an underlying pseudo-homogeneous proper nullnorm must be SM and only a restricted family of t-norms
can be considered. In addition, Definition 4.2 is not faithfull with the original notion of homogeneity where
a function f is homogeneous if f(λx, λy) = λf(x, y) and weakening of this definition which, in general, are
given substituing the two product by functions satisfying some conditions. This fact justifies the introduction
of a more general definition.

Definition 4.3. A nullnorm VS,T,k : [0, 1]2 → [0, 1] is called h-pseudo-homogeneous for a function G :
[0, 1]2 → [0, 1] if for each x, y, λ ∈ [0, 1] it satisfies

VS,T,k(λx, λy) = G(λ, VS,T,h(k,λ)(x, y)) (14)

where h : [0, 1]2 → [0, 1] is the function

h(k, λ) =

{
1 , if λ ≤ k;
k
λ , otherwise.

Observe that when λ 6= 0, then h(k, λ) = min(1, kλ ).

Example 4.1. Let k ∈ [0, 1].
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• V kM is h-pseudo-homogeneous for G = TP ;

• V kMP is h-pseudo-homogeneous for

Gk(a, b) =

{
ab , if b ≤ k

a ;
a2b−ak(b+1)+k

1−k , if b > k
a .

(15)

Lemma 4.2. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. If V is h-pseudo-homogeneous
with respect to a function G : [0, 1]2 → [0, 1], then for each x, y ∈ [0, 1],

G(x, y) =

{
xy if y ≤ k

x

V (x, xy) if k
x < y

Proof: If y ≤ k
x then G(x, y) = G(x, VS,T,1(0, y)) = G(x, VS,T,h(k,x)(0, y)) = VS,T,k(0, xy) = S∗(0, xy) =

xy. If k
x < y then k < min(x, y) and therefore, G(x, y) = G(x, T ∗(1, y)) = G(x, VS,T,h(k,x)(1, y)) =

VS,T,k(x, xy). �

Corollary 4.1. Let V be a nullnorm with an annihilator element k ∈ [0, 1]. If V is h-pseudo-homogeneous
with respect to a function G : [0, 1]2 → [0, 1], then for each x ∈ [0, 1], G satisfies the following properties:

1. G(0, x) = G(x, 0) = 0;

2. G(1, x) = x and G(x, 1) = V (x, x);

3. G is increasing in both variables;

4. G(k, x) = kx = G(x, k);

5. G(x, y) = G(y, x) for each y ∈ [0, 1] such that xy ≤ k.

Corollary 4.2. Let (S, T, k) be the generator triple of a proper nullnorm V . If T is strict and V is h-pseudo
homogeneous with respect to a function G, then, for each x, y ∈ [0, 1] such that x 6= y, G(x, y) = G(y, x) if
and only if xy ≤ k.

Proof: (⇒) If xy > k and G(x, y) = G(y, x) then, from Lemma 4.2, V (x, xy) = V (y, xy) and since T is
strict then x = y which is a contradiction.

(⇐) Direct from the last item of Corollary 4.1. �

Theorem 4.3. Let V be a proper nullnorm with (S, T, k) as generator triple. Then V is a h-pseudo-
homogeneous nullnorm if and only if S = SM and, for some function GT : [0, 1]2 → [0, 1], it holds that
T (λx, λy) = GT (λ, T (x, y)) for each x, y, λ ∈ [0, 1].

Proof: (⇒) Let (S, T, k) be the generator triple of V and x ∈ [0, 1]. Then kx ≤ k and so V (kx, kx) ≤ k.
By Corollary 4.1, item 2, G(1, kx) = kx and G(kx, 1) = V (kx, kx). Therefore, by item 5, V (kx, kx) =

kx for each x ∈ [0, 1]. Since kx ≤ k, by Equation (6), kx = V (kx, kx) = kS
(
kx
k ,

kx
k

)
= kS(x, x), i.e.

S(x, x) = x for each x ∈ [0, 1]. Hence, S = SM . Since V is h-pseudo-homogeneous, there exists a function
G : [0, 1]2 → [0, 1] satisfying Eq. (14). Define the function:

GT (a, b) =
G
(
a(1− k) + k, b

(
1− k

a(1−k)+k

)
+ k

a(1−k)+k

)
− k

1− k
for each a, b ∈ [0, 1]. (16)
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Let λ, x, y ∈ (0, 1) and λ′ = λ(1− k) + k. So h(k, λ′) = k
λ′ and

GT (λ, T (x, y)) =
G(λ′,(1− k

λ′ )T (x,y)+ k
λ′ )−k

1−k

=
G

(
λ′,V

S,T, k
λ′

((1− k
λ′ )x+

k
λ′ ,(1−

k
λ′ )y+

k
λ′ )

)
−k

1−k
= V ((λ′−k)x+k,(λ′−k)y+k)−k

1−k
= V ((1−k)λx+k,(1−k)λy+k)−k

1−k
= T (λx, λy).

