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Abstract

Extending the concept of level measure µ({f > a}) we introduce a generalized level measure

based on a family of conditional aggregations operators. We investigate in detail several basic

properties, including connections with the family of level measures, the generalized survival func-

tion and the transformation of monotone measures to hyperset. Applications in scientometrics

and information science are described.
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1. Introduction

This paper deals with a study of the concept of the generalized level measure being a gener-

alization of the level measure µ({x ∈ X : f(x) > a}) using in many mathematical formulas such

as the Choquet integral [8], the Sugeno integral [27], the seminormed fuzzy integral [5] and their

generalizations [2, 22, 25] (see Sec. 2.3 for details). These operators have many applications, e.g.,

in decision-making process [13], risk theory [19], or fuzzy reasoning methods [22]. The survival

function, µ({x ∈ X : f(x) > a}), resembles the level measure and using in the above mentioned

operators it can change their value (see Example 2.7 below). In [1], a generalization of the sur-

vival function based on the conditional aggregation operator has been introduced and some basic

properties have been studied. The main motivation behind its definition were real life problems.

In this paper we present the corresponding generalization of the level measure, which allows to

solve other problems (see Sec. 3.2).

The paper is organized as follows. Section 2.1 provides basic notations and definitions we

work with. Next, we recall the concept of the conditional aggregation operator introduced in [1].
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In Section 2.3, we present motivating examples justifying the concept of the generalized level

measure – the main topic of this work. In Section 3 we introduce formal definition of the gener-

alized level measure with a number of simple examples. Then, we study several basic properties

(Sec. 3.1), we present connections with the family of level measures (Sec. 3.2), and the connec-

tion with the generalized survival function introduced in [1, Sec. 4] (Sec. 3.3). Applications of

the introduced concept for producing new scientometric indices and transformation of monotone

measure to hyperset are given in Section 4.

2. Background and motivations

2.1. Basic notations

In this paper, unless stated otherwise, X is a nonempty set and Σ is a σ-algebra of subsets of

X. Hereafter, Σ0 = Σ \ {∅} and [k] = {1, . . . , k} for fixed k ∈ N = {1, 2, . . .}.
By F we denote the set of all Σ-measurable nonnegative bounded functions on X. For f, g ∈ F,

we write f 6 g if f(x) 6 g(x) for all x ∈ X and 0X(x) = 0 for all x ∈ X. Moreover, 1A denotes

the indicator function of a set A, that is, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise, and 1(S)

denotes the indicator function of a logical sentence S, that is, 1(S) = 1 if S is true and 1(S) = 0

otherwise. We adopt the standard conventions: infx∈∅ f(x) = ∞ and supx∈∅ f(x) = 0. For any

a, b ∈ [0,∞], let a ∧ b = min{a, b} and a ∨ b = max{a, b}.
A monotone measure on Σ is a nondecreasing set function µ : Σ → [0,∞], i.e., µ(B) 6 µ(C)

whenever B ⊂ C for B,C ∈ Σ with µ(∅) = 0, and µ(X) > 0, where “⊂” and “⊆” mean the proper

inclusion and improper inclusion, respectively. We denote the class of all monotone measures

on Σ by M. If µ ∈ M is such that µ(X) < ∞, then µ is finite. For µ, ν ∈ M we write µ 6 ν

whenever µ(E) 6 ν(E) for any E ∈ Σ. A set function µ : 2X → [0,∞] is the counting measure if

µ(B) = |B| for any finite B and µ(B) = ∞ otherwise, where |B| means the cardinality of B.

For a ∈ [0,∞) we define the a-level set as {f > a} = {x ∈ X : f(x) > a}, where f ∈ F. This

concept is also known in the literature as the weak upper level set [10, Ch. 4], or a-upper level

set [11, p. 36], or a-cut set [21, p. 15]. The level measure is the function [0,∞) ∋ a 7→ µ({f > a})
with (f, µ) ∈ F×M [6, Sec. 2.2].

2.2. Overview of conditional aggregation operators

A crucial concept used in this paper is a conditional aggregation operator introduced in [1] and

applied to define new operators [4] covering many known nonadditive operators in the literature.
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Definition 2.1. Let E ∈ Σ0. A map A(·|E) : F → [0,∞] is said to be a conditional aggregation

operator w.r.t. E (CAO, for short) if it satisfies the following conditions:

(C1) A(f |E) 6 A(g|E) for any f, g ∈ F such that f(x) 6 g(x) for all x ∈ E;

(C2) A(1Ec|E) = 0, where Ec = X \ E.

The set E will be called a conditional set.

The value A(f |E) can be interpreted as “an aggregated value of f on E.” In other words, the

CAO only depends on the value of the considered function defined on the conditional set. Some

basic properties of CAOs are summarized in the following proposition.

Proposition 2.2. (cf. [1, Prop. 3.3]) If A(·|E) is a CAO w.r.t. E ∈ Σ0, then A(0X |E) = 0 and

A(f |E) = A(f1E|E) for any f ∈ F.

Several classes of CAOs used in this paper are introduced in the following definition.

Definition 2.3. Let θ ∈ (0,∞). We say that a CAO w.r.t. E is:

• (super)homogeneous of degree θ if A(λf |E)(>) = λθA(f |E) for all λ ∈ (0,∞) and all f ∈ F;

• idempotent if A(b1X |E) = b for all b ∈ (0,∞).

A family of conditional aggregation operators (FCA, for short) will be denoted by a calligraphic

letter, i.e.,

A = {A(·|E) : E ∈ E}, (1)

where E is a paving, i.e., a subfamily of Σ such that ∅ ∈ E (see [10, p. 15], [16, p. 254], or [26,

p. 7]). Put E0 = E \ {∅}. In order for the FCA to be well defined, from now on we consider that

each element of the FCA satisfies A(·|∅) = ∞, unless stated otherwise1. Although the family A

depends on E , we will not indicate it in our notation when there is no doubt of confusion. For

X = N and E = {[n] : n ∈ N} ∪ {∅}, the FCA A generalizes the concept of aggregation operator

Ag(·) presented by Calvo et al. [7, Def. 1].

Example 2.4. We will frequently use the following families of CAOs with superscript notation:

• A
sum = {Asum(·|E) : E ∈ E} with Asum(f |E) =

∑
x∈E f(x) for E ∈ E0 and X is countable;

• A
prod = {Aprod(·|E) : E ∈ E} with Aprod(f |E) =

∏
x∈E f(x) for E ∈ E0 and X is count-

able;

1such situation appears only in Section 3.3, where we adopt the convention A(·|∅) = 0
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• A
inf = {Ainf(·|E) : E ∈ Σ} with Ainf(·|E) = infx∈E f(x) for E ∈ Σ0;

• A
sup = {Asup(·|E) : E ∈ Σ} with Asup(f |E) = supx∈E f(x) for E ∈ Σ0.

Let us underline that E = Σ in A
inf and A

sup. Moreover, in the above families of CAOs it is

only necessary to define CAOs w.r.t. conditional sets E ∈ E0, since for the empty set we assume

(unless stated otherwise) to be equal to ∞, e.g., Asup(f |∅) = ∞.

For some other examples of CAOs, we refer to [1, 4].

