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Abstract

The present paper studies the e�ciency assessment of Decision-Making Units

(DMUs) when their inputs and outputs are described under uncertainty of

the type of integer interval data. An axiomatic derivation of the production

possibility set (PPS) is presented. An additive, slacks-based data envelopment

analysis (DEA) model is formulated, consisting of two phases. This has required

the use of adequate arithmetic and LU-partial orders for integer intervals. This

novel integer interval DEA approach is the first step towards DEA models under

fuzzy integer intervals, with the extension of the corresponding arithmetic and

LU-partial orders to fuzzy integer intervals. The proposed method is applied on

a dataset, taken from the literature, that involves both continuous and integer

interval variables.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric, data-driven method-

ology for assessing the e�ciency of a set of comparable organizational units

commonly termed Decision Making Units (DMUs) (Zhu [44], Cooper et al.

[11]). DMUs are assumed to consume inputs (i.e. resources) in order to pro-5

duce outputs. DEA only requires data about the input consumption and the

output production of the DMUs. From these, and using some basic axioms (like

free disposability and convexity), a Production Possibility Set (PPS) is inferred.

The PPS, also known as the DEA technology, contains all the operating points

that are deemed feasible. The non-dominated subset of the PPS is the e�cient10

frontier (EF). DMUs that belong to EF are labelled e�cient while the DMUs

that do not belong to EF are labelled ine�cient and can be projected onto EF.

The projection of a DMU onto EF is called its target and the distance from the

DMU to the target, which is a measure of the potential improvements that the

DMU can achieved, is used to compute a quantitative e�ciency score.15

There are di↵erent ways of carrying out the projection onto the e�cient fron-

tier and computing the corresponding e�ciency scores, e.g. using e�ciency

potential (Lozano and Calzada-Infante [29], Soltani and Lozano [36]), multi-

directional approaches (Lozano and Soltani [30]) or lexicographic approaches

(Lozano and Soltani [31], [32]), among others. There are, however, two types of20

DEA approaches that are of relevance in this research. One is integer DEA, i.e.

DEA models that can handle integer data, and the other is imprecise or interval

DEA models, in which some or all the inputs and outputs are given as interval

data.

As regards integer DEA, it was first addressed in Lozano and Villa [33]25

and subsequently studied in Kuosmanen and Kazemi Matin [27] and Kazemi

Matin and Kuosmanen [21]. Advanced integer DEA models involve Directional

Distance Function (DDF) (e.g. Tan et al. [38]), super-e�ciency (e.g. Du et al.

[13], Chen et al. [9]), flexible measures (e.g. Kordrostami et al. [25]), two-stage

systems (e.g. Ajirlo et al. [1]) or congestion (e.g. Khoveyni et al. [23]). A related30
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problem is that of handling variables that can only take certain discrete values

(e.g. Amirteimoori and Kordrostami [2]). Integer DEA has been applied, for

example, to hotel performance (Wu et al.[41]), sports (e.g. Wu et al. [42], Chen

et al. [10]) and transportation (e.g. Lozano et al. [34], Yu and Hsu [43]).

As regards interval DEA, there have been also many developments, most35

of them involving radial multiplier formulations (e.g. Despotis and Smirlis

[12], Zhu [45]), although there are also additive imprecise DEA approaches

(e.g. Lee et al. [28]), FDH interval DEA models (e.g. Jahanshaloo et al. [19]),

non-radial, non-oriented imprecise DEA approaches (e.g. Azizi et al. [5]), Ideal

point approaches (e.g. Jahanshahloo et al. [17]), inverted DEA approaches40

(e.g. Inuiguchi and Mizoshita [16]), interval DEA with negative data (e.g.

Hatami-Marbini et al. [15]), flexible measure interval DEA approaches (e.g.

Kordrostami and Jahani Sayyad Noveiri [26]) and common weights imprecise

DEA approaches (e.g. Hatami-Marbini et al. [14]). Applications include man-

ufacturing industry (e.g. Wang et al. [39]), banks and bank branches (e.g.45

Jahanshaloo et al [18], Inuiguchi and Mizoshita [16], Hatami-Marbini et al.

[15]), power plants (e.g. Khalili-Damghani et al. [22]), etc.

This paper studies the situation when we have inputs and outputs that are

both integer and interval-valued, as a mathematical modelling of the uncer-

tainty on integer data. To the best of our knowledge, the closest existing DEA50

approach is the fuzzy integer DEA model of Kordrostami et al. [24], which

extend the integer DEA model of Jie et al. [20]. The approach proposed in

this paper has numerous di↵erences with respect to Kordrostami et al. [24].

Thus, while [24] considers fuzzy integer data in our case the uncertainty is

modelled with interval integer data. While [24] uses a fuzzy ranking approach,55

what derives a defuzzification of the data instead of fully keeping the fuzzy

information given by the original data, in the present approach we establish the

order relation between the elements of the PPS using interval orders, together

with interval arithmetic. Also, while [24] uses a radial oriented approach, we

use an additive, non-oriented approach. While [24] computes a crisp target,60

we compute an integer interval target. More important, while [24] uses the
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integer PPS of Kuosmanen and Kazemi Matin [27], we carry out an axiomatic

derivation of a new integer interval PPS. This PPS can be used as a base to

derive, in a continuation of this research, a fuzzy integer interval PPS, and a

corresponding DEA model with fuzzy integer data using partial orders and65

arithmetic on fuzzy sets.

The structure of the paper is the following. In Section 2 the basic concepts

of the DEA methodology as well as an slacks-based DEA model for e�ciency

assessment are reviewed. In Section 3 additional concepts on integer inter-

vals are introduced, in particular, arithmetic operations and partial orders.70

Those concepts are later used, in Section 4, to define a new integer interval

DEA technology and a new slacks-based DEA approach involving two phases.

Numerical experiments are presented and discussed in Section 5, comparing

the proposed approach with other approaches from the literature. Finally, in

Section 6, conclusions are drawn.75

2. Crisp production possibility set and slack-based measure

Let us consider a set of n DMUs. For j 2 J = {1, . . . ,n}, each DMUj has m

inputs Xj = (x1 j, . . . , xmj) 2 Rm, produces s outputs Yj = (y1 j, . . . , ysj) 2 Rs. In

the classic Charnes et al. [8] DEA model, the production possibility set (PPS)

or technology, denoted by T, satisfies the following axioms:80

(A1) Envelopment: (Xj,Yj) 2 T, for all j 2 J.

(A2) Free disposability: (x, y) 2 T, (x0, y0) 2 Rm+s, x0 = x, y0 5 y) (x0, y0) 2 T.

(A3) Convexity: (x, y), (x0, y0) 2 T, then �(x, y) + (1 � �)(x0, y0) 2 T, for all

� 2 [0, 1].

(A4) Scalability: (x, y) 2 T) (�x,�y) 2 T, for all � 2 R+.85

Following the minimum extrapolation principle (see [6]), the DEA PPS,

which contains all the feasible input-output bundles, is the intersection of all

4
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the sets that satisfy axioms (A1)-(A4) and can be expressed as

TDEA =

8>>><>>>:
(x, y) 2 Rm+s

+ : x �
nX

j=1

� jXj, y 
nX

j=1

� jYj,� j � 0

9>>>=>>>;
.

Let us recall that a DMU p is said to be e�cient if and only if for any (x, y) 2 TDEA

such that x ⌧ Xp and y � Yp, then (x, y) = (Xp,Yp). This can be determined

solving the following normalized slacks-based DEA model

(DEA) I(Xp,Yp) = Max
MX

i=1

sx
i

xip
+

SX

r=1

sy
r

yrp
(1)

s.t.
NX

j=1

� jxi j  xip � sx
i , i = 1, . . . ,M,

NX

j=1

� jyrj � yrp + sy
r , r = 1, . . . ,S,

� j � 0, j = 1, . . . ,N,

sx
i , s

y
r � 0, i = 1, . . . ,M, r = 1, . . . ,S.

where � j, j = 1, . . . ,n, are the intensity variables used for defining the

corresponding e�cient target of DMUp. The ine�ciency measure I(Xp,Yp) is90

units invariant and non-negative. Moreover, a DMUp is e�cient if and only if

I(Xp,Yp) = 0.

3. Notation and preliminaries

In this paper, uncertainty on the production possibility set is presented by

modeling the corresponding inequality relationships using partial orders on95

integer intervals. This requires introducing first the following notation and

results.

Let R be the real number set. We denote by KC =
nh

a, a
i
| a, a 2 R and a  a

o

the family of all bounded closed intervals in R.

