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Abstract. This paper studies non-cooperative games where players are al-
lowed to play their mixed non-additive strategies. Expected payoffs are ex-
pressed by so-called fuzzy integrals: Choquet integral, Sugeno integral and
generalizations of Sugeno integral obtained by using triangular norms. We

consider the existence problem of Nash equilibrium for such games. Positive
results for Sugeno integral and its generalizations are obtained. However we
provide some example of a game with Choquet payoffs which have no Nash
equilibrium. Such example demonstrates that fuzzy integrals based on the
maximum operation are more suitable for possibility capacities then Choquet
integral which is based on the addition operation.

1. Introduction

The classical Nash equilibrium theory is based on fixed point theory and was
developed in frames of linear convexity. The mixed strategies of a player are prob-
ability (additive) measures on a set of pure strategies. But an interest to Nash
equilibria in more general frames is rapidly growing in last decades. For instance,
Aliprantis, Florenzano and Tourky [2] work in ordered topological vector spaces,
Luo [21] in topological semilattices, Vives [34] in complete lattices. Briec and Hor-
vath [4] proved existence of Nash equilibrium point for idempotent convexity.

We can use additive measures only when we know precisely probabilities of all
events considered in a game. However, it is not a case in many modern economic
models. The decision theory under uncertainty considers a model when proba-
bilities of states are either not known or imprecisely specified. Gilboa [16] and
Schmeidler [30] axiomatized expectations expressed by Choquet integrals attached
to non-additive measures called capacities (fuzzy measures), as a formal approach
to decision-making under uncertainty.

Dow and Werlang [10] used this approach for two players game where belief of
each player about a choice of the strategy by the other player is a convex capacity,
but the players play with pure strategies. They introduced some equilibrium notion
for such games and proved its existence. This result was extended onto games with
arbitrary finite number of players in [14]. Another interesting approach to the
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games in convex capacities with pay-off functions expressed by Choquet integrals
can be find in [22]. The authors considered finite sets of pure strategies in the above
mentioned papers.

An alternative to so-called Choquet expected utility model is the qualitative
decision theory. The corresponding expected utility is expressed by Sugeno integral.
This approach was widely studied in the last decade ([11],[12],[8],[29]). Sugeno
integral chooses a median value of utilities which is qualitative counterpart of the
averaging operation by Choquet integral.

The equilibrium notion from [10] and [14] for a game with expected payoff func-
tion defined by Sugeno integral was considered in [27]. The sets of pure strategies
are arbitrarily compacta. Let us remark that in [10] and [14] attention was re-
stricted to convex capacities which play an important role in Choquet expected
utility theory. There are two important classes of capacities in the qualitative de-
cision theory, namely possibility and necessity capacities which describe optimistic
and pessimistic criteria [11]. The existence of equilibrium expressed by possibility
(or necessity) capacities is proved in [27]. Since the spaces of possibility and neces-
sity capacities have no natural linear convex structure, some non-linear convexity
is used.

Kozhan and Zarichnyi [20] and Glycopantis and Muir [17] considered games with
Choquet payoff where players are allowed to form non-additive beliefs about op-
ponent’s decision but also to play their mixed non-additive strategies expressed by
capacities. The same approach for games with Sugeno payoff was considered in
[26]. Games with strategies expressed by possibility capacities were recently con-
sidered by Hosni and Marchioni [18]. They considered payoff functions represented
by Choquet integral and Sugeno integral. Let us remark that when we consider
the space of all capacities which has the greatest and the smallest elements (or the
space of possibility capacities which has the greatest elements), then the existence
problem of Nash equilibrium is rather trivial. But the set of possibility capacities
has no smallest element and the set of necessity capacities has no greatest element.
So, if we consider a game where the players play their mixed strategies expressed by
possibility capacities and the goal of each player is to minimize his expected payoff
function, existence of Nash equilibrium is not trivial for such games. (Dually, it
is possible to consider games in necessity capacities and the goal to maximize ex-
pected payoff function.) We will prove existence of Nash equilibrium for games with
expected payoff functions represented by fuzzy integral generated by the maximum
operation and some continuous triangular norm (a partial case is the Sugeno inte-
gral which is generated by the maximum and the minimum operations). We also
provide an example of a game in possibility capacities with minimizing of expected
payoff functions represented by Choquet integral which has no Nash equilibrium.
This example demonstrates that the Choquet integral is not so suitable for possi-
bility capacities as it is for convex capacities (see for example [10], [14] and [22]).

2. Capacities and fuzzy integrals

In what follows, all spaces are assumed to be compacta (compact Hausdorff
space) except for R and all maps are assumed to be continuous. By F(X) we
denote the family of all closed subsets of a compactum X . We shall denote the
Banach space of continuous functions on a compactum X endowed with the sup-
norm by C(X). For any c ∈ R we shall denote the constant function on X taking
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the value c by cX . We also consider natural lattice operations ∨ and ∧ on C(X)
and its sublattices C(X, [0,+∞)) and C(X, [0, 1]).