(⇐) Let G : [0, 1]2 → [0, 1] be the function:

G(a, b) =

{
ab , if ab ≤ k;

(1− k)GT

(
a−k
1−k ,

ab−k
a−k

)
+ k , if ab > k.

(17)

Then for each x, y, λ ∈ [0, 1] we have the following cases:
Case 1. If λx ≤ k and λy ≤ k, then V (λx, λy) = λSM (x, y) = G(λ, SM (x, y)) = G(λ, VSM ,TV ,h(k,λ)(x, y)).

Case 2. If λx > k and λy > k, then h(k, λ) = k
λ and therefore, by Equation (6),

G(λ, VSM ,TV ,h(k,λ)(x, y)) = G(λ, VSM ,TV , kλ
(x, y))

= G
(
λ, (1− k

λ )TV

(
λx−k
λ−k ,

λy−k
λ−k

)
+ k

λ

)
= (1− k)GT

(
λ−k
1−k , TV

(
λx−k
λ−k ,

λy−k
λ−k

))
+ k

= (1− k)TV

(
λx−k
1−k ,

λy−k
1−k

)
+ k

= V (λx, λy).

Case 3. If λx ≤ k and λy > k, then h(k, λ) = k
λ and x ≤ k

λ < y. Thereby, xy ≤ k
λ and therefore, by

Equation (6),

G(λ, VSM ,TV ,h(k,λ)(x, y)) = G(λ, VSM ,TV , kλ
(x, y))

= k
= V (λx, λy).

�
Therefore, there is no proper h-pseudo-homogeneous nullnorm for any G which is either nilpotent,

Archimedean or cancellative.

Remark 4.1. From Theorem 4.3, it follows that G(x, y) = xy whenever y ≤ k and every h-pseudo-
homogeneous proper nullnorm is neither nilpotent, nor Archimedean, nor cancellative. In addition, observe
that if V is h-pseudo-homogeneous then their underlying t-conorm is homogeneous.

Corollary 4.3. Let V be a proper nullnorm and G : [0, 1]2 → [0, 1] be a continuous and increasing function
such that G(x, 1) = 0 if and only if x = 0. Then V is underlying pseudo-homogeneous if and only if V is
h-pseudo homogeneous with respect to a continuous function G satisfying G(a, b) = k ⇒ a = k and b = 1.

Proof: (⇒) Immediate from Theorems 2.5 and 4.3.
(⇐) From Corollary 4.1 we know that G is increasing in both variables, continuous and G(a, b) = k ⇔

a = k and b = 1. Therefore, GT generated from G according to Eq. (16) is continuous, increasing in
both variables and satisfies GT (x, 1) = 0 ⇔ x = 0. From Theorem 4.3, we have that SV = SM and
GT (λ, TV (x, y)) = TV (λx, λy) for each λ, x, y ∈ [0, 1]. Thereby, TV is pseudo-homogeneous with respect to
GT and, consequently, V is underlying pseudo-homogeneous.

�
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4.1. Conjugation of nullnorms and h-pseudo-homogeneity

In the following, we prove that h-pseudo-homogeneity for nullnorms is preserved for power automor-
phisms, i.e. automorphism defined for each x ∈ [0, 1] by ρ(x) = xr where r is a fixed positive real number.
This is due to the fact that such automorphisms are the only ones for which ρ(xy) = ρ(x)ρ(y) for each
x, y ∈ [0, 1].

Proposition 4.2. Let ρ be a power automorphism and let V be a nullnorm with an annihilator element
k ∈ [0, 1]. If V is h-pseudo-homogeneous with respect to a function G : [0, 1]2 → [0, 1] and (TV )ρ = TV ρ ,
then V ρ and V (ρ) are h-pseudo-homogeneous with respect to Gρ.

Proof: Let k be the annihilator element of V . By Proposition 3.2 ,
(
VS,T,h(k,ρ(λ))

)ρ
= VSρ,Tρ,ρ−1(h(k,ρ(λ)))

for each λ ∈ [0, 1].
Since ρ preserves the t-norm TP , ρ−1 also preserves TP . Then h(ρ−1(k), λ) = ρ−1(h(k, ρ(λ))) and

therefore

V ρ(λx, λy) = ρ−1(V (ρ(λx), ρ(λy)))
= ρ−1(G(ρ(λ), VS,T,h(k,ρ(λ))(ρ(x), ρ(y))))

= Gρ
(
λ,
(
VS,T,h(k,ρ(λ))

)ρ
(x, y)

)
= Gρ(λ, VSρ,Tρ,h(ρ−1(k),λ)(x, y)).