Definition 1. Let A = [a, a] 2 KC, B = [b, b] 2 KC100

5
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• Addition: A + B := {a + b | a 2 A, b 2 B} = [a + b, a + b],

• Opposite value: �A = {�a : a 2 A} = [�a,�a],

• Multiplication: A · B := {a · b | a 2 A, b 2 B} = [min(A · B),max(A · B)],

where A · B = {a · b, a · b, a · b, a · b}.

• Multiplication by scalar: for any �,

� · A :=

8>>>><>>>>:

[� · a,� · a] � � 0

[� · a,� · a] � < 0

Example 1. Consider the following examples of the defined operations for continuous105

intervals. Note that, when applied to continuous intervals, all these operations produce

continuous interval domains. [�5, 2] + [�4,�1] = [�9, 1], �[2, 7] = [�7,�2], [2, 4] ·
[4, 6] = [8, 24], 3 · [2, 4] = [6, 12], �3 · [2, 4] = [�12,�6].

3.1. Integer Set Arithmetic

Apt and Zoeteweij [3] have defined the following arithmetic operations on110

integer intervals A and B:

• Addition: A + B := {a + b | a 2 A, b 2 B},

• Subtraction: A � B := {a � b | a 2 A, b 2 B},

• Multiplication: A ⇤ B := {a ⇤ b | a 2 A, b 2 B},

• Multiplication by scalar: for any integer �,

� ⇤ A :=

8>>>><>>>>:

� ⇤ a � � 0

�� ⇤ a � < 0

Example 2. To illustrate the previous arithmetic operations between integer intervals,115

consider the following examples. For the case of sum and subtraction, {3, 4, 5} +
{2, 3, 4} = {5, 6, 7, 8, 9}, {3, 4, 5, 6} � {2, 3, 4, 5, 6, 7} = {�4, ,�3,�2,�1, 0, 1, 2, 3, 4};
and for the case of multiplication, {2, 3, 4} ⇤ {4, 5, 6} = {8, 10, 12, 12, 15, 16, 18, 20, 24},

6
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3 ⇤ {2, 3, 4} = {6, 9, 12}. Note, from the last example, that {2, 3, 4} ⇤ {4, 5, 6} does not

contains all integer numbers from 8 to 24, and also 3 ⇤ {2, 3, 4} does not contains all120

integer numbers from 6 to 12.

Therefore, for A, B integer intervals and a � an integer the following holds:

• A + B,A � B are integer intervals.

• A ⇤B does not correspond to an integer interval, in general. And the same

for � ⇤ A.125

To deal with this problem, it is necessary to introduce a new multipli-

cation operation for the multiplication between two integer interval to be

an integer interval also. Let Z be the integer set. We denote by KZ =nh
a, a
i
Z
| a, a 2 Z and a  a

o
a closed integer interval in Z.

Definition 2. Let A = [a, a] 2 KZ, B = [b, b] 2 KZ130

• Addition: [a, a]Z + [b, b]Z = [a + b, a + b]Z

• Subtraction: [a, a]Z � [b, b]Z = [a � b, a � b]Z

• Multiplication: [a, a]Z · [b, b]Z = [min(A · B),max(A · B)]Z,

where A · B = {a · b, a · b, a · b, a · b}.

• Multiplication by scalar: for any integer �,

� · A :=

8>>>><>>>>:

[� · a,� · a]Z � � 0

[� · a,� · a]Z � < 0

Example 3. Consider the following examples of the above operations for integer inter-135

vals. [4, 5]Z + [�1, 2]Z = [3, 7]Z, [�4, 5]Z � [�1, 2]Z = [�6, 4]Z, [2, 4]Z · [4, 6]Z =

[8, 24]Z, 3 · [2, 4]Z = [6, 12]Z. It can be seen that the arithmetic operations for integer

intervals defined above always produce integer intervals.

It is also useful to define the continuous extension of an integer interval

[a, a]Z as C([a, a]Z) = [a, a]. Conversely, given a  a with a, a 2 Z, we define the140
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integer projection of [a, a] 2 KC as Z([a, a]) = [a, a]Z 2 KZ; and in this case, it

is said that [a, a] 2 KC!Z. In other words, KC!Z is the set of intervals whose

endpoints are integer. Note also that Z(C([a, a]Z)) = [a, a]Z.

It is necessary also to define a partial order relationship for integer intervals.

To this aim, we will use an adaptation of LU-fuzzy partial orders on intervals,145

which are well known in the literature, (see, e.g., [40, 37] and the references

therein), to integer intervals. .

Definition 3. Given two intervals A = [a, a],B = [b, b] 2 KC, we say that:

(i) [a, a] ⌧ [b, b] if and only if a  b and a  b.

(ii) [a, a] � [b, b] if and only if a < b and a < b.150

Definition 4. Given two integer intervals A = [a, a]Z,B = [b, b]Z 2 KZ, we say that:

(i) [a, a]Z ⌧ [b, b]Z if and only if a  b and a  b.

(ii) [a, a]Z � [b, b]Z if and only if a < b and a < b.

In a similar manner, we define the relationships A � B and A � B for inter-

vals and integer intervals, which really means B ⌧ A and B � A, respectively.155

Note that, for the sake of simplicity, we use the same symbols of partial orders

to compare intervals in KC as to compare integer intervals in KZ.

In the next section, to define the corresponding DEA technology, we will

need to relate intervals and integer intervals. We will use the property that an

integer interval in KZ is contained in Z and within the interval in KC whose160

endpoints are the same, that is, [a, a]Z ✓ [a, a] \ Z for all a  a with a, a 2 Z.

Furthermore, it is derived that, given a  a, b  b with a, a, b, b 2 Z, then

[a, a]Z ⌧ (�)[b, b]Z if and only if C([a, a]Z) = [a, a] ⌧ (�)[b, b] = C([b, b]Z).

4. Proposed integer interval PPS and slack-based measure of ine�ciency

Let us consider a set of N DMUs. Each DMUj, with j 2 J = {1, . . . ,N},165

consumes M inputs given by Xj = (x1 j, . . . , xMj) 2 (KZ+)M, with xij = [xij, xij]Z 2

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



KZ+ for i 2 {1, . . . ,M}. Each DMUj also produces S outputs given by Yj =

(y1 j, . . . , ySj) 2 (KZ+)S, with yrj = [yrj, yrj]Z 2 KZ+ for r 2 {1, . . . ,S}. Their contin-

uous extensions are C(Xj) =
⇣
C(x1 j), . . . ,C(xMj)

⌘
and C(Yj) =

⇣
C(y1 j), . . . ,C(ySj)

⌘
,

with C(xij) = [xij, xij] 2 KC, and C(yrj) = [yrj, yrj] 2 KC, respectively.170

Let us consider the following axioms, which are analogous to (A1)-(A4) in

Section 2 but considering integer interval inputs and outputs and using the

corresponding partial order introduced in Definitions 3 and 4:

(B1) Envelopment: (Xj,Yj) 2 T, for all j 2 J.

(B2) Free disposability: (x, y) 2 T, (x0, y0) 2 (KZ+)M+S, such that x0 � x, y0 ⌧ y )175

(x0, y0) 2 T.

(B3) Convexity: (x, y), (x0, y0) 2 T, ↵ 2 [0, 1], such that ↵(C(x),C(y)) + (1 �
↵)(C(x0),C(y0)) 2 (KC!Z)M+S ) (x00, y00) = Z(↵(C(x), C(y)) + (1 � ↵)(C(x0),

C(y0))) 2 T.

(B4) Scalability: (x, y) 2 T, ↵ � 0, and ↵(C(x),C(y)) 2 (KC!Z)M+S ) (x00, y00) =180

Z(↵(C(x),C(y))) 2 T.

Theorem 1. Under axioms (B1), (B2), (B3) and (B4), the interval production possi-

bility set that results from the minimum extrapolation principle is

TIIDEA =

8>>><>>>:
(x, y) 2 (KZ+)M+S : C(x) �

NX

j=1

� jC(Xj),C(y) ⌧
NX

j=1

� jC(Yj),� j � 0,8 j

9>>>=>>>;

Proof. See Appendix A. ⇤

After the characterization result for the TIIDEA given in Theorem 1, we can

formulate the following integer interval DEA (IIDEA) model, which is a slacks-

based measure of ine�ciency,185
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(IIDEA) I(Xp,Yp) = Max
MX

i=1

sx
i + sx

i

xip + xip
+

SX

r=1

sy
r + sy

r

yrp + yrp
(2)

s.t.
NX

j=1

� jC(xij) ⌧ C(xip) � C(sx
i ), i = 1, . . . ,M,

NX

j=1

� jC(yrj) � C(yrp) + C(sy
r ), r = 1, . . . ,S,

� j � 0, j = 1, . . . ,N,

sx
i , s

y
r 2 KZ+, i = 1, . . . ,M, r = 1, . . . ,S.

where it is assumed that all inputs xij = [xij, xij]Z, and outputs yrj = [yrj, yrj]Z

are non-negative integer intervals and belong to KZ+, 8i, j, r.