We need the definition of capacity on a compactum X . We follow a terminology
of [24]. A function ν : F(X) → [0, 1] is called an upper-semicontinuous capacity on
X if the three following properties hold for each closed subsets F and G of X :

1. ν(X) = 1, ν(∅) = 0,
2. if F ⊂ G, then ν(F ) ≤ ν(G),
3. if ν(F ) < a, then there exists an open set O ⊃ F such that ν(B) < a for each

compactum B ⊂ O.
If F is a one-point set we use a simpler notation ν(a) instead ν({a}). A capacity ν

is extended in [24] to all open subsets U ⊂ X by the formula ν(U) = sup{ν(K) | K
is a closed subset of X such that K ⊂ U}.

It was proved in [24] that the space MX of all upper-semicontinuous capacities
on a compactum X is a compactum as well, if a topology on MX is defined by
a subbase that consists of all sets of the form O−(F, a) = {c ∈ MX | c(F ) < a},
where F is a closed subset of X , a ∈ [0, 1], and O+(U, a) = {c ∈ MX | c(U) > a},
where U is an open subset of X , a ∈ [0, 1]. Since all capacities we consider here are
upper-semicontinuous, in the following we call elements of MX simply capacities.

A capacity ν ∈MX for a compactum X is called a necessity (possibility) capac-
ity if for each family {At}t∈T of closed subsets of X (such that

⋃
t∈T At is a closed

subset of X) we have ν(
⋂
t∈T At) = inft∈T ν(At) (ν(

⋃
t∈T At) = supt∈T ν(At)).

(See [35] for more details.) We denote by M∩X (M∪X) a subspace of MX con-
sisting of all necessity (possibility) capacities. Since X is compact and ν is upper-
semicontinuous, ν ∈ M∩X iff ν satisfy the simpler requirement that ν(A ∩ B) =
min{ν(A), ν(B)}.

If ν is a capacity on a compactum X , then the function κX(ν), that is defined
on the family F(X) by the formula κX(ν)(F ) = 1 − ν(X \ F ), is a capacity as
well. It is called the dual capacity (or conjugate capacity ) to ν. The mapping
κX : MX → MX is a homeomorphism and an involution [24]. Moreover, ν is a
necessity capacity if and only if κX(ν) is a possibility capacity. This implies in
particular that ν ∈ M∪X iff ν satisfy the simpler requirement that ν(A ∪ B) =
max{ν(A), ν(B)}. It is easy to check that M∩X and M∪X are closed subsets of
MX .

The notion of density for an idempotent measure was introduced in [1]. For
each possibility capacity ν ∈ M∪X we consider an upper semicontinuous function
[ν] : X → [0, 1] that sends each x ∈ X to ν(x) and is called the density of ν. Observe
that for a possibility capacity ν ∈ M∪X and a closed set F ⊂ X we have ν(F ) =
max{ν(x)|x ∈ F}, and ν is completely determined by its values on singletons.
It means that ν is completely determined by the function [ν]. Conversely, each
upper semicontinuous function f : X → I with max f = 1 determines a possibility
capacity (f) ∈M∪X by the formula (f)(F ) = max{f(x)|x ∈ F}, for a closed subset
F of X . It is easy to check that ([ν]) = ν for each ν ∈M∪X and [(f)] = f for each
upper semicontinuous function f : X → I with max f = 1.

Denote ϕt = ϕ−1([t,+∞)) for each ϕ ∈ C(X, [0,+∞)) and t ∈ [0,+∞). Let
us remind definitions of the Choquet integral and the Sugeno integral with respect
to a capacity µ ∈ MX . We consider for a compactum X and for a function

f ∈ C(X, [0,+∞)) an integral defined by the formula
∫ Ch
X

fdµ =
∫
∞

0 µ(ft)dt [9]
and call it the Choquet integral.
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For a function f ∈ C(X, [0, 1]) we consider an integral defined by the formula∫ Sug
X

fdµ = max{µ(ft) ∧ t | t ∈ [0, 1]} [32] and call it the Sugeno integral. The
existence of maximum follows from the semicontinuity of the capacity µ.

Let us remark that the operation of minimum ∧ is an important example of
triangular norm (t-norm). Remind that triangular norm ∗ is a binary operation
on the closed unit interval [0, 1] which is associative, commutative, monotone and
s∗ 1 = s for each s ∈ [0, 1] [19]. We consider only continuous t-norms in this paper.
Integrals obtained by changing the operation ∧ in the definition of Sugeno integral
by any t-norm are called t-normed integrals and were studied in [36], [37] and [31].
So, for a continuous t-norm ∗ and a function f ∈ C(X, [0, 1]) the corresponding

t-normed integral is defined by the formula
∫
∨∗

X
fdµ = max{µ(ft) ∗ t | t ∈ [0, 1]}.

Let X be a compactum. We call two functions ϕ, ψ ∈ C(X, [0, 1]) comonotone
(or equiordered) if (ϕ(x1)− ϕ(x2)) · (ψ(x1)− ψ(x2)) ≥ 0 for each x1, x2 ∈ X . Let
us remark that a constant function is comonotone to any function ψ ∈ C(X, [0, 1]).

Lemma 1. Let ϕ, ψ ∈ C(X, [0, 1]) be two comonotone functions. Then we have
ϕt ⊂ ψt or ϕt ⊃ ψt for each t ∈ [0, 1].

