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FUZZY GYRONORMS ON GYROGROUPS

LI-HONG XIE

Abstract. The concept of gyrogroups is a generalization of groups which do not ex-
plicitly have associativity. In this paper, the notion of fuzzy gyronorms on gyrogroups
is introduced. The relations of fuzzy metrics (in the sense of George and Veeramani),
fuzzy gyronorms and gyronorms on gyrogroups are studied. Also, the fuzzy metric
structures on fuzzy normed gyrogroups are discussed. In the last, the fuzzy metric
completion of a gyrogroup with an invariant metric are studied. We mainly show that

let d be an invariant metric on a gyrogroup G and (Ĝ, d̂) is the metric completion of
the metric space (G, d); then for any continuous t-norm ∗, the standard fuzzy met-

ric space (Ĝ,M
d̂
, ∗) of (Ĝ, d̂) is the (up to isometry) unique fuzzy metric completion

of the standard fuzzy metric space (G,Md, ∗) of (G, d); furthermore, (Ĝ,M
d̂
, ∗) is a

fuzzy metric gyrogroup containing (G,Md, ∗) as a dense fuzzy metric subgyrogroup

and M
d̂
is invariant on Ĝ. Applying this result, we obtain that every gyrogroup G

with an invariant metric d admits an (up to isometric) unique complete metric space

(Ĝ, d̂) of (G, d) such that Ĝ with the topology introduced by d̂ is a topology gyrogroup

containing G as a dense subgyrogroup and d̂ is invariant on Ĝ.

1. Introduction

Taking as a point of starting the notion of a Menger space, Kramosil and Michalek
introduced a notion of metric fuzziness [18] which became an interesting and fruitful
area of research(see for example[14, 20, 21, 22]). Furthermore, fuzzy metric spaces
have been investigated by several authors from different points of view (see for example
[8, 9, 16]). In particular, George and Veeramani [12], by modifying a definition of fuzzy
metric space given by Kramosil and Michalek [18], have introduced and studied a new
and interesting notion of a fuzzy metric space with the help of continuous t-norms.

Recall that a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm [26] if
∗ satisfies the following conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

Three paradigmatic examples of continuous t-norms are ∧, · and ∗L (the Lukasiewicz
t-norm), which are defined by a∧b = min{a, b}, a ·b = ab and a∗L b = max{a+b−1, 0},
respectively. One can easily show that ∗ ≤ ∧ for every continuous t-norm ∗.

Definition 1.1. (in the sense of George and Veeramani [12]) A fuzzy metric on a set
X is a pair (M, ∗) such that M is a fuzzy set in X ×X × (0,+∞) and ∗ is a continuous
t-norm satisfying for all x, y, z ∈ X and t, s > 0:

(i) M(x, y, t) > 0;
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(ii) M(x, y, t) = 1 if and only if x = y;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, t+ s) ≥ M(x, z, t) ∗M(z, y, s);
(v) M(x, y,− ) : (0,+∞) → [0, 1] is continuous.

By a fuzzy metric space we mean an ordered triple (X,M, ∗) such that X is a set and
(M, ∗) is a fuzzy metric on X. It is known that every fuzzy metric (M, ∗) on a set X

induces a topology τM on X, which has as a base the family of open sets of the form
{BM (x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}
for all x ∈ X, ε ∈ (0, 1), t > 0 (see [12]).

Combinations of a fuzzy metric structure and an algebraic structure deserve special
attention in fuzzy Topological Algebra. The most frequently studied structures fall
into the so-called fuzzy normed spaces (among others, the interested reader can consult
[2, 5, 7, 10, 19, 17]). Also, fuzzy metrics on groups are studied by several scholars
(see,[15, 23, 24, 25]). They find some sufficient conditions to make some topological al-
gebraic structures (in particular a nonsymmetric structure) become stronger topological
structures (in particular, a symmetric structure). In particular, recently, Sánchez and
Sanchis proved that the completion of a fuzzy metric group (G,M, ∗) such that (M, ∗)
is invariant on G is a fuzzy metric group (in the sense of Kramosil and Michalek)[24,
Theorem 2.2].

In [31], Ungar studies a parametrization of the Lorentz transformation group. This
leads to the formation of gyrogroup theory, a rich subject in mathematics (among others,
the interested reader can consult [1, 11]). Loosely speaking, a gyrogroup (see Definition
2.1) is a group-like structure in which the associative law fails to satisfy. Recently,
topological gyrogroups are studied by Atiponrat [3] and Cai et al [6] and so on. In
particular, Cai et al [6] extended the famous Birkhoff-Kakutani theorem by proving that
every first-countable Hausdorff topological gyrogroup is metrizable [6, Theorem 2.3].
Recently, Suksumran [30] studied the normed gyrogroup. In particular, Suksumran
proved that the normed gyrogroups are homogeneous and form left invariant metric
spaces and derive a version of the Mazur-Ulam theorem. Also, Suksumran given certain
sufficient conditions, involving the right-gyrotranslation inequality and Klee’s condition,
for a normed gyrogroup to be a topological gyrogroup (see [30]).

Those lead to the notion of a fuzzy normed gyrogroup is introduced in this paper. We
mainly study the fuzzy metrics structures and the fuzzy metrics completion on fuzzy
normed gyrogroups. The paper is organized as follows. In Section 2, some basic facts and
definitions are stated. Section 3 is devoted to study the fuzzy normed gyrogroups. The
relations of fuzzy gyronorms, fuzzy metrics and gyronorms on gyrogroups are studied.
We mainly show that: Every fuzzy normed gyrogroup G has an invariant fuzzy metric
under left gyrotranslations on G and every gyrogroup G with an invariant fuzzy metric
under left gyrotranslations is a fuzzy normed gyrogroup (see Theorems 3.4, 3.5 and
3.7). Also, some sufficient conditions, which make a fuzzy normed gyrogroup to be
a topological gyrogroup, are found (see Theorem 3.11). In Section 4 we consider the
fuzzy metric completion of an invariant metric gyrogroup by proving that let d be an

invariant metric on a gyrogroup G and (Ĝ, d̂) is the metric completion of the metric space

(G, d); then for any continuous t-norm ∗, the standard fuzzy metric space (Ĝ,M
d̂
, ∗)

of (Ĝ, d̂) is the (up to isometry) unique fuzzy metric completion of the standard fuzzy

metric space (G,Md, ∗) of (G, d); furthermore, (Ĝ,M
d̂
, ∗) is a fuzzy metric gyrogroup

containing (G,Md, ∗) as a dense fuzzy metric subgyrogroup and M
d̂
is invariant on Ĝ
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(see Theorem 4.4). Applying this result, we obtain that every gyrogroup G with an

invariant metric d admits an (up to isometric) unique complete metric space (Ĝ, d̂) of

(G, d) such that Ĝ with the topology introduced by d̂ is a topology gyrogroup containing

G as a dense subgyrogroup and d̂ is invariant on Ĝ (see Corollary 4.5).

