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Abstract

We study the extreme points (in the Krein-Milman sense) of the class of semilinear copulas and provide their characterization. 
Related results into the more general setting of conjunctive aggregation functions (i.e., semi–copulas and quasi–copulas) are also 
presented.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In the study of complex systems it is of interest to synthesize the information coming from different sources into 
a single output, which is either numerical or represented by a suitable function, graph, etc. For instance, the copula 
representation has proved to be a suitable tool to describe uncertain inputs in a probabilistic framework (see, e.g., 
[18,31]) as well as in an imprecise setting (see, e.g., [19,30,33]).

In order to represent various kinds of relationships among inputs, different families of copulas have been introduced 
and studied, mainly motivated by the question of identifying those copulas that may describe at the best some stylized 
facts of the problem at hand. Among these various families, we focus on the class of semilinear copulas, which have 
been introduced in [7,13] and further investigated and generalized in [5,15,20,25,26,28] among others. Semilinear 
copulas can be constructed from their diagonal sections and, thus, their tail behavior can be easily described (see, 
e.g., [8]). Interestingly, this class has been characterized both from a probabilistic perspective, being the output of 
stochastic models generated by different shocks (see also [12]), and from an analytical perspective, since its elements 
have sections that are linear on some specific segments of the unit square (see [13]).

The class of semilinear copulas is a convex and compact subset (under L∞ norm) of the class of copulas (see [13]) 
and, hence, by Krein–Milman Theorem [1], it is the closed convex hull of its extreme points. We remind here that an 

* Corresponding author.
E-mail addresses: fabrizio.durante@unisalento.it (F. Durante), juanfernandez@ual.es (J. Fernández-Sánchez), mubeda@ual.es

(M. Úbeda-Flores).
https://doi.org/10.1016/j.fss.2020.12.009
0165-0114/© 2020 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fss.2020.12.009&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.fss.2020.12.009
http://www.elsevier.com/locate/fss
mailto:fabrizio.durante@unisalento.it
mailto:juanfernandez@ual.es
mailto:mubeda@ual.es
https://doi.org/10.1016/j.fss.2020.12.009


F. Durante, J. Fernández-Sánchez and M. Úbeda-Flores Fuzzy Sets and Systems 428 (2022) 121–137
extreme point x of a convex set A is a point x ∈ A that is not an interior point of any line segment lying entirely in A. 
Thus, each element of a convex set A can be approximated via linear combinations of the elements of Ext(A), i.e. the 
set of the extreme points of A.

Now, although the knowledge of extreme copulas can be of potential interest in the description of the whole class 
of copulas, even in the bivariate case, only a few examples of extreme copulas are available (e.g., shuffles of Min 
[29,38], hairpin copulas [10], extreme biconic copulas [11]), and a handle characterization of extreme copulas is still 
out of reach.

Our aim is, hence, to investigate the extreme elements in the class of semilinear copulas and to provide their 
characterization. Some consequences for the measurement of asymmetry maps in the class of semilinear copulas 
are also discussed. In order to complement our main results, we also consider this problem in the general setting of 
aggregation functions [24], by focusing on semi–copulas [17] and quasi–copulas [2,35].

2. Preliminaries

A (bivariate) copula is a distribution function concentrated on [0, 1]2 whose marginals are uniformly distributed 
on [0, 1]. The importance of copulas in probability and statistics comes from Sklar’s theorem [36], which shows that 
the joint probability distribution H of a pair of random variables and the corresponding marginal distributions F and 
G are linked by a copula C in the following manner:

H(x,y) = C(F(x),G(y)), for every x, y ∈ [−∞,∞].
If F and G are continuous, then the copula is unique; otherwise, the copula is uniquely determined on Range(F ) ×
Range(G) (see, e.g., [3]). For a complete review on copulas, we refer to [18,31].

A copula can be seen as a binary operation C : [0, 1]2 −→ [0, 1] which satisfies:

1. the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for every t ∈ [0, 1]; and
2. the 2-increasing property, i.e., VC(R) := C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0, where R =

[u1, u2] × [v1, v2] is a rectangle in [0, 1]2.

We denote by C the set of all bivariate copulas.
For any copula C we have

W(x,y) = 0 ∨ (x + y − 1) ≤ C(x, y) ≤ x ∧ y = M(x,y), ∀(x, y) ∈ [0,1]2,

where (a ∨ b) = max(a, b) and (a ∧ b) = min(a, b). The copulas M and W belong to Ext(C) (or the set of extreme 
copulas), but �, the copula of independent random variables—given by �(u, v) = uv for all (u, v) ∈ [0, 1]2—is not 
an extreme copula.

The diagonal section δC of a copula C is the function defined by δC(t) = C(t, t) for every t ∈ [0, 1]. It is charac-
terized by the following conditions:

(D1) δ(0) = 0 and δ(1) = 1;
(D2) δ is non-decreasing;
(D3) δ(t) ≤ t for all t ∈ [0, 1]; and
(D4) |δ(t ′) − δ(t)| ≤ 2|t ′ − t | for all t, t ′ ∈ [0, 1].

Any function that satisfies (D1)–(D4) is called diagonal and the set of all diagonals is denoted by D. We recall 
that property (D4) is called 2–Lipschitz condition and implies that a diagonal is absolutely continuous and almost 
everywhere (a.e.) differentiable with respect to the Lebesgue measure λ.

3. Extreme semilinear copulas

A lower (respectively, upper) semilinear copula C is an element of C constructed from a linear interpolation be-
tween the values that C assumes at the lower boundaries (respectively, upper boundaries) of the unit square and the 
values that C assumes on the diagonal section (see [13]). Specifically, C is called lower semilinear if the mappings
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f1 : [0, x] −→ [0,1], f1(t) := C(t, x),

f2 : [0, x] −→ [0,1], f2(t) := C(x, t),

are linear for all x ∈ [0, 1]. As the survival copula [31] of an upper semilinear copula C is a lower semilinear copula 
(see, e.g., [13]), we will restrict our attention to lower semilinear copulas.