Proof. Suppose the contrary. Then there exists t ∈ [0, 1], x ∈ ϕt\ψt and y ∈ ψt\ϕt.
Then we have (ϕ(x) − ϕ(y)) · (ψ(x) − ψ(y)) < 0. �

For A ∈ F(X) put ΥA = {ϕ ∈ C(X, [0, 1]) | ϕ(a) = 1 for each a ∈ A}. If A = ∅
we put ΥA = C(X, [0, 1]).

Lemma 2. Let ϕ ∈ C(X, [0, 1]), t < maxϕ and ψ ∈ Υϕt
. Then there exists

ψ′ ∈ Υϕt
such that ψ′ ≤ ψ and ψ′ is comonotone with ϕ.

Proof. If ψ = 1X we can put ψ′ = ψ. So, consider the case when 1 > d0 = minψ.
Choose a sequence (di) converging to 1 and such that d0 < d1 < d2 < . . . 1. Put
ai = max{ϕ(x) | ψ(x) ≤ di}. Evidently we have ai < t.

Consider the case when ai → a < t. Choose a monotone homeomorphism
α : [a, t] → [d0, 1] and put

ψ′(x) =





d0, ϕ(x) ≤ a,

α(ϕ(x)), a ≤ ϕ(x) ≤ t,

1, t ≤ ϕ(x).

In the case when ai → t we can assume a0 < a1 < a2 < . . . . For each i ≥ 1
choose a monotone homeomorphism αi : [ai, ai+1] → [di−1, di] and put

ψ′(x) =





d0, ϕ(x) ≤ a1,

αi(ϕ(x)), ai ≤ ϕ(x) ≤ ai+1,

1, t ≤ ϕ(x).

It is a routine check that ψ′ is a function we are looking for. �

Consider a characterization theorem of Sugeno integral for functions and capac-
ities on finite X proved in [6]. It is proved in [6] that for a finite compactum X a
non-negative functional µ on C(X, [0, 1]) = [0, 1]X satisfies the conditions:

(1) µ(1X) = 1;
(2) µ(ψ) ≤ µ(ϕ) for each functions ϕ, ψ ∈ C(X, [0, 1]) such that ϕ ≤ ψ;
(3) µ(ψ ∨ ϕ) = µ(ψ) ∨ µ(ϕ) for each comonotone functions ϕ, ψ ∈ C(X, [0, 1]);
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(4)∧ µ(cX ∧ ϕ) = c ∧ µ(ϕ) for each c ∈ [0, 1], ϕ ∈ C(X, [0, 1]),
if and only if there exists a unique capacity ν such that µ is the Sugeno integral

with respect to ν.
The analogous characterization theorem was proved in [7] for each t-normed

integral on a finite compactum. The authors also posed the problem to extend above
mentioned results to any (infinite) compacta. We will consider such generalization
in this section.

We consider any compactum X and a continuous t-norm ∗.

Lemma 3. We have minx∈X f(x) ≤
∫
∨∗

X
fdν ≤ maxx∈X f(x) for each capacity

ν ∈MX and f ∈ C(X, [0, 1]).

Proof. Put a = minx∈X f(x) and b = maxx∈X f(x). The we have

a = 1 ∗ a = ν(fa) ∗ a ≤ max{ν(ft) ∗ t | t ∈ [0, 1]} =

= max{ν(ft) ∗ t | t ∈ [0, b]} ≤ 1 ∗ b = b.

�

We denote by B the set of functionals µ : C(X, [0, 1]) → [0, 1] which satisfy the
conditions:

(1) µ(1X) = 1;
(2) µ(ϕ) ≤ µ(ψ) for each functions ϕ, ψ ∈ C(X, [0, 1]) such that ϕ ≤ ψ;
(3) µ(ψ ∨ ϕ) = µ(ψ) ∨ µ(ϕ) for each comonotone functions ϕ, ψ ∈ C(X, [0, 1]);
(4) µ(cX ∗ ϕ) = c ∗ µ(ϕ) for each c ∈ R and ϕ ∈ C(X, [0, 1]).

Let us remark that for each c ∈ [0, 1] and for each µ ∈ B the equality µ(cX) = c

follows from Properties 1 and 4.

Theorem 1. A functional µ : C(X, [0, 1]) → [0, 1] is in B if and only if there exists
a unique capacity ν such that µ is the t-normed integral with respect to ν.

Proof. Sufficiency. Consider any capacity ν ∈ MX . By µ we denote the the
t-normed integral with respect to ν. Then µ satisfies Property 1 by Lemma 3.
Consider any functions ϕ, ψ ∈ C(X) such that ϕ ≤ ψ. The inequality µ(ϕ) ≤ µ(ψ)
follows from the obvious inclusion ϕt ⊂ ψt and monotonicity of t-norm.

Let ϕ, ψ ∈ C(X, [0, 1]) be two comonotone functions. The inequality µ(ψ∨ϕ) ≥
µ(ψ)∨µ(ϕ) follows from Property 2 proved above. We have ν(ψt)∗ t ≤ µ(ψ)∨µ(ϕ)
and ν(ϕt) ∗ t ≤ µ(ψ) ∨ µ(ϕ) for each t ∈ [0, 1]. Lemma 1 yields that (ψ ∨ ϕ)t = ψt
or (ψ ∨ ϕ)t = ϕt. Hence µ(ψ ∨ ϕ) ≤ µ(ψ) ∨ µ(ϕ) and we proved Property 3.

