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Abstract

We know from a previous paper that the reticulation of a coherent
quantale A is a bounded distributive lattice L(A) whose prime spectrum
is homeomorphic to m - prime spectrum of A. In this paper we shall prove
several results on the pure elements of the quantale A by means of the
reticulation L(A). We shall investigate how the properties of σ - ideals of
L(A) can be transferred to pure elements of A. Then the pure elements
of A are used to obtain new properties and characterization theorems for
some important classes of quantales: normal quantales, mp - quantales,
PF - quantales, purified quantales and PP - quantales.

Keywords: coherent quantale, reticulation, pure and w -pure elements,
normal quantales, mp - quantales, PF - quantales, PP - quantales .

1 Introduction

The quantales [42],[21] and the frames [30] are structures that generalise the
lattices of ideals, filters and congruences for various classes of algebras. Several
algebraic and topological properties of rings, distributive lattices, l-groups and
l-rings, MV -algebras,BL-algebras, residuated lattices, etc. can be extended to
quantales and frames. To work in this abstract setting is not only a unification of
some existing particular results, but also an efficient way to prove new properties
for many types of algebras.

The pure elements in a quantale were introduced in [38]. They constitute
an abstractization of pure ideals of rings [11] (named virginal ideals in [12]
and neat ideals in [30]), σ - ideals of bounded distributive lattices [17],[18],[26],
pure ideals in MV -algebras [14], pure filters in BL-algebras [32] and residuated
lattices [36], etc. Similar notions of pure elements can be found in other kind
of multiplicative lattices: multiplicative ideal structures [27] and 2-side carriers
[44].
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On the other hand, the reticulation of a coherent quantale A is a bounded
distributive lattice L(A) whose m - prime spectrum Spec(A) is homeomorphic
to the prime spectrum SpecId(L(A)) of L(A) (see [23]). Then L(A) unifies
various notions of reticulations defined for commutative rings [43],[30], l-rings
[30], MV -algebras [9], BL -algebras [32], residuated lattices [36], etc.

The reticulation is a functorial construction: from a category of algebras to
the category of bounded distributive lattices. The reticulation functor allows
us a transfer of properties from bounded distributive lattices to algebras and
vice-versa.

This paper studies the pure elements of a coherent quantale A by means
of the reticulation L(A). We investigate how some results on the σ - ideals
of the lattice L(A) can be transferred to the pure elements of A. We use the
properties of pure elements in order to obtain new characterization theorems
for some important classes of quantales: normal quantales, mp - quantales, PF
- quantales, purified quantales and PP - quantales.

Now we shall describe the content of the paper. In Section 2 we recall
from [42],[21] some basic notions and results in quantale theory: m - prime
elements, radical elements, m - prime and maximal spectra with spectral and
flat topologies, regular and max - regular elements. Section 3 contains some
fundamental facts on the reticulation L(A) of a coherent quantale A: axiomatic
definition, arithmetic, algebraic and topological constructions, the isomorphism
between the Boolean centers B(A) and B(L(A)) of A and L(A), the preservation
theorems for annihilators,etc.

Section 4 concerns the pure elements in a coherent quantale A. We know
from [27] that the set V ir(A) of pure elements of A is a spatial frame. In [27],
a lot of properties of V ir(A) were established in the more large framework of
multiplicative ideals structures (= mi - structures). We continue the line of
[27] and obtain new results on the pure elements. We define the weakly pure
elements (= w - pure elements), a notion that enlarges the class of pure elements.
Mainly we study the relationship between the operators V ir(·), Ker(·) and O(·)
(introduced in [27]) and the pure and w - pure elements of A. The main results
of the section establish how the reticulation commutes with V ir(·), Ker(·) and
O(·). In this way one obtains the relationship between the pure and w - pure
elements of A and the σ - ideals of the lattice L(A).

In Section 5 we continue the study of pure elements. Firstly, we prove that
there exists a surjective continuos function from the prime spectrum of the frame
V ir(A) to the Pierce spectrum Sp(A) of A. Secondly, in the continuation of [27]
we investigate the pure elements in a normal quantale. Various properties that
characterize the normal coherent quantales point out the role of pure elements
and operators V ir(·), Ker(·) and O(·) in studying this class of quantales (see
Proposition 5.6).

Section 6 contains a lot of results on pure elements in PF - quantales, a
quantale abstractization of PF - rings. If A is PF - quantale, then we char-
acterize its pure elements as intersections

∧
(Min(A)

⋂
E), where E is a closed

subset of the minimal m - prime spectrum Min(A) of A (endowed with the
restriction of spectral topology on Spec(A))). We prove the equality of Min(A)
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with the maximal spectrum Max(V ir(A) of the frame V ir(A). Another the-
orem of the section shows that for any PF - quantale A, the frame V ir(A) is
hyperarchimedean.

In Section 7 we define the purified quantales as a generalization of purified
rings, introduced in [1]. The main result of the section is a characterization
theorem of the purified quantales.

The PP - quantales, introduced in Section 8, generalize the PP - rings ( =
Baer rings). We prove that a semiprime quantale A is a PP - quantale if and
only if the reticulation L(A) is a Stone lattice, extending a theorem of Simmons
from [43]. By using this result one obtains some characterization theorems of
PP - quantales.

We mention that most of the results of this paper extend some theorems that
appear in the case of commutative rings ([1],[3],[5],[6],[11],[12],[30],[35],[43],[48],[49]),
bounded distributive lattices ([4],[17],[18],[26],[30],[40],[43],[45]), MV-algebras
([9],[14]), BL -algebras [32], residuated lattices ([36],[41]),etc.

2 Preliminaries on quantales

This section contains some basic notions and results in quantale theory
[42], [21]. Recall from [42], [21] that a quantale is an algebraic structure
(A,∨,∧, ·, 0, 1) such that (A,∨,∧, 0, 1) is a complete lattice and (A, ·) is a semi-
group with the property that the multiplication · satisfies the infinite distribu-
tive laws: for all a ∈ A and X ⊆ A, we have a ·

∨
X =

∨
{a · x|x ∈ X} and

(
∨
X) · a =

∨
{x · a|x ∈ X}.

Let (A,∨,∧, ·, 0, 1) be a quantale and K(A) the set of its compact elements.
A is said to be integral if (A, ·, 1) is a monoid and commutative, if the multi-
plication · is commutative. A frame is a quantale in which the multiplication
coincides with the meet [30]. The quantale A is algebraic if any a ∈ A has the
form a =

∨
X for some subset X of K(A). An algebraic quantale A is coherent

if 1 ∈ K(A) and K(A) is closed under the multiplication. Throughout this pa-
per, the quantales are assumed to be integral and commutative. Often we shall
write ab instead of a · b. We fix a quantale A.

Lemma 2.1 [10] For all elements a, b, c of the quantale A the following hold:

(1) If a ∨ b = 1 then a · b = a ∧ b;

(2) If a ∨ b = 1 then an ∨ bn = 1 for all integer number n ≥ 1;

(3) If a ∨ b = a ∨ c = 1 then a ∨ (b · c) = a ∨ (b ∧ c) = 1;

On each quantaleA one can define a residuation operation a → b =
∨
{x|ax ≤

b} and a negation operation a⊥ = a → 0 =
∨
{x|ax = 0}. Thus for all

a, b, c ∈ A the following equivalence holds: a ≤ b → c if and only if ab ≤ c,
so (A,∨,∧, ·,→, 0, 1) becomes a (commutative) residuated lattice [22].

In this paper we shall use without mention the basic arithmetical properties
of a residuated lattice [22].
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An element p < 1 of A is m-prime if for all a, b ∈ A, ab ≤ p implies a ≤ b
or b ≤ p. If A is an algebraic quantale, then p < 1 is m-prime if and only
if for all c, d ∈ K(A), cd ≤ p implies c ≤ p or d ≤ p. Let us introduce the
following notations: Spec(A) is the set of m-prime elements and Max(A) is the
set of maximal elements of A. If 1 ∈ K(A) then for any a < 1 there exists
m ∈ Mar(A) such that a ≤ m. The same hypothesis 1 ∈ K(A) implies that
Max(A) ⊆ Spec(A).

The main example of quantale is the set Id(R) of ideals of a (unital) com-
mutative ring R and the main example of frame is the set Id(L) of ideals of a
bounded distributive lattice L. Thus the set Spec(R) of prime ideals in R is the
prime spectrum of the quantale Id(R) and the set of prime ideals in L is the
prime spectrum of the frame Id(L).

Following [42], the radical ρ(a) = ρA(a) of an element a ∈ A is defined by
ρA(a) =

∧
{p ∈ Spec(A)|a ≤ p}; if a = ρ(a) then a is a radical element. We

shall denote by R(A) the set of radical elements of A. The quantale A is said
to be semiprime if ρ(0) = 0.

Lemma 2.2 [42] For all elements a, b ∈ A the following hold:

(1) a ≤ ρ(a);

(2) ρ(a ∧ b) = ρ(ab) = ρ(a) ∧ ρ(b);

(3) ρ(a) = 1 iff a = 1;

(4) ρ(a ∨ b) = ρ(ρ(a) ∨ ρ(b));

(5) ρ(ρ(a)) = ρ(a);

(6) ρ(a) ∨ ρ(b) = 1 iff a ∨ b = 1;

(7) ρ(an) = ρ(a), for all integer n ≥ 1.

For an arbitrary family (ai)i∈I ⊆ A, the following equality holds: ρ(
∨

i∈I

ai) =

ρ(
∨

i∈I

ρ(ai)). If (ai)i∈I ⊆ R(A) then we denote

·∨

i∈I

ai = ρ(
∨

i∈I

ai). Then it is easy

to prove that (R(A),
·∨
,∧, ρ(a), 1) is a frame [42].

Lemma 2.3 [15] If 1 ∈ K(A) then Spec(A) = Spec(R(A)) and Max(A) =
Max(R(A)).

Lemma 2.4 [33] Let A be a coherent quantale and a ∈ A. Then

(1) ρ(a) =
∨
{c ∈ K(A)|ck ≤ a for some integer k ≥ 1};

(2) For any c ∈ K(A), c ≤ ρ(a) iff ck ≤ a for some k ≥ 1.
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Lemma 2.5 [15] If A is a coherent quantale then K(R(A)) = ρ(K(A)) and
R(A) is a coherent frame.

For any element a of a coherent quantale A let us consider the interval
[a)A = {x ∈ A|a ≤ x} and for all x, y ∈ [a)A denote x ·a y = xy ∨ a. Thus
[a)A is closed under the multiplication ·a and ([a)A,∨,∧, ·a, 0, 1) is a coherent
quantale.

Lemma 2.6 [15] The quantale ([ρ(a))A,∨,∧, ·a, 0, 1) is semiprime and Spec(A) =
Spec([ρ(a))A),Max(A) = Max([ρ(a))A).

Let A,B be two quantales. A function f : A → B is a morphism of quan-
tales if it preserves the arbitrary joins and the multiplication; f is an integral
morphism if f(1) = 1.

Lemma 2.7 [15] Let A be a coherent quantale and a ∈ A.

(1) The function uA
a : A → [a)A, defined by uA

a (x) = x ∨ a, for all x ∈ A,
is an integral quantale morphism;

(2) If c ∈ K(A) then uA
a (c) ∈ K([a)).

Let A be a quantale such that 1 ∈ K(A). For any a ∈ A, denote D(a) =
{p ∈ Spec(A)|a 6≤ p} and V (a) = {p ∈ Spec(A)|a ≤ p}. Then Spec(A) is
endowed with a topology whose closed sets are (V (a))a∈A. If the quantale A is
algebraic then the family (D(c))c∈K(A) is a basis of open sets for this topology.
The topology introduced here generalizes the Zariski topology (defined on the
prim spectrum Spec(R) of a commutation ring R [2]) and the Stone topology
(defined on the prime spectrum SpecId(L) of a bounded distributive lattice L
[7]).

Thus we denote by SpecZ(A) the prime spectrum Spec(A) endowed with the
topology above defined; MaxZ(A) will denote the maximal spectrum Max(A)
considered as a subspace of SpecZ(A). According to [24], SpecZ(A) is a spec-
tral space in the sense of [28]. Theflat topology associated to this spectral
space has as basis the family of the completents of compact open subsets of
SpecZ(A)(cf.[19], [30]). Recall from [24] that the family {V (c)|c ∈ K(A)} is a
basis of open sets for the flat topology on Spec(A). We shall denote by SpecF (A)
this topological space.