In closed form, lower semilinear copulas can be described in terms of their diagonal sections by the expression

C(u, v) = (u ∧ v) δC(u ∨ v)

(u ∨ v)
(1)

for all (u, v) ∈ [0, 1]2, with the convention 0
0 := 0.

Conversely, given δ ∈ D, it may be of interest to characterize which conditions on δ ensure that a function of type 
(1) is a copula. This characterization is given in [13, Theorem 4] and is recalled here.

Theorem 1. The function given by (1) is a lower semilinear copula if, and only if, the functions x �→ ϕδ(x) := δ(x)/x

and x �→ ηδ(x) := δ(x)/x2 are non-decreasing and non-increasing, respectively, on ]0, 1].

In the sequel, copulas of form (1) will be referred simply as semilinear copulas; its class will be denoted by CS (for 
a probabilistic interpretation of semilinear copulas, see [37]). Moreover, DCS

will denote the set of diagonal sections 
of all the elements of CS .

It is known that the set D is convex and compact with respect to L∞ norm (see, e.g., [8]). However, there is no 
simple relationship between extreme copulas — i.e. extreme points of C — and extreme diagonals — i.e. extreme 
points of D, except for the case δ(t) = t for all t ∈ [0, 1] for the copula M (see [11]).

Interestingly, unlike the sets C and D, we have a clear relationship between the set of extreme points of CS , namely 
Ext(CS), and that of DCS

, namely Ext(DCS
), as the following result shows.

Theorem 2. Let δ ∈DCS
, and let Cδ be the corresponding semilinear copula given by (1). Then, Cδ ∈ Ext(CS) if, and 

only if, δ ∈ Ext(DCS
).

Proof. The proof is a direct consequence of the fact that semilinear copulas keep convex combinations (see [13, 
section 6]), i.e. Cαδ1+(1−α)δ2 = αCδ1 + (1 − α)Cδ2 for every α ∈ [0, 1]. �

To summarize, the sets CS and DCS
are compact and convex subsets, respectively, of C and D, both equipped with 

L∞–norm. The mapping

CS → DCS
, C �→ δC,

is a homeomorphism. Moreover, as a consequence of Theorem 2, to compute the extreme points of CS , we only need 
to find the extreme points of DCS

.
To this end, we present here some properties related to any diagonal δ ∈ DCS

. In the sequel, when we consider 
the derivative of a diagonal, we will refer to the points where it exists (we recall that such a derivative exists a.e.). 
Moreover, the inequalities in which the derivative appears must be understood almost everywhere.

We start by considering the following results that will be helpful in the sequel.

• Since δ ∈ DCS
is absolutely continuous in [t, s] with 0 < t < s ≤ 1, then x �→ δ(x)/x and x �→ δ(x)/x2 are 

absolutely continuous on [t, s]. See, for instance, [27, Theorem 7.1.10].
• Let δ ∈ DCS

. Then, since x �→ δ(x)/x2 is non-increasing on ]0,1], we have δ(x)/x2 ≥ δ(1)/12 = 1, which implies 
δ(x) > 0 on ]0, 1[. Moreover, since δ(x)/x is non-decreasing, xδ′(x) − δ(x) ≥ 0 for a.e. x ∈]0, 1[, which implies 
that δ′(x) > 0 for a.e. x ∈]0, 1[. In addition, since δ(x)/x2 is non-increasing,

xδ′(x) − 2δ(x) ≤ 0

for a.e. x ∈]0, 1[, from which we deduce that δ′(x) 
= 2 for a.e. x ∈ [0, 1[.
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Theorem 3. The extreme points of the set DCS
are the diagonal sections δ ∈DCS

such that

λ

({
x ∈]0,1] : δ′(x) exists and

1

x
<

δ′(x)

δ(x)
<

2

x

})
= 0. (2)

Proof. Let δ ∈DCS
. We denote by � the set of all x ∈ [0, 1] such that δ′(x) exists. Suppose

λ

({
x ∈� : 1

x
<

δ′(x)

δ(x)
<

2

x

})
> 0.

Then there exists 0 < ε < 1/2 such that the set

A ⊆
{
x ∈� : 1

x
+ ε <

δ′(x)

δ(x)
<

2

x
− ε, δ′(x) < 2 − ε, δ(x) < x − ε

}
satisfies a1 = infA > 0, a2 = supA < 1, and λ(A) > 0.

First, since δ(x)/x is non-decreasing, it follows that, δ(t) = t for some t ∈]0, 1[ implies δ(x) = x for x ∈ [t, 1]. 
Thus, {

x ∈� : 1

x
<

δ′(x)

δ(x)
<

2

x

}
⊆ {x ∈ � : δ(x) < x}

On the other hand, since the set 
{
x ∈ � : δ′(x) < 2

}
has Lebesgue measure 1, it follows that

λ

({
x ∈� : 1

x
<

δ′(x)

δ(x)
<

2

x
, δ′(x) < 2, δ(x) < x

})
= λ

({
x ∈� : 1

x
<

δ′(x)

δ(x)
<

2

x

})
> 0

Since{
x ∈� : 1

x
<

δ′(x)

δ(x)
<

2

x
, δ′(x) < 2, δ(x) < x

}
=

⋃
n

An

with

An =
{
x ∈� : 1

x
+ 1

n
<

δ′(x)

δ(x)
<

2

x
− 1

n
, δ′(x) < 2 − 1

n
, δ(x) < x − 1

n

}
,

it follows that there exists at least a set An0 that satisfies λ 
(
An0

)
> 0.

Finally, consider that it is possible to assume a1 = infA > 0 and a2 = supA < 1 by considering A = An0 ∩
[α,1 − α] with

α =
λ

({
x ∈� : 1

x
<

δ′(x)
δ(x)

< 2
x

})
4

.

Since λ(A) > 0, consider A1 = A ∩ [0, b1] and A2 = A ∩ [b2, 1] such that

λ (A1) = λ (A2) = λ(A)/4.