Consider any c ∈ R and ψ ∈ C(X). Consider any t ∈ [0, c] and put bt = inf{l ∈
[0, 1] | t ≤ c ∗ l}. It follows from continuity of ∗ that c ∗ bt = t. Moreover, we have
c ∗ k ≥ t iff k ≥ bt for each k ∈ [0, 1]. Since (c ∗ ψ)t = ∅ for each t > c, we have
µ(c ∗ψ) = max{ν((c ∗ψ)t) ∗ t | t ∈ [0, c]} = max{ν(ψ−1([bt, 1])) ∗ bt ∗ c | t ∈ [0, c]} ≤
max{ν(ψs) ∗ s | s ∈ [0, 1]} ∗ c = c ∗ µ(ψ).

Choose t0 ∈ [0, 1] such that µ(ψ) = ν(ψ−1([t0, 1])) ∗ t0. Since ∗ is monotone, we
have (c∗ψ)c∗t0 ⊃ ψt0 and ν(c∗ψ)c∗t0)∗ c∗ t0 ≥ ν(ψt0)∗ t0 ∗ c = µ(ψ)∗ c. We proved
Property 4. Hence µ ∈ B.

Necessity. Take any µ ∈ B. Define ν : F(X) → [0, 1] as follows ν(A) = inf{µ(ϕ) |
ϕ ∈ ΥA} if A 6= ∅ and ν(∅) = 0. It is easy to see that ν satisfies Conditions 1 and
2 from the definition of capacity.

Let ν(A) < η for some η ∈ [0, 1] and A ∈ F(X). Then there exists ϕ ∈ ΥA such
that µ(ϕ) < η. Choose β ∈ I such that µ(ϕ) < β < η. Since the operation ∗ is
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continuous, η ∗ 1 = η and η ∗ 0 = 0, there is δ ∈ I such that η ∗ δ = β. Evidently,
δ < 1. Choose ζ ∈ I such that δ < ζ < 1 and a function ψ ∈ Υϕζ

such that
ψ|ϕ−1([0,δ]) = ϕ|ϕ−1([0,δ]). Then we have δ ∗ ψ ≤ ϕ and δ ∗ µ(ψ) ≤ µ(ϕ) < b = δ ∗ η.
Hence µ(ψ) < η. Put U = ψ−1((ζ, 1]). Evidently U is open and U ⊃ A. We have
ν(K) ≤ µ(ψ) < η for each compactum K ⊂ U . Hence ν ∈MX .

Let us show that
∫
∨∗

X
ϕdν = µ(ϕ) for each ϕ ∈ C(X, I). We have

∫
∨∗

X
ϕdν =

max{inf{µ(χ) | χ ∈ Υϕt
} ∗ t | t ∈ [0, 1]} = max{inf{µ(t ∗ χ) | χ ∈ Υϕt

} | t ∈ [0, 1]}.
The inequality inf{µ(χ) | χ ∈ Υϕt

} ∗ t ≤ µ(ϕ) is obvious for each t ∈ [0, µ(ϕ)].
Consider any t > µ(ϕ). For each δ < t choose a function χδ ∈ Υϕt

such that
χδ|ϕ−1([0,δ]) = ϕ|ϕ−1([0,δ]). Then we have δ ∗χδ ≤ ϕ and δ ∗µ(χδ) ≤ µ(ϕ). Since the

operation ∗ is continuous, inf{µ(χ) | χ ∈ Υϕt
} ∗ t ≤ µ(ϕ). Hence

∫
∨∗

X
ϕdν ≤ µ(ϕ).

Suppose b =
∫
∨∗

X
ϕdν < µ(ϕ) = a. Put m = maxx∈X ϕ(x). Then for each

t ∈ [0,m] there exists χt ∈ Υϕt
such that µ(t ∗ χt) < a. We can assume that χt

is comonotone with ϕ by Lemma 2. For each t ∈ [0,m) choose t′ > t such that
t′ ∗ µ(χt) < a. The set Vt = {y | t′ ∗ χt(y) > ϕ(y)} is an open neighborhood for
each x ∈ X with ϕ(x) = t.

Now we will choose an open neighborhood W of the set ϕm. Put ξ = min{η ∈
[0, 1] | η ∗m ≤ m}. We have ξ ∗m = m. Since a ≤ m, using arguments as before we
can find γ ∈ [0, 1] such that γ ∗m = a. Then we have ξ ∗ a = ξ ∗ γ ∗m = γ ∗m = a.
Choose λ < ξ such that b < λ ∗ a. Then there exists ω ∈ Υϕm∗λ

such that
m ∗ λ ∗ µ(ω) < λ ∗ a, hence m ∗ µ(ω) < a. We can assume that ω is comonotone
with ϕ by Lemma 2. Since m ∗ λ < m, the open set W = ϕ−1(m ∗ λ,m] contains
the set ϕm. Let us remark that m ∗ ω(x) = m for each x ∈ W .