For any p ∈ Spec(A), let us denote Λ(p) = {q ∈ Spec(A)|q ≤ p}. According
to Propositions 5.6 and 5.7 of [24], if p ∈ Spec(A) then the flat closure of the
set {p} is clF {p} = Λ(p) and, if S ⊆ Spec(A) is compact in SpecZ(A) then its

flat closure is clF (S) =
⋃

p∈S

Λ(p).

An element a ∈ A is regular if it is a join of complemented elements. A
maximal element in the set of proper regular elements is called max- regular .
The set Sp(A) of max- regular elements of A is called the Pierce spectrum of
the quantale A. For any proper regular element a there exists p ∈ Sp(A) such
that a ≤ p. If e ∈ B(A) then we denote U(e) = {p ∈ Sp(A)|e 6≤ a}. Thus it
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easy to prove that the family (U(e))e∈B(A) is a basis of open sets for a topology
on Sp(A).

For any p ∈ Spec(A) we define sA(p) =
∨
{e ∈ B(A)|e ≤ p}; sA(p) is regular

and sA(p) ≤ p < 1. According to Lemma 5.8 of [24], for each p ∈ Spec(A),
sA(p) is a max - regular element of A, so one obtains a function sA : Spec(A) →
Sp(A). We know from Proposition 5.9 of [24] that Sp(A) is a Boolean space
and sA : Spec(A) → Sp(A) is surjective and continuous w.r.t. both flat and
spectral topologies on Spec(A). If R is a commutative ring then Sp(Id(R)) is
exactly the Pierce spectrum of R (see [30], p.181).

Let L be a bounded distributive lattice. For any x ∈ L, denote DId(x) =
{P ∈ SpecId(L)|x 6∈ P} and VId(x) = {P ∈ SpecId,Z(L)|x ∈ P}. The family
(DId(x))x∈L is a basis of open sets for the Stone topology on SpecId(L); this
topological space will be denoted by SpecId,Z(L). Let MaxId(L) be the set of
maximal ideals of L. Thus MaxId(L) ⊆ SpecId(L) and MaxId(L) becomes a
subspace of SpecId(L), denoted MaxId,Z(L).

3 Reticulation of a coherent quantale

The reticulation L(A) of a quantale A was introduced in [23] as a generaliza-
tion of the reticulation of a commutative ring, given in [43]. In [23], the retic-
ulation L(A) was characterized as a bounded distributive lattice whose prime
spectrum SpecId(L(A)) is homeomorphic to the prime spectrum Spec(A) of the
quantale A. In this section we shall recall from [15],[23] the axiomatic definition
of the reticulation of the coherent quantale and some of its basic properties. Let
A be a coherent quantale and K(A) the set of its compact elements.

Definition 3.1 [15] A reticulation of the quantale A is a bounded distributive
lattice L together a surjective function λ : K(A) → L such that for all a, b ∈
K(A) the following properties hold

(1) λ(a ∨ b) ≤ λ(a) ∨ λ(b);

(2) λ(ab) = λ(a) ∧ λ(b);

(3) λ(a) ≤ λ(b) iff an ≤ b , for some integer n ≥ 1.

In [15],[23] there were proven the existence and the unicity of the reticula-
tion for each coherent quantale A; this unique reticulation will be denoted by
(L(A), λA : K(A) → L(A)) or shortly L(A). The reticulation L(R) of a commu-
tative ring R was introduced by many authors, but the main references on this
topic remain [43], [30]. We remark that L(R) is isomorphic to the reticulation
L(Id(R)) of the quantale Id(R).

Lemma 3.2 [15] For all elements a, b ∈ K(A) the following properties hold:

(1) a ≤ b implies λA(a) ≤ λA(b);

(2) λA(a ∨ b) = λA(a) ∨ λA(b);

6



(3) λA(a) = 1 iff a = 1;

(4) λA(0) = 0;

(5) λA(a) = 0 iff an = 0, for some integer n ≥ 1;

(6) λA(a
n) = λA(a), for all integer n ≥ 1;

(7) ρ(a) = ρ(b) iff λA(a) = λA(b);

(8) λA(a) = 0 iff a ≤ ρ(0);

(9) If A is semiprime then λA(a) = 0 implies a = 0.

Often the previous nine properties shall be used in the proofs without men-
tion.

For any a ∈ A and I ∈ Id(L(A)) let us denote a∗ = {λA(c)|c ∈ K(A), c ≤ a}
and I∗ =

∨
{c ∈ K(A)|λA(c) ∈ I}.

Lemma 3.3 [15] The following assertions hold

(1) If a ∈ A then a∗ is an ideal of L(A) and a ≤ (a∗)∗;

(2) If I ∈ Id(L(A)) then (I∗)
∗ = I;

(3) If p ∈ Spec(A) then (p∗)∗ = p and p∗ ∈ SpecId(L(A));

(4) If P ∈ SpecId((L(A)) then P∗ ∈ Spec(A);

(5) If p ∈ K(A) then c∗ = (λA(c)];

(6) If c ∈ K(A) and I ∈ Id(L(A)) then c ≤ I∗ iff λA(c) ∈ I;

(7) If a ∈ A and I ∈ Id(L(A)) then ρ(a) = (a∗)∗, a∗ = (ρ(a))∗ and
ρ(I∗) = I∗;

(8) If c ∈ K(A) and p ∈ Spec(A) then c ≤ p iff λA(c) ∈ p∗.

Lemma 3.4 Let A be a coherent quantale. The following assertions hold

(1) If a, b ∈ A then (ab)∗ = (a ∧ b)∗ = a∗
⋂
b∗;

(2) If (ai)i∈I is a family of elements of A then (
∨

i∈I

ai)
∗ =

∨

i∈I

a∗i .

Proof. First we remark that (ab)∗ ⊆ (a ∧ b)∗ ⊆ a∗
⋂
b∗. In order to prove

that a∗
⋂
b∗ ⊆ (ab)∗, let us assume that x ∈ a∗

⋂
b∗. Then x = λA(c) = λA(d),

for some compact elements c, d that verify the properties c ≤ a and d ≤ b.
Thus one gets λA(cd) ≤ λA(ab), so there exists a positive integer n such that
cndn ≤ ab. Therefore x = λA(c

ndn) ≤ λA(ab), hence it follows that x ∈ (ab)∗.
The property (2) follows similarly.
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According to Lemma 3.3, one can consider the following order- preserving
functions: u : Spec(A) → SpecId(L(A)) and v : SpecId(L(A)) → Spec(A),
defined by u(p) = p∗ and v(P ) = P∗, for all p ∈ Spec(A) and P ∈ SpecId(L(A)).

Lemma 3.5 [15] The functions u and v are homeomorphisms, inverse to one
another.

Corollary 3.6 MaxZ(A) and MaxId,Z(L(A)) are homeomorphic.

Proposition 3.7 [15] The functions Φ : R(A) → Id(L(A)) and Ψ : Id(L(A)) →
R(A) defined by Φ(a) = a∗ and Ψ(I) = I∗, for all a ∈ R(A) and I ∈ Id(L(A)),
are frame isomorphisms, inverse to one another.

The Boolean center of an arbitrary quantale A is the Boolean algebra
B(A) of complemented elements of A (cf. [10],[29]). The following lemma
collects some elementary properties of the elements of B(A).

Lemma 3.8 [10],[29] Let A be a quantale and a, b ∈ A, e ∈ B(A). Then the
following properties hold:

(1) a ∈ B(A) iff a ∨ a⊥ = 1;

(2) a ∧ b = ae;

(3) e → a = e⊥ ∨ a;

(4) If a ∨ b = 1 and ab = 0, then a, b ∈ B(A);

(5) (a ∧ b) ∨ e = (a ∨ e) ∧ (b ∧ e);

(6) For any integer n ≥ 1, a ∨ b = 1 and anbn = 0 implies an, bn ∈ B(A).

Lemma 3.9 [15] If 1 ∈ K(A) then B(A) ⊆ K(A).

For a bounded distributive lattice L we shall denote byB(L) the Boolean algebra
of the complemented elements of L. It is well-known that B(L) is isomorphic
to the Boolean center B(Id(L)) of the frame Id(L) (see [10], [30], [25]).

Let us fix a coherent quantale A.

Lemma 3.10 [24] Assume c ∈ K(A). Then λA(c) ∈ B(L(A)) if and only if
cn ∈ B(A), for some integer n ≥ 1.

Corollary 3.11 [15] The function λA|B(A) : B(A) → B(L(A)) is a Boolean
isomorphism.

If L is bounded distributive lattice and I ∈ Id(L) then the annihilator of I
is the ideal Ann(I) = {x ∈ L|x ∧ y = 0, for all y ∈ L}.
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Lemma 3.12 If c ∈ K(A) and p ∈ Spec(A) then Ann(λA(c)) ⊆ p∗ if and only
if c → ρ(0) ≤ p.

The next two propositions concern the behaviour of reticulation w.r.t. the
annihilators.

Proposition 3.13 If a is an element of a coherent quantale then Ann(a∗) =
(a → ρ(0))∗; if A is semiprime then Ann(a∗) = (a⊥)∗.

Proposition 3.14 Assume that A is a coherent quantale. If I is an ideal of
L(A) then (Ann(I))∗ = I∗ → ρ(0); if A is semiprime then (Ann(I))∗ = (I∗)

⊥.

If A is a quantale then we denote by Min(A) the set of minimal m - prime
elements of A; Min(A) is called the minimal prime spectrum of A. If 1 ∈ K(A)
then for any p ∈ Spec(A) there exists q ∈ Min(A) such that q ≤ p.

Proposition 3.15 Let A be a coherent quantale. If p ∈ Spec(A) then the
following are equivalent:

(1) p ∈ Min(A);

(2) For all c ∈ K(A)), c ≤ p if and only if c → ρ(0) 6≤ p.

Corollary 3.16 If A is semiprime coherent quantale and p ∈ Spec(A) then
p ∈ Min(A) if and only if for all c ∈ K(A), c ≤ p implies c⊥ 6≤ p.

4 Pure and w - pure elements in a quantale

The pure elements in a quantale extend the pure ideals of a ring [31],[44] and
the σ -ideals of a bounded distributive lattice [18], [26]. More precisely, an
ideal I of bounded distributive lattice L is a σ - ideal if for all x ∈ I, we have
I ∨ Ann(x) = L. An ideal I of a commutative ring R is pure (or virginal , in
terminology of [12]) if for all x ∈ I, we have I ∨ Ann(x) = L. The notions of
pure ideals and σ -ideals have been generalized to various abstract structures
: frames [30], quantales [38], multiplicative - ideal structures [26], two - side
carriers [43], etc. In this way appeared the abstract notion of pure element.

An element a of an arbitrary algebraic quantale A is said to be pure (or
virginal , in the terminology of [27]) if for all c ∈ K(A), c ≤ a implies a∨c⊥ = 1.
Then an ideal I of a commutative ring R is pure if and only if I is a pure element
of the quantale Id(R). An ideal I of a bounded distributive lattice L is a σ -
ideal if and only if I is a pure element of the frame Id(L). The set of pure
elements of the quantale A will be denoted by V ir(A).

The quantales are multiplicative - ideals structures in sense of [27], so all the
results of this paper remain true for the pure elements in a quantale.

Lemma 4.1 [27] If A is an algebraic quantale then the following hold:

(1) If a ∈ A is pure then a =
∨
{c ∈ K(A)|a ∨ c⊥ = 1};
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(2) If a, b ∈ A are pure the ab = a ∧ b;

(3) If (ai)i∈I is a family of pure elements then
∨

i∈I

ai is pure;

(4) The structure (V ir(A),
∨
,∧, 0, 1) is a frame.

Keeping the notations from [12], [27], for any a ∈ A we define the following
elements of A:

O(a) =
∨
{u ∈ A|uv = 0, forsomev ∈ A, v 6≤ a},

Ker(a) =
∨
{c ∈ K(A)|c ≤ a, a ∨ c⊥ = 1};

V ir(a) =
∨
{b ∈ V ir(A)|b ≤ a}.

It is easy to show that Ker(a) =
∨
{c ∈ K(A)|a∨c⊥ = 1}, because a∨c⊥ = 1

implies that c ≤ a. In general we have V ir(a) ≤ Ker(a) ≤ a and a is pure if
and only if a = V ir(a). If A is an algebraic quantale then

O(a) =
∨
{c ∈ K(A)|cd = 0, forsomed ∈ K(A), d 6≤ a}.

For any p ∈ Spec(A) we have O(p) =
∨
{c ∈ K(A)|c⊥ 6≤ p}, hence O(p) ≤ p.