2. Basic facts and definitions

The concept of gyrogroups as a generalization of groups, is originated from the study
of c-ball of relativistically admissible velocities with Einstein velocity addition as men-
tioned by Ungar in [31].

Let G be a nonempty set, and let ⊕ : G×G → G be a binary operation on G. Then
the pair (G,⊕) is called a groupoid. A function f from a groupoid (G1,⊕1) to a groupoid
(G2,⊕2) is said to be a groupoid homomorphism if f(x1⊕1x2) = f(x1)⊕2 f(x2) for any
elements x1, x2 ∈ G1. In addition, a bijective groupoid homomorphism from a groupoid
(G,⊕) to itself will be called a groupoid automorphism. We will write Aut (G,⊕) for
the set of all automorphisms of a groupoid (G,⊕).

Definition 2.1. [31, Definition 2.7] Let (G,⊕) be a nonempty groupoid. We say that
(G,⊕) or just G (when it is clear from the context) is a gyrogroup if the followings hold:

(G1) There is an identity element e ∈ G such that

e⊕ x = x for all x ∈ G.

(G2) For each x ∈ G, there exists an inverse element ⊖x ∈ G such that

⊖x⊕ x = e.

(G3) For any x, y ∈ G, there exists an gyroautomorphism gyr[x, y] ∈ Aut(G,⊕) such
that

x⊕ (y ⊕ z) = (x⊕ y)⊕ gyr[x, y](z)

for all z ∈ G.
(G4) For any x, y ∈ G, gyr[x⊕ y, y] = gyr[x, y].

One can easily show that any gyrogroup has a unique two-sided identity e, and an
element a of the gyrogroup has a unique two-sided inverse ⊖a. It is clear that every
group satisfies the gyrogroup axioms (the gyroautomorphisms are the identity map) and
hence is a gyrogroup. Conversely, any gyrogroup with trivial gyroautomorphisms forms
a group. From this point of view, gyrogroups naturally generalize groups.

Proposition 2.2 summarizes some algebraic properties of gyrogroups, which will prove
useful in studying topological and geometric aspects of gyrogroups in Sections 3 and 4.

Proposition 2.2. ([28, 29]) Let (G,⊕) be a gyrogroup and a, b, c ∈ G. Then

(1) ⊖(⊖a) = a Involution of inversion
(2) ⊖a⊕ (a⊕ b) = b Left cancellation law
(3) gyr[a, b](c) = ⊖(a⊕ b)⊕ (a⊕ (b⊕ c)) Gyrator identity
(4) ⊖(a⊕ b) = gyr[a, b](⊖b⊖ a) cf. (ab)−1 = b−1a−1

(5) (⊖a⊕ b)⊕ gyr[⊖a, b](⊖b⊕ c) = ⊖a⊕ c cf. (a−1b)(b−1c) = a−1c

(6) gyr[a, b] = gyr[⊖b,⊖a] Even property
(7) gyr[a, b] = gyr−1[b, a], the inverse of gyr[b, a] Inversive symmetry

As far as we known, Atiponrat is the first scholar who extended the idea of topological
groups to topological gyrogroups as gyrogroups with a topology such that its binary
operation is jointly continuous and the operation of taking the inverse is continuous.
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Definition 2.3. [3, Definition 1] A triple (G, τ,⊕) is called a topological gyrogroup if
and only if

(1) (G, τ) is a topological space;
(2) (G,⊕) is a gyrogroup; and
(3) The binary operation ⊕ : G×G → G is continuous where G×G is endowed with

the product topology and the operation of taking the inverse ⊖(·) : G → G, i.e.
x → ⊖x, is continuous.

If a triple (G, τ,⊕) satisfies the first two conditions and its binary operation is con-
tinuous, we call such triple a paratopological gyrogroup [4]. Sometimes we will just say
that G is a topological gyrogroup (paratopological gyrogroup) if the binary operation
and the topology are clear from the context.

Clearly, every topological group is a topological gyrogroup. Hence, tt is natural to
ask for the existence of a topological gyrogroup which is not a topological gyrogroup.
In fact, Atiponrat show that the Möbius gyrogroup and the Einstein gyrogroups with
the standard topology are such examples [3, Examples 2 and 3]. For the sake of com-
pleteness, we give one of Examples as follows.

Example 2.4. [3, Example 2] Let D be the complex open unit disk {z ∈ C : |z| < 1}.
Consider D with the standard topology. Next, we define a Möbius addition ⊕M : D×D →
D to be a function such that

a⊕M b =
a+ b

1 + ab
for all a, b ∈ D.

Then D with the operator ⊕M is not a group, which has no associativity. However, it
has been proved in section 3.4 of [31] that (D,⊕M) is a gyrogroup where the gyroauto-
morphism define as follows: for any a, b, c ∈ D

gyr[a, b](c) =
1 + ab

1 + ab
c.

This gyrogroup is one of the most important examples of gyrogroups. It is called the
Möbius gyrogroup. Moreover, 0 is the identity, and for any a ∈ D, we get that −a ∈ D

such that −a⊕M a = 0. Furthermore, D with the standard topology, the operator ⊕M

and the inverse operator are continuous, so (D,⊕M) is a topology gyrogroup, but not a
topological group or or a paratopological group.

3. Fuzzy normed gyrogroups

In this section we shall introduced the notions of fuzzy gyronorm on gyrogroups.
Also, the fuzzy metric structure and geometric structures of fuzzy normed gyrogroups
are studied. Let us begin with the following definition.

Definition 3.1. [30, Definition 3.1] (Gyronorms). Let (G,⊕) be a gyrogroup. A
function ‖ · ‖: G → R is called a gyronorm on G if the following properties hold:

(1) ‖ x ‖≥ 0 for each x ∈ G and ‖ x ‖= 0 if and only if x = e; (positivity)
(2) ‖ ⊖x ‖=‖ x ‖ for each x ∈ G; (invariant under taking inverses)
(3) ‖ x⊕ y ‖≤‖ x ‖ + ‖ y ‖; for each x, y ∈ G (subadditivity)
(4) ‖ gyr[a, b](x) ‖=‖ x ‖ for each x, a, b ∈ G. (invariant under gyrations)

In 2018, Suksumran [30] introduced the notions of gyronorms on gyrogroups and
said that any gyrogroup with a gyronorm is called a normed gyrogroup. Also, some
intersting metric and geometric structures of normed gyrogroups are established in [30].
This leads us to introduce the notions of Fuzzy Gyronorms on gyrogroup as follows.
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Definition 3.2. (Fuzzy Gyronorms) Given a gyrogroup (G,⊕) and a continuous t-
norm ∗, the pair (N, ∗) is called a fuzzy gyronorms on G if N is a fuzzy set of G×(0,+∞)
satisfying the following conditions for all x, y ∈ G and all t, s ∈ (0,+∞):

(N1) N(x, t) > 0;
(N2) x = e if and only if N(x, t) = 1;
(N3) N(⊖x, t) = N(x, t);
(N4) N(x⊕ y, t+ s) ≥ N(x, t) ∗N(y, s);
(N5) N(x,− ) : (0,+∞) → [0, 1] is continuous;
(N6) N(gyr[a, b])(x), t) = N(x, t) for all a, b ∈ G.

