
Future Generation Computer Systems xxx (2004) xxx–xxx

The design of a distributed MATLAB-based
environment for computing pseudospectra

C. Bekasa, E. Kokiopouloua, E. Gallopoulosb,∗
a Computer Science and Engineering Department, University of Minnesota, Minneapolis, MN USA

b Computer Engineering and Informatics Department, University of Patras, Patras, Greece

Received 24 September 2003; received in revised form 30 October 2003

Abstract

It has been documented in the literature that the pseudospectrum of a matrix is a powerful concept that broadens our
understanding of phenomena based on matrix computations. When the matrixA is non-normal, however, the computation of
the pseudospectrum becomes a very expensive computational task. Thus, the use of high performance computing resources
becomes key to obtaining useful answers in acceptable amounts of time. In this work we describe the design and implementation
of an environment that integrates a suite of state-of-the-art algorithms running on a cluster of workstations to enable the matrix
pseudospectrum become a practical tool for scientists and engineers. The user interacts with the environment via the graphical
user interfacePPsGUI. The environment is constructed on top ofCMTM, an existing environment that enables distributed
computation via an MPI API forMATLAB.
© 2003 Elsevier B.V. All rights reserved.

Keywords:Eigenvalues; Pseudospectrum; Problem solving environments; Parallel MATLAB; MPI; CMTM; Grid computing

1. Introduction and motivation

The ε-pseudospectrum,Λε(A), of a matrix (pseu-
dospectrum for short) describes the locus of eigenval-
ues ofA + E for all possibleE such that‖E‖ ≤ ε for
some matrix norm and givenε, that is

Λε(A) = {z ∈ C : z ∈ Λ(A + E), ‖E‖ ≤ ε}, (1)

whereΛ(A) denotes the set of eigenvalues of matrix
A. For the remainder of this paper we will assume that
the underlying matrix norm bounding the perturba-
tions is the two-norm. Theε-pseudospectra are regions

∗ Corresponding author.
E-mail addresses:bekas@cs.umn.edu (C. Bekas),
kokiopou@cs.umn.edu (E. Kokiopoulou), stratis@ceid.upatras.gr
(E. Gallopoulos).

of the complex plane that show where the eigenvalues
of a matrix could go when the matrix is subjected to
perturbations. They have many interesting properties
and can provide useful information regarding the be-
havior of iterative methods for the major problems of
numerical linear algebra as well for stability studies
that frequently are more informative than the eigen-
values of the underlying matrixA (e.g. [15,37–39]).
It is thus argued that pseudospectra calculations are
a necessary component in any suite of tools that re-
turns qualitative information about a matrix computa-
tion. As a result, it becomes of interest to build a tool
that would compute pseudospectra, possibly together
with other information about the matrix (e.g. condi-
tion numbers, indices of eigenvalue sensitivity, etc.)
Unfortunately, it is well known that in many cases
of interest the computation of the pseudospectrum

0167-739X/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.12.017

2 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

becomes a difficult task because of its high computa-
tional cost. For example, the application of definition
(1) would entail a cost that would be a multiple of
the computation of all the eigenvalues of the matrix,
a daunting task for large matrices. As a result, there
have been several research efforts leading to a variety
of methods that researchers actively deploy to approx-
imate pseudospectra ranging from simple applications
of (1) or its equivalents (2, 3 presented in the next sec-
tion) (e.g. see[22] for some codes), to state-of-the-art
polyalgorithms (cf.[8,38]).

In this work we outline the design and implemen-
tation of a system designed to provide all the com-
putational facilities to compute matrix pseudospectra.
The system is built to be flexible so as to permit the
incorporation of novel algorithms and is deployed via
PPsGUI, a powerful graphical user interface. The
system integrates a suite of state-of-the-art parallel
algorithms running in a distributed mode to facilitate
scientists and engineers mine pseudospectral infor-
mation from any matrix at a cost that is as little as
possible without specific knowledge of the algorithms
underlying its computation. Related work includes the
graphical tool presented in[29] as well as the popular
and continuously evolvingeigtool; cf. [40–42].
These tools implement a limited combination of
matrix-based and domain-based algorithms. To these,
our environment contributes a flexible combination
of parallel “domain” and “matrix-based” approaches
(cf. Section 2) that permit the fast and convenient
computation of the pseudospectrum of large matrices.
Indeed, the work presented herein is the first effort to
combine a wide variety of methods from both of the
above categories in a single tool. Our programming
platform isMATLAB that provides an open environ-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.4