Lemma 4.2 [27] Let A be is algebraic quantale such that 1 ∈ K(A). Then the
following hold:

(1) If m ∈ Max(A) then O(m) = Ker(m);

(2) If a ∈ V ir(A) then

a = V ir(
∧
{m ∈ Max(A)|a ≤ m}) =

∧
{V ir(m)|m ∈ Max(A), a ≤ m};

(3) The map ρ : V ir(A) → R(A) is an injective frame morphism, left
adjoint to V ir : R(A) → V ir(A);

(4) V ir(A) is a spatial frame and V ir : Spec(A) → Spec(V ir(A)) is a
continuous map.

The following lemma improves the property (2) from Lemma 4.1.

Lemma 4.3 Let A be is an algebraic quantale such that 1 ∈ K(A). If a ∈ A
and b ∈ V A then a ∧ b = ab.

Proof. Assume that c is a compact element of A such that c ≤ a∧b. From c ≤ b
one gets b ∨ c⊥ = 1, hence c = c(b ∨ c⊥) = cb. Thus c ≤ ab, hence a ∧ b ≤ ab.
The converse inequality is obvious.

Lemma 4.4 Let A be is an algebraic quantale such that 1 ∈ K(A). If p is an
m - of prime element A then V ir(p) = V ir(O(p)).

10



Proof. Let p be an element of Spec(A). Since O(p) ≤ p then the inequality
V ir(O(p)) ≤ V ir(p) holds. In order to obtain the inverse inequality V ir(p) ≤
V ir(O(p)), we must prove that for any compact element c of A, c ≤ V ir(p)
implies c ≤ V ir(O(p)). If c ≤ V ir(p) then V ir(p) ∨ c⊥ = 1, so p ∨ c⊥ = 1.
Thus p ∨ d = 1 for some d ∈ K(A) such that d ≤ c⊥, hence d 6≤ p and cd = 0.
It follows that c ≤ O(p), therefore V ir(p) ≤ O(p). The last inequality implies
V ir(p) ≤ V ir(O(p)).

Proposition 4.5 Let A a semiprime algebraic quantale such that 1 ∈ K(A). If
a ∈ V ir(A) then ρ(a) = a.

Proof. Assume that c ∈ K(A) and n is a positive integer such that cn ≤ a.
Then a∨ (cn)⊥ = 1, so there exists d ∈ K(A) such that d ≤ (cn)⊥ and a∨d = 1.
It follows that cnd = 0, hence λA(cd) = λA(c) ∧ λA(d) = λA(c

nd) = 0. Since
A is semiprime one gets cd = 0, therefore c = c(a ∨ d) = ca. By using Lemma
4.3 one obtains c = c ∧ a, hence c ≤ a. According to Lemma 2.4 it results that
ρ(a) = a.

An element a of a quantale A is said to be weakly - pure ( = w - pure) if for
all c ∈ K(A), c ≤ a implies a ∨ (c → ρ(0)) = 1.

Lemma 4.6 Any pure element a of A is w - pure.

Proof. For any compact element c ≤ a we have c⊥ = c → 0 ≤ c → ρ(0), so
1 = a ∨ c⊥ ≤ a ∨ (c → ρ(0)), hence a is w - pure.

If A is semiprime then a ∈ A is pure if and only if it is w - pure. We denote
by V irw(A) the set of w - pure elements of A. By the previous lemma we have
V ir(A) ⊆ V irw(A).

Lemma 4.7 Let A be an algebraic quantale such that 1 ∈ K(A).

(1) V irw(A) is closed under · and ∧;

(2) For any family (ai)i∈I ⊆ V irw(A) we have
∨

i∈I

ai ∈ V irw(A).

Proof. (1) Assume that a, b are two w - pure elements of A. If c is a compact
element of A such that c ≤ ab then c ≤ a and c ≤ b, so we have a∨ (c → ρ(0) =
b ∨ (c → ρ(0) = 1. By Lemma 2.1,(3) we get (ab) ∨ (c → ρ(0)) = 1, so ab is w
- pure. Similarly, c, d ∈ K(A) and c ≤ a ∧ b implies (a ∧ b) ∨ (c → ρ(0)) = 1,
hence a ∧ b is w - pure.

11



(2) Let us denote a =
∨

i∈I

ai. Assume that c is a compact element of A

such that c ≤ a, hence c ≤
∨

i∈J

ai, for some finite subset J of I. Thus there

exist the compact elements di, i ∈ J such that c ≤
∨

i∈J

di and di ≤ ai, for all

i ∈ J . For any i ∈ J we have a ∨ (di → ρ(0)) ≥ ai ∨ (di → ρ(0)) = 1, so,

by using Lemma 2.1,(3) it follows that a ∨
∧

i∈J

(di → ρ(0)) = 1. Observing

that c → ρ(0) ≥ (
∨

i∈J

di) → ρ(0) =
∧

i∈J

(di → ρ(0)), one obtains the inequality

a ∨ (→ ρ(0)) ≥ a ∨
∧

i∈J

(di → ρ(0)) = 1. Thus a ∨ (c → ρ(0)) = 1, hence a is w-

pure.

Lemma 4.8 If an element a of coherent quantale A is w - pure then a∗ is a σ-
ideal of the reticulation L(A). Particularly, if a is pure then a∗ is a σ- ideal.

Proof. Assume that x ∈ a∗, hence x = λA(c) for some compact element c of
A, such that c ≤ a. Then a ∨ (c → ρ(0)) = 1, so there exist c, d ∈ K(A) such
that d ≤ a, e ≤ c → ρ(0) and d ∨ e = 1. It follows that λA(d) ∈ a∗, ec ≤ ρ(0)
and λA(d) ∨ λA(e) = λA(d ∨ e) = 1. On the other hand we have λA(d) ∧ λA(e)
= λA(de) ≤ λA(ρ(0)) = 0, so λA(e) ∈ Ann(λA(c)). Thus a∗ ∨ Ann(x) =
a∗ ∨ Ann(λA(c)) = L(A), so a∗ is a σ- ideal of L(A). The second part of
proposition follows by Lemma 4.5.

Lemma 4.9 Let A be a coherent quantale and J a σ - ideal of L(A). Then J∗
is a w - pure element of A.

Proof. Let c be a compact element of A such that c ≤ J∗. By Lemma 3.3,(6)
we have λA(c) ∈ J , hence J∨Ann(λA(c)) = L(A). Then there exist d, e ∈ K(A)
such that λA(c) ∈ J , λA(e) ∈ Ann(λA(c) and λA(d ∨ e) = λA(d) ∨ λA(e) = 1.
By Lemmas 3.3,(6) and 3.2,(3) we obtain d ≤ J∗ and d ∨ e = 1. From λA(e) ∈
Ann(λA(c) we get λA(ce) = λA(c) ∧ λA(e) = 0, hence ce ≤ ρ(0) (cf. Lemma
3.2,(8)). It follows that e ≤ c → ρ(0), so 1 = c ∨ d ≤ J∗ ∨ (c → ρ(0)). Thus
J∗ ∨ (c → ρ(0)) = 1, hence J∗ is w - pure.

Corollary 4.10 Let A be a semiprime quantale. If J is a σ - ideal of L(A)
then J∗ is a pure element of A.

Corollary 4.11 Let A be a coherent quantale.
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(1) If a ∈ A is w - pure then ρ(a) is w - pure;

(2) An ideal J of L(A) is a σ - ideal if and only if J∗ is a w - pure element
of A.

Proof. (1) If a ∈ A is w - pure then a∗ is a σ - ideal of L(A) (cf. Lemma 4.8).
By applying Lemma 4.9 it follows that ρ(a) = (a∗)∗ is w - pure.

(2) We apply Lemmas 4.8, 4.9 and 3.3,(2).

Following [18], [26], if I is an ideal of a bounded distributive lattice then we
denote σ(I) = {x ∈ L|I ∨Ann(x) = L}. We remark that in the frame Id(L) we
have σ(I) = Ker(I).

Lemma 4.12 Let A be a coherent quantale. Then for all a ∈ A and c ∈ K(A),
the following equivalence holds: c ≤ Ker(a) if and only if a ∨ c⊥ = 1.

Proof. If c ≤ Ker(a) then there exist d1, ..., dn ∈ K(A) such that c ≤ d1∨...∨dn

and di ≤ a, a∨d⊥i = 1, for all i = 1, ..., n. Denoting d =
n∨

i=1

di we have d ∈ K(A)

and, by using Lemma 2.1,(3), the following equalities hold:

a ∨ d⊥ = a ∨ (
n∨

i=1

di)
⊥ = a ∨

n∧

i=1

d⊥i = 1.

Since c ≤ d it follows that d⊥ ≤ c⊥, so a ∨ c⊥ = 1. The proof of converse
implication is obvious.

The following two theorems emphasize the way in wich the reticulation pre-
serves the operator Ker(·).

Theorem 4.13 Let A be a coherent quantale.

(1) For any a ∈ A we have (Ker(a))∗ = σ(a∗);

(2) For any ideal I of L(A) we have (σ(I))∗ = Ker(a∗).

Proof. (1) Assume that x ∈ σ(a∗), so a∗ ∨ Ann(x) = L(A). Then there
exists c ∈ K(A) such that x = λA(c), so a∗ ∨ Ann(λA(c)) = L(A). Then
one can find d, e ∈ K(A) such that λA(d) ∈ a∗, λA(e) ∈ Ann(λA(c)) and
λA(d ∨ e) = λA(d) ∨ λA(e) = 1. Thus λA(ec) = λA(e) ∧ λA(c) = 0, so there
exists a positive integer n such that encn = 0, hence en ≤ (cn)⊥. According
to Lemma 3.2,(3) have d ∨ e = 1, so dn ∨ en = 1 (by Lemma 2.2,(2)). On can
take d ≤ a, hence a ∨ (cn)⊥ = 1. By Lemma 4.12 we get cn ≤ Ker(a), so
x = λA(c) = λA(c

n) ∈ (Ker(a))∗. We have proven that σ(a∗) ⊆ (Ker(a))∗.
In order to prove that (Ker(a))∗ ⊆ σ(a∗), let us assume that x ∈ (Ker(a))∗,

so x = λA(c), for some compact element c having the property c ≤ Ker(a). By
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Lemma 4.12 we have a ∨ c⊥ = 1, hence, by using Lemma 3.4,(2), one obtains
a∗ ∨ (c⊥)∗ = L(A). According to Proposition 3.13, Ann(x) = Ann(λA(c))
= (c → ρ(0))∗, therefore the inequality c⊥ = c → 0 ≤ c → ρ(0) implies
(c⊥)∗ ⊆ (c → ρ(0))∗ = Ann(x). It follows that a∗ ∨ Ann(x) = L(A), i.e
x ∈ σ(a∗)

(2) Assume that I is an ideal of L(I) and c is a compact element of A. If
I∗ ∨ c⊥ = 1 then, by using Lemmas 3.3,(2) and 3.4,(2), one obtains I ∨ (c⊥)∗=
(I∗)

∗∨ (c⊥)∗ = (I∗∨c⊥)∗ = L(A). Conversely, assuming that I ∨ (c⊥)∗ = L(A),
one infers that there exist d, e ∈ K(A) such that λA(d) ∈ I, λA(e) ∈ (c⊥)∗ and
λA(d ∨ e) = λA(d) ∨ λA(e) = 1. We remark that λA(d) ∈ I implies d ≤ I∗ and
λA(d ∨ e) = 1 implies d ∨ e = 1. It is obvious that one can assume that e ≤ c⊥,
so I∗ ∨ c⊥ = 1. Thus we get the following equivalence: I∗ ∨ c⊥ = 1 if and only
if I ∨ (c⊥)∗ = L(A). By using this equivalence and Lemma 4.12, the following
hold: c ≤ Ker(I∗) iff I ∨ c⊥ = 1 iff I ∨ (c⊥)∗ = L(A) iff I ∨Ann(λA(c)) = L(A)
iff λA(c) ∈ σ(I) iff c ≤ (σ(I))∗. The previous equivalences hold for all c ∈ K(A),
therefore one gets the equality (σ(I))∗ = Ker(a∗).

Theorem 4.14 If a is a w - pure radical element of a coherent quantale A then
a = ρ(Ker(a)) and Ker(a) = V ir(a).