Let us denote a feasible solution for (IIDEA) as (sx⇤, sy⇤,�⇤), where sx⇤ =

(sx⇤
1 , . . . , s

x⇤
M) 2 (KZ+)M, sy⇤ = (sy⇤

1 , . . . , s
y⇤
S ) 2 (KZ+)S, and �⇤ = (�⇤1, . . . ,�

⇤
N) 2 RN.

We will deal directly with (IIDEA) model, without any ranking function. Note190

that its objective function is a real number, i.e. I(Xp,Yp) 2 R .

Definition 5. A DMU p is said to be e�cient if and only if (x, y) 2 TIIDEA, x ⌧ Xp

and y � Yp implies (x, y) = (Xp,Yp).

Given the above integer-interval (IIDEA) model (2), e�cient DMUs have a

null ine�ciency measure, i.e.195

Theorem 2. If DMUp is e�cient, then I(Xp,Yp) = 0.

Proof. Suppose that I(Xp,Yp) > 0, with (sx⇤, sy⇤,�⇤) an optimal solution for

(IIDEA). Let x⇤ = (x⇤1, . . . , x
⇤
M) 2 (KZ+ )M, where x⇤i = xip� sx⇤

i = [xip� sx⇤
i , xip� sx⇤

i ]Z

for each i = 1, . . . ,M. And let y⇤ = (y⇤1, . . . , y
⇤
S) 2 (KZ+)S, defined as y⇤r =

yrp + sy⇤
r = [yrp + sy⇤

r , yrp + sy⇤
r ]Z for r = 1, . . . ,S. By the model constraints,

C(x⇤) �
NX

j=1

�⇤jC(Xj) and C(y⇤) ⌧
NX

j=1

�⇤jC(Yj)

and hence, (x⇤, y⇤) 2 TIIDEA. It is clear also that x⇤ ⌧ Xp and y⇤ � Yp.

10
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If I(Xp,Yp) > 0, then (sx⇤, sy⇤) , 0, i.e., sx⇤ � 0, with sx⇤
i0
, 0 for some i0,

or/and sy⇤ � 0, with sy⇤
r0
, 0 for some r0. In the first case, it must happen that

sx⇤
i0
> 0 and therefore x⇤ ⌧ Xp, with x⇤ , Xp. This means that (x⇤, y⇤) 2 TIIDEA,200

x⇤ ⌧ Xp, x⇤ , Xp, and y⇤ � Yp, which implies that DMU p is not e�cient,

reaching a contradiction. Analogously, we also reach a contradiction for the

second case. ⇤

To solve (IIDEA) model at its current stage (2), we take into account the

arithmetic operations (Definition 2 and order relations (Definition 4) defined205

in the previous section. Therefore, the Integer Interval Data Envelopment

Analysis problem (IIDEA) can be reformulated or parameterized as

(PIIDEA) I(Xp,Yp) = Max
MX

i=1

sx
i + sx

i

xip + xip
+

SX

r=1

sy
r + sy

r

yrp + yrp
(3)

s.t.
NX

j=1

� jxi j  xip � sx
i , i = 1, . . . ,M,

NX

j=1

� jxi j  xip � sx
i , i = 1, . . . ,M,

NX

j=1

� jyrj � yrp + sy
r , r = 1, . . . ,S,

NX

j=1

� jyrj � yrp + sy
r , r = 1, . . . ,S,

sx
i  sx

i , i = 1, . . . ,M,

sy
r  sy

r , r = 1, . . . ,S,

� j � 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r 2 Z+, i = 1, . . . ,M, r = 1, . . . ,S.

The first four sets of constraints are just the corresponding transformation

of the inputs/outputs constraints from model (2), given the order relation for

11
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integer intervals, Definition 4. The fifth and sixth set of constraints ensure the210

slacks sx
i = [sx

i , s
x
i ]Z+ and sy

r = [sy
r , s

y
r ]Z+ are integer intervals KZ+ .

The relationship between the (IIDEA) and (PIIDEA) solutions is demon-

strated in the following proposition.

Proposition 1. (sx⇤, sy⇤,�⇤) with sx⇤ 2 (KZ+ )M, sy⇤ 2 (KZ+ )S and �⇤ 2 RN
+ is an

optimal solution of (IIDEA) if and only if its corresponding components or parameteri-215

zation (sx⇤
1 , s

x⇤
1 , . . . , s

x⇤
M, s

x⇤
M, s

y⇤
1 , s

y⇤
1 , . . . , s

y⇤
S , s

y⇤
S �
⇤
1, . . . ,�

⇤
N), with �⇤j 2 R+, j = 1, . . . ,N,

sx⇤
i , s

x⇤
i 2 Z+, i = 1, . . . ,M, and sy⇤

r , s
y⇤
r 2 Z+ for r = 1, . . . ,S, is an optimal solution of

(PIIDEA).

Proof. The constraint in (IIDEA) (2) are equivalent to the constraint conditions in

(PIIDEA) (3), given Definitions 2 and 4. The rest of the proof is straightforward.220

⇤

Although Theorem 2 establishes it as a necessary condition, a null ine�-

ciency measure, i.e. I(Xp,Yp) = 0, is not su�cient to guarantee the e�ciency of

DMUj in the integer intervals case, as it happens in the crisp model (1). This

can be seen in the following example.225

Example 4. Consider six DMUs that consume two di↵erent inputs and produce a

constant amount of output. Figure 1 shows the inputs of these DMUs, that produce a

single and constant output. Therefore, by decreasing each input we move towards the

e�ciency frontier, represented with a thick grey line and delimited by DMUs 1, 2, and 6.

As data are integer intervals, the inputs of each DMU are the set of integer points within230

such integer intervals,shown in the Figure with di↵erent shaped symbols (filled points

are used for the e�cient DMUs). In this small example, we can observe the di↵erent

classes of DMUs in terms of their e�ciency characterization. Note that DMU3 and

DMU5 have non-zero slacks for both inputs and thus I(X3,Y3) > 0 and I(X5,Y5) > 0.

According to Theorem 2, they are ine�cient. On the contrary, DMU1, DMU2, DMU4235

and DMU6 have zero slacks for both inputs, and hence I(X1,Y1) = 0, I(X2,Y2) = 0,

I(X4,Y4) = 0 and I(X6,Y6) = 0. But this does not imply that these DMUs are e�cient

in the integer intervals framework. According to Definition 5, it is clear that DMU1,

12
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Input 1

In
pu

t 2

10 11 12 13 14 15 16 17 18 19 20 21

4

5

6

7

8

9

10

●

●

●

●

●

DMU 1
DMU 2
DMU 3
DMU 4
DMU 5
DMU 6

Figure 1: Consider these six DMUs that consume two inputs and produce a single constant output

(see Example 4). The data are integer intervals and the set of integer points corresponding to each

DMU is represented using di↵erent shaped symbols (see legend). The thick grey line represents

the e�ciency frontier. In this small example we can observe the di↵erent classes of DMUs in terms

of their e�ciency characterization. According to Definition 5, DMU1, DMU2 and DMU6 (plotted

with filled points) are e�cient while the rest of DMUs are not e�cient. While the ine�ciency scores

of the former are null, I(X3,Y3) > 0 and I(X5,Y5) > 0. Note that although DMU4 is not e�cient

(X1,6 ⌧ X1,4, X1,6 , X1,4) its ine�ciency score I(X4,Y4) = 0. It is an example of weakly e�cient

DMU (see Definition 6), and this is why it is necessary a second phase for a correct e�ciency

characterization.

DMU2 and DMU6 are e�cient. However, DMU4 is not e�cient, since X1,6 ⌧ X1,4,

X2,6 = X2,4 and Y6 = Y4, as it can be observed in Figure 1. Therefore, in order to240

exhaust all possible input and output slacks, a phase II is required to determine the

e�ciency character of the DMUs with null ine�ciency measure I(Xp,Yp). This is

performed by model (4) below, which uses additional integer-valued specific left and

right slack variables, Lx, Rx, Ly and Ry. These variables allows us to detect if there still

exists some remaining slack, for any input or output, that can be removed. The optimal245

solution of model (4) for DMU4 has a non-zero objective function value H(X4,Y4) > 0,
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which tells us that DMU4 is not e�cient but weakly e�cient (see Definition 6).

Therefore, given an optimal solution for (3) (sx⇤, sy⇤,�⇤) , we can formulate

the following Phase II model to exhaust all remaining input and output slacks.