Given a gyrogroup G, a continuous t-norm ∗ and a fuzzy set N of G× (0,+∞), the
ordered triple (G,N, ∗) is called a fuzzy normed gyrogroup if (N, ∗) is a fuzzy gyronorm
on G.

The relations of normed gyrogroups and fuzzy normed gyrogroups are shown as fol-
lows.

Proposition 3.3. Let (G, ‖ · ‖) be a normed gyrogroup and define a fuzzy set N‖·‖ of

G × (0,+∞) by N‖·‖(x, t) = t
t+‖x‖ for each x ∈ G and t > 0, then the ordered triple

(G,N‖·‖, ∗) is a fuzzy normed gyrogroup, where ∗ is a contnuous t-norm;

Proof. Now let us check (N‖·‖, ∗) satisfies the conditions in Definition 3.2. In fact, it
is enough to show that N‖·‖ satisfies Definition 3.2 (N4), since clearly other conditions
hold for N‖·‖ by Definition 3.1.

In fact, take any x, y ∈ G and t, s > 0. Then

N‖·‖(x⊕ y, t+ s) =
s+ t

s+ t+ ‖ x⊕ y ‖
≥

s+ t

s+ t+ ‖ x ‖ + ‖ y ‖
,

since ‖ x⊕ y ‖≤‖ x ‖ + ‖ y ‖ by Definition 3.1 (3). Thus, to show that

N‖·‖(x⊕ y, t+ s) ≥ N‖·‖(x, t) ∗N‖·‖(y, s) =
t

t+ ‖ x ‖
∗

s

s+ ‖ y ‖
,

it is enough to show that

s+ t

s+ t+ ‖ x ‖ + ‖ y ‖
≥ min {

t

t+ ‖ x ‖
,

s

s+ ‖ y ‖
},

since ∗ is a continuous t-norm.
Without loss of generality, we assume that

t

t+ ‖ x ‖
≥

s

s+ ‖ y ‖
,

which is equivalent to

‖ x ‖

t
≤

‖ y ‖

s
.
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Hence, we have that

s+ t

s+ t+ ‖ x ‖ + ‖ y ‖
≥ min {

t

t+ ‖ x ‖
,

s

s+ ‖ y ‖
}

⇔
s+ t

s+ t+ ‖ x ‖ + ‖ y ‖
≥

s

s+ ‖ y ‖

⇔
s+ t+ ‖ x ‖ + ‖ y ‖

s+ t
≤

s+ ‖ y ‖

s

⇔
‖ x ‖ + ‖ y ‖

s+ t
≤

‖ y ‖

s

⇔ s ‖ x ‖ +s ‖ y ‖≤ s ‖ y ‖ +t ‖ y ‖

⇔ s ‖ x ‖≤ t ‖ y ‖

⇔
‖ x ‖

t
≤

‖ y ‖

s
.

Hence, by the assumption, we have proved that

N‖·‖(x⊕ y, t+ s) ≥ N‖·‖(x, t) ∗N‖·‖(y, s)

holds for each x, y ∈ G and s, t > 0. �

Proposition 3.3 shows that every normed gyrogroup can introduce a fuzzy normed
gyrogroup, for example, on the Einstein gyrogroups and the Möbiusg yrogroups there
are fuzzy gyronorms, since they are normed gyrogroups (see [30, Theorems 3.3 and
3.4]). Theorems 3.4 and 3.7 reveals the relations of fuzzy metrics and fuzzy gyronorms
on gyrogroups.

Theorem 3.4. Let (G,N, ∗) be a fuzzy normed gyrogroup. Define

MN (x, y, t) = N(⊖x⊕ y, t)

for all x, y ∈ G and t > 0. Then (M, ∗) is a fuzzy metric on G.

Proof. Suppose that (G,N, ∗) is a fuzzy normed gyrogroup. Let us verify that the pair
(MN , ∗) satisfies (i)-(v) in Definition 1.1.

(i): According to the definition of MN , MN (x, y, t) = N(⊖x⊕y, t), so MN (x, y, t) > 0
by Definition 3.2(N1) N(⊖x⊕ y, t) > 0.

(ii): If x = y, then MN (x, y, t) = N(⊖x⊕y, t) = N(e, t) = 1 for all t > 0 by Definition
3.2(N2). If MN (x, y, t) = 1 for all t > 0, then N(⊖x⊕ y, t) = 1 for all t > 0. Thus, by
Definition 3.2(N2) we obtain that ⊖x⊕ y = e, so x = y by by the left cancellation law.

(iii): By Proposition 2.2 (4) and Definition 3.2 (N3) and (N6) we obtain that

MN (x, y, t) = N(⊖x⊕ y, t)

= N(⊖(⊖x⊕ y), t)

= N(gyr[⊖x, y](⊖y ⊕ x), t)

= N(⊖y ⊕ x), t)

= MN (y, x, t).

(iv): Take any x, y, z ∈ G. Then Proposition 2.2 (5) and Definition 3.2 (N4), (N6)
we obtain that
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MN (x, z, s + t) = N(⊖x⊕ z, s + t)

= N((⊖x⊕ y)⊕ gyr[⊖x, y](⊖y ⊕ z), s + t)

≥ N(⊖x⊕ y, s) ∗N(gyr[⊖x, y](⊖y ⊕ z), t)

= N(⊖x⊕ y, s) ∗N(⊖y ⊕ z, t)

= MN (x, y, s) ∗M(y, z, t).

(v): It is obvious by Definition 3.2 (N5). �

The fuzzy metric induced by a fuzzy gyronorm in Theorem 3.4 is called a fuzzy
gyronorm metric on G.

Let (X,M, ∗) and (Y,N, ⋆) be two fuzzy metric spaces. Recall that a mapping from
X to Y is called an isometry if for each x, y ∈ X and each t > 0, M(x, y, t) =
N(f(x), f(y), t). Two fuzzy metric spaces (X,M, ∗) and (Y,N, ⋆) are called isomet-
ric if there is an isometry from X onto Y (see [13, Definitions 1 and 2]).

Theorem 3.5. Let (G,N, ∗) be a fuzzy normed gyrogroup. Then the fuzzy gyronorm
metric (MN , ∗) with respect to (N, ∗) is invariant under left gyrotranslation:

MN (a⊕ x, a⊕ y, t) = MN (x, y, t)

for all x, y, a ∈ G and t ∈ (0,+∞). Hence, every left gyrotranslation of G is an isometry
of (G,MN , ∗).