2.3. Motivations

In [1] it is introduced a generalization of the survival function. Starting from the formula

µ({f > a}) = µ
(
X \ {x ∈ X : f(x) 6 a}

)

= inf
{
µ(Ec) : sup

x∈E
f(x) 6 a, E ∈ Σ

}
, a ∈ [0,∞), f ∈ F,

where {f > a} = {x ∈ X : f(x) > a}, and replacing supx∈E f(x) and Σ with a CAO A(f |E)

and E , respectively, the generalized survival function in the form

µSA (f, a) = inf
{
µ(Ec) : A(f |E) 6 a, E ∈ E

}
(2)

is obtained (see [1, Def. 4.1]). It turns out that this modification can be used in several applica-

tions related to decision-making processes (see [1, Sec. 2 and 6]).

In this paper we propose an extension of the level measure. Observe that the level measure

can be rewritten as follows

µ({f > a}) = sup{µ(E) : E ⊆ {f > a}, E ∈ Σ}

= sup{µ(E) : inf
x∈E

f(x) > a, E ∈ Σ}, a ∈ [0,∞), f ∈ F.

Putting A(f |E) instead of infx∈E f(x) and E instead of Σ, respectively, we get the following

generalization of the level measure

µA (f, a) = sup
{
µ(E) : A(f |E) > a, E ∈ E

}
(3)

(see Section 3 for more details).

Formulas (2) and (3) can be used for evaluation of both the survival function and the level

measure. Indeed, observe that if A = {A(·|E) : E ∈ Σ} and Ainf(·|E) 6 A(·|E) 6 Asup(·|E) for

all E ∈ Σ0, then for all a > 0 and any (f, µ) ∈ F×M we get the following bounds

µSA (f, a) 6 µ({f > a}) 6 µ({f > a}) 6 µA (f, a). (4)
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There exist situations in which the generalized survival function (2) cannot be used, but the

generalized level measure (3) can help to fix them. As a demonstration we consider the following

motivation from scientometry.

Example 2.5. Let X = N, Σ = 2N and µ be the counting measure. A scholar with some

publications is described by a function f : N → N ∪ {0} called a scientific record such that

f(1) > f(2) > . . . . The positive value of f(i) gives the number of citations of scholar’s ith

publication, whereas the value f(i) = 0 means either a paper with zero citations or a nonexisting

paper. Then µ({f > k}) with k ∈ N returns the number of scholar’s papers having at least k

citations each. The modified formula (3) with A(f |E) = infx∈E f(x), i.e.,

µ(f, k) = sup
{
µ(E) : inf

x∈E
f(x) > k, E ∈ E

}
(5)

admits various interpretations. For instance, if E = {∅, E}, where E consists of scholar’s papers

published just in the last five years, then µ(f, k) defined in (5) gives a number of papers having

at least k citations among the papers from this period. This approach may provide a fairer

comparison of researchers with different professional internship (e.g., a young scientist beginning

of his/her carrier versus a well-enabled scientist with many years in science). Obviously one

can replace infx∈E f(x) in (5) with a CAO A(f |E) to change the criterion. More examples are

provided in Section 4.

Remark 2.6. Formula (3) with A = {Ainf(·|E) : E ∈ E} uncovers a connection between the

level measure and inner set function. Recall that the inner set function of µ ∈ M (see [10, p. 21])

is defined as follows µ⋆(B) = sup{µ(E) : E ⊆ B, E ∈ E} for any B ∈ 2X . If f ∈ F, then for

a > 0 we can write

µ⋆({f > a}) = sup{µ(E) : E ⊆ {f > a}, E ∈ E}

= sup
{
µ(E) : inf

x∈E
f(x) > a, E ∈ E

}
= µA (f, a).

The level measure and the survival function appear interchangeably in commonly known

integrals of nonnegative functions, such as the Choquet and the Sugeno integral. However, for

some extensions of the above operators, interchanging the level measure and the survival function

can change their value. The following example illustrates such situation.

Example 2.7. Let S be a semicopula2 such that S(x, y) = 0 if (x, y) ∈ [0, 0.5) × [0, 0.5] and

S(x, y) = x∧y otherwise. Consider f = 0.51B and monotone measure µ with µ(C) = 0.5 for any

2A binary function S: [0, 1]2 → [0, 1] is called a semicopula if it is nondecreasing and fulfils S(1, a) = S(a, 1) = a

for any a ∈ [0, 1].
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C 6= ∅ and µ(∅) = 0. Then the seminormed fuzzy integral and the modified seminormed fuzzy

integral with the survival function of f w.r.t. µ take the form:

sup
a∈[0,1]

S
(
a, µ({f > a})

)
= sup

a∈[0,0.5]
S(a, 0.5) ∨ sup

a∈(0.5,1]
S(a, 0) = 0.5,

sup
a∈[0,1]

S
(
a, µ({f > a})

)
= sup

a∈[0,0.5)
S(a, 0.5) ∨ sup

a∈[0.5,1]
S(a, 0) = 0.

3. Generalized level measure

Inspired by stochastic processes, we consider families of concepts from Section 2 such as

monotone measures and families of CAOs depending on the additional parameter t. Note that

a family µ = (µt)t∈[0,1] with µt ∈ {ν ∈ M : ν(X) = 1} is known as the level dependent capacity on

(X,Σ), see [24, Def. 3.1]. Its special case is the Markov kernel [18], where each µt is a probability

measure on (X,Σ) and for each E ∈ Σ, the function [0, 1] ∋ t 7→ µt(E) is Σ-measurable.

By Mf we denote the family of monotone measures µ = (µt)t∈[0,∞) such that µt ∈ M for any

t. We write µ 6 ν for µ,ν ∈ Mf if µt(E) 6 νt(E) for all E ∈ Σ and all t. We say that µ ∈ Mf

is:

• constant if µt = µ for any t, where µ ∈ M;

• nondecreasing (resp. nonincreasing) if µs 6 µt (resp. µs > µt) for any s, t such that s < t.

From now on, we make use of E = (Et)t∈[0,∞) as a process of pavings, i.e., ∅ ∈ Et with Et ⊆ Σ

for any t. Hereafter, E0
t = Et \ {∅}. A process of pavings E is said to be:

• constant if Et = E for each t, where E is a paving;

• nondecreasing (resp. nonincreasing) if Es ⊆ Et (resp. Et ⊆ Es) for any s < t;

• closed under finite unions if E1 ∪ E2 ∈ Et for any E1, E2 ∈ Et and any t.

For a process of pavings E we define a parametric family of conditional aggregation operators

(pFCA, for short) as follows

A•|• = {At(·|E) : E ∈ Et, t > 0}, (6)

where At(·|E) : F → [0,∞] is a CAO w.r.t. E ∈ E0
t for any t. We suppose that At(·|∅) = ∞ for

any t unless stated otherwise. The formula (6) is well defined as Et ⊆ Σ. To distinguish among

several cases of parametric families of CAOs used in this paper and covered by (6), we adopt the

following notation (the first and the second bullet in the subscript of A indicate dependence of

the family (At) and (Et) on parameter t, respectively):
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• A•| = {At(·|E) : E ∈ E , t > 0}, i.e., E is constant;

• A|• = {A(·|E) : E ∈ Et, t > 0}, i.e., At(·|E) = A(·|E) for all t;

• A = {A(·|E) : E ∈ E}, i.e., FCA (see (1)).