Moreover, let g be the function equal to 1A2 − 1A1 – here 1B is the characteristic function of the set B – and set 
f := γg, where γ is a sufficiently small non-negative constant such that:

(i) f is a measurable function, |f (x)| < ε/2, such that

F(x) :=
x∫

0

f (t) dt ≤ 0

for every x ∈ [0, 1], with F(a1) = 0, F(a2) = 0, and −F(x) < ϑ , for ϑ = − ln (1 − ε/8);
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(ii) if x ∈ A, then

1

x
<

δ′(x)

δ(x)
± f (x)

2 − e−ϑ
<

2

x
;

moreover, if x /∈ A, then f (x) = 0, and λ ({x ∈ [0,1] : f (x) 
= 0}) > 0;
(iii) 0 < δ′(x) ± δ(x)f (x) < 2 − ε/2 for all x ∈]a1, a2[.

Notice that the function F : [0, 1] → R given above is Lipschitz with constant γ .
Now, consider the function δ1(x) := δ(x)eF(x). Thus, δ1 belongs to DCS

. In fact, we have:

• δ1(0) = δ(0)eF(0) = 0 and δ1(1) = δ(1)eF(1) = 1; here observe that F(x) = 0 for all x ∈ [0, a1] ∪ [a2, 1].
• δ1(x) ≤ xeF(x) ≤ x for all x ∈ [0, 1].
• δ′

1(x) ≥ 0 for all x ∈ [0, 1]. In fact, from (iii), we have (δ′(x) + δ(x)f (x))eF(x) ≥ 0 for x ∈]a1, a2[; and δ1(x) =
δ(x) for x ∈ [0, a1] ∪ [a2, 1]).

• If x ∈]a1, a2[, then using (iii) we have almost everywhere that

δ′
1(x) = (δ′(x) + δ(x)f (x))eF(x) ≤ δ′(x) + δ(x)f (x) < 2 − ε/2 < 2;

moreover, if x ∈ [0, a1] ∪ [a2, 1], then δ′
1(x) = δ′(x) < 2.

In order to prove that the function δ1(x)/x is non-decreasing, we consider the function ln (δ1(x)/x). First, we 
observe that it is absolutely continuous for every interval of type [t, 1] with 0 < t (see [27]) and, from (ii) we have 
almost everywhere that(

ln

(
δ1(x)

x

))′
= δ′(x)

δ(x)
+ f (x) − 1

x
≥ 0.

A similar reasoning leads us to the fact that δ1(x)/x2 is non-increasing.
Second, consider the function δ2(x) := δ(x) 

(
2 − eF(x)

)
. Thus, δ2 belongs to DCS

. In fact, we have:

• δ2(0) = δ(0) 
(
2 − eF(0)

) = 0 and δ2(1) = δ(1) 
(
2 − eF(1)

) = 1.
• δ2(x) = δ(x) ≤ x for every x ∈ [0, a1] ∪ [a2, 1], and, for every x ∈]a1, a2[, δ2(x) < (x − ε) 

(
2 − e−ϑ

)
< x for a 

sufficiently small ϑ .
• δ′

2(x) = δ′(x) 
(
2 − eF(x)

)− δ(x)f (x)eF(x) ≥ δ′(x) − δ(x)|f (x)| ≥ 0 for almost every x ∈]a1, a2[ (from (iii)), and 
δ2(x) = δ(x) ≥ 0 for almost every x ∈ [0, a1] ∪ [a2, 1].

• For every x ∈]a1, a2[, taking e−ϑ = 1 − ε/8, |f (x)| < ε/2, we have almost everywhere that

δ′
2(x) = δ′(x)

(
2 − eF(x)

)
− δ(x)f (x)eF(x) ≤ (2 − ε)

(
2 − e−ϑ

) + |f (x)|

≤ (2 − ε)
(
−1 + ε

8

)
+ ε

2
= 2 − ε

4
+ ε2

8
< 2;

and, if x ∈ [0, a1] ∪ [a2, 1], then δ′
2(x) = δ′(x) < 2.

In order to prove that the function δ2(x)/x is non-decreasing, observe that the function ln (δ2(x)/x) is absolutely 
continuous or every interval of type [t, 1] with t > 0, and, from (ii) we have(

ln

(
δ2(x)

x

))′
= δ′(x)

δ(x)
− f (x)

2 − eF(x)
− 1

x
≥ 0.

A similar reasoning leads us to the fact that δ2(x)/x2 is non-increasing. Summarizing, the above considerations 
implies that the extreme diagonals fulfill (2).

Now, let δ(x) = (δ3(x) + δ4(x)) /2 with δ3 and δ4 belonging to DCS
. Since δ′

i (x)/δi(x) ∈ [1/x,2/x] for i = 3, 4, 
then we have that
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Fig. 1. Support of the extreme semilinear copulas generated by (3).

δ′(x)

δ(x)
=

δ′
3(x)

2
+ δ′

4(x)

2
δ3(x)

2
+ δ4(x)

2

= δ′
3(x) + δ′

4(x)

δ3(x) + δ4(x)
= 1

x
,

if, and only if, δ′
i (x)/δi(x) = 1/x for i = 3, 4. In fact, the sufficient part is immediate. For the necessary part, if 

δ′
3(x)

δ3(x)
<

δ′
4(x)

δ4(x)
, then

δ′
3(x)

δ3(x)
<

δ′
3(x) + δ′

4(x)

δ3(x) + δ4(x)
<

δ′
4(x)

δ4(x)
.

Thus, it holds that 
δ′

3(x)

δ3(x)
< 1

x
, which is absurd. It follows that 

δ′
3(x)

δ3(x)
= δ′

4(x)

δ4(x)
= 1

x
. Similarly, we have that δ′(x)/δ(x) =

2/x if, and only if, δ′
i (x)/δi(x) = 2/x for i = 3, 4. Since δ(x) > 0 when x > 0, it holds that ln(δ(x)) is absolutely 

continuous in [t, 1] for t > 0. In other words,

ln (δ(t)) = −
∫

[t,1]

δ′(x)

δ(x)
dx.