Proof. Let a, x, y ∈ G. Recall that the left gyrotranslation by a, denote by La, is defined
by La(x) = a⊕x for all x ∈ G. Next, we prove that the fuzzy gyronorm metric (MN , ∗)
is invariant under La. In fact,

MN (La(x), La(y), t) = MN (a⊕ x, a⊕ y, t)

= N(⊖(a⊕ x)⊕ (a⊕ y), t)

= N(gyr[a, x](⊖x⊖ a)⊕ (a⊕ y), t) by Proposition 2.2 (4)

= N((⊖x⊖ a)⊕ gyr[x, a](a ⊕ y), t) by Proposition 2.2(7)

and Definition 3.2 (N6)

= N(⊖x⊕ y, t) by Proposition 2.2 (5)

= MN (x, y, t).

�

Corollary 3.6. If (G,N, ∗) is a fuzzy normed gyrogroup, then G with the topology intro-
duced by the fuzzy gyronorm metric with respect to (N, ∗) is a left topological gyrogroup
(every left gyrotranslation of G is continuous). Hence, G is homogeneous.

Proof. The fact that G with the topology introduced by the fuzzy gyronorm metric
with respect is a left topological gyrogroup directly follows from Theorem 3.5. Take any
x, y ∈ G. Then it is obvious that Ly(L⊖x(x)) = y, so by Theorem 3.5 Ly ◦ L⊖x is as
required. Hence G is homogeneous. �

Theorem 3.7. Let G be a gyrogroup with a fuzzy metric (M, ∗). If (M, ∗) is invariant
under left gyrotranslation, that is,

M(a⊕ x, a⊕ y, t) = M(x, y, t)

for all a, x, y ∈ G and t > 0 and define NM (x, t) = M(e, x, t) then (NM , ∗) is a fuzzy
gyronorm on G that generates the same fuzzy metric.
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Proof. Clearly, NM is a fuzzy set of G × (0,+∞). Let us check (NM , ∗) satisfies the
conditions in Definition 3.2.

(N1): NM (x, t) = M(e, x, t) > 0 holds for each x ∈ G and t > 0 by Definition 1.1(i).
(N2): By Definition 1.1(ii), if x = e, then NM (e, t) = M(e, e, t) = 1 holds for each

t > 0. Conversely, if NM (x, t) = M(e, x, t) = 1 holds for each t > 0, then x = e.
(N3): Since (M, ∗) is invariant under left gyrotranslation, we have that the equalities

NM (⊖x, t) = M(e,⊖x, t) = M(x, e, t) = M(e, x, t) = NM (x, t)

hold for each t > 0.
(N4): By Definition 1.1(iii), (iv) and that the invariantness of (M, ∗) under left

gyrotranslation, we have that

NM (x⊕ y, t+ s) = M(e, x ⊕ y, t+ s)

= M(⊖x, y, t+ s)

≥ M(⊖x, e, t) ∗M(e, y, s)

= M(e, x, t) ∗M(e, y, s)

= NM (x, t) ∗NM (y, s)

hold for each x, y ∈ G and t, s > 0.
(N5): It is obvious by Definition 1.1(v).
(N6): By the invariantness of (M, ∗) under left gyrotranslation, we have that

NM (gyr[a, b](x), t) = NM (⊖(a⊕ b)⊕ (a⊕ (b⊕ x), t)

= M(e,⊖(a ⊕ b)⊕ (a⊕ (b⊕ x), t)

= M(a⊕ b, a⊕ (b⊕ x), t)

= M(b, b ⊕ x), t)

= M(e, x), t)

= NM (x, t)

hold for each a, b, x ∈ G and t, s > 0.
Hence we have proved that (NM , ∗) is a fuzzy gyronorm on G.
Now according to Theorem 3.5, since (M, ∗) is invariant under left gyrotranslation,

we have that

NM (⊖x⊕ y, t) = M(e,⊖x⊕ y, t) = M(x, y, t)

hold for each x, y ∈ G and t > 0. This implies that (NM , ∗) generates the same fuzzy
metric (M, ∗). �

Theorem 3.8. Let (G,N, ∗) be a fuzzy normed gyrogroup. If α ∈ Aut G and N(α(x), t) =
N(x, t) for all x ∈ G and t > 0, then α is an isometry of (G,MN , ∗), where (MN , ∗) is
the fuzzy gyronorm metric with respect to (N, ∗).

Proof. By assumption, we have that

MN (α(x), α(y), t) = N(⊖α(x)⊕ α(y), t)

= N(⊖α(x⊕ y), t)

= N(⊖x⊕ y, t)

= MN (x, y, t).

�
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Corollary 3.9. If (G,N, ∗) is a fuzzy normed gyrogroup, then the gyroautomorphisms
of G are isometries of (G,MN , ∗), where (MN , ∗) is the fuzzy gyronorm metric with
respect to (N, ∗).

We have studied the fuzzy metric and geometric structures on fuzzy normed gy-
rogroups. Next, we shall study the topological structures on fuzzy normed gyrogroups.
Some sufficient conditions which make gyrogroups with some topologies become topo-
logical gyrogroups are found.

Theorem 3.10. Let (G,N, ∗) be a fuzzy normed gyrogroup and (MN , ∗) the fuzzy gy-
ronorm metric with respect to (N, ∗). Consider the following conditions.

(I) Right-gyrotranslation inequality: MN (x⊕a, y⊕a, t) ≥ MN (x, y, t) for all x, y, a ∈
G and t > 0;

(I)′ Klee’s condition: MN (x ⊕ y, a ⊕ b, t + s) ≥ MN (x, a, t) ∗ MN (y, b, s) for all
x, y, a, b ∈ G and t, s > 0;

(II) Commutative-like condition: N((a⊕x)⊕ gyr[a, x](y⊖a), t) = N(x⊕ y, t) for all
x, y, a ∈ G and t > 0;

(II)′ Right-gyrotranslation invariant: MN (x⊕a, y⊕a, t) = MN (x, y, t) for all x, y, a ∈
G and t > 0.

Then (II) ⇔ (II)′ ⇒ (I)′ ⇔ (I).

Proof. The implication (II)′ ⇒ (I)′ is obvious. Thus it is enough to show that (II) ⇔
(II)′ and (I)′ ⇔ (I).

(I) ⇔ (I)′. Assume that the right-gyrotranslation inequality holds. Then we have
that

MN (x⊕ y, a⊕ b, t+ s) ≥ MN (x⊕ y, x⊕ b, s) ∗MN (x⊕ b, a⊕ b, t)

= MN (y, b, s) ∗MN (x⊕ b, a⊕ b, t)

≥ MN (x, a, t) ∗MN (y, b, s).

Conversely,

MN (x⊕ a, y ⊕ a, t) ≥ MN (x, y, t) ∗M(a, a, 0)

= MN (x, y, t).