We now introduce the most important notion of this paper.

Definition 3.1. The generalized level measure of f ∈ F w.r.t. a pFCA A•|• and µ ∈ Mf is

defined as follows

µA•|•(f, t) = sup{µt(E) : At(f |E) > t, E ∈ Et}, t ∈ [0,∞). (7)

Clearly, for any t, the set {E ∈ Et : At(·|E) > t} is nonempty as At(·|∅) = ∞ and ∅ ∈ Et.
Putting a FCA A (instead of A•|•) in (7), we get

µA (f, t) = sup{µt(E) : A(f |E) > t, E ∈ E}, t > 0. (8)

Setting a constant µ ∈ Mf in (8), we obtain

µA (f, a) = sup{µ(E) : A(f |E) > a, E ∈ E}, a > 0. (9)

We now give four simple examples of the generalized level measure (9).

Example 3.2. Let c ∈ (0,∞) and E be a paving.

(a) Let µ(E) = c1(E = X) for all E ∈ Σ and X ∈ E . Then µA (f, a) = c1(A(f |X) > a) for

any a > 0 and any f ∈ F.

(b) If µ(E) = c1(E 6= ∅) for all E ∈ Σ, we have µA (f, a) = c1(A(f |E) > a for some E ∈ E0),

where a > 0 and f ∈ F.

(c) Let X = [3], Σ = 2X and f = 0.251{1} + 0.751{2} + 1{3}. Put E = {∅, {1}, {2}, {2, 3}},
A = {Asup(·|E) : E ∈ E} and µ({1}) = 1, µ({2}) = µ({2, 3}) = 0.5. Then the generalized

level measure (9) takes the form

µA (f, a) =





1 if a ∈ [0, 0.25],

0.5 if a ∈ (0.25, 1],

0 if a > 1.

Observe that if a ∈ [0, 0.25], then µA (f, a) = supE∈E µ(E), but for a > 0.25 the equality

does not hold.
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(d) If FCA A is such that E ∋ E 7→ A(·|E) is nondecreasing, and X ∈ E or E is a finite

chain3, then (9) takes the form µA (f, a) = supE∈E µ(E) for any a < supE∈E0 A(f |E) and

any (f, µ) ∈ F×M.

3.1. Basic properties

In this section we present some basic properties of the generalized level measure (7). Clearly,

these properties depend on parametric families of CAOs. Individual properties of a CAO will

be extended to a pFCA as follows: a pFCA A•|• = {At(·|E) : E ∈ Et, t > 0} is said to possess

a property P if for any t and any E ∈ E0
t the operator At(·|E) ∈ A•|• has the property P. Proper-

ties P, we will mainly deal with, are the (super)homogeneity of degree θ and the idempotency,

see Definition 2.3. We will also work with monotonicity of parametric families of CAOs in the

following sense. We say that A•|• is:

• nondecreasing (resp. nonincreasing) if E is nondecreasing (resp. nonincreasing) and

As(f |E) 6 At(f |E) for any E ∈ E0
s (resp. As(f |E) > At(f |E) for any E ∈ E0

t and all

0 6 s < t;

• nondecreasing (resp. nonincreasing) w.r.t. sets if for each f ∈ F and each t, the inequality

At(f |C) 6 At(f |D) (resp. At(f |C) > At(f |D)) holds for any C,D ∈ E0
t with C ⊂ D.

It is clear that the map a 7→ µA (f, a) is nonincreasing for any (f, µ) ∈ F ×M. But it is no

more true for the generalized level measure based on the pFCA in general.

Example 3.3. Let µ, f and A = {A(·|E) : E ∈ E} be such that µA (f, b) < µA (f, a) with

0 < a < b. Let 0 < c < a and put A•| = {At(·|E) : E ∈ E , t > 0}, where Ac(·|E) = cA(·|E)/b

and Aa(·|E) = A(·|E). Suppose that µ = (µt)t>0 is any family of monotone measures such that

µc = µ and µ 6 µa. The map t 7→ µA•|(f, t) is not nonincreasing as

µA•|(f, c) = sup{µ(E) : A(f |E) > b, E ∈ E} = µA (f, b)

< µA (f, a) 6 µA•|(f, a).

Next proposition specifies conditions under which the map t 7→ µA•|•(f, t) is nonincreasing.

Proposition 3.4. For any fixed f ∈ F, the function t 7→ µA•|•(f, t) is nonincreasing whenever

A•|• is nonincreasing pFCA and µ ∈ Mf is nonincreasing.

3E = {{El, . . . , E1} : El ⊆ E2 ⊆ . . . ⊆ E1, Ei ∈ Σ, i ∈ [l]} for some l ∈ N
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Proof. Let 0 6 s < t. Since µs > µt and As(·|E) > At(·|E) for each E ∈ Et ⊆ Es, so

µA•|•(f, s) = sup
{
µs(E) : As(f |E) > s, E ∈ Es

}

> sup
{
µt(E) : At(f |E) > t, E ∈ Et

}
= µA•|•(f, t),

which gives the desired result.

Note that the function t 7→ µA•|•(·, t) need not be nondecreasing even if µ and A•|• are

nondecreasing.

Monotonicity w.r.t. functions, monotone measures and parametric families of CAOs is the

result of the following proposition. Its proof is straightforward.

Proposition 3.5. Let f, g ∈ F and µ,ν ∈ Mf . Then:

(a) µA•|•(f, t) 6 µA•|•(g, t) for all t whenever f 6 g;

(b) µA•|•(f, t) 6 νA•|•(f, t) for all t whenever µ 6 ν;

(c) µA•|•(f, t) 6 µ
Â•|•

(f, t) for all t whenever Et ⊆ Êt and At(f |E) 6 Ât(f |E) for all E ∈ Et
and any t, where Â•|• = {Ât(·|E) : E ∈ Êt, t > 0} is a pFCA.

Using Proposition 2.2 we can prove the following result.

Proposition 3.6. For each (f,µ) ∈ F×Mf and each t > 0 the following statements are true:

(a) µA•|•(0X , t) = 0 for t > 0 and µA•|•(0X , 0) = sup{µ0(E) : E ∈ E0};
(b) µA•|•(f, 0) = sup{µ0(E) : E ∈ E0};
(c) µA•|•(f, t) = µt(X) whenever X ∈ Et and t 6 At(f |X).

Proposition 3.7. Let (f,µ) ∈ F×Mf . Then:

(a) for fixed t, µA•|•(f, t) = 0 if and only if µt(E) = 0 for every E ∈ E0
t such that At(f |E) > t;

(b) if At(λ1X |E) 6 λ for any E ∈ E0
t and any t, λ > 0, then there exists b > 0 such that

µA•|•(f, t) = 0 for each t > b.

Proof. The proof of (a) follows from definition. In (b), by [1, Prop. 3.8 (a)], we have At(f |E) 6

Asup(f |E) 6 Asup(f |X) < ∞ for each E ∈ E0
t and each t, so there exists b > 0 such that

At(f |E) < b for each E ∈ E0
t and each t > b. Hence, µA•|•(f, t) = 0 for each t > b.