Therefore, δ(x) = δ3(x) = δ4(x), i.e. δ is an extreme point, and this completes the proof. �
4. A subclass of extreme semilinear copulas

Here we present some examples of extreme semilinear copulas and study the related closed convex hull. Specifi-
cally, we consider the elements of Ext(CS) that are generated by the following diagonal section

δm(t) = (mt) ∨ t2 for every t ∈ [0,1], (3)

with m ∈ [0, 1]. The support of the extreme semilinear copulas generated by (3) can be obtained from Fig. 1. These 
copulas can be interpreted in terms of rectangular patchwork construction, where the independence copula � is the 
background measure (see [4,9,16]). Furthermore, such copulas include, as special cases, the independence copula �
and the comonotonicity copula M .

Now, consider the closed convex hull of the set of diagonals δm given in eq. (3), denoted by DCδm
. We denote by 

Cδm the corresponding class of semilinear copulas generated by elements of DCδm
. To provide additional insights into 

the description of Cδm , we remind the two following results from Functional Analysis (see, e.g., [1]), which give a 
way to approximate and to represent elements of a compact convex set.

Theorem 4 (Krein-Milman). Let S be a non-empty compact convex subset of a locally convex Hausdorff topological 
vector space. Then S is the closure of the convex hull of the set of extreme points of S.

Theorem 5 (Choquet). For a compact convex subset K of a normed space V , given k ∈ K , there exists a probability 
measure ν supported on Ext(K) such that, for any affine function f on K , we have

f (k) =
∫

f (e) dν(e).
K
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As a consequence of Theorem 4, the following result holds.

Corollary 6. The set of semilinear copulas whose diagonal section δ is of type

δ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α0x, 0 ≤ x ≤ α0 = x1,

α1x + β1x
2, x1 ≤ x ≤ x2,

...
...

αj−1x + βj−1x
2, xj−1 ≤ x ≤ xj ,

x2, xj ≤ x ≤ 1,

(4)

with αk ∈ [0, 1] for k = 0. . . . , j − 1 and βk ∈ [0, 1] for k = 1, . . . , j − 1, is a dense subset in Cδm .

Proof. Because of the homeomorphism between Cδm and DCδm
, we only need to consider the problem in this latter 

set. First, we notice that the convex combinations of extreme points of DCδm
can be represented in the form

δ∗(x) =
j∑

i=1

ciδmi
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
j∑

i=1
cimi

)
x, 0 ≤ x ≤ m1,(

j∑
i=2

cimi

)
x + c1x

2, m1 ≤ x ≤ m2,

...
...

cjmjx +
(

j−1∑
i=1

ci

)
x2, mj−1 ≤ x ≤ mj ,

x2, mj ≤ x ≤ 1,

with 
∑j

i=1 ci = 1. (Here, we have assumed, without loss of generality, that i1 < i2 implies mi1 ≤ mi2 ). The set of all 
such δ∗ is dense in DCδm

(since its closure coincides with the whole set because of Theorem 4). Moreover, notice 

that each δ∗ can be represented in the form (4) by setting αh = ∑j

i=h+1 cimi and βh = ∑h
i=1 ci , for 1 ≤ h ≤ j , 

and with αj = 0. Now, the assertion follows by the fact that the homeomorphism Cδm → DCδm
preserves convex 

combinations. �
Thus, elements of Cδm can be approximated via semilinear copulas generated by piecewise quadratic diagonal 

sections.
The next two results concerning semilinear copulas in Cδm are a consequence of Theorems 2 and 5.

Corollary 7. The set Cδm is isomorphic to the set of all probability measures on B([0, 1]), the Borel subsets of [0, 1].

Proof. Given C ∈ Cδm , from Theorem 5 we have that

C(u, v) =
1∫

0

Cδm(u, v) dμ(m), (5)

where μ is a probability measure in B([0, 1]), and the result follows. �
Corollary 8. Let δm be the diagonal section given in (3). Then δm can be expressed in a unique way as

δm (t) = t2Fμ(t) + t

1∫
t

mdμ(m).

Moreover, the copula Cδm associated with δm can be written as
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Cδm(u, v) =
⎛⎝(u ∨ v)Fμ(u ∨ v) +

1∫
u∨v

mdμ(m)

⎞⎠ (u ∧ v) ,

where μ is a probability measure in B([0, 1]), and Fμ is its distribution function.

In view of the possible use in statistical applications, values of some popular measures of association for semilinear 
copulas have been considered in [7]. Here, we exploit the Choquet representation of a semilinear copula of type (5) to 
obtain the desired results.

To this end, we consider three of the most common nonparametric measures of association between the components 
of a continuous random pair (X, Y) are Spearman’s rho (ρ), Gini’s gamma (γ ), and the Spearman’s footrule coefficient
(ϕ). Such measures depend only on the copula C of (X, Y), and are defined, e.g., in [31].

The following result, whose proof is simple, provides the expressions for these measures when we consider an 
extreme semilinear copula with diagonal δm given in eq. (3).

Theorem 9. Let Cδm be the semilinear copula with diagonal section given by (3). Then we have ρ(Cδm) = m4, 
ϕ(Cδm) = m3, and

γ (Cδm) =
{

2m3/3, if m ≤ 1/2,

−2m3/3 + 4m2 − 3m + 2/3, if m > 1/2.

As a consequence of Theorems 5 and 9, we have the following result.

Corollary 10. Let Cδ ∈ Cδm be the semilinear copula of type (5) with associated probability measure μ. Then

ρ(Cδ) =
1∫

0

m4 dμ(m),

γ (Cδ) =
1/2∫
0

2m3

3
dμ(m) +

1∫
1/2

(
−2m3

3
+ 4m2 − 3m + 2

3

)
dμ(m),

ϕ(Cδ) =
1∫

0

m3 dμ(m).