(II) ⇔ (II)′. Assume commutative-like condition holds. Let x, a, y ∈ G and t, s > 0.
Then we have that

MN (x⊕ a, y ⊕ a, t) = N(⊖(x⊕ a)⊕ (y ⊕ a), t)

= N(gyr[x, a](⊖a ⊖ x)⊕ (y ⊕ a), t)

= N((⊖a⊖ x)⊕ gyr[a, x](y ⊕ a), t)

= N((⊖a⊖ x)⊕ gyr[⊖a,⊖x](y ⊕ a), t)

= N(⊖x⊕ y, t)

= MN (x, y, t).
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Conversely,

N(x⊕ y, t) = MN (⊖x, y, t)

= MN (⊖x⊖ a, y ⊖ a, t)

= N(⊖(⊖x⊖ a)⊕ (y ⊖ a), t)

= N(gyr[⊖x,⊖a](a⊕ x)⊕ (y ⊖ a), t)

= N((a⊕ x)⊕ gyr[⊖a,⊖x](y ⊖ a), t)

= N((a⊕ x)⊕ gyr[a, x](y ⊖ a), t).

�

Theorem 3.11. Let (G,N, ∗) be a fuzzy normed gyrogroup. If one of the conditions
(I) and (I)′ in Theorem 3.10 holds, then G is a topological gyrogroup endowed with the
topology induced by the fuzzy gyronorm metric (MN , ∗) with respect to (N, ∗).

Proof. Firstly, we shall prove that the operator ⊕: G×G → G is continuous. Take any
x, y ∈ G and any open neighborhood V of x⊕ y. Then there are ǫ ∈ (0, 1) and t0 > 0
such that BMN

(x ⊕ y, ǫ, t0) = {z ∈ G : MN (x⊕ y, z, t0) > 1− ǫ} ⊆ V . Since the ∗ is a
continuous t-norm, there is ǫ0 ∈ (0, 1) such that

(1− ǫ0, 1] ∗ (1− ǫ0, 1] ⊆ (1− ǫ, 1].

Then BMN
(x, ǫ0,

t0
2 ) and BMN

(y, ǫ0,
t0
2 ) are open neighborhoods of x and y, respectively.

Take any a ∈ BMN
(x, ǫ0,

t0
2 ) and b ∈ BMN

(y, ǫ0,
t0
2 ). Then by the conditions in Theorem

3.10 (II),

MN (x⊕ y, a⊕ b, t0) ≥ MN (x, a,
t0

2
) ∗MN (y, b,

t0

2
) > 1− ǫ,

since MN (x, a, t02 ) > 1− ǫ0 and MN (y, b, t02 ) > 1− ǫ0. This implies that

BMN
(x, ǫ0,

t0

2
)⊕BMN

(y, ǫ0,
t0

2
) ⊆ BMN

(x⊕ y, ǫ, t0) ⊆ V.

Hence we prove that the operator ⊕ is continuous.
Secondly, we shall prove that the operator ⊖: G → G is continuous. Take any x ∈ G

and any open neighborhood V of ⊖x. Then there are ǫ ∈ (0, 1) and t0 > 0 such that
BMN

(⊖x, ǫ, t0) = {z ∈ G : MN (⊖x, z, t0) > 1 − ǫ} ⊆ V . Clearly, BMN
(x, ǫ, t0) is an

open neighborhood of x.
Take any y ∈ BMN

(x, ǫ, t0). Then

MN (⊖x,⊖y, t0) = MN (e,⊖y ⊕ x, t0)

= MN (y, x, t0)

= MN (x, y, t0) > 1− ǫ

Hence ⊖y ∈ BMN
(⊖x, ǫ, t0), this implies that ⊖BMN

(x, ǫ, t0) ⊆ BMN
(⊖x, ǫ, t0). Thus

we have proved that the operator ⊖ is continuous. �

4. Completions of invariant standard fuzzy metrics on gyrogroups

In this section, we shall study the fuzzy metric completion of an invariant metric d on
a gyrogroup G by showing that the gyrogroup operator ⊕ can be extended to the fuzzy

metric completion (Ĝ, M̂d, ∗) of the standard fuzzy metric space (G,Md, ∗) of the metric

space (G, d) such that (Ĝ, M̂d, ∗) become a gyrogroup containing G as a subgyrogroup.
Let us begin with some definitions and terms.
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A sequence (xn)n∈N in a fuzzy metric space (X,M, ∗) is said to be a Cauchy sequence
provided that for each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that M(xn, xm, t) >
1−ε whenever n,m ≥ n0. A fuzzy metric space (X,M, ∗) where every Cauchy sequence
converges is called complete.

Let (X,M, ∗) be a fuzzy metric space. Then a fuzzy metric completion of (X,M, ∗)

is a complete fuzzy metric space (X̂, M̂ , ∗) such that (X,M, ∗) is isometric to a dense

subspace of X̂. Unfortunately, there is a fuzzy metric that does not admit any fuzzy
metric completion [13, Example 2].

Let (X, d) be a metric space. Denote by a ∧ b = min{a, b} for all a, b ∈ [0, 1], and let
Md the fuzzy set defined on X ×X × (0,+∞) by

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md,∧) is a fuzzy metric space (see [12, Example 2.9 and Remark 2.10]).
Since for any continuous t-norm ∗, one can easily show that ∗ ≤ ∧, (X,Md, ∗) is also
a fuzzy metric space for any continuous t-norm ∗. We call this fuzzy metric (Md, ∗)
induced by a metric d the standard fuzzy metric with respect to the continuous t-norm
∗. Gregori and Romaguera proved that for every metric space (X, d) the standard fuzzy
metric space (X,Md, ·) with respect to the usual multiplication · on [0, 1] admits an
(up to isometry) unique fuzzy metric completion, which is exactly the standard fuzzy
metric space of the completion of (X, d) with respect to the continuous t-norm · [13,
Proposition 1]. In fact, borrowing their skills we have the more general result:

Proposition 4.1. Let (X, d) be a metric space and ∗ a continuous t-norm. Then the
standard fuzzy metric space (X,Md, ∗) with respect to ∗ admits an (up to isometry)
unique fuzzy metric completion, which is exactly the standard fuzzy metric space of the
completion of (X, d) with respect to the ∗.

Proof. For any continuous t-norm ⋆, it is known that (X,Md, ⋆) is a fuzzy metric space
above. Also we have the following facts:

(1) the topologies τMd
and τd introduced by (Md, ⋆) and d on X, respectively, are

same;
(2) if (X, d) is a complete metric space, then (X,Md, ⋆) is a complete fuzzy metric

space.

In fact, clearly, a sequence (xn)n ⊆ X converges to x in (X, τMd
) if and only if (xn)n

converges to x in (X, τd). Since the space (X, τd) and (X, τMd
) are first-countable, we

have that τMd
= τd. Clearly, every Cauchy sequence (xn)n in (X,Md, ⋆) is also a Cauchy

sequence in (X, d), so by fact (1) one can obtain the fact (2).

Let (X̂,M
d̂
, ∗) be the standard fuzzy metric space of the completion (X̂, d̂) of (X, d).