−0.3

−0.2

−0.1

0 0.2 0.4 0.6 0.8 1−0.2

Fig. 1. EstimatingΛε(A) for matrix kahan(100) by random bounded perturbationsA + E, where‖E‖ ≤ ε, ε = 10−11, 10−7 and 10−3

(left to right). Dots denote “pseudoeigenvalues” while crosses denote the eigenvalues ofA.

ment equipped with sophisticated visualization capa-
bilities. Parallelism is supported by means of the Mes-
sage Passing Interface paradigm (MPI). This choice
is based on the specifications ofCMTM, a software
module that providesMPI functionality forMATLAB
and thus allows the concurrent execution ofMATLAB
processes on clusters of workstations (COWs)[43].

The remainder of this paper is organized as follows.
In Section 2 we present some examples of pseu-
dospectra,GRID—a simple classical algorithm for
their computation and a classification of methods. In
Section 3we outline three domain-based algorithms,
a matrix-based methodology and their hybrids. In
Section 4we describe the cluster architecture and par-
allel programming withCMTM in MATLAB. Section 5
describes the GUI front-end of the environment and
the applicability of the proposed tool in the Grid
framework. Finally, Section 6 contains concluding
remarks.

2. Computing pseudospectra

A first example of pseudospectra is presented in
Fig. 1. We use definition(1) to estimateΛε(A) for a
matrix that is routinely used as a benchmark; this is
matrix kahan (see[22] for the generatingMATLAB
code) of sizen = 100 when the norm ofE is bounded
by different values ofε = 10−3, 10−7 and 10−11. To
this end, we computed the eigenvalues of random per-
turbationsA + E where for each value ofε we con-
ducted 100 experiments. Then, for eachε we created a
plot where we superimpose the “pseudoeigenvalues”
(eigenvalues ofA + E) and the original eigenvalues
of A. It readily follows from the definition that for

C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 3

different values ofε, theε-pseudospectra form nested
point sets that “collapse” to the spectrum ofA as ε

tends to zero. The figures indicate that the smaller
eigenvalues ofA are more sensitive to perturbations.
When A is normal (i.e. satisfies the relationAA∗ =
A∗A), the pseudospectrum is readily computed from
the eigenvalues since classical matrix theory predicts
that it will be the union of the disks of radiusε sur-
rounding each eigenvalue ofA. The pseudospectrum
becomes of interest on its own or as an alternative
to standard eigenvalue analysis in cases such as the
above, whereA is non-normal (e.g. nonsymmetric).
Even for medium size matrices, however, the compu-
tation of their pseudospectrum is a difficult task[38].
Regarding definition(1) for example, even if we per-
form a large number, says, of random perturbations,
we cannot guarantee that they will capture the extreme
dislocations that are possible for the eigenvalues under
all possibleε-bounded perturbations. Furthermore, as
already mentioned earlier, the cost of a pseudospec-
trum approximation method based on definition(1) is
at least equal to the cost of computing all the eigen-
values ofs matrices of the formA + E. One way to
get round this problem is by means of two alternative
definitions ofΛε(A) that can be shown to be equiva-
lent to (1) [38]:

Λε(A) = {z ∈ C : ‖(A − zI)−1‖ ≥ ε−1}, (2)

Λε(A) = {z ∈ C : σmin(A − zI) ≤ ε}, (3)

whereσmin denotes the smallest singular value of its
matrix argument. The standard algorithm (GRID) for
the computation ofΛε(A) consists of three phases that
are presented in Algorithm (1).

Algorithm (GRID).

1. Let Ω be such thatΩ ⊇ Λε(A) for the largestε
of interest andΩh be a discretization ofΩ with
gridpointszk.

2. Computes(zk) := σmin(zkI − A) ∀zk ∈ Ωh.
3. Plot the contours ofs(zk) for all values ofε of

interest to obtain∂Λε(A).