Proof. First we shall show that a = ρ(Ker(a)). From Ker(a) ≤ a we get
ρ(Ker(a)) ≤ ρ(a) ≤ a. In order to prove that a ≤ ρ(Ker(a)), assume that
c is a compact element of A such that c ≤ a. Since a is w - pure, we get
a ∨ (c → ρ(0)) = 1. By the compactness of 1, there exists d ∈ K(A) such that
d ≤ c → ρ(0) and a ∨ d = 1. According to Lemma 2.4,(2), from dc ≤ ρ(0)
one obtains dncn = 0 for some positive integer n, hence dn ≤ (cn)⊥. Applying
Lemma 2.1,(3), from a ∨ d = 1 we obtain a ∨ dn = 1, hence a ∨ (cn)⊥ = 1.
Thus the compact element cn verifies the inequality cn ≤ Ker(a) (cf. Lemma
4.1), hence, by using Lemma 2.4,(2) one obtains c ≤ ρ(Ker(a)). It follows that
a ≤ ρ(Ker(a)), hence a = ρ(Ker(a)).

In order to show that Ker(a) = V ir(a), we recall that Ker(a) ≤ V ir(a),
hence it suffices to check that Ker(a) is pure. Assume that c is a compact
element such that c ≤ Ker(a), so a ∨ c⊥ = 1 (cf. Lemma 4.1). We have proven
that a = ρ(Ker(a)), so ρ(Ker(a)) ∨ c⊥ = 1. By the compactness of 1 there
exists d ∈ K(A) such that d ≤ ρ(Ker(a)) and d∨ c⊥ = 1. According to Lemma
2.4,(1), there exists a positive integer n such that dn ≤ Ker(a) and, by Lemma
4.1, on gets dn ∨ c⊥ = 1. It follows that Ker(a) ∨ c⊥ = 1, so Ker(a) is pure.

Lemma 4.15 If a is a pure element of a coherent quantale A then a = V ir(ρ(a)).

Proof. We remark that a ≤ ρ(a) ≤
∧
{m ∈ Max(A)|a ≤ m}. In accordance

with Lemma 4.2,(3) it follows that the following hold: a = V ir(a) ≤ V ir(ρ(a)) ≤
V ir(

∧
{m ∈ Max(A)|a ≤ m}) = a, so a = V ir(ρ(a)).
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According to Lemma 4.7, one can consider the function w : V ir(A) →
V ir(Id(L(A))), defined by w(a) = a∗, for all a ∈ V ir(A). By using Lemma
3.4,(2) it follows that w is a frame morphism.

By using the previous results one can obtain a new proof of a theorem given
in [23].

Theorem 4.16 The map w is a frame isomorphism.

Proof. According to Lemma 4.8 one can consider the composition V ir ◦ (·)∗ of
the following functions:

V ir(Id(L(A)))
(·)∗
−−→ V irw(A)

V ir
−−→ V ir(A).

We shall prove that V ir ◦ (·)∗ is the inverse function of w. Let a be an
arbitrary pure element of A. By using Lemmas 4.11 and 3.3(7), the following
equalities hold: a = V ir(ρ(a)) = V ir((a∗)∗) = (V ir ◦ (·)∗)(w(a)).

If J ∈ V (Id(L(A))) then a = J∗ is a w - pure radical element of A (cf. Lemma
4.8). Then by using Theorem 4.3 and Lemma 3.3, the following equalities hold:

w(V ir(J∗)) = (V ir(a))∗ = (Ker(a))∗ = (ρ(Ker(a)))∗ = a∗ = (J∗)
∗ = J .

Let A be a semiprime coherent quantale. By Proposition 4.5 we have
V ir(A) ⊆ R(A). Therefore, by using the proof of the previous theorem it
follows that the functions

(·)∗ : V ir(A) → V ir(Id(L(A)))), (·)∗ : V ir(Id(L(A))) → V ir(A)
are the inverse frame morphisms that give that the frames V ir(A) and

V ir(Id(L(A)))) are isomorphic.

Lemma 4.17 Let A be a coherent quantale.

(1) For any p ∈ Spec(A) we have O(p) =
∨
{c ∈ K(A)|c ≤ p, c⊥ 6≤ p};

(2) For any p ∈ Spec(A), c ≤ O(p) if and only if c⊥ 6≤ p.

For any p ∈ Spec(A), define Õ(p) =
∨
{c ∈ K(A)|c ≤ p, c → ρ(0) 6≤ p}. It is

easy to prove that Õ(p) ≤ O(p).

Lemma 4.18 For all p ∈ Spec(A) and c ∈ K(A), c ≤ Õ(p) if and only if c ≤ p
and c → ρ(0) 6≤ p.

Proof.

Assume that c ≤ Õ(p), so there exist d1, ..., dn ∈ K(A) such that c ≤
n∨

i=1

di,

di ≤ p and di → ρ(0) 6≤ p, for each i = 1, ..., n. Then c ≤ p and (

n∨

i=1

di) → ρ(0)
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=

n∧

i=1

(di → ρ(0)) 6≤ p (because p is m - prime). The converse implication is

obvious.

Theorem 4.19 Let A be a coherent quantale.

(1) For any p ∈ Spec(A) we have O(p∗) = (Õ(p))∗;

(2) For any P ∈ SpecId(L(A)) we have (O(P ))∗ = Õ(P∗).

Proof. (1) Assume that x ∈ O(p∗), hence Ann(x) 6⊆ p∗ and x ∈ p∗. Let us take
a compact elemenent c such that c ≤ p and x = λA(c), so Ann(λA(c)) 6⊆ p∗. By
Lemma 3.12 we have c → ρ(0) 6≤ p, so c ≤ Õ(p). It follows that x = λA(c) ∈
(Õ(p))∗, so one obtains the inclusion O(p∗) ⊆ (Õ(p))∗.

In order to prove that (Õ(p))∗ ⊆ p∗, let us assume that x ∈ (Õ(p))∗, hence
there exists c ∈ K(A) such that c ≤ Q̃(p) and x = λA(c). By Lemma 4.18 we
have c ≤ p and c → ρ(0) 6≤ p. By using Lemma 3.12 one gets Ann(λA(c)) 6⊆ p∗,
hence x = λA(c) ∈ O(p∗).

(2) Let c be a compact element of A such that c ≤ (O(P ))∗, hence λA(c) ∈
O(P ) (cf. Lemma 3.3,(6)). It follows that λA(c) ∈ P and Ann(λA(c)) 6⊆ P =
(P∗)

∗. By using Lemma 3.12 we get c → ρ(0) 6≤ P∗, therefore by applying
Lemma 4.18 we have c ≤ Õ(P∗). We conclude that (O(P ))∗ ≤ Õ(P∗).

In order to prove the converse inequality Õ(P∗) ≤ (O(P ))∗, let us assume
that c ∈ K(A) and c ≤ Õ(P∗). By Lemma 4.18 we have c ≤ P∗ and c → ρ(0) 6≤
P∗. Applying Lemma 3.12 we obtain Ann(λA(c)) 6≤ (P∗)

∗ = P . From c ≤ P∗

we get λA(c) ∈ P (according to Lemma 3.3,(6)). Therefore λA(c) ∈ O(P ), so
we conclude that c ≤ (O(P ))∗.

Corollary 4.20 Let A be a semiprime coherent quantale.

(1) For any p ∈ Spec(A) we have (O(p∗) = (O(p))∗;

(2) For any P ∈ SpecId(L(A)) we have (O(P ))∗ = O(P∗).

Theorem 4.19 and Corollary 4.20 show us how the reticulation preserves the
operator O(·). They will be used many-times in the proofs of the theorems in
the next sections (see e.g. the proof of Theorem 5.10).

5 Further properties of pure elements

Lemma 5.1 Let A be an algebraic quantale. Any regular element of A is pure.
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Proof. Let e be a complemented element of A. If c is a compact element of A
such that c ≤ e then e⊥ ≤ d⊥, therefore 1 = e ∨ e⊥ ≤ e ∨ c⊥. Then e is pure.

Let now q be a regular element of A and e ∈ B(A) such that e ≤ q. We
have proven that any complemented element is pure, so e = V ir(e) ≤ V ir(p).
It follows that q =

∨
{e ∈ B(A)|e ≤ q} ≤ V ir(q), so q = V ir(q). Therefore q is

pure.

For any p ∈ Spec(V ir(A)) let us define tA(p) =
∨
{e ∈ B(A)|e ≤ q}. Thus

tA(p) is regular and tA(p) ≤ p < 1.

Lemma 5.2 If p ∈ Spec(V ir(A)) then tA(p) is a max - regular element.

- Proof. It suffices to prove that e ∈ B(A) and e 6≤ p imply tA(p) ∨ e = 1.
Assume by absurdum that there exists e ∈ B(A) such that e 6≤ p and tA(p)∨e <
1. The element tA(p) ∨ e is regular so there exists a max - regular element q
such that tA(p)∨ e < q. Since the complemented elements e and ¬e are pure, it
follows that e 6≤ p and e ∧ ¬e = 0 implies ¬e ≤ p, hence ¬e = tA(¬e) ≤ tA(p).
Thus one gets 1 ≤ e ∨ ¬e ≤ e ∨ tA(p), contradicting q ∈ Sp(A). We conclude
that tA(p) ∨ e = 1.

In accordance with the previous lemma, one can consider the function tA :
Spec(V ir(A)) → Sp(A) defined by the assignment p 7→ tA(p).

Proposition 5.3 The function tA is surjective and continuous.

Proof. If q ∈ Sp(A) then there exists m ∈ Max(A) with q ≤ m. By Lemma 5.1
q is pure, so q ≤ V ir(m). Since q is regular, we have q = tA(q) ≤ tA(V ir(m)).
Thus q = tA(V ir(m)), because both q and tA(V ir(m)) are max - regular. In a
straightforward manner one can show that tA is continous.

Following [38], a quantale A is said to be normal if for all a, b ∈ A such
that a ∨ b = 1 there exist e, f ∈ A such that a ∨ e = b ∨ f = 1 and ef = 0. If
1 ∈ K(A) then A is normal if and only if for all c, d ∈ K(A) such that c∨ d = 1
there exist e, f ∈ K(A) such that c ∨ e = d ∨ f = 1 and ef = 0 (cf. Lemma 20
of [15]). One observes that a commutative ring R is a Gelfand ring iff Id(R) is
a normal quantale and a bounded distributive lattice L is normal iff Id(L) is a
normal frame.

The normal quantales offer an abstract framework in order to unify some
algebraic and topological properties of commutative Gelfand rings [30], [8], [35],
normal lattices [30], [26], [40], [43], commutative unital l - groups [10], F - rings
[10], [30], MV - algebras and BL - algebras [22], [32], Gelfand residuated lattices
[25], etc.

Let us fix a coherent quantale A.
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Lemma 5.4 [27] Let A be a normal coherent quantale and a ∈ A,m ∈ Max(A).
Then the following hold:

(1) m is the unique maximal element of A such that O(m) ≤ m;

(2) Ker(m) ≤ a if and only if a = m or a = 1;

(3) Ker(a) ≤ m implies a ≤ m;

(4) V ir(a) = Ker(a);

(5) V ir(a) ≤ m if and only if a ≤ m.

By Lemmas 4.2,(1) and 5.4,(4), for each maximal element m of A we have
O(m) = Ker(m) = V ir(m), so O(m) is pure.

Proposition 5.5 [15] The quantale A is normal if and only if the reticulation
L(A) is a normal lattice (in the sense of [43],[30]).

For any element a ∈ A we denote r(a) =
∧
(Max(A)

⋂
V (a)). In particular,

r(0) is exactly the radical r(A) of the quantale A (cf.[24]). We observe that
r(a) = r(0) is an abstractization of the Jacobson radical of a ring.

The literature of ring theory contains several properties that characterize
the (commutative) Gelfand rings (see[43],[30],[35],[1],[49]). The following result
extends the main characterization theorems of Gelfand rings. It collects various
conditions that characterize normal quantales. In particular, the below prop-
erties (1) - (7) correspond to some conditions from Theorem 4.3 of [1] and the
properties (8) - (14) generalize the conditions contained in Theorem 4.6 of [49].

Proposition 5.6 [38],[27],[44] If A is a coherent quantale then the following
are equivalent:

(1) A is a normal quantale;

(2) For all distinct m,n ∈ Max(A) there exist c1, c2 ∈ K(A) such that
c1 6≤ m, c2 6≤ n and c1c2 = 0;

(3) The inclusion Max(A) ⊆ Spec(A) is Hausdorff embedding (i.e. any
pair of distinct points in Max(A) have disjoint neighbourhoods in SpecZ(A));

(4) For any p ∈ Spec(A) there exists a unique m ∈ Max(A) such that
p ≤ m;

(5) SpecZ(A) is a normal space;

(6) The inclusion MaxZ(A) ⊆ SpecZ(A) has a continuous retraction γ :
SpecZ(A) → MaxZ(A);

(7) If m ∈ Max(A) then Λ(m) is a closed subset of SpecZ(A).