We can choose a finite subcover {W,Vt1 , . . . , Vtk} of the open cover {W} ∪ {Vt |
t ≤ m}. We can assume that t0 = m ∗ λ and ti ∈ [0,m) \ {t0} for i > 0.
Then we have that the functions t′i ∗ χ

ti and ω are pairwise comonotone, hence

µ(ω
∨
(
∨k
i=1{t

′

i ∗ χ
ti})) < a. On the other hand ϕ ≤ ω

∨
(
∨k
i=1{t

′

i ∗ χ
ti}) and we

obtain a contradiction. �

Let us remark that for Sugeno integral (when ∗ = min) instead Property 3
we can consider a weaker condition: µ(cX

∨
ϕ) = c ∗ µ(ϕ) for each c ∈ R and

ϕ ∈ C(X, [0, 1]) see [23] and [25].

For ψ ∈ C(X, [0, 1]) we define a function l
ψ
X : MX → [0, 1] by the formula

l
ψ
X(ν) =

∫
∨∗

X
ψdν. We also define a map lX : MX → [0, 1]C(X,[0,1]) taking the

diagonal product lX = (lψX)ψ∈C(X,[0,1]).

Lemma 4. The map lψX is continuous for each ψ ∈ C(X, [0, 1]).

Proof. Consider any ν ∈ MX such that lψX(ν) < a for some a ∈ (0, 1]. Put

ε = a− l
ψ
X(ν). Since the map ∗ : [0, 1]× [0, 1] → [0, 1] is continuous and the space

[0, 1] × [0, 1] is compact, there exists δ > 0 such that for each (r1, r2), (p1, p2) ∈
[0, 1]× [0, 1] such that |r1 − p1| < δ and |r2 − p2| < δ we have |r1 ∗ r2 − p1 ∗ p2| < ε.
Choose k ∈ N such that 1

k
< δ and put ti =

i
k
for i ∈ {0, . . . , k}. Define an open set

Oi = {µ ∈MX | µ(ψti) < ν(ψti)+δ} and put O = ∩ki=1Oi. Evidently O is an open
neighborhood of ν. Consider any µ ∈ O and t ∈ [0, 1]. Let i be a maximal element
of {0, . . . , k} such that ti ≤ t. Then we have µ(ψt)∗t ≤ µ(ψti)∗t < ν(ψti )∗ti+ε ≤ a.

Hence lψX(µ) < a.
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Now, consider any ν ∈ MX such that lψX(ν) > a for some a ∈ [0, 1). Then
there exists t ∈ [0, 1] such that ν(ψt) ∗ t > a. Put ε = ν(ψt) ∗ t − a. As before
we choose δ > 0 such that for each (r1, r2), (p1, p2) ∈ [0, 1] × [0, 1] such that
|r1 − p1| < δ and |r2 − p2| < δ we have |r1 ∗ r2 − p1 ∗ p2| < ε. Define an open
set O = {µ ∈ MX | µ(ψ−1(t − δ, 1]) > ν(ψ−1(t − δ, 1]) − δ}. Evidently O is an
open neighborhood of ν. Consider any µ ∈ O. There exists p ∈ (t− δ, t] such that
µ(ψp) > ν(ψ−1(t−δ, 1])−δ ≥ ν(ψt)−δ. Then we have µ(ψp)∗p > ν(ψt)∗ t−ε = a.

Hence lψX(µ) > a and the map lψX is continuous. �

Corollary 1. The map lX is a topological embedding.

3. Tensor products of capacities

For a continuous map of compacta f : X → Y we define the map Mf : MX →
MY by the formula Mf(ν)(A) = ν(f−1(A)) where ν ∈ MX and A ∈ F(Y ). The
map Mf is continuous. In fact, this extension of the construction M defines the
capacity functor in the category of compacta and continuous maps. The categorical
technics are very useful for investigation of capacities on compacta (see [24] for more
details). We try to avoid the formalism of category theory in this paper, but we
follow the main ideas of such approach.

The tensor product operation of probability measures is well known and very
useful partially for investigation of the spaces of probability measures on compacta
(see for example Chapter 8 from [15]). General categorical definition of tensor
product for any functor was given in [3]. Applying this definition to the capacity
functor we obtain that a tensor product of capacities on compacta X1 and X2 is a
continuous map

⊗ :MX1 ×MX2 →M(X1 ×X2)

such that for each i ∈ {1, 2} we have M(pi) ◦ ⊗ = pri where pi : X1 ×X2 → Xi,
pri :MX1 ×MX2 →MXi are the corresponding projections.

A tensor product for capacities was introduced in [20]. This definition is based on
the capacity monad structure. An explicit formula for evaluating tensor product
of capacities was given in [27] omitting the formalism of category theory. For
µ1 ∈MX1, µ2 ∈MX2 and B ∈ F(X1 ×X2) we put

µ1 ⊗ µ2(B) = sup{t ∈ [0, 1] | µ1({x ∈ X1 | µ2(p2(({x} ×X2) ∩B)) ≥ t} ≥ t}.

The problem of multiplication of capacities was deeply considered in the possi-
bility theory and it application to the game theory and the decision making theory
where the term joint possibility distribution is used. A standard choice of a joint
possibility distribution is based on the minimum operation. For µ1 ∈ M∪X1,
µ2 ∈M∪X2 and (x, y) ∈ X1 ×X2 we put

[µ1 ⊗ µ2](x, y) = [µ1](x) ∧ [µ2](y).