Then (X̂,M
d̂
, ∗) is a complete fuzzy metric space by the fact (2) and it is the unique

fuzzy metric completion of (X,Md, ∗) (up to isometry). Indeed, since there is an isom-

etry f from (X, d) onto a dense subspace of (X̂, d̂) and by fact (1), f(X) is dense in

(X̂,M
d̂
, ∗). Furthermore, clearly, by the equality d̂(f(x), f(y)) = d(x, y), we have that

M
d̂
(f(x), f(y), t) = Md(x, y, t) for all x, y ∈ X and t > 0. So (X̂,M

d̂
, ∗) is a fuzzy

metric completion of (X,Md, ∗), and, by [13, Lemma 1], it is unique up to isometry. �

Definition 4.2. Let G be a gyrogroup with a fuzzy metric (M, ∗) (resp. metric d).
We say (M, ∗) (resp. d) is invariant on G if (M, ∗) (resp. d) is invariant under left
gyrotranslations and right gyrotranslations, that is

M(a⊕ x, a⊕ y, t) = M(x, y, t) = M(x⊕ a, y ⊕ a, t)
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for all x, y, a ∈ G and t > 0 (resp. d(a ⊕ x, a ⊕ y) = d(x, y) = d(x ⊕ a, y ⊕ a) for all
x, y, a ∈ G).

Let G be a gyrogroup with a fuzzy metric (M, ∗). We call (G,M, ∗) is a fuzzy metric
gyrogroup if G with the topology introduced by (M, ∗) is a topological gyrogroup.

Theorem 4.3. Let G be a gyrogroup with an invariant fuzzy metric (M, ∗). Then
(G,M, ∗) is a fuzzy metric gyrogroup.

Proof. Since (M, ∗) is invariant on G, according to Theorem 3.7, G is a fuzzy normed
gyrogroup with the corresponding fuzzy metric (M, ∗). Hence G with the topology
introduced by (M, ∗) is a topological gyrogroup by Theorem 3.11. �

Theorem 4.4. Let d be an invariant metric on a gyrogroup G and (Ĝ, d̂) is the metric
completion of the metric space (G, d). Then for any continuous t-norm ∗, the standard

fuzzy metric space (Ĝ,M
d̂
, ∗) of (Ĝ, d̂) is the (up to isometry) unique fuzzy metric com-

pletion of the standard fuzzy metric space (G,Md, ∗) of (G, d). Furthermore, (Ĝ,M
d̂
, ∗)

is a fuzzy metric gyrogroup containing (G,Md, ∗) as a dense fuzzy metric subgyrogroup

and M
d̂
is invariant on Ĝ.

Proof. From Proposition 4.1 it follows that (Ĝ,M
d̂
, ∗) is the (up to isometry) unique

fuzzy metric completion of the standard fuzzy metric space (G,Md, ∗). Now we shall

prove that (Ĝ,M
d̂
, ∗) is a fuzzy metric gyrogroup containing (G,⊕) as a dense sub

gyrogroup and M
d̂
is invariant on Ĝ.

Since Md(x, y, t) =
t

t+d(x,y) for each x, y ∈ G and t > 0 and d is invariant on G, so is

(Md, ∗) on G.

Take any points a, b ∈ Ĝ. Consider two sequences (an)n, (bn)n ⊆ G such that

lim
n→∞

an = a and lim
n→∞

bn = b in (Ĝ,M
d̂
, ∗). Then we claim that the sequence (an ⊕ bn)n

is a Cauchy sequence in (G,Md, ∗), hence in (Ĝ,M
d̂
, ∗). For this, fix ǫ ∈ (0, 1) and

t > 0. Since ∗ is a continuous t-norm, there is s > 0 such that (1− s) ∗ (1− s) > 1− ǫ.
Observing that (an)n and (bn)n are Cauchy sequences in (G,Md, ∗), thus there is an
n0 ∈ ω such that Md(ai, aj ,

t
2) > 1−s and M(bi, bj ,

t
2) > 1−s whenever i, j > n0. Since

Md is invariant on G, we have that

Md(ai ⊕ bi, aj ⊕ bj, t) ≥ Md(ai ⊕ bi, aj ⊕ bi,
t

2
) ∗Md(aj ⊕ bi, aj ⊕ bj,

t

2
)

= Md(ai, aj ,
t

2
) ∗Md(bi, bj,

t

2
)

= (1− s) ∗ (1− s)

> 1− ǫ

whenever i, j > n0. Hence we have prove that the sequence (an ⊕ bn)n is a Cauchy

sequence in (Ĝ,M
d̂
, ∗).

Now we define a binary operation ⊕̂ on Ĝ as follows: given two elements a, b ∈ Ĝ

and two sequences (an)n, (bn)n ⊆ G such that lim
n→∞

an = a and lim
n→∞

bn = b, a⊕̂b = x,

where x is the limit of (an ⊕ bn)n in (Ĝ,M
d̂
, ∗).

Let us show that ⊕̂ is well defined. Choose two sequences (cn)n, (dn)n ⊆ G such that

lim
n→∞

cn = a and lim
n→∞

dn = b in (Ĝ,M
d̂
, ∗). Then we claim that lim

n→∞
(cn ⊕ dn) = x in

(Ĝ,M
d̂
, ∗).
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In fact, take any ǫ ∈ (0, 1) and t > 0. Choose s ∈ (0, 1) such that (1 − s) ∗ (1 − s) ∗
(1− s) > 1− ǫ, then we have that n0 ∈ ω such that

M
d̂
(x, an ⊕ bn,

t

3
) > 1− s,

M
d̂
(an, cn,

t

3
) > 1− s,

M
d̂
(bn, dn,

t

3
) > 1− s

hold whenever n > n0, since lim
j→∞

(aj ⊕ bj) = x, lim
j→∞

dj = b = lim
j→∞

bj and lim
j→∞

aj =

a = lim
j→∞

cj hold in (Ĝ,M
d̂
, ∗). Since Md is invariant on G, we have that

M
d̂
(x, cn ⊕ dn, t) ≥ M

d̂
(x, an ⊕ bn,

t

3
) ∗M

d̂
(an ⊕ bn, cn ⊕ dn,

2t

3
)

≥ M
d̂
(x, an ⊕ bn,

t

3
) ∗M

d̂
(an ⊕ bn, cn ⊕ bn,

t

3
) ∗M

d̂
(cn ⊕ bn, cn ⊕ dn,

t

3
)

= M
d̂
(x, an ⊕ bn,

t

3
) ∗M

d̂
(an, cn,

t

3
) ∗M

d̂
(bn, dn,

t

3
)

≥ (1− s) ∗ (1− s) ∗ (1− s)

> 1− ǫ

hold whenever n > n0. Hence we have proved that lim
n→∞

(cn ⊕ dn) = x in (Ĝ,M
d̂
, ∗).

Thus, the binary operation ⊕̂ is well defined.