(PIIDEA)2 H(Xp,Yp) = Max
MX

i=1

(Lx
i + Rx

i ) +
SX

r=1

(Ly
r + Ry

r ) (4)

s.t.
NX

j=1

� jxi j  xip � sx⇤
i � Rx

i , i = 1, . . . ,M,

NX

j=1

� jxi j  xip � sx⇤
i � Lx

i , i = 1, . . . ,M,

NX

j=1

� jyrj � yrp + sy⇤
r + Ly

r , r = 1, . . . ,S,

NX

j=1

� jyrj � yrp + sy⇤
r + Ry

r , r = 1, . . . ,S,

� j � 0, j = 1, . . . ,N,

Lx
i ,R

x
i ,L

y
r ,R

y
r 2 Z+, i = 1, . . . ,M, r = 1, . . . ,S.

Theorem 3. Given a DMUp with I(Xp,Yp) = 0, then H(Xp,Yp) = 0 if and only if250

DMUp is e�cient.

Proof. If I(Xp,Yp) = 0, for a maximizing problem with non-negative variables,

it is clear that sx
i = sx

i = sy
r = sy

r = 0, 8i and 8r. Moreover, if H(Xp,Yp) = 0 as

well, owing to similar reasoning, this implies that all the variables Lx
i ,R

x
i ,L

y
r ,R

y
r

are equal to zero, for all i = 1, . . . ,M, and r = 1, . . . ,S. Now let us assume that255

DMUp is not e�cient. This means that there exist (x⇤, y⇤) 2 TIIDEA such that

x⇤ ⌧ Xp and y⇤ � Yp, with (x⇤, y⇤) , (Xp,Yp). I.e., x⇤i0 ⌧ xi0p, x⇤i0 , xi0p for some

i0 2 {1, . . . ,M}, or y⇤r0
� yr0p, y⇤r0

, yr0p for some r0 2 {1, . . . ,S}. In the first case,

by Definition 4, as either x⇤i0 < xi0p or x⇤i0 < xi0p, we can compute a new feasible

solution for (PIIDEA)2, such that Rx⇤
i0
= xi0p � x⇤i0 > 0 or Lx⇤

i0
= xi0p � x⇤i0 > 0. Its260
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feasibility holds since (x⇤, y⇤) 2 TIIDEA, i.e.

NX

j=1

� jxi0 j  xi0p � sx⇤
i0
� Rx⇤

i0 = x⇤i0

NX

j=1

� jxi j  xi0p � sx⇤
i0 � Lx⇤

i0 = x⇤i0 .

In this way we have reached a contradiction, since we have found a feasible

solution with an objective function value larger than the supposed optimal

value H(Xp,Yp) = 0. For the second case, we also reach a contradiction with

a similar reasoning, just defining a new solution with Ly⇤
r0
= yr0p � y⇤r0

> 0 or265

Ry⇤
r0
= yr0p � y⇤r0

> 0. Therefore, if I(Xp,Yp) = 0, and H(Xp,Yp) = 0 then DMUp is

e�cient.

Finally, to proof that the e�ciency of a DMUp implies both I(Xp,Yp) = 0 and

H(Xp,Yp) = 0, we only need to proof the latter since the necessary condition

I(Xp,Yp) = 0 was established in Theorem 2. Now let us suppose the opposite,270

H(Xp,Yp) > 0. Then we can compute (x⇤, y⇤) 2 TIIDEA such that x⇤ ⌧ Xp and

y⇤ � Yp, with (x⇤, y⇤) , (Xp,Yp), as follows. We have four possibilities, Lx
i0
> 0,

or Rx
i0
> 0 for some i0 2 {1, . . . ,M}, or, Ly

r0
> 0, or Ry⇤

r0
> 0 for some r0 2 {1, . . . ,S}.

For the two first cases, let y⇤ = Yp, and x⇤i = xip for all i 2 {1, . . . ,M}, with

i , i0. And x⇤i0 = xi0p � sx⇤
i0
� Rx

i0
, x⇤i0 = xip � sx⇤

i � Lx
i0

. Then, x⇤ ⌧ Xp and275

y⇤ � Yp, with (x⇤, y⇤) , (Xp,Yp), which is a contradiction to the fact that DMUp

is e�cient. Analogously, for the other two cases, let x⇤ = Xp, and y⇤r = yrp for all

r 2 {1, . . . ,S}, with r , r0. And y⇤r0
= yr0p � sy⇤

r0
� Ly

r0
, y⇤r0
= yr0p � sy⇤

r0
� Ry

r0
. Again,

x⇤ ⌧ Xp and y⇤ � Yp, with (x⇤, y⇤) , (Xp,Yp), which is a contradiction to the fact

that DMUp is e�cient. ⇤280

Let (sx⇤, sy⇤,�⇤) be the optimal solution for (3) and let (Lx⇤,Rx⇤,Ly⇤,Ry⇤,�⇤⇤)

the optimal solution for (4) for a given DMUp, we can compute its input and

output targets Xtarget
p and Ytarget

p as

15
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xtarget
ip = xip � sx⇤

i � Rx⇤
i , xtarget

ip = xip � sx⇤
i � Lx⇤

i , i = 1, . . . ,M, (5)

ytarget
rp = yrp + sy⇤

r + Ly⇤
r , ytarget

rp = yrp + sy⇤
r + Ry⇤

r , r = 1, . . . ,S. (6)

Theorem 4. (Xtarget
p ,Ytarget

p ) is e�cient.

Proof. By the constraints of (4), it follows that (Xtarget
p ,Ytarget

p ) 2 TIIDEA. Suppose

that (Xtarget
p ,Ytarget

p ) is not e�cient. Then, there must exist (x0, y0) 2 TIIDEA such

that x0 ⌧ Xtarget
p and y0 � Ytarget

p , with (x0, y0) , (Xtarget
p ,Ytarget

p ). This implies that

for some �0 � 0,

C(x0) �
NX

j=1

�0jC(Xj), C(y0) ⌧
NX

j=1

�0jC(Yj),

which is equivalent to

x0i �
NX

j=1

�0jxi j, x0i �
NX

j=1

�0jxi j, i = 1, . . . ,M,

y0r 
NX

j=1

�0jyrj, y0r 
NX

j=1

�0jyrj, r = 1, . . . ,S.

Besides,

x0i  xtarget
ip x0i  xtarget

ip i = 1, . . . ,M,

y0r � ytarget
rp y0r � ytarget

rp r = 1, . . . ,S.

where at least one of these inequalities is strict for some i0 2 {1, . . . ,M} or285

r0 2 {1, . . . ,S}, since (x0, y0) , (Xtarget
p ,Ytarget

p ).

Combining the above constraints, it follows that

NX

j=1

�0jxi j  xip � sx⇤
i � Rx⇤

i ,
NX

j=1

�0jxi j  xip � sx⇤
i � Lx⇤

i , i = 1, . . . ,M,

NX

j=1

�0jyrj � yrp + sy⇤
r + Ly⇤

r ,
NX

j=1

�0jyrj � yrp + sy⇤
r + Ry⇤

r , r = 1, . . . ,S,

16
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where at least one of these inequalities is strict for some i0 2 {1, . . . ,M} or

r0 2 {1, . . . ,S}. Therefore, there exists some �L
i0
, �R

i0
, ✏Lr0
, ✏Rr0
2 Z+, where at least

one of them is non-zero, such that

NX

j=1

�0jxi0 j  xi0p � sx⇤
i0
� Rx⇤

i0 � �
R
i0 ,

NX

j=1

�0jxi0 j  xi0p � sx⇤
i0 � Lx⇤

i0 � �
L
i0 ,

NX

j=1

�0jyr0 j � yr0p + sy⇤
r0
+ Ly⇤

r0
+ ✏Lr0
,

NX

j=1

�0jyr0 j � yr0p + sy⇤
r0
+ Ry⇤

r0
+ ✏Rr0
,

If we define the new variables for the corresponding sharp constraints, as

Lx⇤⇤
i0 = Lx⇤

i0 + �
L
i0 , Rx⇤⇤

i0 = Rx⇤
i0 + �

R
i0 ; Lx⇤⇤

i = Lx⇤
i , Rx⇤⇤

i = Rx⇤
i i = 1, . . . ,M, i , i0

Ly⇤⇤
r0
= Ly⇤

r0
+ ✏Lr0
, Ry⇤⇤

r0
= Ry⇤

r0
+ ✏Rr0

; Ly⇤⇤
r = Ly⇤

r , Ry⇤⇤
r = Ry⇤

r r = 1, . . . ,S, r , r0

then (Lx⇤⇤,Rx⇤⇤,Ly⇤⇤,Ry⇤⇤,�0) would be a feasible solution in (4) with a larger

objective function value than the supposed optimum, which implies a contra-

diction.