Therefore, if we knowΩ (an interesting issue in its
own right that can be addressed by special algorithms,
e.g. see[8,10]), the cost to decide ifz is a member of
Λε(A) or not amounts to the cost of computings(z).
Fig. 2 depicts the pseudospectra boundaries∂Λε(A)

0.5 0 0.5 1

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

−

−

−

−

−

Fig. 2. The pseudospectra boundaries∂Λε(A) of matrix
kahan(100) for ε = 10−k, k = 3, . . . , , 11.

of kahan(100) for ε = 10−k, k = 3, . . . , , 11. Two
important features ofGRID are its straightforward
simplicity, robustness and potential for embarrassingly
parallel implementation. Its cost is typically modeled
by

CGRID = |Ωh| × Cσmin, (4)

where|Ωh| denotes the number of nodes ofΩh and
Cσmin is a measure of the average cost for the com-
putation ofs(z). The total cost quickly becomes pro-
hibitive as the size ofA and/or the number of nodes
increase. Given that the cost of computings(z) is at
least O(n2) and that a typical mesh could easily con-
tain O(104) points, the cost can be very high even for
matrices of moderate size. For example computing the
pseudospectrum of a dense matrix of sizen = 1000
on a Pentium III workstation using a 50×50 mesh and
MATLAB 6.1 requires more than a day. Cost formula
(4) readily indicates two major classes of methods for
accelerating the computation, based on the mathemat-
ics and numerics of the problem: (a) domain-based
methods, that aim to reduce the number of nodes
wheres(z) is computed, and (b) matrix-based meth-
ods that focus on reducing the cost for the evalua-
tion of s(z). The above methods can be combined
with system-level approaches, such as the exploitation
of hierarchical memory and parallel processing. See
[38,42] for informative surveys of recent efforts in the
area and thePseudospectra Gatewaysite [31] for a
comprehensive repository of links to research efforts,
references and software.

4 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

3. Parallel algorithms for the pseudospectrum

The algorithms driving our environment draw from
a number of domain as well as matrix-based methods
that were developed in recent years that lend them-
selves to parallel computation.

3.1. Domain-based methods

The three major domain-based components of our
environment are the following (the numbers in bold
brackets denote the reference where extended discus-
sion about the method can be found.)

• Cobra [4]: Parallel path following method that nu-
merically traces a single boundary ofΛε(A) by con-
current estimation, using Newton iteration to solve
σmin(A−zI)−ε = 0, ofm pointszi

k, i = 1, . . . , m ∈
∂Λε(A). The method inherits the flexibility of nu-
merical continuation methods (see[1,11]), while
remedying a number of weaknesses such as danger
of breakdown at steep turns of∂Λε(A) and lack of
large grain parallelism.

• PsDM [5]: Using the pointszk ∈ ∂Λε(A), k =
1, . . . , , N that are already available (i.e. computed
by Cobra), the method proceeds to estimate an in-
ner boundary∂Λδ(A), δ < ε, by concurrent Newton

Fig. 3. Instances of parallel domain-based methods for computing matrix pseudospectra. Top:Cobra. Bottom:PsDM (left) andPMoG (right).

corrections towards the pointsyk ∈ ∂Λδ(A), k =
1, . . . , , N. The method combines the flexibility
of path following methods with the robustness of
GRID, while preserving the opportunities for large
grain parallelism of the latter.

• PMoG [8]: Parallel variant ofGRID that drastically
reduces the costCGRID by quickly excluding
points zh of the meshΩh that are not part of
Λε(A). The method can be used to quickly esti-
mate the region of the complex plane that contains
the pseudospectrum. If needed, it can also provide
approximations to∂Λε(A), at very low cost for
coarse resolutions.