We now examine values of the generalized level measure for the constant function. Hereafter,

∞ · 0 = 0.
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Proposition 3.8. If A•|• is idempotent, then µA•|•(λ1X , t) = sup{µt(E) : E ∈ Et}1[0,λ](t) for

any λ > 0 and any t > 0. In particular, µA•|•(λ1X , t) = µt(X)1[0,λ](t) if X ∈ Et.

The proof is immediate from definitions. Removing idempotency assumption of pFCA we get

the following result.

Proposition 3.9. Let D ∈ Σ0. Assume that A•|• is such that At(1E |E) = 1 for all E ∈ E0
t

and all t > 0. Suppose also that At(1D|E) = 0 if E ∩ Dc 6= ∅, E ∈ E0
t and t > 0. Then

µA•|•(1D, t) = sup{µt(E) : E ⊆ D, E ∈ Et} for t ∈ (0, 1] and µA•|•(1D, t) = 0 for t > 1.

Proof. By the definition, µA•|•(1D, t) = sup{µt(E) : At(1D|E) > t, E ∈ Et} for t > 0. If E ⊆ D,

E ∈ E0
t and t > 0, then by Proposition 2.2 we get At(1D|E) = At(1D∩E |E) = At(1E |E) = 1.

Otherwise, At(1D|E) = 0. Hence, for any t ∈ (0, 1], we have

µA•|•(1D, t) = sup{µt(E) : At(1D|E) > t, E ⊆ D, E ∈ Et}

= sup{µt(E) : E ⊆ D, E ∈ Et}.

Clearly, µA•|•(1D, t) = 0 for t > 1.

The following CAOs satisfy the assumptions of Proposition 3.9: At(f |E) = hE(A
inf(f |E))

and At(f |E) = A
(
hE(A

inf(f |E))f |E
)

for any E ∈ E0
t and any t, where hE is a nondecreasing and

nonnegative function such that hE(0) = 0 and hE(1) = 1, and A is a CAO such that A(1E|E) = 1

for any E ∈ Σ0.

Proposition 3.10. Let c > 0, D ∈ E0
t for any t ∈ [0, c], supE∈Et µt(E) = µt(D) and At(1D|D) >

t for any t ∈ [0, c]. Then µA•|•(1D, t) = µt(D) for any t ∈ [0, c].

Proof. Let t ∈ [0, c]. Clearly, D ∈ {E ∈ Et : At(1D|E) > t} ⊆ Et. As supE∈Et µt(E) = µt(D), we

have sup{µt(E) : At(1D|E) > t, E ∈ Et} = µt(D).

Let F
2
0 ⊆ F

2 be a nonempty set. We say that a pFCA A•|• is c-quasi-superadditive (resp. c-

quasi-subadditive) on F
2
0 if c ∈ [0.5, 1] and At(f + g|E) > c(At(f |E) +At(g|E)) (resp. c ∈ [1,∞)

and At(f + g|E) 6 c(At(f |E) + At(g|E)) for any (f, g) ∈ F
2
0, any E ∈ E0

t and any t > 0. Note

that each pFCA is 0.5-quasi-superadditive on F
2. Moreover, the family A•|• = A

sup is c-quasi-

superadditive on F
2
0 = {(f, g) ∈ F

2 : f, g are comonotone} for any c ∈ [0.5, 1], as Asup(f+g|E) =

Asup(f |E) + Asup(g|E) for any E ∈ Σ and any (f, g) ∈ F
2
0.

Theorem 3.11. Let a process of pavings E be closed under finite unions. Assume that A•|• is

a pFCA nondecreasing w.r.t. sets and c-quasi-superadditive on F
2
0.
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(a) If µ is nonincreasing and A•|• is nonincreasing, then for all t > 0 and all (f, g) ∈ F
2
0

µA•|•(f + g, ct) > µA•|•(f, t) ∨ µA•|•(g, t).

(b) If µ is nondecreasing and A•|• is nondecreasing, then for all t > 0 and all (f, g) ∈ F
2
0

µA•|•(f + g, 2ct) > µA•|•(f, t) ∨ µA•|•(g, t).

(c) If c = 0.5, then for all t > 0, all µ ∈ Mf and all (f, g) ∈ F
2
0

µA•|•(f + g, t) > µA•|•(f, t) ∨ µA•|•(g, t).

Proof. Ad (a) From c-quasi-superadditivity of pFCA A•|• on F
2
0, we obtain

{E ∈ E2t : A2t(f + g|E) > 2ct} ⊇ {E ∈ E2t : A2t(f |E) + A2t(g|E) > 2t},

where c ∈ [0.5, 1]. By monotonicity of E and t 7→ At(·|·), we have

{E ∈ E2ct : A2ct(f + g|E) > 2ct} ⊇ {E ∈ E2t : A2t(f |E) + A2t(g|E) > 2t}.

Set Π = {(B,D) ∈ E2
2t : A2t(f |B ∪D) + A2t(g|B ∪D) > 2t}. The family E is closed under finite

unions, so

µA•|•(f + g, 2ct) > sup
{
µ2ct(E) : A2t(f |E) + A2t(g|E) > 2t, E ∈ E2t

}

= sup
{
µ2ct(B ∪D) : (B,D) ∈ Π

}
. (10)

Put Πf = {(B, ∅) ∈ E2
2t : A2t(f |B) > t} and Πg = {(∅,D) ∈ E2

2t : A2t(g|D) > t}. Since A2t(f |∅) =
∞ and A•|• is nondecreasing w.r.t. sets, we have

Πf ∪Πg ⊆ {(B,D) ∈ E2
2t : A2t(f |B) > t, A2t(g|D) > t}

⊆ {(B,D) ∈ E2
2t : A2t(f |B ∪D) > t, A2t(g|B ∪D) > t} ⊆ Π.

Hence, by (10) we get

µA•|•(f + g, 2ct) > sup
{
µ2ct(B) : (B, ∅) ∈ Πf} ∨ sup{µ2ct(D) : (∅,D) ∈ Πg

}

> sup
{
µ2ct(B) : A2t(f |B) > t, B ∈ E2t

}
∨ sup

{
µ2ct(D) : A2t(g|D) > t, D ∈ E2t

}

> sup
{
µ2ct(B) : A2t(f |B) > 2t, B ∈ E2t

}
∨ sup

{
µ2ct(D) : A2t(g|D) > 2t, D ∈ E2t

}
.

Since µ is nonincreasing, we get

µA•|•(f + g, 2ct) > sup
{
µ2t(B) : A2t(f |B) > 2t, B ∈ E2t} ∨ sup

{
µ2t(D) : A2t(g|D) > 2t, D ∈ E2t

}
,

11



which completes the proof of part (a).

Ad (b) By c-quasi-superadditivity of pFCA A•|• on F
2
0, we obtain

{E ∈ E2ct : A2ct(f + g|E) > 2ct} ⊇ {E ∈ E2ct : A2ct(f |E) + A2ct(g|E) > 2t}.