⇤290

Definition 6. For each DMU p, p 2 {1, . . . ,N}, consider the ine�ciency measurements

I(Xp,Yp) computed in the (IIDEA), and H(Xp,Yp) obtained in Phase II, (PIIDEA)2 .

We say that the DMU p is

(i) e�cient if I(Xp,Yp) = 0 and H(Xp,Yp) = 0 ,

(ii) weakly e�cient if I(Xp,Yp) = 0 and H(Xp,Yp) > 0 ,295

(iii) ine�cient if I(Xp,Yp) > 0.

5. Numerical experiments

5.1. Small illustrative case

Let us go back to the small dataset of Example 4 again to illustrate the

proposed approach step by step, as well as the need for Phase II for the e�ciency300

characterization and the computation of the targets. Recall that there are six

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 1: Data for Case 5.1
DMU (j) 1 2 3 4 5 6

x1 j (11, 13) (14, 15) (16, 17) (18, 20) (19, 20) (18, 19)

x2 j (8, 10) (6, 7) (7, 8) (4, 7) (6, 7) (4, 7)

y1 j (10, 10) (10, 10) (10, 10) (10, 10) (10, 10) (10, 10)

Table 2: Results for Phases I & II, and DMU e�ciency status classification for Case 5.1.

DMU 1 2 3 4 5 6

Ph
as

e
I I(Xp,YP) 0.00 0.00 0.25 0.00 0.26 0.00

sx
1 (0, 0) (0, 0) (2, 2) (0, 0) (5, 5) (0, 0)

sx
2 (0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0)

sy
1 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Ph
as

e
II

H(Xp,YP) 0 0 0 1 0 0

Lx
1 0 0 0 1 0 0

Rx
1 0 0 0 0 0 0

Lx
2 0 0 0 0 0 0

Rx
2 0 0 0 0 0 0

Ly
1 0 0 0 0 0 0

Ry
1 0 0 0 0 0 0

Xtarget
1 (11, 13) (14, 15) (14, 15) (18, 19) (14, 15) (18, 19)

Xtarget
2 (8, 10) (6, 7) (6, 7) (4, 7) (6, 7) (4, 7)

Ytarget
1 (10, 10) (10, 10) (10, 10) (10, 10) (10, 10) (10, 10)

E↵. Status e�cient e�cient ine�cient weakly e�cient ine�cient e�cient

DMUs, with two inputs and a single constant output (see Table 1). All the

variables are assumed to be integer intervals.

Among these six DMUs, there are three classified as e�cient, two ine�cient,

and one weakly e�cient case, as established in Definition 6. Below we show,305

using DMU 1 as an example, the model solved and the results of the phases of

the proposed approach.

Phase I: The corresponding (PIIDEA) (3) problem for DMU1 is

18
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I(X1,Y1) = Max
sx

1 + sx
1

11 + 13
+

sx
2 + sx

2

8 + 10
+

sy
1 + sy

1

10 + 10

s.t.
11�1 + 14�2 + 16�3 + 18�4 + 19�5 + 18�6  11 � sx

1

13�1 + 15�2 + 17�3 + 20�4 + 20�5 + 19�6  13 � sx
1

9>>>=>>>;
i = 1

8�1 + 6�2 + 7�3 + 4�4 + 6�5 + 4�6  8 � sx
2

10�1 + 7�2 + 8�3 + 7�4 + 7�5 + 7�6  10 � sx
2

9>>>=>>>;
i = 2

10�1 + 10�2 + 10�3 + 10�4 + 10�5 + 10�6 � 10 + sy
1

10�1 + 10�2 + 10�3 + 10�4 + 10�5 + 10�6 � 10 + sy
1

9>>>=>>>;
r = 1

sx
i  sx

i i = 1, 2,

sy
1  sy

1

� j � 0, j = 1, . . . , 6,

sx
i , s

x
i , s

y
1 , s

y
1 2 Z+ i = 1, 2

The optimal solution of the above Linear Program (LP) is (sx⇤, sy⇤,�⇤) =

(sx⇤
1 = 0, sx⇤

1 = 0, sx⇤
2 = 0, sx⇤

2 = 0, sy⇤
1 = 0, sy⇤

1 = 0, �⇤1 = 1, �⇤2 = 0, �⇤3 = 0, �⇤4 = 0,310

�⇤5 = 0,�⇤6 = 0) As I(X1,Y1) = 0, it is a candidate to be an e�cient DMU, but we

cannot be sure yet. To confirm its e�ciency status we need to solve the Phase

II model below.

Phase II: Given the solution obtained in Phase I for DMU1, specifically the

slacks (sx⇤, sy⇤), the corresponding (PIIDEA)2 model (4) is formulated as315
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H(X1,Y1) = Max Lx
1 + Rx

1 + Lx
2 + Rx

2 + Ly
1 + Ry

1

s.t.
11�1 + 14�2 + 16�3 + 18�4 + 19�5 + 18�6  11 � Rx

1

13�1 + 15�2 + 17�3 + 20�4 + 20�5 + 19�6  13 � Lx
1

9>>>=>>>;
i = 1

8�1 + 6�2 + 7�3 + 4�4 + 6�5 + 4�6  8 � Rx
2

10�1 + 7�2 + 8�3 + 7�4 + 7�5 + 7�6  10 � Lx
2

9>>>=>>>;
i = 2

10�1 + 10�2 + 10�3 + 10�4 + 10�5 + 10�6 � 10 + Ry
1

10�1 + 10�2 + 10�3 + 10�4 + 10�5 + 10�6 � 10 + Ly
1

9>>>=>>>;
r = 1

� j � 0, j = 1, . . . , 6,

Lx
i ,R

x
i ,L

y
r ,R

y
r 2 Z+, i = 1, 2, r = 1.

The optimal solution of the above LP problem is (Lx⇤,Rx⇤,Ly⇤,Ry⇤,�⇤⇤) =

(Lx⇤
1 = 0,Rx⇤

1 = 0,Lx⇤
2 = 0,Rx⇤

2 = 0,Ly⇤
1 = 0,Ry⇤

1 = 0,�⇤⇤1 = 1,�⇤⇤2 = 0,�⇤⇤3 = 0,�⇤⇤4 =

0,�⇤⇤5 = 0,�⇤⇤6 = 0). The left and right slack variables Lx
i ,R

x
i ,L

y
r ,R

y
r represent the

potential improvements that may remain and correspond to moving, if possible,

towards the e�ciency frontier. Only for e�cient DMUs these variables are all320

null, as it happens for DMU1.

In this case, the corresponding input and output targets, as per (5) and (6),

coincide with those of the observed DMU, i.e.

xtarget
11 = x11 � sx⇤

1 � Rx⇤
1 = 11 � 0 � 0 = 11, xtarget

11 = x11 � sx⇤
1 � Lx⇤

1 = 13 � 0 � 0 = 13,

xtarget
21 = x21 � sx⇤

2 � Rx⇤
2 = 8 � 0 � 0 = 8, xtarget

21 = x21 � sx⇤
2 � Lx⇤

2 = 10 � 0 � 0 = 10,

ytarget
11 = y11 + sy⇤

1 + Ly⇤
1 = 10 + 0 + 0 = 10, ytarget

11 = y11 + sy⇤
1 + Ry⇤

1 = 10 + 0 + 0 = 10.

As it can be seen in Table 2, in the case of DMU4, the solution of the Phase I

is I(X4,Y4) = 0, similar to what happens for DMU1, DMU2 and DMU6. Unlike

them, however, for DMU4, the Phase II solution Lx
1 = 1 and H(X4,Y4) = 1

indicates that the upper limit of the first input of DMU4 can be feasibly reduced325

by one unit and hence DMU4 is not e�cient.
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Table 3: Phase I results for Case 5.2. This is a hybrid problem. The second input and both outputs

are integer, whereas the other three inputs are continuous.

p I(Xp,Yp)
Input slacks intervals Output slacks intervals

sx
1 s

x

2
sx

3 sx
4 s

y

1
s

y

2

1 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

2 2.29 ( 0.44 , 0.44 ) ( 0 , 0 ) ( 6.70 , 6.70 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 75 , 75 )

3 1.21 ( 0.00 , 0.00) ( 1 , 1) ( 40.09 , 40.09 ) ( 0.00 , 0.00 ) ( 0 , 6 ) ( 59 , 62 )

4 1.37 ( 0.00 , 0.00 ) ( 53 , 53 ) ( 0.00 , 0.00 ) ( 12.06 , 12.06 ) ( 0 , 2 ) ( 78 , 79 )

5 0.56 ( 169.13 , 169.13) ( 0 , 0 ) ( 2.37 , 2.37 ) ( 0.10 , 0.10 ) ( 0 , 10 ) ( 33 , 37 )