Fig. 3depicts instances of the above methods. Each
of the aforementioned parallel domain-based meth-
ods has a different intuitive geometrical interpretation.
Cobra generates a single (or more)∂Λε(A) at a time.
PsDM generates nested∂Λε(A). PMoG is a generaliza-
tion of GRID that is based on fast exclusions. There-
fore, it is natural to combine the above approaches
in order to exploit all of their features.PMoG pro-
vides a very effective scheme for deciding where on
the complex plane to concentrate our efforts. The data
resulting fromPMoG can be used as input points for
PsDM. In particular, one can quickly come close to
the pseudospectrum boundary∂Λε(A) by means of

C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 5

PMoG and then usePsDM to obtain it at greater detail.
Frequently, one is interested in observing how do the
∂Λε(A) pseudospectral boundaries vary withε. To do
this, one can first applyCobra to compute a pseu-
dospectral boundary for a singleε and then estimate
additional boundaries corresponding to smallerε us-
ing PsDM (seeSection 5. As already mentioned, all
three methods lend themselves to parallel computa-
tion.Cobra is the most limiting of the three because it
allows the concurrent computation of a small number
of points defining a given pseudospectral boundary at
a time. Thus we have a fixed amount of parallelism
per step and the algorithm cannot scale on geometrical
considerations alone; cf.[4]. PsDM allows the concur-
rent computation of all points of a new pseudospectral
curve from a current one in a “level set”-like manner.
Finally, PMoG is closely related toGRID and allows
the concurrent computation at any points ofΩh, ex-
cept that the algorithm also leads to the fast exclusion
of points ofΩh.

3.2. Matrix-based methods and hybrids

In spite of the significant improvements in compu-
tational savings that have been demonstrated in the
literature via domain-based methods, they are not suf-
ficient for the fast computation of pseudospectra of
large matrices. Even inGRID, the cost is linear in the
number of gridpoints but at least quadratic in the size
of the matrix. In fact, the computation ofs(z), even by
means of advanced methods (e.g. those presented in
[2,23,25,26]), is very expensive, especially when the
smallest singular values are clustered. Moreover, we
need to computes(z) for many values ofz. Unfortu-
nately, however, the singular values ofA−zkI are not
readily obtained by shifting the singular values ofA;
that is, in general,σmin(A− zkI) �= σmin(A)− zk even
though the set of eigenvaluesΛ(A−zkI) = Λ(A)−zk.
This is the root of the domain-based complexity of
pseudospectra: Standard dense or iterative methods
for computings(z) require a different run for eachzk.
This is also the reason thatGRID is embarrassingly
parallel and apparently well suited for a distributed or
even Grid-like implementation. What we would like
to derive is a method that concurrently provides ac-
curate approximations ofs(zk) for a large number of
values zk. This would enable the creation of pow-
erful hybrid algorithms based on the aforementioned

domain approaches. One early method in that direc-
tion was described in[36]. This method contains two
major phases: The first is an (expensive) computation
that is common to all valueszk while the second con-
sists of cheaper computations that are independent for
eachzk. An alternative approach that appears to return
more accurate approximations is based on a “transfer
function” framework[7,34]. This framework is based
on definition(2) and an approximation ofΛε(A) by
Λε(Gz,m(A)), where

Gz,m(A) = V ∗
m+1(A − zI)−1Vm+1. (5)

Here,Vm+1 denotes an orthogonal basis for the Krylov
subspaceKm(A, v1) computed by the Arnoldi method
[33]. We call this “transfer function” framework in-
spired by the term used in Control for functions like
Gz,m(A). In [3,7,34] it was shown that‖Gzh,m(A)‖
can be efficiently computed iteratively for a large num-
ber of shiftszk using Krylov linear solvers such as
GMRES and restartedFOM (see[33]) at an additional
cost of O(m3) for each shift compared to a standard
singular value solver that computess(zk). Since typ-
ically m is much smaller than the size of the matrix
we achieve substantial computational savings.

As a natural next step we developed hybrid al-
gorithms that combine the domain methods of the
previous section with the transfer function frame-
work. The resulting algorithms permit us to address
a variety of problems with very large matrices. In
particular,GRID-like hybrids withPMoG extensions
are ideal when we are interested in the complete
pseudospectrumΛε(A). On the other hand, hybrids
based onCobra andPsDM are particularly suitable
when we are interested only in local behavior of the
pseudospectrum, for example near the imaginary axis
in applications concerning stability. InTable 1 we
illustrate the expected performance of the transfer
function approach on a Pentium III workstation with
1GB of RAM as matrix sizes scale.