Remark 11. We want to note that another interesting example of extreme semilinear copula is that generated by the 
diagonal function given by

δ(p)(t) = t2

p
∧ t (6)

for all t ∈ [0, 1] with p ∈]0, 1]. Similar results for δ(p) to those provided for δm in this section can be done analogously.

Remark 12. The previous observation gives us the opportunity to answer a natural question: can the results obtained 
in Section 3 be directly applied to upper semilinear copulas? In general, this is not possible since the extreme points 
of lower and upper semilinear copulas do not coincide. For instance, consider δ1 be a diagonal of an upper semilinear 
copula. Then δ2(t) = δ1(1 − t) + 2t − 1 for all t ∈ [0, 1] is a diagonal of a lower semilinear copula. In the case that 
the extreme diagonals of the lower and upper semilinear copulas coincide, it would imply that δ1 = δ(p) is a diagonal 
of an upper semilinear copula, where δ(p) is the diagonal given by (6). Thus, we have

δ2(t) = δ(p)(1 − t) + 2t − 1 = t ∧
(

t2

p
+

(
1 − 1

p

)
(2t − 1)

)
,

which is a diagonal for a lower semilinear copula, but δ2(t)/t is non-increasing for 1 − p < t <
√

1 − p.
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5. Asymmetry maps of semilinear copulas

The semilinear copula Cδ given by Eq. (1) is exchangeable, i.e. Cδ(u, v) = Cδ(v, u) for all (u, v) ∈ [0, 1]2 (see also 
[5], where a method for constructing possibly asymmetric semilinear copulas with a given diagonal section is given). 
However, other symmetry properties of copulas are of interest as well, as considered in [21].

Here, we study three asymmetry maps for the set of the semilinear copulas; namely, we consider the asymmetry 
map with respect to the opposite diagonal for the points (u, v) and (1 − v, 1 − u) in [0, 1]2, and another one with 
respect to the points (u, v) and (1 − u, 1 − v) in [0, 1]2, i.e. with respect to the point (1/2, 1/2). Finally, we consider 
the mapping for measuring radial asymmetry.

Remark 13. By the term asymmetry map for the opposite diagonal we denote the function that makes the point (u, v)

correspond the maximum of the values of

|C(u, v) − C(1 − v,1 − u)|
for a copula C. Since semilinear copulas are exchangeable (i.e. C(u, v) = C(v, u) for every (u, v) ∈ [0, 1]2), it 
suffices to study the case in which u < v. Since the symmetry with respect to the opposite diagonal applies the 
triangle with vertices (0, 0), (1/2, 1/2), (1, 0) in the triangle (1, 0), (1, 1), (1/2, 1/2), it suffices to study the triangle 
(0, 0), (1/2, 1/2), (1, 0). In the other two cases, the asymmetry maps are studied in similar manner.

As it will be shown in the following, when studying these asymmetry maps for the set CS , one will always consider 
the set Ext(CS). This fact will be a consequence of the following classical result, which is recalled here (see [1]).

Theorem 14 (Bauer Maximum Principle). If J is a compact convex subset of a locally convex Hausdorff space, then 
every upper semicontinuous convex function on J has a maximizer that is an extreme point.

We start by considering asymmetry maps with respect to the opposite diagonal and to the point (1/2, 1/2). For 
every copula C ∈ C, consider the quantity

χC(u, v) = C(u ∨ (1 − v), v ∨ (1 − u)) − C(u ∧ (1 − v), v ∧ (1 − u))

for (u, v) ∈ [0, 1]2. For a fixed (u, v) ∈ [0, 1]2, we wonder about the values of

min
Cδ∈CS

χC(u, v) and max
Cδ∈CS

χC(u, v), (7)

which help to quantify the minimal and maximal asymmetry with respect to the opposite diagonal of the class of 
semilinear copula.

In order to study these values, it suffices to fix the point (u, v) in the triangle T1 of vertices (0, 0), (1/2, 1/2) and 
(1, 0), whence

χCδ (u, v) = Cδ(1 − v,1 − u) − Cδ(u, v).

Thus, we have the following result:

Theorem 15. Let Cδ ∈ CS . Then we have

L(u, v) ≤ χCδ (u, v) ≤ U(u,v),

for every (u, v) ∈ [0, 1]2, where

L(u, v) =

⎧⎪⎪⎨⎪⎪⎩
1 − u − v

1 − (u ∧ v)
, v ≤ 1 − u,

u + v − 1

u ∨ v
, v > 1 − u,

(8)

and

U(u,v) =
{

(1 − u − v)(1 − (u ∧ v), v ≤ 1 − u,

(u + v − 1)(u ∨ v), v > 1 − u,
(9)
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Fig. 2. The bounds L (left) and U (right) of Theorem 15.

Proof. Assume Cδ ∈ CS and let (u, v) ∈ T1, i.e. v ≤ u ≤ 1 − v. If we define the function ϕδ(u) := δ(u)/u for all 
u ∈]0, 1], then it is clear that, for u1, u2 ∈ [0, 1], u1 < u2 implies

ϕδ(u2)u1

u2
≤ ϕδ(u1) ≤ ϕδ(u2). (10)

Moreover, u ≤ ϕδ(u) ≤ 1 and

ϕδ(1 − v)u

1 − v
≤ ϕδ(u) ≤ ϕδ(1 − v).

All these chains of inequalities lead us to the following:

(1 − u − v)(1 − v) ≤ (1 − u − v)ϕδ(1 − v) = (1 − u)ϕδ(1 − v) − vϕδ(1 − v)

≤ (1 − u)ϕδ(1 − v) − vϕδ(u) ≤ (1 − u)ϕδ(1 − v) − ϕδ(1 − v)uv

1 − v

≤ ϕδ(1 − v)

(
1 − u − uv

1 − v

)
≤ 1 − u − uv

1 − v
.

Since Cδ(1 −u, 1 −v) −Cδ(u, v) = (1 −u)ϕδ(1 −v) −vϕδ(u), we obtain the bounds L and U in T1. By using similar 
arguments, the rest of the proof follows. �

The bounds L and U given by (8) and (9), respectively, are shown in Fig. 2.