We shall prove that (⊖an)n is a Cauchy sequence in (Ĝ,M
d̂
, ∗) for any sequence

(an)n ⊆ G such that lim
n→∞

an = a in (Ĝ,M
d̂
, ∗). Take any ǫ ∈ (0, 1) and t > 0. Since

lim
n→∞

an = a, there is n0 ∈ ω such that M
d̂
(ai, aj , t) > 1 − ǫ holds whenever i, j > n0.

Note that Md is invariant in G, so we have that

M
d̂
(⊖ai,⊖aj, t) = Md(⊖ai,⊖aj , t)

= Md(ai, aj , t)

= M
d̂
(ai, aj , t)

> 1− ǫ

holds whenever i, j > n0.

Now we can define an operation ⊖̂ on Ĝ as follows: given an element a ∈ Ĝ and a

sequence (an)n ⊆ G such that lim
n→∞

an = a in (Ĝ,M
d̂
, ∗), ⊖̂a = x, where x is the limit

of (⊖an)n in (Ĝ,M
d̂
, ∗).

Let us show that ⊖̂ is well defined. Choose any sequence (cn)n ⊆ G such that

lim
n→∞

cn = a in (Ĝ,M
d̂
, ∗). Then we claim that lim

n→∞
(⊖cn) = x in (Ĝ,M

d̂
, ∗). Take any

ǫ ∈ (0, 1) and t > 0. Then one can find s ∈ (0, 1) such that (1 − s) ∗ (1 − s) > 1 − ǫ.
Since

lim
j→∞

(cj) = a = lim
j→∞

(aj)

and

lim
j→∞

(⊖aj) = x,
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we can find n0 ∈ ω such that Md(an, cn,
t
2) = M

d̂
(an, cn,

t
2) > 1−s and M

d̂
(x,⊖an,

t
2) >

1− s holds whenever n > n0. Since that Md is invariant in G, we have that

M
d̂
(x,⊖cn, t) ≥ M

d̂
(x,⊖an,

t

2
) ∗M

d̂
(⊖an,⊖cn,

t

2
)

= M
d̂
(x,⊖an,

t

2
) ∗Md(⊖an,⊖cn,

t

2
)

= M
d̂
(x,⊖an,

t

2
) ∗Md(an, cn,

t

2
)

> (1− s) ∗ (1− s)

> 1− ǫ

holds whenever n > n0. Hence we have prove that ⊖̂ is well defined.

Next, let us show that (Ĝ, ⊕̂) is a gyrogroup. That is, the operator ⊕̂ satisfies the
axioms G1-G4 in Definition 2.1.

Let e be the identity inG and take any a, b, c in Ĝ and three sequences (an)n, (bn)n, (cn)n ⊆

G such that lim
n→∞

an = a, lim
n→∞

bn = b and lim
n→∞

cn = c in (Ĝ,M
d̂
, ∗).

(G1): e⊕̂b = b holds for each b ∈ Ĝ. In fact, since (G,⊕) is a gyrogroup, we have
that

e⊕̂b = lim
n→∞

(en ⊕ bn)

= lim
n→∞

bn

= b,

where en = e holds for each n ∈ ω. Similarly, one can easily show that b⊕̂e = b holds

for each b ∈ Ĝ.
(G2): For each a ∈ Ĝ, clearly,

(⊖̂a)⊕̂a = lim
n→∞

(⊖an)⊕̂ lim
n→∞

an = lim
n→∞

(⊖an ⊕ an) = e = lim
n→∞

(an ⊕ (⊖an)) = a⊕̂(⊖̂a).

(G3): Define ĝyr[a, b](c) = ⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂c)) for each a, b, c ∈ Ĝ.
Firstly, let us verify that the equality (♣): a⊕̂(b⊕̂c) = (a⊕̂b)⊕̂ĝyr[a, b](c) holds. In

fact,

(a⊕̂b)⊕̂ĝyr[a, b](c) = (a⊕̂b)⊕̂(⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂c)))

= ( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂(⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

cn)))

= lim
n→∞

((an ⊕ bn)⊕ (⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ cn))))

= lim
n→∞

((an ⊕ bn)⊕ gyr[an, bn](cn))

= lim
n→∞

(an ⊕ (bn ⊕ cn))

= lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

cn)

= a⊕̂(b⊕̂c).

Next, we shall prove that ĝyr[a, b] ∈ Aut (Ĝ, ⊕̂). Clearly, the mapping ĝyr[a, b] is

from (Ĝ, ⊕̂) to itself.
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Firstly, we shall prove that ĝyr[a, b] is a groupoid homomorphism. In fact, take any

d ∈ Ĝ and (dn)n ⊆ G such that lim
n→∞

dn = d. Then we have that

ĝyr[a, b](c⊕̂d) = ⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂(c⊕̂d)))

= ⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂( lim
n→∞

cn⊕̂ lim
n→∞

dn)))

= lim
n→∞

(⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ (cn ⊕ dn))))

= lim
n→∞

(gry[an, bn](cn ⊕ dn))

= lim
n→∞

(gry[an, bn](cn)⊕ gry[an, bn](dn))

= lim
n→∞

((⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ cn)))⊕ (⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ dn))))

= (⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

cn)))

⊕̂(⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

dn)))

= (⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂c)))⊕̂(⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂d)))

= ĝyr[a, b](c) ⊕̂ ĝyr[a, b](d).

Secondly, we shall prove that the equalities

ĝyr[⊖̂a, a](b) = b,(1)

⊖̂a(⊕̂a⊕̂b) = b,(2)

hold for each a, b ∈ Ĝ.
By the definitions of ĝyr[a, b], ⊖̂ and ⊕̂ above, we have that

ĝyr[⊖̂a, a](b) = ⊖̂(⊖̂a⊕̂a)⊕̂(⊖̂a⊕̂(a⊕̂b))

= ⊖̂( lim
n→∞

(⊖an)⊕̂ lim
n→∞

an)⊕̂( lim
n→∞

(⊖an)⊕̂( lim
n→∞

an⊕̂ lim
n→∞

bn))

= lim
n→∞

(⊖(⊖an ⊕ an)⊕ (⊖an ⊕ (an ⊕ bn)))

= lim
n→∞

(gyr[⊖an, an](bn))

= lim
n→∞

bn

= b.

By the equality (♣), (1) and (G1)-(G2) above, we have that

⊖̂a(⊕̂a⊕̂b) = (⊖̂a⊕̂a)⊕̂ĝyr[⊖̂a, a](b)

= (⊖̂a⊕̂a)⊕̂b

= e⊕̂b

= b.

Now we can prove that ĝyr[a, b] is bijective. If ĝyr[a, b](c) = ĝyr[a, b](d), that is,

⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂c)) = ⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂d)),

then by (2) above one can easily obtain that c = d. This implies that the mapping
ĝyr[a, b] is injective.