Set Π = {(B,D) ∈ E2
2ct : A2ct(f |B ∪D) + A2ct(g|B ∪D) > 2t}. Clearly,

µA•|•(f + g, 2ct) > sup
{
µ2ct(E) : A2ct(f |E) + A2ct(g|E) > 2t, E ∈ E2ct

}

= sup
{
µ2ct(B ∪D) : (B,D) ∈ Π

}
. (11)

Put Πf = {(B, ∅) ∈ E2
2ct : A2ct(f |B) > t}, and Πg = {(∅,D) ∈ E2

2ct : A2ct(g|D) > t}. From the

assumption that A•|• is nondecreasing w.r.t. sets, it follows that

Πf ∪Πg ⊆ {(B,D) ∈ E2
2ct : A2ct(f |B ∪D) > t, A2ct(g|B ∪D) > t} ⊆ Π.

Hence, by (11), we get

µA•|•(f + g, 2ct) > sup
{
µ2ct(B) : (B, ∅) ∈ Πf

}
∨ sup

{
µ2ct(D) : (∅,D) ∈ Πg

}

= sup
{
µ2ct(B) : A2ct(f |B) > t, B ∈ E2ct

}
∨ sup

{
µ2ct(D) : A2ct(g|D) > t, D ∈ E2ct

}
.

(12)

As µ and A•|• are nondecreasing and c ∈ [0.5, 1], we have

µA•|•(f + g, 2ct) > sup
{
µt(B) : A2ct(f |B) > t, B ∈ Et

}
∨ sup

{
µt(D) : A2ct(g|D) > t, D ∈ Et

}

> sup
{
µt(B) : At(f |B) > t, B ∈ Et

}
∨ sup

{
µt(D) : At(g|D) > t, D ∈ Et

}
.

The proof of part (b) is complete.

Ad (c) The formula (12) with c = 0.5 implies the statement.

Example 3.12. Let (ψt)t>0 be a family of nondecreasing functions such that ψt : [0,∞] → [0,∞],

ψt(0) = 0, ψt(x+y) > c(ψt(x)+ψt(y)) and ψs(x) 6 ψt(x) for each t > 0, each 0 6 s 6 t and each

x, y, e.g., ψt(x) = ϕ(t)xp with any p > 1, c 6 1, and any nondecreasing and nonnegative function

ϕ on [0,∞). Then A•|• with At(f |E) = ψt(A
sum(f |E)) is a pFCA which is c-quasi-superadditive

on F× F, nondecreasing and nondecreasing w.r.t. sets.

Remark 3.13. Under the assumptions of Theorem 3.11 (b) we cannot determine, which inequa-

lities from point (b) or (c) is better. This is due to the fact that the function t 7→ µA•|•(f, t) is

neither nondecreasing nor nonincreasing.

12



Proposition 3.14. If µ ∈ Mf is nonincreasing, and A•|• is a c-quasi-subadditive on F
2
0 and

nonincreasing pFCA, then

µA•|•(f + g, ct) 6 µA•|•(f, λt) ∨ µA•|•(g, (1 − λ)t) (13)

for any t > 0, any λ ∈ (0, 1), and any (f, g) ∈ F
2
0.

Proof. Since c > 1 and pFCA A•|• is nonincreasing, we have Ect ⊆ Et ⊆ Eλt and

{
E ∈ Ect : Act(f + g|E) > ct

}
⊆

{
E ∈ Ect : Act(f |E) + Act(f |E) > t

}

⊆
{
E ∈ Ect : Act(f |E) > λt} ∪ {E ∈ Ect : Act(g|E) > (1− λ)t

}

⊆
{
E ∈ Eλt : Aλt(f |E) > λt

}
∪
{
E ∈ E(1−λ)t : A(1−λ)t(g|E) > (1− λ)t

}
.

Hence, µA•|•(f + g, ct) 6 µA•|•(f, λt) ∨ µA•|•(g, (1 − λ)t), as claimed.

Observe that the inequality (13) is attainable for some t. Indeed, let X be a countable

set, µt be the counting measure and E be a process of pavings such that X ∈ Et for all t.

Put At(·|E) = Asup(·|E) for all t. Take f = d1X and g = 2d1X with some d > 0. Then

µA•|•(f, (1 − λ)t) = µA•|•(g, λt) = |X| and µA•|•(f + g, t) = |X| for all t ∈ [0, d], so there is an

equality in (13) for all t ∈ [0, d] and all λ ∈ (0, 1).

Corollary 3.15. If µ ∈ Mf is nonincreasing and A is a 1-quasi-subadditive FCA on F
2
0, then

µA (f + g, t) 6 µA (f, 0.5t) ∨ µA (g, 0.5t)

for any t > 0 and any (f, g) ∈ F
2
0.

3.2. Connections with the family of level measures

The formula (8) with A
inf takes the form

µA inf (f, t) = sup
{
µt(E) : Ainf(f |E) > t, E ∈ Σ

}
= µt({f > t}) (14)

for any t > 0 and any (f,µ) ∈ F×Mf , which is a particular case of level dependent set function

introduced by Greco et al. [15]. The family of (µt({f > t}))t>0 is called a family of level measures.

Remark 3.16. In (14) we have to consider A
inf instead of A

inf
|• = {Ainf(·|E) : E ∈ Et, t > 0}.

Otherwise, putting Et ⊂ Σ for any t > 0 in the left side in (14) instead of Σ, the second equality

need not hold. Indeed, consider Σ = {∅, B,Bc,X}, Et = E = {∅, B} for any t > 0 and f = c1X ,

where ∅ 6= B ⊂ X and c > 0. Then

sup
{
µt(E) : Ainf(f |E) > t, E ∈ E

}
=




µt(B) if t ∈ [0, c],

0 if t ∈ (c,∞).
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In consequence, if µt(B) 6= µt(X) for any t > 0, we have

sup{µt(E) : Ainf(f |E) > t, E ∈ E} 6= µt({f > t}) for any t ∈ [0, c].

More generally, if there exist B ∈ Σ and t > 0 such that µt(B) > supE∈Et µt(E), then for

f = t1B we have

sup{µt(E) : Ainf(f |E) > t, E ∈ Et} < µt({f > t}).

Due to the observation in Remark 3.16, from now on, we shall deal with the connection

between µt({f > t}) and µA•|(f, t) only for A•| = {At(·|E) : E ∈ Σ, t > 0}. First, note that from

Proposition 2.2 we have At(0X |E) = 0 for any E ∈ Σ0 and any t, so using Proposition 3.6 (a)

we get µA•|(0X , t) = µ0(X)1(t = 0). Therefore, µt({0X > t}) = µA•|(0X , t) for any t > 0 and

any µ ∈ Mf . Similarly, applying Proposition 3.6 (b), we obtain µA•|(f, 0) = µ0({f > 0}) for any

(f,µ) ∈ F×Mf . To exclude these trivial cases, we put F∗ = F \ {0X}.

Proposition 3.17. Let A•| = {At(·|E) : E ∈ Σ, t > 0}. If Ainf(·|E) 6 At(·|E) for any t > 0 and

any E ∈ Σ0, then µt({f > t}) 6 µA•|(f, t) for any t > 0 and any (f,µ) ∈ F∗ ×Mf .