Remark 16. Observe that, as a consequence of Theorem 14, the minimum and maximum values in Theorem 15 are 
reached for the extreme diagonal sections of semilinear copulas given by

δm(t) = mt ∨ t2 and δ(p)(t) = t2

p
∧ t

for all t ∈ [0, 1], respectively, with m ∈ [0, 1] and p ∈]0, 1].

Remark 17. Notice that, although the maximum asymmetry with respect to the opposite diagonal is reached by other 
copulas, the copula � always gives us maximum asymmetry at every point (u, v) ∈ [0, 1]2.

Now, for C ∈ C, consider the quantity given by

�C(u, v) = C(u ∨ (1 − u), v ∨ (1 − v)) − C(u ∧ (1 − u), v ∧ (1 − v))

for (u, v) ∈ [0, 1]2. This quantity measures the asymmetry of the copula C with respect to the point (1/2, 1/2). Since 
every semilinear copula Cδ is symmetric and �Cδ (u, v) is linear for every Cδ ∈ CS , then we have similar results to 
those given in Theorem 15.

Corollary 18. Let Cδ ∈ CS . Then we have

L(u, v) ≤ �Cδ (u, v) ≤ U(u,v),

for every (u, v) ∈ [0, 1]2, where L and U are given by (8) and (9), respectively.
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Finally, we consider a mapping for measuring radial asymmetry. We recall that a copula C is radially symmetric if 
C(u, v) = Ĉ(u, v) for all (u, v) ∈ [0, 1]2, where Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) for every (u, v) ∈ [0, 1]2 is 
the survival copula associated with C (see, e.g., [31]).

In [32], it is proved that, for a given copula C and every (u, v) ∈ [0, 1]2, a measure of radial asymmetry ξ based on 
the d∞ distance can be defined as

ξC := max
C∈C

∣∣C(u, v) − Ĉ(u, v)
∣∣

i.e.

ξC := max
C∈C

|C(u, v) − C(1 − u,1 − v) − u − v + 1|
(see also [6,22,34]).

We have the following result:

Theorem 19. Let Cδ ∈ CS . Then we have ξCδ (u, v) ≤ U ′(u, v), where

U ′(u, v) =

⎧⎪⎪⎨⎪⎪⎩
(1 − u − v)(u ∧ v)

1 − (u ∧ v)
, v ≤ 1 − u,

(u + v − 1)(1 − (u ∨ v))

u ∨ v
, v > 1 − u.

Proof. Assume Cδ ∈ CS . We define the function ϕδ(u) := δ(u)/u for all u ∈]0, 1] and consider two cases.

(a) v ≤ u ≤ 1 − v. By using (10) we have the following chain of inequalities:

−v(1 − u − v) ≤ (1 − u − v)(ϕδ(1 − v) − 1)

≤ (1 − u)ϕδ(1 − v) − vϕδ(1 − v) − 1 + u + v

≤ (1 − u)ϕδ(1 − v) − vϕδ(u) − 1 + u + v

≤ (1 − u)ϕδ(1 − v) − vϕδ(1 − v)u

1 − v
− 1 + u + v

≤
(

1 − u − uv

1 − v

)
ϕδ(1 − v) − 1 + u + v

≤ 1 − u − uv

1 − v
− 1 + u + v = (1 − u − v)v

1 − v
.

Since Cδ(1 − u, 1 − v) − Cδ(u, v) − 1 + v + v = (1 − u)ϕδ(1 − v) − vϕδ(u) − 1 + u + v then we have

|Cδ(1 − u,1 − v) − Cδ(u, v) − 1 + u + v| = max

(
(1 − u − v)v

1 − v
, v(1 − u − v)

)
= (1 − u − v)v

1 − v
.

(b) max(v, 1 − v) ≤ u. A similar reasoning to that in case (a) leads us to the following:

|Cδ(1 − u,1 − v) − Cδ(u, v) − 1 + u + v|
= max

(
(1 − u − v)(1 − u)

u
, (1 − u)(u + v − 1)

)
= (1 − u − v)(1 − u)

u
.

By symmetry, the result easily follows. �
The map of radial asymmetry map of Theorem 19 is shown in Fig. 3.
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Fig. 3. The map of radial asymmetry of Theorem 19.

Remark 20. Observe that, as a consequence of Theorem 14, the maximum value in Theorem 19 is reached for the 
extreme (semilinear) diagonal δ(p) given in Eq. (6).

6. Extreme semilinear semi-copulas and quasi-copulas

The class of semilinear copulas can be extended to other two classes of aggregation functions, namely quasi–
copulas and semi–copulas, as considered in [7,13].

We recall that a (bivariate) semi-copula is a function S : [0, 1]2 −→ [0, 1] that is non-decreasing in each variable 
and admits uniform margins (see, e.g., [14,17,18]); while a quasi–copula is a semi–copula that satisfies a Lipschitz 
property (see, e.g., [2,23,35]).

Semi-copulas of form (1) are characterized in terms of the properties of their diagonal sections by the following 
result (see [13]).

Theorem 21. The function given by (1) is a semilinear semi-copula if, and only if, δ is non-decreasing, 0 ≤ δ(x) ≤ x

for every x ∈ [0, 1], and x �→ δ(x)/x is non-decreasing on ]0, 1].

Here, we denote by SS the class of semilinear semi–copulas and by DSS
the class of their corresponding diagonal 

sections. It can be proved that SS is convex and compact in the topology of pointwise convergence (see, e.g., [17]). 
Moreover, analogously to the copula case, Theorem 2 also holds for the case of semilinear semi-copulas, so that the 
study of the set Ext(SS) is equivalent to study of the set Ext(DSS

). Thus, we have the following result (whose proof 
is similar to that for biconic semi–copulas provided in [11, Theorem 3.1] and, hence, it can be omitted here).