6 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

7 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

8 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

9 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

10 1.91 ( 0.05 , 0.05 ) ( 39 , 39 ) ( 7.19 , 7.19 ) ( 0.08 , 0.08 ) ( 0 , 0 ) ( 143, 143 )

11 1.03 ( 18.42 , 18.42 ) ( 0 , 0 ) ( 21.92 , 21.92 ) ( 26.45 , 26.45 ) ( 0 , 0 ) ( 0 , 0 )

12 1.14 ( 0.00 , 0.00 ) ( 21 , 21 ) ( 0.19, 0.19 ) ( 16.16, 16.16 ) ( 0 , 7 ) ( 67 , 70 )

13 1.37 ( 142.78 , 142.78 ) ( 60 , 60 ) ( 0.00 , 0.00 ) ( 15.82 , 15.82 ) ( 0 , 4 ) ( 58 , 59 )

14 2.31 ( 0.00 , 0.00 ) ( 24 , 24 ) ( 5.98 , 5.98 ) ( 52.49 , 52.49 ) ( 0 , 0 ) ( 152 , 152 )

15 3.61 ( 0.00 , 0.00 ) ( 110 , 110 ) ( 10.36 , 10.36 ) ( 36.90 , 36.90 ) ( 0 , 0 ) ( 158 , 158 )

16 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

17 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

18 6.94 ( 0.00 , 0.00 ) ( 141 , 141 ) ( 13.97 , 13.97 ) ( 27.17 , 27.17 ) ( 0 , 13 ) ( 311 , 315 )

19 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

20 2.79 ( 0.02 , 0.02 ) ( 92 , 92 ) ( 36.33 , 36.33 ) ( 03.16 , 3.16 ) ( 20 , 24 ) ( 200 , 202 )

21 1.96 ( 0.00 , 0.00 ) ( 56 , 56 ) ( 28.37 , 28.37 ) ( 38.25, 38.25 ) ( 0 , 0 ) ( 74 , 74 )

22 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )

23 2.14 ( 0.00 , 0.00 ) ( 56 , 56 ) ( 13.03 , 13.03 ) ( 24.06, 24.06 ) ( 0 , 16 ) ( 210 , 216 )

24 0.95 ( 0.04 , 0.04 ) ( 62 , 62 ) ( 19.74 , 19.74 ) ( 0.09 , 0.09 ) ( 0 , 0 ) ( 38 , 38 )

25 3.90 ( 29.81 , 29.81 ) ( 91, 91 ) ( 0.03 , 0.03 ) ( 2.52 , 2.52 ) ( 36 , 45 ) ( 252 , 255 )

26 1.35 ( 0.06,0.06 ) ( 58,58) ( 11.52,11.52) ( 18.33,18.33 ) ( 0,4 ) ( 50,52 )
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5.2. Larger real-world application

In this section, we take a real problem, which not only is bigger but also

includes both integer and continuous variables. This case may be found more

often than the pure integer one in the real world. The extension of the pro-330

posed approach to the hybrid scenario is not di�cult and has been included in

Appendix B.

The dataset considered comes from Majid Azadi et al. [4]. The original

data are given as triangular fuzzy numbers. To adapt them as intervals we

have considered the corresponding zero ↵�levels. The DMUs correspond to 26335

suppliers of raw materials with four crisp inputs and two integer interval out-

puts. The inputs are the economic criteria given by the total cost of shipments

(TC), and the number of shipments per month (NS) and the social criteria given

by the eco-design cost (ED) and the cost of work safety and labor health (CS).

Except for the NS input, the rest of the inputs are continuous variables. The two340

outputs are the number of shipments to arrive on time (NOT) and the number

of bills received from the supplier without errors (NB). Both outputs are integer

interval variables.

The results from the Phase I, model (B.2) (see Appendix B), are shown in

Table 3. The results of the Phase II model (B.3), as well as the input and output345

targets, which are interval variables, and the corresponding e�ciency status

are given in Table 4. As we can see in the table, all DMUs are classified as either

e�cient or ine�cient, i.e., there are no weakly e�cient DMUs in this case.

Table 5 compares the results of the proposed approach with the ine�ciency

scores and the corresponding targets when the integrality of the integer vari-350

ables is ignored. These results correspond to relaxing the integrality of the

corresponding input and output slacks in models (B.2) and (B.3), which are the

hybrid equivalent of models (3) and (4). Because they are relaxations of the

original models, they can compute slightly higher ine�ciency scores. How-

ever, we claim that those results are not valid because they correspond to targets355

that, as shown in Table 5, do not always respect the integer character of some

of the variables (the second input, and the two outputs in the current instance).
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On the contrary, the proposed approach considers both the integer and the

interval-valued character of those variables.

For the sake of comparison, Table 6 also includes the results when other ex-360

isting approaches are applied, in particular the model (3.8) from Kordrostami et

al. [24], which also considers a hybrid case of integer and continuous variables.

As already discussed in Section 1, these authors consider fuzzy data, whereas

we consider that the uncertainty is given in terms of interval data. To apply

their models we consider interval data as a particular case of trapezoidal fuzzy365

data (a, b, c, d), when a = b and c = d. We do not include the results from their

alternative model (3.9), since they are the same in the case of interval data.

Among the main di↵erences between our approach and Kordrostami et al.

[24], already discussed in Section 1, we have that Kordrostami et al. [24] use

a fuzzy ranking approach and get crisp targets (see last columns of Table 6),370

while we use integer interval arithmetic and compute integer interval targets.

In addition, they use a radial oriented approach (while we apply an additive,

non-oriented approach) and they use the integer PPS of Kuosmanen & Matin

[27] (while we use a specific integer interval PPS).

In spite of these di↵erences, analysing the results of both approaches, we can375

check that they are in good agreement. In particular, the corresponding e�cient

characterisations coincide. Thus, the e�cient DMUs identified by the proposed

approach, with both ine�cient null values I(Xp,Yp) = H(Xp,Yp) = 0, have also

an e�ciency score of 1 with the Kordrostami et al. approach. And those

ine�cient DMUS, with I(Xp,Yp) > 0, have an e�ciency score less than the unity.380

Also, the Spearman rank-order correlation coe�cient between both approaches

is ⇢ = �0.91. Finally, regarding the targets for the e�cient DMUs for the second

input variables, which are not interval since the original input data was not

interval, they coincide with Kordrostami et al.’s targets. Moreover, the integer

(non-interval) output targets from Kordrostami et al.’s model are contained385

within the integer interval targets computed from the proposed approach.
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Table 6: Ine�ciency measurements (Phases I and II) for Case 5.2, compared to the E�ciency score

and integer input and output targets from Kordrostami et al. [24], see their model (3.8).

proposed approach Kordrostami et al. [24]

p I(Xp,Yp) H(Xp,Yp) Xtarget
2 Ytarget

1 Ytarget
2 E�ciency Xtarget

2 Ytarget
1 Ytarget

2

1 0.00 0 (251, 251) (199, 239) (76, 90) 1.00 251 219 83

2 2.29 4 (164, 164) (156, 193) (105, 117) 0.95 155 173 64

3 1.21 0 (197, 197) (203, 249) (137, 154) 0.93 177 223 85

4 1.37 0 (165, 165) (167, 209) (163, 178) 0.84 151 187 92

5 0.56 0 (178, 178) (197, 247) (196, 214) 0.95 169 217 170

6 0.00 0 (142, 142) (129, 169) (129, 143) 1.00 142 149 136

7 0.00 0 (149, 149) (193, 233) (111, 125) 1.00 149 213 118

8 0.00 0 (172, 172) (134, 174) (250, 264) 1.00 172 154 257

9 0.00 0 (135, 135) (184, 224) (58, 72) 1.00 135 204 65

10 1.91 1 (134, 134) (114, 153) (231, 245) 0.83 143 133 95

11 1.03 6 (121, 121) (130, 165) (154, 167) 0.96 116 145 160

12 1.14 0 (183, 183) (195, 242) (157, 174) 0.85 172 215 97

13 1.37 0 (152, 152) (156, 200) (197, 212) 0.78 154 176 146

14 2.31 0 (165, 165) (129, 169) (249, 263) 0.79 129 149 104

15 3.61 8 (107, 107) (91, 125) (228, 240) 0.53 91 105 75

16 0.00 0 (158, 158) (193, 233) (45, 59) 1.00 158 213 52

17 0.00 0 (124, 124) (107, 147) (271, 285) 1.00 124 127 278

18 7.20 0 (166, 166) (142, 195) (357, 375) 0.49 137 162 53

19 0.00 0 (138, 138) (122, 162) (173, 187) 1.00 138 142 180

20 2.79 0 (146, 146) (126, 173) (319, 335) 0.60 140 128 126

21 1.96 1 (161, 161) (151, 190) (165, 178) 0.91 141 170 97

22 0.00 0 (203, 203) (104, 144) (271, 285) 1.00 203 124 278

23 2.05 0 (236, 236) (185, 241) (353, 373) 0.77 179 205 150

24 0.95 2 (123, 123) (114, 152) (216, 229) 0.89 141 132 184

25 3.90 0 (151, 151) (130, 179) (330, 347) 0.63 110 114 85

26 1.35 0 (160, 160) (173, 217) (163, 179) 0.80 163 193 120
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6. Conclusions

This paper presents a new integer and interval-valued DEA approach and

associated slacks-based measure of ine�ciency. It requires solving two crisp

linear optimization models that allow the computation of the corresponding390

input and output targets, as well as determining the e�ciency status of each

DMU. Computational experiments have been presented to validate the pro-

posed approach.