Note that the assumption of Proposition 3.17 is fulfilled for any pFCA A•| = {At(·|E) : E ∈
Σ, t > 0} which is superhomogeneous of degree 1 with At(1X |E) > 1 for t > 0, E ∈ Σ0. Then

by [1, Prop. 3.8 (b)] we have Ainf(·|E) 6 At(·|E) for t > 0, E ∈ Σ0. Further, we are interested in

the following property

µA•|(f, t) = µt({f > t}) for any t > 0 and any (f,µ) ∈ F∗ ×Mf . (15)

The next result provides a characterization for the nonparametric class of CAOs.

Theorem 3.18. Let A = {A(·|E) : E ∈ Σ} be a FCA.

(a) Assume that Σ = {∅,X}. Then (15) with A•| = A holds if and only if A(·|X) is idempotent.

(b) Assume that Σ 6= {∅,X}. Then (15) with A•| = A is true if and only if A = A
inf .

Proof. (a) Since Σ = {∅,X}, we have F∗ = {b1X : b > 0}. Observe that

µA (b1X , t) =




0 if t > A(b1X |X),

µt(X) if t 6 A(b1X |X)

for any t, b > 0, as A(b1X |∅) = ∞. Clearly, the condition (15) is equivalent to the idempotency

of A(·|X) as µt(X) > 0 for all t.
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(b) The implication „⇐” is obvious (see (14)).

„⇒” Let B ∈ Σ0, b ∈ (0,∞) and f = b1B. From (8) with E = Σ and (15) we have

µA (f, b) = sup{µb(E) : A(b1B |E) > b, E ∈ Σ} = µb(B) for any µ ∈ Mf . (16)

If B = X, put µt(E) = 1(E = X) for all t, E. If B 6= X, take µt such that µt(B) ∈ (0, 1),

µt(E) = 1 for all E such that B ⊂ E and µt(E) = 0 elsewhere for each t. From (16) and

arbitrariness of b and B, we obtain

A(b1B|B) > b for any b > 0 and any B ∈ Σ0. (17)

Moreover, by Proposition 2.2, (C1) and (17), we get

A(f |E) = A(f1E|E) > A(( inf
x∈E

f(x))1E |E) > Ainf(f |E)

for any f ∈ F∗ and any E ∈ Σ0. We will prove the reverse inequality by a contradiction. Suppose

that there exist f ∈ F∗ and D ∈ Σ0 such that A(f |D) > Ainf(f |D). Put t0 = A(f |D) and let

µ = (µt) be any family of monotone measures such that µt0(E) = 1 if D ⊆ E and µt0(E) = 0

otherwise. Then

µA (f, t0) = sup{µt0(E) : A(f |E) > t0, E ∈ Σ} = 1,

µt0({f > t0}) = sup{µt0(E) : Ainf(f |E) > t0, E ∈ Σ} = 0,

as Ainf(f |E) 6 Ainf(f |D) for D ⊆ E, contradicting (15) with A•| = A . Hence, A = A
inf , as

expected.

Note that the implications „⇒” in points (a) and (b) of Theorem 3.18 do not hold for a pFCA

A•| when replacing the condition “for any (f,µ) ∈ F∗ ×Mf ” in (15) by “for any (f,µ) ∈ F∗,M ×
Mf ”, where F∗,M = {f ∈ F∗ : supx∈X f(x) 6M} for some M > 0.

Example 3.19. Let M > 0. Consider the pFCA A•| = {At(·|E) : E ∈ Σ, t > 0} such that

At = 0.5Ainf whenever t > M , and At = Ainf , otherwise. It is clear that

µA•|(f, t) = µt({f > t}) (18)

holds for any t ∈ (0,M ] and any (f,µ) ∈ F∗,M × Mf . Clearly, µt({f > t}) = 0 for any

t > M and any (f,µ) ∈ F∗,M × Mf . Suppose that there exists (f,µ) ∈ F∗,M × Mf such that

µA•|(f, t) > 0. Hence there exists E ∈ Σ0 such that At(f |E) > t and µt(E) > 0. Then M1X > f

and 0.5M = 0.5Ainf(M1X |E) > 0.5Ainf(f |E) = At(f |E) > t > M, a contradiction. To sum up,

the equality (18) is true for any t ∈ (0,∞) and any (f,µ) ∈ F∗,M ×Mf , but A•| 6= A
inf .
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Theorem 3.18 results that in order to get the equality (15) for families of CAOs A , only

the family A
inf can be used. This highlights the role of the level measure in the developed

theory. However, for certain families of monotone measures one can show that the generalized

level measure still may end up in the level measure (14). For instance, consider A
ess infµ
•| =

{Aess infµt (·|E) : E ∈ Σ, µt ∈ M, t > 0} with

Aess infµt (f |E) = ess infµt(f1E) = sup{a ∈ [0,∞) : {f1E < a} ∈ Nµt}

being the essential infimum of f ∈ F on E w.r.t. µt. Recall that Nµ is the set of all null sets

w.r.t. µ ∈ M, i.e., N ∈ Nµ if N ∈ Σ and µ(E ∪N) = µ(E) for each E ∈ Σ (see [14, Def. 2.107]

and [14, Thm. 2.108 (vii)]).

Proposition 3.20. Let µ ∈ Mf be such that µt is continuous from below for any t > 0. Then

for any t > 0 and any f ∈ F∗ we have

µ
A

ess infµ

•|
(f, t) = µt({f > t}).

Proof. Clearly, Ainf(·|E) 6 Aess infµt (·|E) for any t and any E ∈ Σ, as infx∈E f(x) = sup{a ∈
[0,∞) : {f1E < a} = ∅}. Then by Proposition 3.17 we get

µt({f > t}) 6 µ
A

ess infµ

•|
(f, t) (19)

for any t > 0. Now we shall show the validity of the reverse inequality. For a fixed t > 0, let us

consider a set E ∈ Σ such that Aess infµt (f |E) > t. Put Nn = E ∩ {f < t− 1/n} for n ∈ N. Ob-

viously, Nn ⊆ Nn+1. From the definition of essential infimum and [14, Thm. 2.108 (iii)], we have

Nn ∈ Nµt for any n ∈ N, so we put N =
⋃

n∈NNn = E ∩⋃
n∈N{f < t− 1/n} = E ∩ {f < t}. By

continuity from below of µ and [14, Thm. 2.108 (v)], we have N ∈ Nµt . Furthermore,

E \N = E ∩ {f > t} = (E ∩ {f > t}) \N ⊆ {f > t} \N.

By [14, Thm. 2.108 (vi)] and monotonicity of µt, we have

µt(E) = µt(E \N) 6 µt({f > t} \N) = µt({f > t}). (20)

Since the inequality (20) is satisfied for any set E ∈ Σ with Aess infµt (f |E) > t, we obtain

sup{µt(E) : Aess infµt (f |E) > t, E ∈ Σ} 6 µt({f > t}). (21)

Combining inequalities (19) and (21) and from arbitrariness of t, we get the result.
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We have provided some conditions under which the equality µA•|(f, t) = µt({f > t}) is true

for all t, f . However, in general, these two objects are different in the sense that it is not true

that for each (f,µ) ∈ F×Mf and each pFCA A•| there exist g ∈ F and mt ∈ M such that

µA•|(f, t) = mt({g > t})

for every t > 0. This is confirmed in the following example.