Theorem 22. Let δ ∈ DSS
. Then δ ∈ Ext(DSS

) if, and only if, there exists a ∈ [0, 1] such that δ ∈ {
δR
a , δL

a

}
, where

δR
a (x) =

{
0, 0 ≤ x < a,

x, a ≤ x ≤ 1,
and δL

a (x) =
{

0, 0 ≤ x ≤ a,

x, a < x ≤ 1.

In other words, diagonal sections of semilinear semi–copulas are only the left- (respectively, right-) continuous 
step distribution functions with only one jump at a ∈ [0, 1].

Now, we consider the class of semilinear quasi–copulas (we denote this set by QS), whose characterization in terms 
of the respective diagonal sections is given by the following result (see [7,13]).

Theorem 23. The function given by (1) is a semilinear quasi-copula if, and only if, δ is a non-decreasing and 
2–Lipschitz function, 0 ≤ δ(x) ≤ x for every x ∈ [0, 1], and ηδ(x) := δ(x)/x is non-decreasing in ]0, 1] and satis-
fies

x1 · ηδ(x2) − ηδ(x1)

x2 − x1
≤ 1 (11)

for every x1, x2 ∈ [0, 1] with x1 < x2.

Notice that, condition (11) is equivalent to δ(x) ≤ xδ′(x) ≤ x + δ(x) at all points x ∈]0, 1] where the derivative 
δ′(x) exists (see also [13, Corollary 18]).
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We will denote by DQS
the set of diagonal sections of semilinear quasi–copulas. We know that the set DQS

is 
convex and compact with respect to L∞ norm.

In the sequel, when derivatives of diagonal sections in DQS
are used, they are supposed to exist. In particular, the 

existence of such derivatives is guaranteed in a set of measure 1, since these diagonals are absolutely continuous.
In order to study the set Ext(QS), which is equivalent to study the set Ext(DQS

), we need a preliminary lemma.

Lemma 24. Let δ ∈DQS
. Then we have δ(x) ≥ x + x ln(x) for all x ∈ [0, 1]. Moreover, if there exists x0 ∈ [0, 1] such 

that δ(x0) = x0 + x0 ln(x0), then δ(x) = x + x ln(x) for all x ∈ [x0, 1].

Proof. First, note that the function x �→ δ(x)/x is absolutely continuous in ]0, 1]. From Theorem 23 we have(
δ(x)

x

)′
≤ 1

x
(12)

for all x ∈]0, 1]. Thus, for x ∈]0, 1], we have

1∫
x

(
δ(t)

t

)′
dt ≤

1∫
x

1

t
dt,

whence we easily obtain δ(x) ≥ x + x ln(x).
On the other hand, if x1 ∈ [x0, 1], then

δ(x1)

x1
− δ(x0)

x0
=

x1∫
x0

(
δ(t)

t

)′
dt ≤

x1∫
x0

1

t
dt = ln(x1) − ln(x0).

Therefore, if δ(x0) = x0 + x0 ln(x0), then it follows that δ(x1) = x1 + x1 ln(x1), which completes the proof. �
Due to this fact, we can derive the following result.

Theorem 25. The extreme points of the set DQS
are the diagonal sections δ such that

λ

({
x ∈]0,1] :

(
δ(x)

x

)′
= 0

}
∪

{
x ∈]0,1] :

(
δ(x)

x

)′
= 1

x

})
= 1, (13)

where λ is the Lebesgue measure on [0, 1].

Proof. Suppose δ ∈ DQS
be a diagonal satisfying (13). Suppose that there exist δ1, δ2 ∈ DQS

such that δ(x) =
αδ1(x) + (1 − α)δ2(x) for all x ∈ [0, 1] and for α ∈]0, 1[. We prove that δ1 = δ2 = δ, from which we can conclude 
that δ ∈ Ext(DQS

).
It holds a.e.(

δ(x)

x

)′
= α

(
δ1(x)

x

)′
+ (1 − α)

(
δ2(x)

x

)′
.

Assume δ1 
= δ (the case δ2 
= δ is similar and we omit it) with

λ

({
x ∈]0,1] :

(
δ(x)

x

)′

=

(
δ1(x)

x

)′})
> 0.

We consider two cases.

(a) λ 
({

x ∈ [0,1] : 0 =
(

δ(x)

x

)′
and

(
δ1(x)

x

)′
> 0

})
> 0.

In this case, we have

0 = α

(
δ1(x)

)′
+ (1 − α)

(
δ2(x)

)′
a.e.
x x
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This implies(
δ2(x)

x

)′
< 0

in a set of positive measure, but this contradicts the fact that δ2(x)/x is non-decreasing.

(b) λ 
({

x ∈]0,1] :
(

δ(x)

x

)′
= 1

x
and

(
δ1(x)

x

)′
<

1

x

})
> 0.

In this case, we have

1

x
= α

(
δ1(x)

x

)′
+ (1 − α)

(
δ2(x)

x

)′
a.e.

This implies(
δ2(x)

x

)′
>

1

x

in a set of measure positive, which contradicts the fact that(
δ2(x)

x

)′
≤ 1

x

(recall Eq. (12)).

Therefore, we have(
δ(x)

x

)′
=

(
δ1(x)

x

)′
=

(
δ2(x)

x

)′

a.e. Since δ(x)
x

and δ1(x)
x

are absolutely continuous on [x, 1], then we obtain

δ(1)

1
− δ(x)

x
=

1∫
x

(
δ(t)

t

)′
dt = δ1(1)

1
− δ1(x)

x
.