(8) If m,n are two distinct maximal elements of A then V ir(m)∨V ir(n) =
1;
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(9) For all a, b ∈ A, a ∨ b = 1 implies V ir(a) ∨ V ir(b) = 1;

(10) V ir : A → V ir(A) preserves arbitrary joins;

(11) For all a ∈ A and m ∈ Max(A), V ir(a) ≤ m implies a ≤ m;

(12) For all a ∈ A, the following equality holds: Max(A)
⋂
V (a) = Max(A)

⋂
V (V ir(a));

(13) For all a ∈ A, the following equality holds: r(a) = r(V ir(a));

(14) The function η : MaxZ(A) → SpecZ(V ir(A)) defined by m 7→ V ir(a)
is a homeomorphism.

Proof.

(1) ⇔ (2) ⇔ (3) ⇔ (4) By Proposition 3.2 of [27].
(1) ⇔ (8) ⇔ (9) ⇔ (10) By Proposition 3.4 of [27] or Theorem 3.5 of [44].
(1) ⇔ (11) By Theorem 3.5 of [44].
(11) ⇔ (12) ⇔ (13) These equivalences follow in a straightforward manner.
(1) ⇔ (4) ⇔ (5) These equivalences follow from [38],[46] or by using Propo-

sition 5.5 and [30], (p.68, Proposition 3.7).
(1) ⇒ (14) By Theorem 3.5 of [27].
(14) ⇒ (6) According to Lemma 4.2,(4), V ir : SpecZ(A) → SpecZ(V ir(A))

is a continuous map and, by the hypothesis (14), the function η : MaxZ(A) →
SpecZ(V ir(A)) defined by m 7→ V ir(a) is a homeomorphism. Then it is easy to
see that γ = η−1 ◦V ir : MaxZ(A) → SpecZ(V ir(A)) is a continuous retraction
of the inclusion MaxZ(A) ⊆ SpecZ(A).

(1) ⇔ (7) According to [28], for each bounded distributive lattice L there
exists a commutative ring R such that the reticulation L(R) of R is isomorphic
to L. Then for any coherent quantale A there exists a commutative ring R such
that the reticulations L(A) and L(R) are isomorphic. By Proposition 5.5, A
is a normal quantale iff L(A) is a normal lattice iff L(R) is a normal quantale
iff R is a Gelfand ring. Applying twice Lemma 3.5 we get a homeomorphism
θ : SpecZ(A) → SpecZ(R); moreover, θ is an order - isomorphism. Thus the
following assertions are equivalent:

• for all m ∈ Max(A), Λ(m) = {p ∈ Spec(A)|p ≤ m} is closed in SpecZ(A);
• for all M ∈ Spec(R), Λ(M) = {P ∈ Spec(R)|P ⊆ M} is closed in

SpecZ(R).
In accordance with the equivalence (i) ⇔ (viii) from Theorem 4.3 of [1], the

following equivalences hold: A is a normal quantale iff R is a Gelfand ring iff
for all M ∈ Max(R), Λ(M) is closed in SpecZ(R) iff for all m ∈ Max(A), Λ(m)
is closed in SpecZ(A).

Let L be a bounded distributive lattice and P ∈ SpecId(L), hence L − P
is a filter of L. Following [13], the quotient bounded distributive lattice LP =
L/L−P is called the lattice of fractions of L associated with the prime ideal P .
The congruence ≡P of L modulo the filter L−P has the following form: x ≡P y
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iff x ∧ t = y ∧ t, for some t /∈ P . We denote by xP the congruence class of the
element x ∈ L. Let us consider the lattice morphism πP : L → LP , defined by
πP (x) = xP , for all x ∈ L.

Lemma 5.7 For all x ∈ L, we have x ∈ O(P ) if and only if πP (x) = 0P .

Proof.For all x ∈ L, the following equivalences hold: πP (x) = 0P iff x ≡P 0 iff
there exists t /∈ P such that x ∧ t = 0 iff x ∈ O(P ).

Remark 5.8 [13] For any prime ideal P of L, we shall denote ΛId(P ) = {Q ∈
SpecId(L)|Q ⊆ P}. Let us consider the function π∗

P : ΛId(L) → SpecId(L),
defined by the assigment Q 7→ π∗

P (Q) = {xP |x ∈ Q}. It is straightforward to
prove that π∗

P is an order - isomorphism.

Proposition 5.9 For all prime ideal P of the lattice L, we have O(P ) =⋂
ΛId(P ).

Proof. For any element x ∈ O(P ) there exists y /∈ P such that x∧y = 0. Then
for any Q ∈ VId(L) we have y /∈ Q, hence x ∈ Q. It follows that the inclusion
O(P ) ⊆

⋂
VId(P ) holds.

In order to establish the converse inclusion
⋂
ΛId(P ) ⊆ O(P ), assume that

x ∈
⋂
ΛId(P ). Then πP (x) ∈ π∗

P (Q) for all prime ideal Q such that Q ⊆ P ,
hence by using Remark 5.8, one gets

πP (x) ∈
⋂
{π∗

P (Q)|Q ∈ ΛId(P )} =
⋂
Specid(L) = {0P}.

In accordance with Lemma 5.7, one obtains x ∈ O(P ).

Theorem 5.10 Let A be a semiprime coherent quantale. For any m - prime
element p of A, the equality O(p) =

∧
Λ(p) holds.

Proof. Let c ∈ K(A) such that c ≤ O(p), hence c ≤ p and c⊥ 6≤ p (cf. Lemma
4.17,(2)). For all q ∈ Λ(p) we have c⊥ 6≤ q, so c ≤ q. It follows that c ≤

∧
Λ(p),

hence O(p) ≤
∧
Λ(p).

In order to prove that
∧
Λ(p) ≤ O(p), let us consider an element c ∈ K(A)

such that c ≤
∧
Λ(p). Then for all m - prime elements q such that q ≤ p we have

c ≤ q. According to Lemma 3.5, it follows that for all prime ideals of L(A) such
that Q ⊆ p∗ we have λA(c) ∈ Q. In accordance with Proposition 5.9 it follows
that λA(c) ∈ O(p∗). Since the quantale A is semiprime, by using Corollary 4.20
one gets λA(c) ∈ (O(p))∗. Therefore, by applying Lemma 3.3 and Corollary
4.20, the following hold: c ≤ ((O(p))∗)∗ = (O(p∗))∗ = O((p∗)∗) = O(p). We
conclude that

∧
Λ(p) ≤ O(p).

We observe that the previous theorem is obtained by transferring Proposition
5.9 from lattices to quantales by using the reticulation.
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Corollary 5.11 Let A be a semiprime coherent quantale. For any minimal m
- prime element p of A, the equality O(p) = p holds.

Corollary 5.12 If A is a semiprime coherent quantale then
∧
{O(m)|m ∈

Max(A)} = 0 .

Proof. By using Theorem 5.10, for each m ∈ Max(A) we have O(m) = Λ(m).
By observing that Spec(A) =

⋃
{Λ(m)|m ∈ Max(A), the following equality

holds:∧
{O(m)|m ∈ Max(A)} =

∧
Spec(A) = 0.

Lemma 5.13 If a is a pure element of a normal coherent quantale A then
a =

∧
{O(m)|m ∈ Max(A)

⋂
V (a)}.

Proof. Let a be a pure element of A. Recall from Lemma 4.2,(ii) the equality
a =

∧
{V ir(m)|m ∈ Max(A)

⋂
V (a)}. By Lemmas 4.2,(1) and 5.4,(4) one gets

O(m) = Ker(m) = V ir(m), hence a =
∧
{O(m)|m ∈ Max(A)

⋂
V (a)}.

Lemma 5.14 Let A be a normal coherent quantale.

(1) If m ∈ Max(A) then O(m) is pure;

(2) If p is a pure m - prime element of A then O(p) = p.

Proof. (1) By Lemmas 4.2,(1) and 5.4,(4) we have O(m) = Ker(m) = V ir(m);
(2) The inequality O(p) ≤ p is always true. In order to prove the converse

inequality p ≤ O(p) let us consider a compact element c such that c ≤ p. Since
p is pure we have p ∨ c⊥ = 1, so c⊥ 6≤ p. From cc⊥ = 0 and c⊥ 6≤ p it follows
that c ≤ p, so p ≤ O(p).

Corollary 5.15 If A be a normal coherent quantale then a maximal element of
A is pure if and only if O(m) = m.

Following [15],[24], a quantale A is said to be hyperarchimedean if for all
c ∈ K(A) there exists a positive integer n such that cn ∈ B(A). In [15] we
proved that a coherent quantale is hyperarchimedean iff L(A) is a Boolean
algebra iff Max(A) = Spec(A).

Proposition 5.16 Let A be a semiprime coherent quantale. Then rhe following
are equivalent:

(1) A is hyperarchimedean;
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(2) Any maximal element of A is pure.

Proof.

(1) ⇒ (2) Let m be a maximal element of A. According to Theorem 1 of
[15], we have Max(A) = Spec(A), so m ∈ Min(A). By Corollary 5.11 we get
O(m) = m, so m is pure.

(2) ⇒ (1) Assume that m ∈ Max(A), so m is pure, hence O(m) = m
(cf. Lemma 5.14). By Proposition 5.10, it folows that

∧
Λ(m) = O(m) = m,

hence m is a minimal m - prime element. Therefore Min(A) = Max(A), so, by
Theorem 1 of [15], we conclude that A is hyperarchimedean.

Proposition 5.17 Let A be a normal coherent quantale and a ∈ A. Then
K(a) =

∧
(Max(A)

⋂
V (a)) is a pure element of A.

Proof. Let c be a compact element of A such that c ≤ K(a). We have to
prove that K(a) ∨ c⊥ = 1. For all m ∈ Max(A)

⋂
V (a) we have c ≤ O(m),

hence, by Lemma 4.17,(2), we get c⊥ 6≤ m, so dmc = 0 and dm 6≤ m for some
dm ∈ Max(A).

For all maximal element m such that m /∈ V (a) we take a compact element
em such that em ≤ a and em 6≤ m. Assume that∨

{dm|m ∈ Max(A), a ≤ m} ∨
∨
{em|m ∈ Max(A), a 6≤ m} < 1,

so there exists n ∈ Max(A) such that∨
{dm|m ∈ Max(A), a ≤ m} ∨

∨
{em|m ∈ Max(A), a 6≤ m} ≤ n.

Thus a ≤ n implies dn ≤ n and a 6≤ n implies en ≤ n. In the both cases we
have obtained a contradiction, therefore∨

{dm|m ∈ Max(A), a ≤ m} ∨
∨
{em|m ∈ Max(A), a 6≤ m} = 1.

Since 1 ∈ K(A) there exist the maximal elements m1, ...,mk, n1, ..., nl such
that dm1

∨ ... ∨ dmk
∨ en1

∨ ... ∨ enl
= 1, a ≤ mi, for i = 1, ..., k and a 6≤ nj , for

j = 1, ..., l. Let us denote di = dmi
for i = 1, ..., k and ej = enj

for j = 1, ..., l.
Thus cdi = 0, di ≤ mi, for i = 1, ..., k and ej ≤ a, ej 6≤ nj , for j = 1, ..., l.

If d = d1 ∨ ... ∨ dk and e = e1 ∨ ... ∨ el then d, e ∈ K(A) and d ∨ e = 1. It
follows that cd = 0 and e ≤ a. Since A is a normal quantale, from d ∨ e = 1
we infer that there exist x, y ∈ K(A) such that d ∨ x = e ∨ y = 1 and xy = 0.
Then x = x(e ∨ y) = xe ∨ xy = xe, hence x ≤ e ≤ a. In a similar way we get
y = yd ≤ d.

We shall prove that x ≤ K(a). Let m be a maximal element of A such that
a ≤ m, hence e ≤ a ≤ m. Since e ∨ y = 1 and e ≤ m it follows that y 6≤ m. On
the other hand, xy = 0 implies y ≤ x⊥, hence x⊥ 6≤ m. According to Lemma
4.17,(2) we have x ≤ O(m). We have proven that for all maximal element m,
a ≤ m implies x ≤ O(m), hence x ≤ K(a).