Table 1
Typical runtimes on a Pentium III workstation with 1GB RAM
using state-of-the-art hybrid pseudospectra computing algorithms

Matrix size

103 104 105 106

Runtimes 1–2 min 5–10 min 2–3 h 8–16 h

6 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

4. Computational platforms and issues

Given the high computational complexity of pseu-
dospectra computations for large matrix sizes and
resolutions, it becomes necessary to use high perfor-
mance computing (HPC) resources. At the level of the
hardware infrastructure, to render pseudospectra prac-
tical for the common user, it would be preferable to
use off-the-shelf systems such as clusters or networks
of workstations that have recently become a particu-
larly appealing, low-cost solution to supercomputing
as well as a component element to more distributed,
Grid-type configurations. In fact, network-based com-
puting is rapidly becoming a dominant paradigm for
Computational Science and Engineering. All algo-
rithms described inSection 3and incorporated in our
environment were implemented to run on a COW
used as an integrated computing resource. The ac-
tual configuration used for most of our experiments
consisted of eight nodes of Pentium III PCs running
Windows 2000 connected via a 100 Mb fast Ethernet.

On the algorithmic side, it is expected that a suc-
cessful approach would combine several of the above
methods into a polyalgorithm[32]. In particular, we
seek an open software environment integrating and
interconnecting available algorithms, providing trans-
parent access to parallel architectures and at the same
time offering visualization features. Moreover, in ad-
dition to being fast and accurate, a practical system
would also need to be user-friendly. The algorithms
described inSection 3demonstrate parallelism both at
the level of the independent computations that occur
in the domain as well as at the level of the parallelism
that is possible within the computation of the singular
triplets (meaning the triplets(σmin, umin, vmin) of min-
imum singular value and left and right singular vec-
tors); cf. Section 3as well as the original references
for details.

An important issue in the design of parallel and
distributed algorithms is load balancing. For the algo-
rithms outlined above, we were mostly concerned with
the specific issue of distributing the computational
load equally amongst the processors of a dedicated
COW in order to achieve high parallel efficiency and
speedup. Consider for example theGRID algorithm
which requires one to computes(z) (and possibly the
corresponding left and right singular vectors) for ev-
ery mesh pointzk ∈ Ωh. If we were to use the intrinsic

MATLAB’s svd function, the runtime fors(z) would
be almost independent of the value ofz (except for the
few occasions thatz is on the real line), so load balanc-
ing is not an issue. Frequently, however, the problem is
large and sparse so to solve it we need to apply sparse
iterative techniques, e.g. the intrinsicMATLAB svds
function that is based onARPACK [27]. In that case,
performance becomes sensitive to the value ofz and
runtimes can vary significantly. Therefore, a load bal-
ancing scheme becomes necessary if we are to achieve
high efficiency on a dedicated COW. One possible ap-
proach when applying iterative methods in the context
of GRID is to use system-level information obtained
during execution to distribute the computational load
according to resource availability. Using a queue, for
instance, could ensure fully dynamic load distribution
at the cost of increased network traffic. An alterna-
tive approach is to attempt to exploit the numerics of
the problem. It has been observed, for example, that
nearby points, sayz and z′, typically require similar
times to computes(z) ands(z′). Therefore, a careful
interleaved distribution of the points inΩh across the
processors could lead to better load balance. Similar
load balancing issues arise inPsDM and PMoG; cf.
[8] for a detailed description of some load balancing
policies for the algorithms described inSection 3.

Parallelism and communication for our system run-
ning on the COW are based on the message pass-
ing paradigm, and in particularMPI [30]. MPI ad-
dresses concepts and constructs such as point-to-point
message passing, collective communications, process
groups and topologies. There exist several commercial
and free implementations ofMPI. We usedMPI/Pro
[35], as this is currently the only system supporting
the MPI API forCMTM that is a major enabling com-
ponent of our environment.