(Let us remind that by [ν] we denote the density of a possibility capacity ν.) It
is easy to check that both definitions coincide in the class of possibility capacities,
the difference is only in terms.

A more general approach is also used where the minimum operation is changed
by any t-norm (see for example [13]). We will use this definition in our paper but
we prefer the term tensor product.
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So, we fix a continuous t-norm ∗ and consider a tensor product generated by
∗ defined as follows. For possibility capacities µ1 ∈ M∪X1, µ2 ∈ M∪X2 and
(x, y) ∈ X1 ×X2 we put

[µ1 ⊛ µ2](x, y) = [µ1](x) ∗ [µ2](y).

We also can generalize the above mentioned formula from [27]. For capacities
µ1 ∈MX1, µ2 ∈MX2 and B ∈ F(X1 ×X2) we put

µ1⊛̃µ2(B) = sup{t ∈ [0, 1] | µ1({x ∈ X1 | µ2(p2(({x} ×X2) ∩B)) ≥ t}) ∗ t}.

The following theorem shows that both definitions coincide in the class of possi-
bility capacities.

Theorem 2. For possibility capacities µ1 ∈ M∪X1, µ2 ∈ M∪X2 and (x, y) ∈
X1 ×X2 we have

[µ1⊛̃µ2](x, y) = [µ1](x) ∗ [µ2](y).

Proof. We have

p2(({z} ×X2) ∩ {(x, y)})) =

{
∅, z 6= x,

{y}, z = x
,

thus

{z ∈ X1 | µ2(p2(({z} ×X2) ∩ {(x, y)})) ≥ t}) =

{
{x}, t ≤ µ2({y}),

∅, t > µ2({y})
.

Hence [µ1⊛̃µ2](x, y) = µ1⊛̃µ2({(x, y)})) = µ1({x}) ∗ µ2({y}) = [µ1](x) ∗ [µ2](y).
�

It was noticed in [20] that we can extend the definition of tensor product to any
finite number of factors by induction.

4. Nash equilibrium in mixed strategies

Let us recall the notion of Nash equilibrium and some facts concerning existence
of such equilibrium. We consider an n-players game f : X =

∏n
j=1Xj → R

n with
compact Hausdorff spaces of strategies Xi. The coordinate function fi : X → R

is called the payoff function of i-th player. For x ∈ X and ti ∈ Xi we use the
notation (x; ti) = (x1, . . . , xi−1, ti, xi+1, . . . , xn). A point x ∈ X is called a Nash
max-equilibrium (min-equilibrium) point if for each i ∈ {1, . . . , n} and for each
ti ∈ Xi we have fi(x; ti) ≤ fi(x) (fi(x; ti) ≥ fi(x)).

Usually some additional convexity structures are needed to establish existence
of Nash equilibrium. A family C of closed subsets of a compactum X is called a
convexity on X if C is stable for intersection and contains X and the empty set. The
elements of C are called C-convex (or simply convex). Although we follow general
concept of abstract convexity from [33], our definition is different. We consider
only closed convex sets. Such structure is called a closure structure in [33]. Our
definition is the same as in [38]. The whole family of convex sets in the sense of
[33] could be obtained by the operation of union of up-directed families. In what
follows, we assume that each convexity contains all singletons.

A convexity C on X is called T4 (normal) if for each disjoint C1, C2 ∈ C there
exist S1, S2 ∈ C such that S1 ∪ S2 = X , C1 ∩ S2 = ∅ and C2 ∩ S1 = ∅ (see for
example [28]).
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Now, let Ci be a convexity on Xi. We say that a function fi : X =
∏n
i=1Xi → R

is quasiconcave (quasiconvex) with respect to the i-th variable if we have (fxi )
−1([t; +∞)) ∈

Ci ((f
x
i )

−1((−∞; t]) ∈ Ci) for each t ∈ R and x ∈ X where fxi : Xi → R is the func-
tion defined as follows fxi (ti) = fi(x; ti) for ti ∈ Xi.

Theorem 3. [26] Let f : X =
∏n
j=1Xj → R

n be a game with a normal convexity Ci
defined on each compactum Xi such that all convex sets are connected, the function
f is continuous and the function fi : X → R is quasiconcave (quasiconvex) with
respect to the i-th variable for each i ∈ {1, . . . , n}. Then there exists a Nash max-
equilibrium (min-equilibrium) point.

Let us remark that the previous theorem was proved in [26] only for the max-
equilibrium. But the proof is the same for the min-equilibrium.

Now we apply these general concepts to the spaces of possibility capacities. We
consider a game u : Z =

∏n
i=1 Zi → [0, 1]n with compact Hausdorff spaces of pure

strategies Z1, . . . , Zn and continuous payoff functions ui :
∏n
i=1 Zi → [0, 1]. Let ⋆

and ∗ be two t-norms. We will extend the game u : Z =
∏n
i=1 Zi → [0, 1]n to a

game in mixed strategies eu :
∏n
i=1M∪Zi → [0, 1]n using the integral generated by

t-norm ⋆ and the tensor product generated by t-norm ∗.
We define expected payoff functions eui :

∏n
j=1M∪Zj → [0, 1] by the formula

eui(ν1, . . . , νn) =

∫
∨⋆

X

uid(ν1 ⊛ · · ·⊛ νn)

for (ν1, . . . , νn) ∈
∏n
j=1M∪Zj .