Recall that cd = 0, so d ≤ c⊥. Thus 1 = x∨d ≤ K(a)∨c⊥, so K(a)∨c⊥ = 1.
We conclude that K(a) is pure.
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Theorem 5.18 Let A be a normal coherent quantale. Then an element a ∈ A
is pure if and only if a =

∧
{O(m)|m ∈ Max(A)

⋂
E}, for some closed subset

E of SpecZ(A).

Proof. By Lemma 5.13, any pure element a ∈ A has the form a =
∧
{O(m)|m ∈

Max(A)
⋂
V (a)}. Conversely, assume that a =

∧
{O(m)|m ∈ Max(A)

⋂
E},

for some closed subset E of SpecZ(A). Then E = V (x) for some x ∈ A, hence
a = K(x). In accordance with Proposition 5.17, a = K(x) is a pure element of
A.

For any m - prime element p of a coherent quantale denote Ω(p) =
∧
Λ(p).

According to Theorem 5.10, if A is semiprime and p ∈ Spec(A) then O(p) =
Ω(p).

Corollary 5.19 Let A be a normal and semiprime coherent quantale. Then an
element a ∈ A is pure if and only if a =

∧
{Ω(m)|m ∈ Max(A)

⋂
E}, for some

closed subset E of SpecZ(A).

6 Pure elements in PF - quantales

Following [24], a quantale A is said to be an mp - quantale if for any p ∈ Spec(A)
there exists a unique q ∈ Min(A) such that q ≤ p. An mp - frame is an mp -
quantale wich is a frame. We remark that a ring R is an mp - ring in the sense
of [1] if and only if the quantale Id(R) of ideals of R is an mp - quantale. The
mp - quantales can be related to the conormal lattices, introduced by Cornish
in [17] under the name of ”normal lattices”. According to [43],[30], a conormal
lattice is a bounded distributive lattice L such that for all x, y ∈ L with x∧y = 0
there exist u, v ∈ L having the properties x ∧ u = y ∧ v = 0 and u ∨ v = 1.
Cornish obtained in [17] several characterizations of the conormal lattices. For
example, a bounded distributive lattice L is conormal if and only if any prime
ideal of L contains a unique minimal prime ideal.

Lemma 6.1 [24] A coherent quantale A is an mp - quantale if and only if the
reticulation L(A) is a conormal lattice.

Let us denote by MinZ(A) (resp. MinF (A)) the topological space obtained
by restricting the topology of SpecZ(A) (resp. SpecF (A)) to Min(A). By using
Lemma 3.5, MinZ(A) is homeomorphic to the space MinId,Z(A) of minimal
prime ideals in L(A) with the Stone topology and MinF (A) is homeomorphic
to the space MinId,F (A) of minimal prime ideals in L(A) with the flat topology.
Then MinZ(A) is a zero - dimensional Hausdorff space and MinF (A) is a
compact T 1 space [24].

Theorem 6.2 [24] If A is a semiprime quantale then the following are equiva-
lent:
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(1) MinZ(A) = MinF (A);

(2) MinZ(A) is a compact space;

(3) MinZ(A) is a Boolean space;

(4) For any c ∈ K(A) there exists d ∈ K(A) such that cd = 0 and (c∨ d)⊥

= 0.

Theorem 6.3 [24] If A is a coherent quantale then the following are equivalent:

(1) A is an mp - quantale;

(2) For any distinct elements p, q ∈ Min(A) we have p ∨ q = 1;

(3) R(A) is an mp - frame;

(4) [ρ(0))A is an mp - quantale;

(5) The inclusion MinF (A) ⊆ SpecF (A) has a flat continuous retraction;

(6) SpecF (A) is a normal space;

(7) If p ∈ Min(A) then V (p) is a closed subset of SpecF (A).

Recall from [5] that a commutative ring R is said to be PF - ring if the
annihilator of each element of R is a pure ideal. Following [24], a quantale
A is a PF - quantale if for each c ∈ K(A), c⊥ is a pure element. For any
commutative ring R, Id(R) is a PF - quantale if and only if R is a PF - ring.

Lemma 6.4 [24]

(1) Any PF - quantale A is semiprime;

(2) If A is a PF - quantale then the reticulation L(A) is a conormal lattice.

Now we remind from [24] some characterization theorems of PF - quan-
tales. In what follows they will be intensely used in proving some algebraic and
topological results on pure elements in a PF - algebra.

Theorem 6.5 [24] Let A be a coherent quantale. Then A is a PF - quantale
if and only if A is a semiprime mp - quantale.

Theorem 6.6 [24] For a coherent quantale A consider the following conditions:

(1) Any minimal m - prime element of A is pure;

(2) A is an mp - quantale.

Then (1) implies (2). If the quantale A is semiprime then the converse impli-
cation holds.
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Corollary 6.7 [24] Let A be a semiprime quantale. Then A is a PF - quantale
if and only if any minimal m - prime element of A is pure.

Theorem 6.8 [24] For a coherent quantale A the following are equivalent:

(1) A is a PF - quantale;

(2) A is a semiprime mp - quantale;

(3) If c, d ∈ K(A) then cd = 0 implies c⊥ ∨ d⊥ = 1;

(4) If c, d ∈ K(A) then (cd)⊥ = c⊥ ∨ d⊥;

(5) For each c ∈ K(A), c⊥ is a pure element.

Proposition 6.9 Let A be a coherent PF - quantale. If p ∈ Spec(A) then
O(p) ∈ Min(A).

Proof. By taking into account Theorem 5.10, it suffices to show that O(p) is
an m - prime element of A. Let us consider two compact elements c, d of A such
that cd ≤ O(p). By Lemma 4.17,(2) it follows that (cd)⊥ 6≤ p. Since (cd)⊥ =
c⊥ ∨ d⊥ (by Theorem 6.8,(3)), we have c⊥ ∨ d⊥ 6≤ p, hence c⊥ 6≤ p or d⊥ 6≤ p.
According to Lemma 4.17,(2), we get c ≤ O(p) or d ≤ O(p), hence O(p) is m -
prime.

Theorem 6.10 Let A be a PF - quantale. The pure elements of A have the
form

∧
(Min(A)

⋂
E), where E is a closed subset of SpecF (A).

Proof. Let a be a pure element of A. According to Theorem 6.6, the pure
element a is minimal m - prime, hence a =

∧
(Min(A)

⋂
V (a)). By Theorem

6.3,(7), Min(A)
⋂
V (a) is a closed subset of MinF (A).

Conversely, assume that E is a closed subset of SpecF (A) and a =
∧
(Min(A)

⋂
E).

Let c be a compact element of A such that c ≤ a. We have to prove that
a ∨ c⊥ = 1. Assume by absurdum that a ∨ c⊥ < 1, so a ∨ c⊥ ≤ m, for some
m ∈ Max(A). Let us consider a minimal m - prime element q of A such that
q ≤ m.

Assume that q ∈ E, so we have c ≤ q. By Theorem 6.6, the minimal m -
prime element q is pure, hence q ∨ c⊥ = 1. From q ≤ m and c⊥ ≤ m we obtain
1 = q ∨ c⊥ ≤ m, contradicting that m is a maximal element. We conclude that
q /∈ E, so q 6= p for all p ∈ Min(A)

⋂
E.

Since A is an mp - quantale, we can apply Theorem 6.3,(2), hence for all
p ∈ Min(A)

⋂
E there exist sp, yp ∈ K(A) such that xp ≤ p, yp ≤ q and

xp ∨ yp = 1. Assume r ∈ E and take p ∈ Min(A) such that p ≤ r. It follows
that xp ≤ p ≤ r, so r ∈ V (xp). Thus we obtain the following inclusion:

E ⊆
⋃
{V (xp)|p ∈ Min(A)

⋂
E}.
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We remind that E is a closed subset of the compact space SpecF (A), hence
E is itself compact. Then there exist a positive integer n and p1, ..., pn ∈
Min(A)

⋂
E such that E ⊆ V (xp1

)
⋃
...
⋃
V (xpn

).
Let us denote xi = xpi

, yi = ypi
for all i = 1, ..., n and x = x1 · ... · xn,

y = y1 ∨ ... ∨ yn. Thus x, y ∈ K(A) and y ∨ xi = 1 for all i = 1, ..., n, hence by
applying Lemma 2.1,(3) we obtain y ∨ x = y ∨ x1 · ... · xn = 1.

Since yi ≤ q for all i = 1, ..., n, we get y ≤ q. For all r ∈ Min(A)
⋂
E we

have r ∈ V (x1)
⋃
...
⋃
V (xn), so there exists i ∈ {1, ..., n} such that xi ≤ r. It

follows that x ≤ xi ≤ r. Thus for all r ∈ Min(A)
⋂
E we have x ≤ r, hence

x ≤
∧
(Min(A)

⋂
E) = a.

From x ≤ a ≤ m and y ≤ q ≤ m we obtain 1 = x ∨ y ≤ m, contradicting
m ∈ Max(A). Therefore a ∨ c⊥ = 1, so a is a pure element of A.

Let R be a PF - ring. If we apply Theorem 6.10 for the PF - quantale
A = Id(R) then we obtain Theorem 7.3 of [1].

Lemma 6.11 Let A be a coherent quantale. For any m ∈ Max(V ir(A)) there
exists n ∈ Max(A) such that V ir(n) = m.

Proof. Let m be an element of Max(V ir(A)) and n ∈ Max(A) such that
m ≤ n. By Lemma 3.2,(4) one can consider the function V ir : Spec(A) →
Spec(V ir(A)). Then m = V ir(m) ≤ V ir(n), so we get m = V ir(n), because
m ∈ Max(V ir(A)) and V ir(n) ∈ Spec(V ir(A)).

Theorem 6.12 If A is a coherent PF - quantale then Min(A) = Max(V ir(A)).

Proof. Firstly we shall establish the inclusion Min(A) ⊆ Max(V ir(A)). As-
sume that p is a minimal m - prime element of A. By Corollary 6.7, p is a pure
element of A.

Since p < 1 there exists m ∈ Max(V ir(A)) such that p ≤ m. Let us consider
a compact element x of A such that x ≤ m. Since m is pure we have m∨x⊥ = 1,
hence x⊥ 6≤ m. Since p ≤ m, we get x⊥ 6≤ m. It follows that x ≤ m, hence
p = m. We conclude that p ∈ Max(V ir(A)).

Conversely, assume that m ∈ Max(V ir(A)). By the previous lemma there
exists n ∈ Max(A) such that V ir(n) = m. Let us take a minimal m - prime
element p such that p ≤ n. According to the first part of the proof, p is a
maximal element of the frame V ir(A). Thus p = V ir(p) ≤ V ir(n) = m, hence
p = m, because m, p ∈ Max(V ir(A)). It results that m ∈ Min(A), hence the
inclusion Max(V ir(A)) ⊆ Min(A) is established.

Proposition 6.13 Let A be a coherent PF - algebra and a ∈ A. Then K(a) =∧
(Max(A)

⋂
V (a)) is a pure element of A.
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Proof. Let c be a compact element of A such that c ≤ K(a). We shall prove
that K(a) ∨ c⊥ = 1. By using the same argument as in the proof of Theorem
one can find two compact element d and e such that e ≤ a, cd = 0 and d∨e = 1.
Since A is a PF - quantale, from cd = 0 we get c⊥ ∨ d⊥ = 1 (cf. Theorem
6.8,(4)). Then there exist the compact elements x and y such that x ≤ c⊥,
y ≤ d⊥ and x ∨ y = 1.

We shall prove that y ≤ K(a). Let m be a maximal element of A such
that a ≤ m, hence e ≤ a ≤ m. If d ≤ m then 1 = e ∨ d ≤ m, contradicting
m ∈ Max(A). Then we obtain d 6≤ m. From y ≤ d⊥ we get d ≤ y⊥, hence
y⊥ 6≤ m. According to Lemma 4.17,(2) we have y ≤ O(m). We have proven
that for all maximal element m, a ≤ m implies y ≤ O(m), hence y ≤ K(a).

We remark that 1 = y∨x ≤ K(a)∨ c⊥, so K(a)∨ c⊥ = 1. We conclude that
K(a) is pure.

Lemma 6.14 Let A be a coherent PF - quantale, a ∈ V ar(A) and m ∈
Max(A) such that a ≤ m. Assume that the following condition holds:

(*) For all c ∈ K(A), c ≤ O(m) implies K(c) ≤ a.
Then a = O(m).

Proof. Since a ≤ m and a is pure we get a = V ir(a) ≤ V ir(m) = O(m). In
order to show that O(m) ≤ a, assume that c is a compact element such that
c ≤ O(m). Since O(m) = V ir(m) is pure we have O(m)∨ c⊥ = 1, so there exist
the compact elements d, e such that d ≤ O(m), e ≤ c⊥ and d ∨ e = 1.