It has been shown that a null value of the Phase I ine�ciency score is a

necessary but not su�cient condition for e�ciency, i.e. the Phase I model395

cannot discriminate between e�cient and weakly e�cient DMUs. This is

analogous to what happens with radial DEA models in crisp case although

it does not happen in the slacks-based case. This highlights the di↵erences

between crisp and interval data scenarios. Hence the need for the Phase II

model, which also provides e�cient input and output targets.400

The proposed approach can handle data that are simultaneously uncertain

and integer. Existing interval DEA approaches do not consider integer data and,

conversely, integer DEA approaches assume crisp data. Although at the cost

of requiring interval arithmetic and relational operators, with a higher number

of constraints in its parameterization form, the proposed approach is able to405

address the joint integer interval scenario. It does so in a rigorous way, defining

the corresponding integer interval PPS, its corresponding e�cient subset and

finally, formulating the models that compute the ine�ciency scores and the

e�cient targets.

As regards potential research directions, we envisage extending the pro-410

posed integer interval arithmetic and LU-partial order approach to the data

case with fuzzy integer intervals. The approach should be non-oriented and

guarantee e�cient (i.e. non-dominated) fuzzy targets. As a first step, the fuzzy

integer interval DEA technology needs to be axiomatically derived. Another

interesting line of research, often neglected in the fuzzy DEA literature, is that of415

applying this type of approaches to real-world situations, e.g. manufacturing,
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healthcare or transportation, in which there may be uncertainty in the input

and output data.
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Appendix A. Proof of Theorem 1

Proof. Denote by Ttrue the result of the minimum extrapolation principle axioms

(B1), (B2), (B3) and (B4). To prove the theorem it is necessary to show that

TFDEA = Ttrue. To this end, let us divide the proof into two parts.

(i) Ttrue ✓ TIIDEA.565

It is su�cient to prove that TIIDEA satisfies (B1), (B2), (B3) and (B4), since this

implies that TIIDEA contains the intersection of all sets that satisfies the previous

axioms, and consequently contains Ttrue. Therefore, let us check the axioms

(B1), (B2), (B3) and (B4) by TIIDEA.

• Check (B1). It is clear since, given j 2 J, then (Xj,Yj), with � j = 1 and570

� j0 = 0, for all j0 , j, satisfies conditions in TIIDEA.

• Check (B2). Given (x, y) 2 TIIDEA, x0 � x, y0 ⌧ y, (x0, y0) 2 (KZ+)m+s, we

have to prove that (x0, y0) 2 TIIDEA. By hypothesis, there exists � = 0 such

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



that

C(x) �
nX

j=1

� jC(Xj), C(y) ⌧
nX

j=1

� jC(Yj). (A.1)

Combining (A.1) with x0 � x, y0 ⌧ y, it follows that

C(x0) � C(x) �
nX

j=1

� jC(Xj), C(y0) ⌧ C(y) ⌧
nX

j=1

� jC(Yj). (A.2)

Therefore, (x0, y0) 2 TIIDEA.

• Check (B3). Let us consider (x, y), (x0, y0) 2 TIIDEA, and ↵ � 0, what means

that there exist �,�0 = 0 such that

C(x) �
nX

j=1

� jC(Xj), C(x0) �
nX

j=1

�0jC(Xj), (A.3)

C(y) ⌧
nX

j=1

� jC(Yj), C(y0) ⌧
nX

j=1

�0jC(Yj). (A.4)

Multiplying by↵ each side in the first interval inequality in (A.3), by (1�↵)

each side in the second interval inequality in (A.3), and then combining

the interval inequalities, we get

↵C(x) + (1 � ↵)C(x0) �
nX

j=1

(↵� j + (1 � ↵)�0j)C(Xj), (A.5)

Proceeding in a similar way with y and y0 and inequalities (A.4), we have

↵C(y) + (1 � ↵)C(y0) ⌧
nX

j=1

(↵� j + (1 � ↵)�0j)C(Yj), (A.6)

We can see that (↵C(x)+ (1�↵)C(x0),↵C(y)+ (1�↵)C(y0)) = ↵(C(x),C(y))+

(1 � ↵)(C(x0),C(y0)). By hypothesis, ↵(C(x),C(y)) + (1 � ↵)(C(x0),C(y0)) 2
(KC!Z)m+s. Define �00 = (�001 , . . . ,�

00
n ), with �00j = ↵� j + (1 � ↵)�0j � 0, for575

all j = 1, . . . ,n, and substitute them in expressions (A.5) and (A.6). Then,

it follows that (x00, y00) = Z(↵(C(x),C(y)) + (1 � ↵)(C(x0),C(y0))) 2 TIIDEA.

• Check (B4). Given (x, y) 2 TIIDEA, there exists � = 0 such that (A.1)

holds. Given ↵ 2 R+, and (↵C(x),↵C(y)) 2 (KC!Z)m+s, it follows that
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there exists Z((↵C(x),↵C(y))) = (↵x,↵y) 2 (KZ+)m+s. Define �̄ = ↵� =

(↵�1, . . . ,↵�n) = 0. Then, multiplying by ↵ each side in the inequalities in

(A.1),

C(↵x) �
nX

j=1

↵� jC(Xj) =
nX

j=1

�̄ jC(Xj), C(↵y) ⌧
nX

j=1

↵� jC(Yj) =
nX

j=1

�̄ jC(Yj).

Therefore, (↵x,↵y) 2 TIIDEA

(ii) TIIDEA ✓ Ttrue.

We need to prove that every element of TIIDEA belongs to Ttrue. To this purpose,

consider (x, y) 2 TIIDEA, which means that there exists � = 0, � 2 Rn, such that

C(x) �
nX

j=1

� jC(Xj), C(y) ⌧
nX

j=1

� jC(Yj), (A.7)

what is equivalent to say

[xi, xi] �
nX

j=1

� j[xij, xij] =
h nX

j=1

� jxi j,
nX

j=1

� jxi j
i
, i = 1, . . . ,m, (A.8)

[yr, yr] ⌧
nX

j=1

� j[yij, yij] =
h nX

j=1

� jyi j,
nX

j=1

� jyi j
i
, r = 1, . . . , s. (A.9)

The relationships (A.8) and (A.9) imply

xi �
nX

j=1

� jxi j, xi �
nX

j=1

� jxi j, i = 1, . . . ,m, (A.10)

yr 
nX

j=1

� jyrj, yr 
nX

j=1

� jyrj, r = 1, . . . , s. (A.11)

Taking into account the inequalities given by (A.10) and (A.11), we consider

the following two cases:580

• Suppose that there exists some index and some inequality, among those

given by (A.10) and (A.11), such that the inequality becomes equality.