Lemma 4 and continuity of tensor product imply the following lemma.

Lemma 5. The function eui is continuous for each i ∈ {1, . . . , n}.

We discuss existence of Nash equilibrium in mixed strategies represented by pos-
sibility capacities. There exist a trivial solution of the problem for max-equilibrium.
We can consider the natural order onM∪Zi. Then eachM∪Zi contains the greatest
element µi defined by the formula

µi(A) =

{
0, A = ∅,

1, A 6= ∅

for A ∈ F(Zi). Hence (µ1, . . . , µn) is a Nash max-equilibrium point. There is
no such trivial solution for the min-equilibrium, since M∪Zi does not contain the
smallest element.

We will need some convexity structure on M∪X to establish existence of the
min-equilibrium. We use an idempotent convexity considered in [4] and [5] for
finite-dimensional spaces where it was called B-convexity. Firstly, we introduce it
on a cube [0, 1]S, where S is any set (finite or infinite). We call a subset C of [0, 1]S

B-convex if for each x, y ∈ [0, 1]S and α ∈ [0, 1] we have α ·x∨y ∈ C (the operations
of maximum ∨ and multiplication for a scalar · are taken coordinate-wise).

Partially, we can consider B-convexity on M∪X for each compactum X . Take
any ν, µ ∈M∪X and s ∈ [0, 1]. Put (s · ν ∨ µ)(A) = s · ν(A) ∨ µ(A) for A ∈ F(X).
It is easy to check that s · ν ∨ µ ∈M∪X . It is also easy to see that the introduced
operation commutes with taking the density, i.e. [s ·ν∨µ] = s · [ν]∨ [µ] (we consider
[s ·ν ∨µ], [ν] and [µ] as elements of [0, 1]X . We call a subset C ofM∪X B-convex if
for each ν, µ ∈M∪X and s ∈ [0, 1] we have s · ν ∨µ ∈ C. Evidently, each B-convex
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set is connected. So, we consider on M∪X a convexity structure CX which consists
of all closed B-convex subsets of M∪X .

The proof of the following lemma reduces to routine checking and so we omit it.

Lemma 6. The set lX(A) is B-convex in [0, 1]C(X,[0,1]) for each A ∈ CX and
l−1
X (B) ∈ CX for each closed B-convex subset B ⊂ [0, 1]C(X,[0,1]).

Lemma 7. The convexity CX is normal for each compactum X.

Proof. Let A and D be two B-convex disjoint closed subsets of M∪X . Then lX(A)
and lX(D) are two B-convex disjoint closed subsets of [0, 1]C(X,[0,1]) by Lemma 6 and
Corollary 1. It follows from compactness of lX(A) and lX(D) and properties of the
product topology on [0, 1]C(X,[0,1]) that there exists a finite subset N of C(X, [0, 1])
such that pN (lX(A)) ∩ pN(lX(D)) = ∅ where pN : [0, 1]C(X,[0,1]) → [0, 1]N is the
natural projection. Evidently pN (lX(A)) and pN (lX(D)) are B-convex disjoint
compact subsets of RN .

Theorem 7.1 from [5] implies that there exist two B-convex closed subsets L1, L2

of [0, 1]N such that L1 ∪ L2 = [0, 1]N and L1 ∩ pN (lX(B)) = ∅ = L2 ∩ pN (lX(A)).
Then (pN ◦ lX)−1(L1) and (pN ◦ lX)−1(L2) are B-convex closed subsets ofM∪X we
are looking for. �

Let us remark that each t-norm is distributive respectively the maximum oper-
ation, i.e. t ∗ (s ∨ l) = (t ∗ s) ∨ (t ∗ l). It follows from the monotonicity property.

Lemma 8. The map eui :
∏n
j=1M∪Zj → [0, 1] is quasiconvex with respect to the

i-th variable for each i ∈ {1, . . . , n}.

Proof. We will prove the lemma for the case n = 2. The proof of the general case
is the same. We also can assume i = 1. Consider any s ∈ [0, 1] and µ ∈ M∪Z2.
We should show that (euµ1 )

−1([0, s]) is B-convex. Consider any capacities ν1, ν2 ∈
M∪Z1, such that eu1(νj , µ) ≤ s for each j ∈ {1, 2}.

Choose any c ∈ [0, 1]. Then we have

eu1(c · ν1 ∨ ν2, µ) =

∫
∨⋆

X

u1d((c · ν1 ∨ ν2)⊛ µ) =

= max{((c · ν1 ∨ ν2)⊛ µ)(u−1
1 ([0, t])) ⋆ t | t ∈ [0, 1]} =

(we put Ut = u−1
1 ([0, t]))

= max{max{[(c · ν1 ∨ ν2)⊛ µ](x, y) | (x, y) ∈ Ut} ⋆ t | t ∈ [0, 1]} =

= max{max{c · [ν1](x) ∗ [µ](y) ∨ [ν2](x) ∗ [µ](y) | (x, y) ∈ Ut} ⋆ t | t ∈ [0, 1]} ≤

≤ max{max{[ν1](x) ∗ [µ](y) | (x, y) ∈ Ut} ⋆ t | t ∈ [0, 1]}∨

∨max{max{[ν2](x) ∗ [µ](y) | (x, y) ∈ Ut} ⋆ t | t ∈ [0, 1]} =

eu1(ν1, µ) ∨ eu1(ν2, µ) ≤ s.