Now we shall prove that c ≤ K(d). Let us consider a maximal element n of
A such that d ≤ n. Assume that c⊥ ≤ n, so e ≤ c⊥ ≤ n, therefore 1 = d∨e ≤ n.
This contradicts n ∈ Max(A), hence c⊥ 6≤ n. By Lemma 4.17,(2) we obtain
c ≤ O(n). It follows that c ≤

∧
{O(n)|n ∈ Max(A), d ≤ n} = K(d). In

accordance with (*), d ≤ O(m) implies K(d) ≤ a, hence c ≤ K(d) ≤ a. It
follows that O(m) =

∨
{c ∈ K(A)|c ≤ O(m)} ≤ a.

Theorem 6.15 If A is a coherent PF - quantale then Spec(V ir(A)) = Max(V ir(A)).

Proof. It suffices to prove that Spec(V ir(A)) ⊆ Max(V ir(A)). Assume that
p ∈ Spec(V ir(A)). Let q be a maximal element of the frame V ir(A) such that
p ≤ q.

Let us consider a compact element c of A such that c ≤ q. For each n ∈
Max(A) there exist two possible casses:

Case1 : c ≤ n. By the definition of K(c) we have K(c) ≤ O(n).
Case2 : c 6≤ n. Since n is m - prime it follows that c⊥ ≤ n. In accordance

with Theorem 6.8,(5), c⊥ is a pure element of A, so c⊥ ≤ V ir(n) = O(n).
In virtue of these two cases one obtains K(c)c⊥ ≤

∧
{O(n)|n ∈ Max(A),

hence K(c)c⊥ = 0 (by Corrolary 5.12).
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Since c ≤ q = O(q) we have c⊥ 6≤ q (by Lemma 4.17,(2)). According to
Theorem 6.8,(5) and Proposition 6.13, c⊥ and K(c) are pure elements, hence
K(c) ≤ p.

We have proven that for each compact element c ≤ q we have K(c) ≤ p. We
remark that q < 1 (because q ∈ Max(V ir(A))). Let us consider m ∈ Max(A)
such that q ≤ m. Thus q = V ir(q) ≤ V ir(m), hence q = V ir(m) = O(m).
Therefore for each compact element c, c ≤ O(m) implies K(c) ≤ p, i.e. the
condition (∗) is satisfied (with p instead of a). By applying Lemma 6.14 we
conclude that p = O(m) = q, so p ∈ Max(V ir(A)).

Remark 6.16 Let A be a PF - quantale. By applying the previous result and
Proposition 6.2 of [24] it follows that V ir(A) is a hyperarchimedean frame.Thus,
by using Theorem 6.8,(8) of [24], we have the following identity of topological
spaces: SpecZ(V ir(A)) = SpecF (V ir(A)). Taking into account Theorem 6.12,
it follows that MinF (A) and SpecZ(V ir(A)) are identical as topological spaces.

Remark 6.17 Let R be a PF - ring. By applying the previous Theorems 6.12
and 6.16 to the PF - quantale A = Id(R) we obtain Theorems 5.1 and 5.3 of
[49]. Remark 6.17 can be view as an abstract version of Theorem 5.4 of [49].

7 Purified quantales

Let us recall from [1] that a commutative ring R is a purified ring if for all
distinct minimal ideals P and Q of R there exists an idempotent element e such
that e ∈ P and 1− e ∈ Q. A quantale A is said to be a purified quantale if for
all minimal m - prime elements p and q of A there exists e ∈ B(A) such that
e ≤ p and ¬e ≤ q. Then a commutative ring R is a purified ring if and only in
Id(R) is a purified quantale.

The results of this section generalize to purified quantales some theorems
proved in [1] for purified rings.

Lemma 7.1 Any purified quantale A is an mp - quantale.

Proof. Let p, q be two distinct elements of Min(A). Thus there exists a
complemented element e of A such that e ≤ p and ¬e ≤ q, hence p ∨ q = 1. In
accordance to Theorem 6.3,(2) it follows that A is a mp - quantale.

Let A be a coherent quantale and a ∈ A. Let us consider the quantale [a)A
(defined in Section 2) and the unital quantale morphism uA

a : A → [a)A, defined
by uA

a (x) = x∨ a, for all x ∈ A. It is easy to see that the negation operation ¬a

of [a)A is defined by ¬a(x) = ¬x ∨ a, for any x ∈ [a)A. By Lemma 14 of [15],
one can consider the Boolean morphism B(uA

a ) : B(A) → B([a)A) defined by
B(uA

a )(e) = uA
a (e), for all e ∈ B(A). According to [15], an element a ∈ A has

the lifting property (LP ) if the Boolean morphism B(uA
a ) : B(A) → B([a)A) is

surjective. The quantale A has LP if each element of A has LP .
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Lemma 7.2 ρ(0) has LP .

Proof. Let us denote a = ρ(0). We have to prove that B(uA
a )) is surjective. Let

x be a complemented element of [a)A, so there exists y ∈ [a)A such that x∨y = 1
and xy ∨ a = x ·a y = a. Since 1 is compact, there exist c, d ∈ K(A) such that
c ≤ x, d ≤ y and c∨d = 1. On the other hand, xy ≤ a = ρ(0) implies cd ≤ ρ(0),
so by Lemma 2.4,(2), there exists a positive integer n such that cndn = 0. In
accordance with Lemma 2.1,(2) we have cn ∨ dn = 1. By using Lemma 3.8(6),
it follows that cn, dn ∈ B(A) and cn = ¬dn. One remarks that uA

a (c
n) ≤ x

and uA
a (d

n) ≤ y. The second inequality implies x = ¬ay ≤ ¬a(uA
a (d

n)) =
uA
a (¬d

n) = uA
a (c

n). We have proven that uA
a (c

n) = x and cn ∈ B(A), hence
a = ρ(0) has LP .

Theorem 7.3 A coherent quantale A is a purified quantale if and only if [ρ(0))A
is a purified quantale.

Proof. Let us denote a = ρ(0). Assume that A is a purified quantale and con-
sider p, q ∈ Min([a)A) such that p 6= q. Observing that Min(A) = Min([a)A),
it results that there exists e ∈ B(A) such that e ≤ p and ¬e ≤ q. It follows
that uA

a (e) ∈ B([a)A), u
A
a (e) ≤ uA

a (p) = p and ¬auA
a (e) = uA

a (¬e) ≤ uA
a (q) = q,

therefore [a)A is a purified quantale.
Conversely, suppose that [a)A is a purified quantale and consider two distinct

minimal m - prime elements p, q of A. Then p, q ∈ Min([a)A), hence, by taking
into account the hypothesis that [a)A is a purified quantale there exists f ∈
B([a)A) such that f ≤ p and ¬af ≤ q. In accordance with Lemma 7.2, a = ρ(0)
has the lifting property, so there exists e ∈ B([a)A) such that a∨e = uA

a (e) = f .
Sine B(uA

a ) is a Boolean morphism, we have a∨¬e = uA
a (¬e) = ¬auA

a (e) = ¬af ,
so ¬ae ≤ q. Thus A is a purified quantale.

Lemma 7.4 Let U be a subset of SpecF (A). Then U is a clopen subset of
SpecF (A) if and only if U = V (e), for some e ∈ B(A).

Proof. Assume that U is a clopen subset of SpecF (A). Then V = SpecF (A)−U
is a clopen subset of SpecF (A) and U

⋃
V = SpecF (A), U

⋂
V = ∅. Since

MaxF (A) is compact, there exist e, f ∈ K(A) such that V (e) ⊆ U , V (f) ⊆ V
and V (ef) = V (e)

⋃
V (f) = SpecF (A), hence ef ≤ ρ(0). We remark that

V (e ∨ f) = V (e)
⋂
V (f) ⊆ U

⋂
V = ∅, so e ∨ f = 1. From ef ≤ ρ(0) we have

enfn = 0, for some positive integer n. By Lemma 2.1,(2) we have en ∨ fn = 1,
therefore by using Lemma 3.8,(6), we obtain en, fn ∈ B(A). Now it is easy to
prove that U = V (en) and V = V (fn). The converse implication is obvious.

Recall from [30], p.69 that a topological space X is said to be
• totally disconnected , if the only connected subsets of X are single points;
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• totally separated , if for all distinct points x, y ∈ X , there exists a clopen
subset of X containing x but not y.

Theorem 7.5 For a semiprime coherent quantale A the following are equiva-
lent:

(1) A is a purified quantale;

(2) A is an mp - quantale and MinF (A) is totally separated;

(3) A is an mp - quantale and MinF (A) is totally disconnected;

(4) A is an mp - quantale and MinF (A) is a Boolean space;

(5) The family (V (e)
⋂
Min(A))e∈B(A) is a basis of open sets for MinF (A).

(6) Any minimal m - prime element p of A is regular;

(7) Min(A) = Sp(A);

(8) A is an mp - quantale and any pure element of A is regular.

Proof. Recall from Corollary 8.6 of [24] that MinF (A) is a compact T1 - space.
According to Theorem 4.2 of [30], the properties (2),(3) and 4 are equivalent.

(1) ⇒ (2) In accordance with Lemma 7.1, A is an mp - quantale. Then
for a distinct points p, q of MinF (A) there exists e ∈ B(A) such that e ≤ p,
¬e ≤ q, so p ∈ V (e), q ∈ V (¬e) and V (e)

⋂
V (¬e) = ∅. Then MinF (A) is

totally separated.
(4) ⇒ (5) We apply Lemma 7.4.
(5) ⇒ (1) Let p, q be two distinct points ofMin(A). Then U = Spec(A)−{q}

= Spec(A)−Λ(q) is an open subset of SpecF (A) and p ∈ U , hence there exists
e ∈ B(A) such that p ∈ V (e)

⋂
MinF (A) ⊆ U

⋂
MinF (A). It follows that e ≤ p

and ¬e ≤ q, so A is a purified quantale.
(1) ⇒ (6) Assume that p ∈ Min(A) and c ∈ K(A) such that c ≤ p. The

property (1) is equivalent to (4), hence MinF (A) is a Boolean space. Since
p ∈ V (c) and V (c)

⋂
Min(A) is an open subset of MinF (A) one can find an

element e ∈ B(A) such that p ∈ V (e)
⋂

Min(A) ⊆ V (c)
⋂
Min(A). Therefore

c ≤
∧
(V (c)

⋂
Min(A) ≤

∧
(V (e)

⋂
Min(A) ≤ ρ(e)),

so cn ≤ e for some positive integer n. According to Theorem 6.8,(4) we
have (cn)⊥ = c⊥, hence cn ≤ e implies ¬e = e⊥ ≤ (cn)⊥ = c⊥. It follows that
c ≤ (c⊥)⊥ ≤ ¬¬e = e. We have proven that p ≤

∨
{e ∈ B(A)|e ≤ p}, hence

p =
∨
{e ∈ B(A)|e ≤ p}. We conclude that the minimal m - prime element p is

regular.
(6) ⇒ (1) Let p, q be two distinct minimal m - prime elements of A. By

taking into account the hypothesis, we have p =
∨
{e ∈ B(A)|e ≤ p} and

q =
∨
{e ∈ B(A)|e ≤ q}. Since p, q are distinct we can find an element e ∈ B(A)

such that e ≤ p and e 6≤ q. Then ¬e ≤ q, hence A is a purified quantale.
(6) ⇒ (7) We shall prove that Min(A) ⊆ Sp(A). Consider an element

p ∈ Min(A), so by the condition (6), p is regular. In order to show that p is
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max - regular, let us consider e ∈ B(A) such that e 6≤ p. Thus ¬e ≤ p, hence
1 = e ∨ ¬e ≤ p ∨ e, so p ∨ e = 1. It follows that p ∈ Sp(A).

Now we shall prove that Sp(A) ⊆ Min(A). Let us consider p ∈ Sp(A)
and take an element q ∈ Spec(A) such that sA(q) = p (because the function
sA : Spec(A) → Sp(A) is surjective). If r is a minimal m - prime element of A
such that r ≤ q then we have sA(r) ≤ sA(q) = p, so sA(r) = p (because p and
sA(r) are max - regular). The minimal m - prime element r is regular, hence
sA(r) = r. Thus r = p, hence we get p ∈ Min(A).