Therefore, V ρ is h-pseudo homogeneous with respect to Gρ. Since, by Proposition 3.2, V ρ = V (ρ) and(
VS,T,h(k,ρ(λ))

)ρ
= VSρ,Tρ,ρ−1(h(k,ρ(λ))) for each λ ∈ [0, 1], then V (ρ) is also h-pseudo homogeneous with

respect to Gρ. �

4.2. Idempotent nullnorms and h-pseudo-homogeneity

In this subsection we will provide some results relating h-pseudo-homogeneity nullnorms and the idem-
potency property.

Proposition 4.3. Let V be a h-pseudo-homogeneous nullnorm with respect to a function G : [0, 1]2 → [0, 1].
Then G is commutative if and only if V is idempotent.

Proof: Let (S, T, k) be the generator triple of V . (⇒) Let x ∈ [0, 1]. Then, by Corollary 4.1 (item 2),
V (x, x) = G(x, 1) = G(1, x) = x and therefore V is idempotent.

(⇐) Let x, y ∈ [0, 1]. Since V is idempotent then, by Remark 3.5, we have that V = V kM and that for

each x ∈ [0, 1], V
h(k,x)
M is also idempotent. Thus, by Eq. (14), we have that G(x, y) = G(x, V

h(k,x)
M (y, y)) =

V kM (xy, xy) = xy for each x, y ∈ [0, 1] which is clearly commutative. �

Corollary 4.4. Let V be a nullnorm with an annihilator element k ∈ [0, 1] such that V is h-pseudo-
homogeneous with respect to a function G : [0, 1]2 → [0, 1]. If G is commutative then G = TP and V = V kM .

Proposition 4.4. For each k ∈ [0, 1], V kM is h-pseudo homogeneous with respect to TP .

Proof: If λx, λy ≤ k then x, y ≤ k
λ and so x, y ≤ h(k, λ) and V kM (λx, λy) = kmax

(
λx
k ,

λy
k

)
= λmax(x, y) =

TP (λ, V
h(k,λ)
M (x, y)).

If λx, λy > k then x, y > k
λ and therefore, k < λ which means that h(k, λ) = k

λ . So, V kM (λx, λy) =

(1− k) min
(
λx−k
1−k ,

λx−k
1−k

)
+ k = λmin(x, y) = G(λ, TM (x, y)) = TP (λ, V

k
λ

M (x, y)).

If λx < k < λy (or λy < k < λx) we have that x < k
λ < y (or y < k

λ < x) and V kM (λx, λy) = k and

TP (λ, V
k
λ

M (x, y)) = TP (λ, kλ ) = k. �

Corollary 4.5. Let V be an idempotent nullnorm with an annihilator element k ∈ [0, 1] . V is h-pseudo
homogeneous with respect to a function G if and only if G = TP and V = V kM .
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4.3. Positive nullnorms and h-pseudo-homogeneity

Observe that V kM are positive nullnorms which are h-pseudo-homogeneous for TP as proved in Proposition
4.4. But this is not the only case. In fact, V kMP is positive and is h-pseudo-homogeneous for the function
Gk defined in Equation (15). Since each t-norm in the family of Schweizer-Sklar t-norms is positive, then

for each k ∈ (0, 1) and β < 0, by Remark 3.7 we have that V k,βM,SS = VSM ,TβSS ,k
is a positive proper nullnorm.

Proposition 4.5. For all β < 0 and k ∈ (0, 1) the positive proper nullnorm V k,βM,SS is h-pseudo homogeneous
for the following function:

Gk,βM,SS(a, b) =


ab , if ab ≤ k;

(1− k)

((
ab−k
1−k

)β
+
(
a−k
1−k

)β
− 1

) 1
β

+ k , if ab > k.

Proof: Straightforward from Theorem 4.3 and Theorem 3.2. in [37]. �

5. Final remarks

In this paper, we have introduced new classes of nullnorms based on well-known classes of t-norms and
t-conorms. We have investigated some properties of them. We have also presented a notion of pseudo-
homogeneity for nullnorms. In general, the pseudo-homogeneity of a function F , as considered in [23, 24,
29, 37] is defined by F (λx, λy) = G(λ, F (x, y)). But here the function “F” on the right side (in our case
VS,T,min(1, kλ )

) is different from the “F” on the left side (in our case VS,T,k). Nevertheless, VS,T,min(1, kλ )
and

VS,T,k have very similar generator triples (varying just in the annihilator element). This is a novelty in the
several proposed generalizations of homogeneity.
As future work, we will investigate interval-valued nullnorms in the light of the interval representation
proposed in [6, 35], as it was done for other important classes of fuzzy operators like [3, 4, 5]. We will also
consider admissible orders [33], as it was done in [38]. In both cases, the relation to the interval-valued
pseudo-homogeneity as introduced in [23, 24] will be considered.
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