�

Theorem 3 and Lemmas 7, 8 imply the following theorem.

Theorem 4. There exists a Nash min-equilibrium point for the game with the
expected payoff functions eui :

∏n
j=1M∪Zj → [0, 1].
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We finish this section with an example of a game in possibility capacities with
expected payoff function represented by Choquet integral which has no Nash min-
equilibrium. Consider the 2-person game in pure strategies u : {a, b}×{a, b} → R

2,
where u1(a; a) = 3, u1(a; b) = 0, u1(b; a) = 1, u1(b; b) = 2 and u2(a; a) = 0,
u2(a; b) = 3, u2(b; a) = 2, u2(b; b) = 1 and define the game in mixed strategies
cu :M∪({a, b})×M∪({a, b}) → R

2 as follows

cui(ν1; ν2) =

∫ Ch

X

uid(ν1 ⊛ ν2)

for (ν1, ν2) ∈M∪({a, b})×M∪({a, b}) and i ∈ {1, 2}, where ⊛ is the tensor product
generated by the minimum operation ∧. Let us show that such game has no Nash
min-equilibrium point.

Consider any pair of mixed strategies (ν, µ) ∈ M∪({a, b}) × M∪({a, b}) with
[ν](a) = λ1, [ν](b) = β1 and [µ](a) = λ2, [µ](b) = β2. Then we have

cu1(ν, µ) = β1 ∧ λ2 + 2β1 ∧ β2 + 3λ1 ∧ λ2

and

cu2(ν, µ) = 2β1 ∧ λ2 + β1 ∧ β2 + 3λ1 ∧ β2.

Since ν, µ ∈M∪({a, b}), we have max{λ1, β1} = 1 = max{λ2, β2}.
Consider the case λ1 = 1 = λ2. If β2 = 1, we consider µ′ ∈ M∪({a, b}) with

[µ′](a) = 1, [µ′](b) = 0. Then we have

cu2(ν, µ
′) = 2β1 < 3 + 3β1 = cu2(ν, µ).

If β2 < 1, we consider ν′ ∈M∪({a, b}) with [ν′](a) = 0, [ν′](b) = 1. Then we have

cu1(ν
′, µ) = 1 + 2β2 < 3 ≤ cu1(ν, µ).

Now, let λ1 = 1 = β2. Consider µ′ ∈ M∪({a, b}) with [µ′](a) = 1, [µ′](b) = 0.
Then we have

cu2(ν, µ
′) = 2β1 < β1 + 2β1 ∧ λ2 + 3 = cu2(ν, µ).

Consider the case β1 = 1 = β2. If λ2 = 1, we consider µ′ ∈ M∪({a, b}) with
[µ′](a) = 0, [µ′](b) = 1. Then we have

cu2(ν, µ
′) = 1 + 3λ1 < 3 + 3λ1 = cu2(ν, µ).

If λ2 < 1, we consider ν′ ∈M∪({a, b}) with [ν′](a) = 1, [ν′](b) = 0. Then we have

cu1(ν
′, µ) = 3λ2 < λ2 + 2 + 3λ1 ∧ λ2 = cu1(ν, µ).

Finally, let λ2 = 1 = β1. If λ1 > 0, we consider ν′ ∈M∪({a, b}) with [ν′](a) = 0,
[ν′](b) = 1. Then we have

cu1(ν
′, µ) = 1 + 2β2 < 1 + 2β2 + 3λ1 = cu1(ν

′, µ).

If λ1 = 0, we consider µ′ ∈M∪({a, b}) with [µ′](a) = 0, [µ′](b) = 1. Then we have

cu2(ν, µ
′) = 1 < 2 + β2 = cu2(ν, µ).

Hence (ν, µ) is not a Nash min-equilibrium point.
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5. Conclusion

We consider games where players are allowed to play their mixed non-additive
strategies expressed by possibility capacities. Such games with payoff functions ex-
pressed by Choquet integral and Sugeno integral where considered in [20], [17], [26]
and [18]. Since the space of all capacities and the space of possibility capacities have
the greatest element, the existence problem of Nash equilibrium there is rather triv-
ial. But the set of possibility capacities has no smallest element. So, we considered
a game where the players try to minimize his expected payoff function represented
by fuzzy integral generated by the maximum operation and some continuous trian-
gular norm which is a generalization of the Sugeno integral. In Section 2 we give
a characterization of such integrals for any compacta solving the problem posed in
[7] where such characterization was given for finite compacta. We also consider a
generalization of tensor product of possibility capacities using any t-norm. (Tensor
product considered in above cited papers was based on the minimum operation).
In Section 4 we proved existence of Nash equilibrium for considered games. We
also provide an example showing that there is no Nash equilibrium when expected
payoff functions are represented by Choquet integral.
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