Example 3.21. Let X = [3] and Σ = 2X . Consider a constant µ ∈ Mf defined as follows

µ(∅) < µ({1}) < µ({2}) < µ({3}) < µ({1, 2}) < µ({1, 3}) < µ({2, 3}) < µ(X).

For the function f = 1/2 ·1{1} +1/3 ·1{2}+1/4 ·1{3} and the FCA A
prod with E = Σ (see p. 3),

the generalized level measure µA prod(f, a) takes all eight possible values when varying a ∈ (0,∞)

as given in Table 1.

a
[
0, 1

24

] (
1
24 ,

1
12

] (
1
12 ,

1
8

] (
1
8 ,

1
6

] (
1
6 ,

1
4

] (
1
4 ,

1
3

] (
1
3 ,

1
2

] (
1
2 ,∞

)

µA prod(f, a) µ(X) µ({2, 3}) µ({1, 3}) µ({1, 2}) µ({3}) µ({2}) µ({1}) 0

Table 1: Values of µA prod (f, a) for function f from Example 3.21.

In contrary, varying a ∈ (0,∞) in ma({g > a}) for any function g on X and any (ma)a>0 ∈ Mf

one can obtain at most four different values.

3.3. Connection with the generalized survival function

In this section we describe the relationship between the generalized level measure (7) and the

generalized survival function introduced in [1, formula (12)]. We first recall the latter concept.

Definition 3.22. Let Â•|• = {Ât(·|E) : E ∈ Et, t > 0} be a pFCA such that Ât(·|∅) = 0 for any

t. The generalized survival function of f ∈ F w.r.t. Â•|• and µ ∈ Mf is defined as

µ
S
Â•|•

(f, t) = inf
{
µt(E

c) : Ât(f |E) 6 t, E ∈ Et
}
, t > 0. (22)

It is worth mentioning that the generalized survival function (22) is well defined as Ec ∈ Σ for

any E ∈ Et and t, and the set {E ∈ Et : Ât(f |E) 6 t} is nonempty for all t, since Ât(·|∅) = 0 and

∅ ∈ Et. The generalized survival function extends the concept of survival function µ({f > t}),
where µ ∈ M. Indeed, setting a constant µ and Â•|• = A

sup with Asup(·|∅) = 0 in (22) we get

the survival function (for more details, see [1]).
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For the benefit of the reader we summarize the main differences of the generalized level

measure and generalized survival function:

• both notions are based on the pFCA A•|• = {At(·|E) : E ∈ Et, t > 0}, but with different

conventions on the empty set;

• in the generalized level measure we measure the sets E ∈ Et for which At(f |E) > t,

whereas in the generalized survival function we measure complements of sets E ∈ Et for

which At(f |E) 6 t;

• finally, in the generalized level measure we take supremum of all such values of µt(E),

whereas in the generalized survival function we take infimum of all µt(E
c).

These observations suggest to describe their “complementary” or “dual” behaviour. Assume that

b ∈ (0,∞). Given a family µ = (µt)t>0 of monotone measures such that µt(X) = µ0(X) < ∞
for all t, we define the dual family µ̂ = (µ̂t)t>0 to µ by

µ̂t(E) = µ0(X)− µ(b−t)+(E
c), t > 0, E ∈ Σ, (23)

where a+ = max{a, 0}. It is clear that µ̂ ∈ Mf with µ̂t(X) = µ0(X) for any t. Let A•| =

{At(·|E) : E ∈ E , t > 0} be a pFCA such that At(b1X |E) = b for any t and any E ∈ E0. Define

the dual pFCA to A•| by Â•| = {Ât(·|E) : E ∈ E , t > 0} with Ât(f |E) = b − A(b−t)+

(
(b1X −

f)+|E
)

and Ât(·|∅) = 0. Clearly, Ât(b1X |E) = At(b1X |E) = b for any t. Put f ∈ Fb = {f ∈
F : supx∈X f(x) 6 b}. Then, for each (f,µ) ∈ Fb ×Mf and t ∈ [0, b] we get

µA•|(f, t) = sup{µ̂0(X)− µ̂b−t(E
c) : At(f |E) > t, E ∈ E}

= µ̂0(X) − inf{µ̂b−t(E
c) : At(f |E) > t, E ∈ E}

= µ̂0(X) − inf{µ̂b−t(E
c) : Âb−t(b1X − f |E) 6 b− t, E ∈ E}

= µ0(X) − µ̂
S
Â•|

(b1X − f, b− t).

To sum up, we get the following relationship between the generalized level measure and the

generalized survival function.

Proposition 3.23. Let b ∈ (0,∞), µ = (µt)t>0 with µt(X) = µ0(X) < ∞ for all t, and

µ̂ = (µ̂t)t>0 be the dual family to µ given by (23). If Â•| is the dual pFCA to a pFCA A•| and

At(b1X |E) = b for any t > 0 and any E ∈ E0, then

µA•|(f, t) = µ0(X)− µ̂
S
Â•|

(b1X − f, b− t) (24)

for all t ∈ [0, b] and all f ∈ Fb.
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Example 3.24. Let µt(E) = supx∈E πt(x) be the possibility measure, where πt is a nonnegative

function on X and supx∈X πt(x) = 1 for all t. Put b = 1 and At(f |E) = EP(f
t|E), where EP(·|E)

denotes the conditional expected value w.r.t. to a probability measure P. Then (24) holds true

for all t ∈ (0, 1) with Ât

(
f |E) = EP(1X −(1X −f)1−t|E) for f ∈ F1 and µ̂t(E) = ν1−t(E), where

νt is the necessity measure defined by νt(E) = infx∈Ec{1X − πt(x)} for any E ∈ Σ.

4. Applications

This section provides applications of the generalized level measure in scientometrics (with

a framework for unifying many existing indices and introducing new ones) and in transformations

of a monotone measure to hyperset.

4.1. Scientometrics

Let X = N, Σ = 2N,A be a FCA with E = {[n] : n ∈ N}∪{∅} and µ be the counting measure4.

Assume that f : N → N ∪ {0} is a scientific record i.e., f(1) > f(2) > . . . (cf. Example 2.5).

Consider the following parametric families of CAOs

A1 =
{g(A(f |E))

|E| : E ∈ E
}

and A2 = {g(A(f |E)) : E ∈ E},

where g is a nondecreasing function such that g(0) = 0, g(∞) = ∞ and A ∈ A . Hereafter

x/0 = ∞ for any x ∈ [0,∞]. Then the generalized level measures w.r.t. above parametric

families of CAOs take the following forms

µA1
(f, a) = sup

{
|E| : g(A(f |E)) > a|E|, E ∈ E

}
, (25)

µA2
(f, a) = sup

{
|E| : g(A(f |E)) > a, E ∈ E

}
(26)

for any a > 0, respectively. These two generalized level measures provide new scientometrics

indices. Below we present several special cases known in the literature.