16 LI-HONG XIE

Next we claim the mapping ĝyr[a, b] is onto. Take any c ∈ Ĝ. Then

ĝyr[a, b](ĝyr[b, a](c))

= ĝyr[a, b](⊖̂(b⊕̂a)⊕̂(b⊕̂(a⊕̂c)))

= ⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂(⊖̂(b⊕̂a)⊕̂(b⊕̂(a⊕̂c)))))

= ⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂(⊖̂( lim
n→∞

bn⊕̂ lim
n→∞

an)⊕̂( lim
n→∞

bn⊕̂( lim
n→∞

an⊕̂ lim
n→∞

cn)))))

= lim
n→∞

(⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ (⊖(bn ⊕ an)⊕ (bn ⊕ (an ⊕ cn))))))

= lim
n→∞

(gyr[an, bn](⊖(bn ⊕ an)⊕ (bn ⊕ (an ⊕ cn))) by Proposition 2.2 (3)

= lim
n→∞

(gyr[an, bn](gyr[bn, an](cn))) by Proposition 2.2 (3)

= lim
n→∞

cn by Proposition 2.2 (7)

= c.

Hence we have proved that the mapping ĝyr[a, b] is onto, furthermore, is bijective.

(G4): Fix a and b. For any c ∈ Ĝ, we have that

ĝyr[a⊕̂b, b](c) = ⊖̂((a⊕̂b)⊕̂b)⊕̂((a⊕̂b)⊕̂(b⊕̂c))

= ⊖̂(( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂ lim
n→∞

bn)⊕̂(( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

cn))

= lim
n→∞

(⊖((an ⊕ bn)⊕ bn)⊕ ((an ⊕ bn)⊕ (bn ⊕ cn)))

= lim
n→∞

(gyr[an ⊕ bn, bn](cn)) by Proposition 2.2 (3)

= lim
n→∞

(gyr[an, bn](cn)) by Definition 2.1 (G4)

= lim
n→∞

(⊖(an ⊕ bn)⊕ (an ⊕ (bn ⊕ cn)))

= ⊖̂( lim
n→∞

an⊕̂ lim
n→∞

bn)⊕̂( lim
n→∞

an⊕̂( lim
n→∞

bn⊕̂ lim
n→∞

cn))

= ⊖̂(a⊕̂b)⊕̂(a⊕̂(b⊕̂c))

= ĝyr[a, b](c).

Hence, we have proved that ĝyr[a⊕̂b, b] = ĝyr[a, b] holds for each a, b ∈ Ĝ.

Thus we have proved that (Ĝ, ⊕̂) is a gyrogroup. Next, we shall prove that (M
d̂
, ∗)

is invariant on Ĝ. Take any a, b, c ∈ Ĝ and t > 0. Choose three sequences (an)n, (bn)n,

(cn)n ⊆ G such that lim
n→∞

an = a, lim
n→∞

bn = b and lim
n→∞

cn = c in (Ĝ,M
d̂
, ∗). Then we
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have that

M
d̂
(a⊕̂b, a⊕̂c, t) =

t

t+ d̂(a⊕̂b, a⊕̂c)

=
t

t+ d̂( lim
n→∞

an⊕̂ lim
n→∞

bn, lim
n→∞

an⊕̂ lim
n→∞

cn)

=
t

t+ d̂( lim
n→∞

(an ⊕ bn), lim
n→∞

(an ⊕ cn))

=
t

t+ lim
n→∞

d̂(an ⊕ bn, an ⊕ cn)
the metric d̂ is continuous on Ĝ

=
t

t+ lim
n→∞

d̂(bn, cn)
the metric d̂ is invariant on G

=
t

t+ d̂( lim
n→∞

bn, lim
n→∞

cn)
the metric d̂ is continuous on Ĝ

=
t

t+ d̂(b, c)

= M
d̂
(b, c, t).

Similarly, one can prove that

M
d̂
(b⊕̂a, c⊕̂a, t) = M

d̂
(b, c, t).

So (M
d̂
, ∗) is invariant on Ĝ.

Then from Theorem 4.3 it follows that Ĝ with the topology introduced by M
d̂
is a

topological gyrogroup. Furthermore, (Ĝ,M
d̂
, ∗) is a fuzzy metric gyrogroup containing

G as a dense subgyrogroup, since one can easily show that a⊕̂b = a⊕b for each a, b ∈ G.
�

From Theorem 4.4 it follows:

Corollary 4.5. Every gyrogroup G with an invariant metric d admits an (isometric)

unique complete metric space (Ĝ, d̂) of (G, d) such that Ĝ with the topology introduced

by d̂ is a topology gyrogroup containing G as a dense subgyrogroup and d̂ is invariant

on Ĝ.

Theorem 4.6. Let (G,M, ∗) be a fuzzy metric gyrogroup such that (M, ∗) is invariant
under the left (right) gyrotranslation. If (G,M, ∗) is a complete fuzzy metric, then every
compatible invariant under the left (right) gyrotranslation fuzzy metric on G is complete.

Proof. Let (N, ∗) be a compatible invariant under the left (right) gyrotranslation fuzzy
metric on G. Take a Cauchy sequence (xn)n in (G,N, ∗). Then we shall prove that
(xn)n is a Cauchy sequence in (G,M, ∗). In fact, take any ε ∈ (0, 1) and t > 0. Since
the topologies on G introduced by (N, ∗) and (M, ∗),respectively, are same, there is
ε0 ∈ (0, 1) and t0 > 0 such that BN (e, ε0, t0) ⊆ BM (e, ε, t), where e is the identity
in G and BN (e, ε0, t0) = {x ∈ G : N(e, x, t0) > 1 − ε0}, similar to BM (e, ε, t). Since
(xn)n is a Cauchy sequence in (G,N, ∗), for ε0 and t0 > 0 there is j ∈ ω such that
N(xi, xk, t0) > 1 − ε0 whenever i, k > j. This implies that N(e,⊖xi ⊕ xk, t0) > 1 − ε0
(N(e, xk⊕(⊖xi), t0) > 1−ε0), since N is invariant under the left (right) gyrotranslation.
Hence ⊖xi ⊕ xk ∈ BN (e, ε0, t0) ⊆ BM (e, ε, t) (xk ⊕ (⊖xi) ∈ BN (e, ε0, t0) ⊆ BM (e, ε, t))
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whenever i, k > j. Note that M is invariant under the left (right) gyrotranslation on
G, so M(xi, xk, t) > 1 − ε whenever i, k > j. Thus we have proved that (xn)n is a
Cauchy sequence in (G,M, ∗), so from the completion of M on G it follows that the
sequence (xn)n converges in (G,M, ∗). Since the topologies on G introduced by (N, ∗)
and (M, ∗),respectively, are same, the sequence (xn)n converges in (G,N, ∗). Thus N is
a complete fuzzy metric on G. �

Applying Theorems 4.4 and 4.6 we have the following result:

Corollary 4.7. If (G,M, ∗) is a fuzzy metric gyrogroup such that (M, ∗) is invari-
ant, then every invariant under the left gyrotranslation fuzzy metric on the completion

(Ĝ, M̂ , ∗) of (G,M, ∗) is complete.
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