4.1. MATLAB and the Cornell multitask toolbox
(CMTM)

MATLAB has evolved into a powerful domain-
specific Problem Solving Environment (PSE)[24] for
the development and rapid prototyping of numerical
applications. The key ingredient to its success is that
interaction withMATLAB is in linear algebra terms
and Linear Algebra is admittedly a principal tool for
scientific computing.MATLAB’s programming lan-
guage is relatively simple and frees the application

C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 7

developers from a host of programming details,
allowing them to focus on the problem to solve.
MATLAB was originally conceived and designed as a
user-friendly interface to theLINPACK andEISPACK
libraries but today incorporates and provides access
to sophisticated implementations of a large number of
state-of-the-art numerical methods that address a wide
range of problems.MATLAB offers sophisticated visu-
alization routines that are necessary for an application
like pseudospectra. Because of its open environment,
its large user community contributes new codes and
other software to public repositories likeNetlib.

A common criticism of high-level rapid prototyping
environments, likeMATLAB, is that ease of use comes
at the cost of computational performance. As stated in
[13], for example, “Environments like MATLAB and
Mathematica have proven to be especially attractive
for rapid prototyping of new algorithms and systems
that may subsequently be implemented in a more cus-
tomized manner for higher performance”. This has
motivated several efforts to enhance the performance
of these environments. In the case ofMATLAB these ef-
forts include the incorporation of “cache aware” linear
algebra primitives based onBLAS-3 andLAPACK as
well as kernels based on novel architecture-dependent
tuning such as ATLAS[14] and FFTW[19]; use of
JIT compiler technology for the rapid execution of
MATLAB code[28]; enabling the linking of subrou-
tines produced from C or Fortran source code; compil-
ers to convertMATLAB applications into stand-alone
C or C++ code. Source-to-source compilation from
MATLAB to a high-level language such as C or Fortran
with mature compiler technology on parallel systems
is one of several possible approaches for enabling
MATLAB for parallel processing. There exist several
others, nicely surveyed in[12]. One of the most pop-
ular approaches, judging by the number of efforts, is
to engage COW processors in concurrentMATLAB
sessions and provide access to a message passing
library. This approach is followed in the Cornell Mul-
titask Toolbox (CMTM) [43]. CMTM was developed at
the Cornell Theory Center and offers anMPI API
for MATLAB consisting of approximately 40 com-
mands. Once the masterMATLAB process has been
initialized, additionalMATLAB processes are invoked
by issuing the command wherenp is the total num-
ber of processes. Variablemm er returns any error
codes. The master process can kill all others via the

commandCMTM provides facilities to write programs
under the SIMD as well as the MIMD paradigms.
In particular, by invoking on the master, process
dest executes theMATLAB string command. In
casedest is omitted,command is executed by all
processes. As inMATLAB, CMTM functions take ar-
rays as arguments. A nice feature ofCMTM is that it
also provides a very simplified interface to several
MPI commands. For example, to broadcast a matrix,
say A, from node zero to all other nodes, all nodes
executeA=MMPI Bcast(A). The system automat-
ically distinguishes whether a node is a sender or
a receiver and performs the communication. Simi-
lar calls exist to perform other procedures requiring
communication such as blocking send–receive and
reductions. For example, in order to compute the
dot product of vectorsx andy that are already dis-
tributed across the processors, all nodes execute an
instruction d= MMPI Reduce(x′∗ y,MPI ADD)
that performs a local dot product in each node and
subsequently accumulates the partial results in vari-
abled of the master node.CMTM currently runs only
on Windows 2000 systems. It would not be difficult,
however, to port the environment onto many of the
parallelMATLAB systems reviewed in[12] that belong
to the message passing category and run Linux, some
of which offer moreMPI-like commands thanCMTM;
MPITB, for example, offers more than 150[17].