1. Let A = A
inf . Then (25) can be rewritten as follows

µ
A inf

1
(f, a) = max{k ∈ N : g(f(k)) > ak} (27)

for any a > 0, as Ainf(f |E) = f(n) for E = [n]. If g(x) = x, then the generalized level

measure (27) coincides with ha-index [29, Def. 2.4], i.e., µ
A inf

1
(f, a) = max{k ∈ N : f(k) >

4Note that the inclusion of emptyset into collection is a technical assumption for the generalized indices to be

well defined.
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ak}. Next, for a = 1 we get the Hirsch index, and for a→ 0 we have the p-index [29, Def. 2.5]

returning a number of publications with at least one citation. Further, considering a = 1

and an increasing function g with g(0) = 0, the formula (27) is the generalized Kosmulski

index (cf. [3, 9]). Clearly for g(x) =
√
x we obtain the h(2)-index [20].

It is worth noticing that some modifications of the Hirsch index have applications not

only in scientometrics, but also in evaluating a person’s output of Internet media. For

instance H1000 is defined as the highest number H of videos with at least H · 103 views (see

[23]). Replacing 103 with 105 we get the index proposed by Hovden [17] capturing both

productivity and impact in a single metric. The scientific record can also be understood

as the number of count views of ith video in channel.

2. If g(x) =
√
x and A = A

sum, then we get

µA sum
1

(f, a) = max
{
k ∈ N :

k∑

x=1

f(x) > (ak)2
}
.

For a = 1 we obtain g-index [29, Def. 3.1]. Some modification of g-index is also applied in

information sciences similarly to Hirsch index (see point 1).

3. Let A(f |E) =
∏

x∈E(f(x))
1/|E| for E ∈ E0 and g(x) = x. Then we obtain the t-index [28,

formula (4)]

µA1
(f, 1) = max

{
k ∈ N :

k∏

x=1

(f(x))1/k > k
}
.

4. Let A(f |E) = (
∑

x∈E 1/f(x))−1 for E ∈ E0 and g(x) = x. Then by (26), we get the f-index

[28, formula (3)]

µA2
(f, 1) = max

{
k ∈ N :

( k∑

x=1

1/f(x)
)−1

> 1
}
.

4.2. M2M-transformation on hyperset

Let µ ∈ M, µ(X) = 1 and Σ be a countable set. Recall that µ̂ : 2Σ → [0, 1] is a capacity on 2Σ

if (a) µ̂(∅) = 0; (b) µ̂(2X) = 1; (c) µ̂(D̂1) 6 µ̂(D̂2) for all D̂1 ⊂ D̂2 ⊆ Σ (cf. [30]). The problem

of transformation of µ to a capacity µ̂ on 2Σ (the M2M-transformation, for short) is examined

in [30, Sec. IV-V], where the following transformations are given:

• µ̂1(B̂) = sup{µ(B) : B ∈ B̂}, where B̂ ⊆ Σ;

• µ̂2(B̂) =
∑

Bj∈B̂
ν(Bj)/

∑2n

j=1 ν(Bj), where B̂ = {Bj} is a family of all nonempty subsets

of X = [n] and ν(B) = g(µ(B), |B|) with a function g : [0, 1] × [n] → [0,∞) such that

g(x, k) > 0 for x ∈ [0, 1], k ∈ [n].
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Some another possible transformations include:

• µ̂3(B̂) = µ
(⋃{Bj : Bj ∈ B̂}

)
;

• µ̂4(B̂) =
∑

Bj ,Bi∈B̂
µ(Bi ∪Bj)/

∑
Bi,Bj∈Σ

µ(Bi ∪Bj);

• µ̂5(B̂) = 1− µ
(⋂{Bc

j : Bj ∈ B̂}
)
.

Observe that µ̂3(B̂) = µ̂1(B̂) if B̂ is a chain, and µ̂3(B̂) =
∑

Bj∈B̂
µ(Bj) if B̂ is a partition of

some subset of X and µ is additive.

Example 4.1. Let X = {x1, x2, . . . , xN} denote all citizens who want to vote for one of the

political parties P1, . . . , Pm. Denote by Bi the set of voters of party Pi and by ni the number

of seats in parliament for the party Pi determined by some method of distribution, for example

by the D’Hont method. Denote by n the total number of seats in the parliament. A party Pj

enters parliament if |Bj |/N > 5%. Clearly, the set function µ : Σ → [0, 1], Σ = 2X , defined by

µ(Bj) = nj/n for j ∈ [m] is a monotone measure, but the most often nonadditive.

Suppose that the parties P1, . . . , Pk have crossed the five percent threshold. Before the vote

on a bill, a coalition C = {Pj : j ∈ J ⊆ {1, . . . , k}} may be formed, where C is a family of those

parties in parliament whose leaders want to vote for the project. Any coalition C determines the

family B̂ = {Bj : j ∈ J} of subsets of X. Obviously, the power of any coalition C is given by the

value of the transformation of µ given by µ̂(B̂) =
∑

Bj∈B̂
µ(Bj) if each envoy of any party votes

as the leader of that party.

We propose to apply the generalized level measure to convert a monotone measure µ from Σ

to 2Σ as follows

µ̂6(B̂) = sup
{
µ(B) : A(f |B) > a, B ∈ B̂ ∪ {∅}}, B̂ ⊆ Σ0 (28)

for a fixed A(·|·), (f, µ) ∈ F × M and a ∈ [0,∞). Clearly, µ̂6 is a monotone measure on 2Σ

provided that µ(X) = 1 and A(f |X) > a. Moreover, µ̂6 6 µ̂1 and µ̂6 = µ̂1 for a = 0.

Example 4.2. Consider a system with components b and c, which can be selected from the sets

{bi : i ∈ [k]} and {cj : j ∈ [m]}, respectively. Let p(bi) (resp. p(cj)) denote the probability that

the element bi (resp. cj) will not fail within a given period. If b and c are connected in parallel

and operate independently of each other, then the probability of survival of the system is equal

to 1 − (1 − p(b))(1 − p(c)) = p(b) + p(c) − p(b)p(c). Denote by π(B) the price of the system

B = {b, c} and let K be a limited budget. We say that B is the best system if it has the lowest

price among those whose probability of survival is not less than p, where p is fixed.
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Set X = {b1, . . . , bk, c1, . . . , cm}, B̂ = {{bi, cj} : i ∈ [k], j ∈ [m]}, µ(B) = (1− π(B)/K)+ and

A(f |B) = p(b) + p(c)− p(b)p(c) for B = {b, c}, where f(x) = p(x) for all x ∈ X. Thus, choosing

the best system comes down to calculating the value of µ̂6(B̂) given by (28). An extension of

this example to multicomponent systems is possible.

5. Conclusion

In this paper, we have proposed a generalization of the level measure with its examples. We

have presented some properties and applications related to scientometric indices. It turns out that

the generalization of the survival function introduced in [1] cannot be used in this application,

hence the need to introduce the generalized level measure. When using Proposition 3.17, the level

measure is, for some parametric families of CAOs, smaller than the generalized level measure.

From (4) it follows that we may give both the lower and upper bound for the Choquet integral

by means of new Choquet-like functionals of the form

∞∫

0

µSA (f, a) da and

∞∫

0

µA (f, a) da,

and introduce novel classes of integrable functions LS
µ , cf. [1], and Lµ, respectively. Clearly,

Lµ ⊆ LC
µ ⊆ LS

µ , where LC
µ is the set of Choquet integrable functions. A detailed study and

practical consequences are left for the future work.
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