(7) ⇒ (1) Obviously.
(5) ⇒ (8) We have proven that (5) is equivalent to (2), so A is a semiprime

mp - quantale (i.e. a PF - quantale). Let a be a pure element of A. By
Theorem 6.6, a is a minimal m - prime element, hence V (a) is a closed subset of
SpecF (A). Then U = Spec(A)−V (a) is an open subset of SpecF (A). Applying
the hypothesis (5) we find a family (ei)i∈I of complemend elements of A such

that U
⋂
Min(A) =

⋃

i∈I

(V (ei)
⋂

Min(A)).

We shall prove that U =
⋃

i∈I

V (ei). Let p ∈
⋃

i∈I

V (ei), so ej ≤ p for some

j ∈ I. Assume by absurdum that a ≤ p, so a /∈ U
⋂
Min(A). By taking

into account the equality U
⋂
Min(A) =

⋃

i∈I

(V (ei)
⋂

Min(A)), it follows that

a /∈ V (ej), i.e. ej 6≤ a. Therefore ¬ej ≤ a ≤ p, so we obtain 1 = ej ∨ ¬ej ≤ p,
contradicting that p ∈ Spec(A). It follows that a 6≤ p, so p ∈ U .

In order to prove the converse inclusion U ⊆
⋃

i∈I

V (ei), let us assume that

p /∈
⋃

i∈I

V (ei), hence for all i ∈ I we have ei 6≤ p. Consider a minimal m -

prime element n such that n ≤ p, hence ei 6≤ n for all i ∈ I. This implies
n /∈ V (ei)

⋂
Min(A) for all i ∈ I, hence n /∈ U

⋂
Min(A). Since n /∈ U implies

a ≤ n, we obtain a ≤ n ≤ p, hence p ∈ U . We have proven that U =
⋃

i∈I

V (ei),

hence the following equalities hold:

V (a) = Spec(A)−
⋃

i∈I

V (ei) =
⋂

i∈I

D(ei) =
⋂

i∈I

V (¬ei)= V (
∨

i∈I

¬ei).

Let us consider the regular element b =
∨

i∈I

¬ei. Then ρ(a) =
∧
V (a) =

∧
V (b) = ρ(b). By Lemma 5.1, the regular element b is pure. In accordance

with Proposition 4.5, for the pure elements a and b we have a = ρ(a) = ρ(b) = b.
Therefore a is regular element.

(8) ⇒ (6) According to Theorem 6.6, any minimal m - prime element p is
pure, so p is regular.

Corollary 7.6 Any hyperarchimedean coherent quantale A is purified.
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Proof. In accordance with the characterization theorems of hyperarchimedean
quantales given in [15],[24] it follows that Max(A) = Spec(A) = Min(A) and
SpecF (A) is a Boolean space. Thus A is an mp - quantale (by Theorem 6.3,(6))
and MinF (A) is a Boolean space. By applying Theorem 7.5,(4) we conclude
that A is purified.

Corollary 7.7 Let A be a coherent PF - quantale. If MinZ(A) is compact
then A is purified.

Proof. Since MinZ(A) is compact it follows that MinZ(A) = MinF (A)
(cf.Theorem 6.2,(1)). We know that MinZ(A) is a zero - dimensional Haus-
dorff space and MinF (A) is a compact space, hence in our case, MinF (A) is a
Boolean space. By applying Theorem 7.5,(4) we conclude that A is a purified
quantale.

8 PP - quantales

In this section we shall define the PP - quantales as an abstraction of PP
- rings (= Baer rings) [1],[31],[43], Stone lattices [7],[43], Stone MV - algebras
[9], Baer BL - algebras [32], Stone residuated lattices [36],[41],etc.

Let A be an algebraic quantale such that 1 ∈ K(A). Then A will be called
a PP - quantale if for any c ∈ K(A) we have c⊥ ∈ B(A). A PP - frame is a
PP - quantale which is a frame.

Let L be a bounded distributive lattice. Following [7],[43], L is said to be
a Stone lattice if for any x ∈ L there exists e ∈ B(L) such that Ann(x) is the
ideal [e) of L generated by the point set {x}. Then L is a Stone lattice if and
only if Id(L) is a PP - frame.

Let R be a commutative ring. Then R is said to be a PP - ring if the
annihilator of any element of R is generated by an idempotent element. Then
R is a PP - ring if and only if Id(R) is a PP - quantale.

Throughout this section we shall assume that A is coherent quantale.

Lemma 8.1 Any PP - quantale A is semiprime.

Proof. Firstly we remark that for any a ∈ A such that a ≤ a⊥ and a⊥ ∈ B(A)
we have a = a ∧ a⊥ = aa⊥ = 0.

In order to prove that A is semiprime let c be a compact element such that
cn = 0 for some positive integer n. Thus cn−1 ≤ (cn−1)⊥ and (cn−1)⊥ ∈ B(A),
hence cn−1 = 0. By using many times this argument one gets c = 0. By using
Lemma 2.4 it follows that A is semiprime.

Lemma 8.2 If A is semiprime then the following hold:
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(1) If e ∈ B(A) then ρ(e) = e;

(2) If a ∈ A and ρ(a) ∈ B(A) then a = ρ(a).

Proof. (1) Assume that c ∈ K(A) and c2 ≤ e. By Lemma 3.8,(1) we have
c⊥ ∈ B(A), hence λA(ce

⊥) = λA(c)∧λA(e
⊥) = λA(c

2)∧λA(e
⊥) = λA(c

2e⊥) =
λA(0) = 0. Since A is semiprime one gets ce⊥ = 0, so c ≤ e⊥⊥ = e. By using
the same argument, one can prove by induction that for any c ∈ K(A) and
for any positive integer n, cn ≤ e. In accordance with Lemma 2.4 one obtains
ρ(e) ≤ e, so ρ(e) = e.

(2) Assume that a ∈ A and ρ(a) ∈ B(A). By Lemma 3.9, c = ρ(a) is a
compact element of A, hence there exists a positive integer n such that cn ≤ a.
Since c ∈ B(A) we have cn = c, hence c ≤ a. Thus ρ(a) ≤ a, so we obtain
ρ(a) = a.

The following theorem is a generalization of a result proved by Simmons for
the case of PP - rings (see [43]).

Theorem 8.3 For a quantale A let us consider the following properties:

(1) A is a PP - quantale;

(2) R(A) is a PP - frame;

(3) The reticulation L(A) is a Stone lattice.

Then (1) ⇒ (3) and (1) ⇔ (2) hold. If A is semiprime then the implication
(3) ⇒ (1) is valid.

Proof.

(1) ⇒ (3) Assume that A is PP - quantale. By Lemma 8.1, A is semiprime
and, by Corollary 3.11, the function λA|B(A) : B(A) → B(L(A)) is a Boolean
isomorphism. Let x ∈ L(A), hence there exists c ∈ K(A) such that x = λA(c).
Since A is a PP - quantale we have c⊥ ∈ B(A), hence λA(c

⊥) ∈ B(L(A)).
We shall prove that Ann(λA(c)) = (λA(c

⊥)]. By Proposition 3.13 we have
Ann(λA(c)) = Ann(c∗) = (c⊥)∗. Let us consider an element y ∈ Ann(λA(c)) =
(c⊥)∗, so there exists d ∈ K(A) such that d ≤ c⊥ and y = λA(d). Thus y =
λA(d) ≤ λA(c

⊥), so y ∈ (λA(c
⊥)]. We have proven that Ann(λA(c)) ⊆ (λA(c

⊥)].
On the other hand, from λA(c

⊥) ∧ λA(c) = λA(cc
⊥) = λA(0) = 0 we obtain

λA(c
⊥) ∈ Ann(λA(c)), hence (λA(c

⊥)] ⊆ Ann(λA(c)).
(1) ⇔ (2) In accordance with Proposition 3.7, the frames R(A) and Id(L(A))

are isomorphic.Then L(A) is a Stone lattice iff Id(L(A)) is a PP - frame iff R(A)
is a PP - frame.

(3) ⇒ (1) Assume now that A is semiprime and L(A) is a Stone lattice. Let c
be a compact element of A, so there exists f ∈ B(L(A)) such that Ann(λA(c)) =
(f ]. By Corollary 3.11 there exists e ∈ B(A) such that f = λA(e). According
to Proposition 3.13 we have (c⊥)∗ = Ann(λA(c)) = (λA(e)] = e∗, hence, by
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using Proposition 3.3,(7) one gets ρ(c⊥) = ((c⊥)∗)∗ = (e∗)∗ = ρ(e). By Lemma
8.2,(1) we have ρ(0) = 0. Since ρ(c⊥) = e ∈ B(A), by applying Lemma 8.2,(2)
one obtains c⊥ = e, hence c⊥ ∈ B(A), so A is a PP - quantale.

By using the previous result one can obtain characterization theorems for
PP - quantales by transferring from lattices to rings the properties that describe
the Stone lattices.

Lemma 8.4 [17] Let L be a bounded distributive lattice. Then L is a Stone
lattice if and only if L is conormal and MinId,Z(L) is compact.

Theorem 8.5 For a semiprime quantale A the following properties are equiv-
alent:

(1) A is a PP - quantale;

(2) The reticulation L(A) is a Stone lattice;

(3) L(A) is a conormal lattice and MinId,Z(L(A)) is compact;

(4) A is a PF - quantale and MinZ(A) is compact;

(5) A is a PF - quantale and MinZ(A) is a Boolean space;

(6) A is an mp - quantale and MinZ(A) is a Boolean space;

(7) SpecF (A) is a normal space and MinZ(A) is a Boolean space;

Proof.

(1) ⇔ (2) By Theorem 8.3.
(2) ⇔ (3) By Lemma 8.4.
(3) ⇔ (4) Since A is semiprime, the reticulation L(A) is a conormal lattice

if and only if A is a PF - quantale (cf. Lemma 6.1 and Theorem 6.5). On the
other hand, MinZ(A) and MinId,Z(L(A)) are homeomorpic topological spaces.
Then the equivalence of (3) and (4) follows.

(4) ⇔ (5) By Theorem 6.2.
(5) ⇔ (6) By Theorem 6.5.
(6) ⇔ (7) By Theorem 6.3.

Lemma 8.6 [18] Let L be a conormal lattice. Then L is a Stone lattice if and
only if the inclusion MinZ(L) ⊆ SpecZ(A) has a continuous retraction.

Theorem 8.7 For a PF - quantale A the following properties are equivalent:

(1) A is a PP - quantale;

(2) The reticulation L(A) is a Stone lattice;
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(3) The inclusion MinId,Z(L(A)) ⊆ SpecId,Z(L(A)) has a continuous re-
traction;

(4) The inclusion MinZ(A) ⊆ SpecZ(A) has a continuous retraction;

(5) For any c ∈ K(A), Min(A)
⋂
D(c) is an open subset of SpecZ(V ir(A));

(6) MinZ(A) is a compact space.

Proof.

(1) ⇔ (2) By Theorem 8.3.
(2) ⇔ (3) By Lemma 8.6.
(3) ⇔ (4) This equivalence follows because SpecZ(A) (resp. MinZ(A)) is

homeomorphic to SpecId,Z(L(A)) (resp. MinId,Z(L(A))) .
(1) ⇔ (5) Let c be a compact element of A, hence c⊥ ∈ B(A). By Theorems

6.12 and 6.16 we have Min(A) = Spec(V ir(A)). According to Corolarry 3.16,
for each p ∈ Min(A) the following equivalence holds: c ≤ p iff c⊥ 6≤ p. Therefore
one obtain the equality Min(A)

⋂
D(c) = {p ∈ Spec(V ir(A))|c⊥ 6≤ p}, hence

Min(A)
⋂
D(c) is open in Spec(V ir(A)).

(5) ⇔ (6) According to Lemma 4.2,(4) one can consider the composition
V ir ◦ i of the following two continuous maps: the inclusion i : MinZ(A) →
SpecZ(A) and V ir : SpecZ(A) → SpecZ(V ir(A)). By Theorems 6.12 and 6.16,
V ir ◦ i is a continuous bijection. The hypothesis (5) implies that V ir ◦ i is an
open map, so it is a homeomorphism. Since SpecZ(V ir(A)) is a compact space,
it follows that MinZ(A) is also compact.

(6) ⇔ (1) By Theorem 8.5,(4).

Corollary 8.8 Any PP - quantale is a purified quantale.

Proof. Let A be a PP - quantale. By Theorem 8.5,(5), MinZ(A) is a Boolean
space, hence MinZ(A) = MinF (A) (cf. Theorem 6.2,(1)). Then MinF (A) is
a Boolean space, therefore, according to Theorem 7.5,(4), it follows that A is a
purified quantale.
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