We conclude that δ1 = δ, whence δ is an extreme point.
Conversely, ab absurdo, suppose that δ ∈ Ext(DQS

) is a diagonal section which does not satisfy the condition in 
(13), so that

λ

({
x ∈]0,1] : 0 <

(
δ(x)

x

)′
<

1

x

})
= γ > 0. (14)

Suppose that there exists an interval ]0, r] in which δ(x)/x = a ≥ 0 for x ∈]0, r], and let r0 be the supremum of the 
values r with this property. If there is no interval ]0, r] in which δ(x)/x = a then r0 = 0. Let ar be the solution of the 
equation a = 1 + ln(x). From Lemma 24 we have 1 + ln(r0) ≤ ar and, since the function 1 + ln(x) is increasing, we 
obtain r0 ≤ ar . Moreover, we have r0 < ar ; otherwise, if r0 = ar , then we would have δ(ar)/ar = a = 1 + ln(ar ), i.e. 
δ(ar) = ar + ar ln(ar ). However, from Lemma 24 we have δ(x) = x + x ln(x) for x ∈ [ar , 1], and hence γ = 0, which 
is a contradiction.

In the case r0 = 1, δ(x)/x = 1 for all x ∈ [0, 1], so that δ(x) = x, which contradicts (14).
In the case r0 < 1, consider the value r1 ∈ [0, 1] such that either δ(x) = x or δ(x) = x + x ln(x) for all x ∈ [r1,1], 

and δ(x) 
= x + x ln(x) and δ(x) 
= x for x ∈ [r1 − ε, 1] for a value ε > 0. Then r0 < r1. The next step is to modify(
δ(x)

x

)′

in the set

[r0 + β, r1 − β] ∩
{
x ∈ [0,1] : 0 <

(
δ(x)

)′
<

1
}

,

x x
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where β ≥ 0 is such that

λ

(
[r0 + β, r1 − β] ∩

{
x ∈ [0,1] : 0 <

(
δ(x)

x

)′
<

1

x

})
> 0

(note that this is possible since γ > 0). For x ∈ [r0 + β, r1 − β] we have ψ(x) < δ(x) < x, where ψ(x) := 0 ∧
(x + x ln(x)) for all x ∈]0, 1]. Let

σ := inf {x − δ(x), δ(x) − ψ(x) : x ∈ [r0 + β, r1 − β]} .

Since the function f (x) := x −δ(x) is continuous, it reaches its minimum x0 in the interval [r0 +β, r1 −β]; moreover, 
x0 > 0 since f (x) > 0 for all x ∈ [r0 + β, r1 − β]. The same happens for the function δ(x) − ψ(x). Therefore, we 
have σ > 0.

We define the functions δ1(x) = δ(x) + �(x) and δ2(x) = δ(x) − �(x) for every x ∈ [0, 1], where �(x)/x is an 
absolutely continuous function satisfying the following conditions:

(i)

(
�(x)

x

)′
= 0 provided that x ∈ [0, 1]\ 

{
x ∈ [0,1] : 0 <

(
δ(x)

x

)′
<

1

x

}
,

(ii) 2 

∣∣∣∣(�(x)

x

)′∣∣∣∣ ≤ min

{(
δ(x)

x

)′
,

1

x
−

(
δ(x)

x

)′}
a.e.,

(iii) �(x) = 0 provided that x ∈ [0, r0 + β] ∪ [r1 − β, 1],
(iv) max

x∈[0,1]�(x) <
σ

2
.

To guarantee the existence of the function � satisfying the above conditions, observe that[
r0 + β, r1 − β

]⋂{
x ∈ [0,1] : 0 <

(
δ(x)

x

)′
<

1

x

}
=

⋃
n

(
[r0 + β, r1 − β] ∩

{
x ∈ [0,1] : 1

n
<

(
δ(x)

x

)′
<

1

x
− 1

n

})
.

Thus, there exists n0 ∈N such that, if

A := [r0 + β, r1 − β] ∩
{
x ∈ [0,1] : 1

n0
<

(
δ(x)

x

)′
<

1

x
− 1

n0

}
,

then λ(A) > 0. We divide A into two measurable sets, A1 and A2, such that λ(A1) = λ(A2) and define the function

�(x) := xσ

8n0

x∫
0

(
1A1(t) − 1A2(t)

)
dt.

Then the function � satisfies conditions (i)–(iv).
Now, we check that δ1 ∈DQS

(the proof for δ2 is similar and we omit it). From condition (iv) we have 0 ≤ ψ(t) ≤
δ(t) + t�(t) ≤ t for every t ∈ [r0 + β, r1 − β].

Finally, we check

δ1(x)

x
≤ δ′

1(x) ≤ 1 + δ1(x)

x
,

or equivalently,

0 ≤
(

δ1(x)

x

)′
≤ 1

x
,

but this follows from condition (ii) and the fact that

δ(x)

x
≤ δ′(x) ≤ 1 + δ(x)

x
.

It is clear that δ(x) = (δ1(x) + δ2(x))/2, i.e. δ is not an extreme diagonal, and this completes the proof. �
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Notice that, if δ(t) = t2 on [0, 1], then δ is an extreme diagonal in DCS
, but it is not an extreme diagonal in DQS

since it does not satisfy the conditions of Theorem 25.
The next example provides a family of diagonal sections of extreme quasi–copulas, which are not copulas.

Example 26. Consider the family of diagonals

δβ(x) =
{

βx, if 0 ≤ x < eβ−1,

x + x ln(x), if eβ−1 ≤ x ≤ 1,

where β ∈ [0, 1[. It is easy to check that this family of diagonal sections satisfies (13) and, therefore, it belongs to 
the set Ext(DQS

). Furthermore, none of the associated quasi-copulas Qβ is a copula, since, for instance, Qβ(u, u) =
βu < u2 for every u ∈]β, eβ−1[ (in fact, it is known from [7,13] that every semilinear copula C satisfies C(u, v) ≥ uv

for all (u, v) ∈ [0, 1]2). We also want to observe that, after some elementary calculations, it is easy to check that the 
semilinear quasi–copula associated with δβ spread a negative mass equal to β − 1 on the segment joining the points (
eβ−1, eβ−1

)
and (1,1).

7. Conclusions

We have studied the extreme points of semilinear semi–copulas, quasi–copulas and copulas. In particular, we have 
proved that an extreme semilinear (semi–, quasi–)copula is characterized by the corresponding extreme diagonal 
section.
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