For the sake of simplicity, suppose that the equality is verified for an

inequality in the first group of (A.10), that is, there exists i 2 {1, . . . ,m} such
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that xi =
Pn

j=1 � jxi j 2 Z+. The latter implies that � j 2 Q+, for all j, with

Q ✓ R the subset of rational numbers. Then, there exist uj, vj 2 Z+, vj , 0,

with uj a pair number, such that � j =
uj

vj
, for all j. Define v =

Qn
j=1 vj, and

nj = v� j 2 Z+. We point out that nj is a pair number, that is, 0.5nj 2 Z+,

what is used in a next step in this proof. If we multiply each side of the

interval inequalities given in (A.7), then if follows

vC(x) �
nX

j=1

njC(Xj), vC(y) ⌧
nX

j=1

njC(Yj). (A.12)

We have that (Xj,Yj) 2 Ttrue by (B1), for all j 2 J. Since (njXj,njYj) and

(0.5njXj, 0.5njYj) 2 (KZ+ )m+s, then, by (B4), it follows that (njXj,njYj) and

(0.5njXj, 0.5njYj) 2 Ttrue, for all j 2 J, and the relationships (A.12) can be

written as

vx �
nX

j=1

njXj, vy ⌧
nX

j=1

njYj. (A.13)

Following, and reasoning by induction, let us prove that

⇣ kX

j=1

njXj,
kX

j=1

njYj
⌘
2 Ttrue, k = 1, . . . ,n. (A.14)

To this matter, first we check that in the case k = 1 it holds, such as

it has been proved before. Following, we check that if cases k  t are

true, this implies that the case k = t + 1 is also true. We can write

(
Pt+1

j=1 njXj,
Pt+1

j=1 njYj) as the convex sum of two elements of Ttrue, multi-

plied by a scalar. Define ↵ = 0.5 and ↵0 = 2, then:

⇣ t+1X

j=1

njXj,
t+1X

j=1

njYj
⌘
=
⇣ tX

j=1

njXj,
tX

j=1

njYj
⌘
+
⇣
nt+1Xt+1,nt+1Yt+1

⌘

= Z
⇣
↵0
⇣
↵
⇣ tX

j=1

njC(Xj),
tX

j=1

njC(Yj)
⌘
+

+ (1 � ↵)
⇣
nt+1C(Xt+1),nt+1C(Yt+1)

⌘⌘⌘
.
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Since

↵
⇣ tX

j=1

njC(Xj),
tX

j=1

njC(Yj)
⌘
+ (1 � ↵)

⇣
nt+1C(Xt+1),nt+1C(Yt+1)

⌘
=

⇣ t+1X

j=1

0.5njC(Xj),
t+1X

j=1

0.5njC(Yj)
⌘
2 (KC!Z)m+s,

then, by (B3), it follows that

Z
⇣
↵
⇣ tX

j=1

njC(Xj),
tX

j=1

njC(Yj)
⌘
+ (1 � ↵)

⇣
nt+1C(Xt+1),nt+1C(Yt+1)

⌘⌘
2 Ttrue.

If it is multiplied by ↵0 = 2, then, by (B4), it follows that

↵0
⇣
Z
⇣
↵
⇣ tX

j=1

njC(Xj),
tX

j=1

njC(Yj)
⌘
+(1�↵)

⇣
nt+1C(Xt+1),nt+1C(Yt+1)

⌘⌘⌘
2 Ttrue.

Thus,
⇣Pt+1

j=1 njXj,
Pt+1

j=1 njYj
⌘
2 Ttrue, and therefore (A.14) holds. As a

consequence of (A.14), we have that
⇣Pn

j=1 njXj,
Pn

j=1 njYj
⌘
2 Ttrue. Since

(vx, vy) satisfies (A.13), then it also satisfies (A.12). Then, by (B2), we have

that (vx, vy) 2 Ttrue. And since 1
v (vx, vy) = (x, y) 2 (KZ+ )m+s, then, by (B2),

it follows that (x, y) 2 Ttrue.585

• Suppose that there exists no index and inequality, among those given by

(A.10) and (A.11), such that the inequality becomes equality. In such a

case, all inequalities are sharp, and it is not di�cult to see that there exists

� > 0, small enough, such that

xi >
nX

j=1

(� j + �)xij, xi >
nX

j=1

(� j + �)xij, i = 1, . . . ,m, (A.15)

yr <
nX

j=1

(� j + �)yrj, yr <
nX

j=1

(� j + �)yrj, r = 1, . . . , s. (A.16)

We choose �0j 2 (� j,� j + �) \Q+ , ;, for j 2 {1, . . . ,n}. Then, from (A.10),

(A.11), (A.15) and (A.16), it follows

xi >
nX

j=1

�0jxi j, xi >
nX

j=1

�0jxi j, i = 1, . . . ,m, (A.17)
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yr <
nX

j=1

�0jyrj, yr <
nX

j=1

�0jyrj, r = 1, . . . , s. (A.18)

In particular,

xi �
nX

j=1

�0jxi j, xi �
nX

j=1

�0jxi j, i = 1, . . . ,m, (A.19)

yr 
nX

j=1

�0jyrj, yr 
nX

j=1

�0jyrj, r = 1, . . . , s. (A.20)

Reasoning as above, we conclude that (x, y) 2 Ttrue. Therefore, TFDEA ✓ Ttrue590

and the proof is complete. ⇤

Appendix B. Extension to the hybrid data scenario

Consider the hybrid scenario in which, in addition to integer interval data,

there exist some inputs or outputs that are given as continuous intervals. Then,

and following Lozano and Villa [33], we can partition each index set into two595

subsets; one for continuous variables, and another for integer variables. In

this manner, for input and output variables, we have OX = OXI [ OXNI, OY =

OYI [OYNI, respectively, where OX = {1, . . . ,M} and OY = {1, . . . ,S}. So, inputs

xij = [xij, xij]Z 2 KZ+ , for all i 2 OXI, and xij = [xij, xij] 2 KC+ , for all i 2 OXNI;

and outputs yrj = [yrj, yrj]Z 2 KZ+ for all r 2 OYI, and yrj = [yrj, yrj] 2 KC+ for600

all r 2 OYNI.

The model (IIDEA) becomes as follows, under the consideration of a hybrid
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interval DEA.

(HIDEA) I(Xp,Yp) = Max
MX

i=1

sx
i + sx

i

xip + xip
+

SX

r=1

sy
r + sy

r

yrp + yrp
(B.1)

s.t.
NX

j=1

� jC(xij) ⌧ C(xip) � C(sx
i ), i 2 OXI,

NX

j=1

� jxi j ⌧ xip � sx
i , i 2 OXNI,

NX

j=1

� jC(yrj) � C(yrp) + C(sy
r ), r 2 OYI,

NX

j=1

� jyrj � yrp + sy
r , r 2 OYNI,

� j � 0, j = 1, . . . ,N,

sx
i , s

y
r 2 KZ+, i 2 OXI, r 2 OYI.

sx
i , s

y
r 2 KC+, i 2 OXNI, r 2 OYNI.

To solve (HIDEA) model (B.1), we consider its following parameterization,

which can be considered as the Phase I of the solution method.605
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(PIHIDEA) I(Xp,Yp) = Max
MX

i=1

sx
i + sx

i

xip + xip
+

SX

r=1

sy
r + sy

r

yrp + yrp
(B.2)

s.t.
NX

j=1

� jxi j  xip � sx
i , i 2 OX,

NX

j=1

� jxi j  xip � sx
i , i 2 OX,

NX

j=1

� jyrj � yrp + sy
r , r 2 OY,

NX

j=1

� jyrj � yrp + sy
r , r 2 OY,

sx
i  sx

i , i 2 OX,

sy
r  sy

r , r 2 OY,

� j � 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r 2 Z+, i 2 OXI, r 2 OYI,

sx
i , s

x
i , s

y
r , s

y
r � 0, i 2 OXNI, r 2 OYNI.

As it can be seen, the only di↵erence with respect the corresponding model

(3) is the that only the slacks of the integer inputs and outputs are forced to be

integer. The slacks of the other inputs and outputs are considered continuous

variables.

Given (sx⇤, sy⇤,�⇤), optimal solution for (B.2), we proceed with the phase II610

of the method.
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(PHIDEA)2 H(Xp,Yp) = Max
MX

i=1

Lx
i + Rx

i +
SX

r=1

Ly
r + Ry

r (B.3)

s.t.
NX

j=1

� jxi j  xip � sx⇤
i � Rx

i , i 2 OX,

NX

j=1

� jxi j  xip � sx⇤
i � Lx

i , i 2 OX,

NX

j=1

� jyrj � yrp + sy⇤
r + Ly

r , r 2 OY,

NX

j=1

� jyrj � yrp + sy⇤
r + Ry

r , r 2 OY,

� j � 0, j = 1, . . . ,N,

Lx
i ,R

x
i ,L

y
r ,R

y
r 2 Z+, i 2 OXI, r 2 OYI,

Lx
i ,R

x
i ,L

y
r ,R

y
r � 0, i 2 OXNI, r 2 OYNI.

Given a DMUp with I(Xp,Yp) = 0, then H(Xp,Yp) = 0 if and only if DMUp

is e�cient. In other words, a DMUp is e�cient if and only if both I(Xp,Yp) = 0

and H(Xp,Yp) = 0.

Let (sx⇤, sy⇤,�⇤) be the optimal solution of (B.2), and (Lx⇤,Rx⇤, Ly⇤,Ry⇤, �⇤⇤)615

the optimal solution of (B.3) for a given DMUp, then we can compute its input

and output targets Xtarget
p and Ytarget

p as

xtarget
ip = xip � sx⇤

i � Rx⇤
i , xtarget

ip = xip � sx⇤
i � Lx⇤

i , i 2 OX, (B.4)

ytarget
rp = yrp + sy⇤

r + Ly⇤
r , ytarget

rp = yrp + sy⇤
r + Ry⇤

r , r 2 OY. (B.5)
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