5. PPsGUI

The next concern in building the environment was to
design and build a user-friendly interface for the algo-
rithms described inSection 3. We called thisPPsGUI
and depict one instance of it inFig. 4 An important
design decision was to adopt a hierarchical presenta-
tion of the parameters of the pseudospectra computa-
tion. The first level that is immediately accessible to
the user provides information regarding (i) the matrix
at hand; (ii) the active domain and matrix-based meth-
ods (PsDM andsvd in the snapshot ofFig. 4) and (iii)
the current number of processors. The user can set the
specific configuration parameters for the components
of the first level at a second level. For example, push-
ing the DETAILS button next to the active Domain
method selection field (seeFig. 4) triggers the activa-
tion of a dialog box that contains all the parameters of

8 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

Fig. 4. Graphical tool.

the specific Domain method, such as step length and
total number of steps forCobra. This strategy ensures
that the GUI is not overloaded with an overwhelming
number of edit dialogs and drop lists at any level. On
the other hand, we limited the depth of the parame-
ter selection hierarchy to two levels, thus facilitating a
simple and swift switch between different configura-
tions. The results of the computations are graphically
illustrated in an axis box (seeFig. 4). MATLAB treats
graphics as objects, having a number of system pre-
defined as well as user-defined attributes. InPPsGUI
we exploit this property and assign to each graphi-
cally illustrated result a number of attributes such as
(i) the domain and matrix-based methods that have
been used for its computation; (ii) performance indi-
cators such as runtimes and speedups; and (iii) object
handles. The latter are used to serve as identifiers for
the graphical manipulation of the computed results.
In particular, the user can select all or part of a pseu-
dospectrum boundary that was computed byCobra
and mark that it is to be used as input for subsequent
computations, i.e. inPsDM. PPsGUI provides several
graphical manipulation capabilities. The user can se-
lect a specific area and restart computations zooming
therein. For example, suppose that we obtain a rough
estimate of the pseudospectrum viaPMoG and that we
wish to compute it at a specific area of the complex
plane in greater detail. To do this withPPsGUI we
first select the specific area using the mouse and let
PsDM take over to compute the contours of interest.

An important goal for the system is to provide
transparent use of the COW. All that is required is

that the software resides on a file system shared by
all nodes participating in the computation. The tool
automatically decides which and how many of the
available processors to use.PPsGUI, however, also
allows an expert user to manually define the paral-
lel configuration of his choice. The most important
feature ofPPsGUI is that the user can specify that
results computed by one method (e.g.Cobra) will
serve as inputs of another (e.g.PsDM). Furthermore,
it is possible to use data computed elsewhere and like-
wise store its results for future use. The environment
also incorporates and lets one use, via appropriate se-
lections inPPsGUI, many state-of-the-art algorithms
for computing singular values. So, in addition to the
transfer function framework, one can useMATLAB’s
own direct and iterative methodssvd, svds as
well as methods described in[2,23,25,26]. PPsGUI
also allows the superposition of plots as well as
three-dimensional plotting. These allow, for example,
the visual comparison or detection of the evolution of
pseudospectra of different matrices. A “recommender”
system to help the non-expert select the best combi-
nation of algorithms is currently under development.

5.1. Automatic and manual configuration

The automatic detection of the characteristics and
configuration management of the COW on which
PPsGUI is deployed is a helpful component in any
automatic or manual decision-making regarding the
setup of the problem solving process. For this purpose
we developed theParallelism Configuration
GUI (PCGUI), a software tool available within the
environment. Our goals were for the software to
enable transparent and user-friendly access to compu-
tational resources while also permitting expert users
greater control. In particular, the user can either man-
ually choose a particular configuration, based on the
information that the tool provides, or let the tool auto-
matically decide the configuration at runtime. For each
of the available workstations in the COW, the master
workstation, on whichPPsGUI was initiated, gathers
information which includes the number of available
processors on the workstation, their type and the clock
frequency, the total amount of RAM memory and
the availability ofMATLAB. All that is needed is that
the user has an account on all the COW nodes and
access to a common file system. The communication

C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 9

Fig. 5. ThePCGUI.

mechanism is implemented as anMPI program
called find cluster. The central node executes
find cluster using a standard call tompirun.
The workstations on whichfind cluster will
run are typically defined in a specialmachines file,
every line of which contains the name or IP address
of the workstations. Our environment currently runs
on Windows 2000 andPCGUI utilizes the registry of
Windows from which it reads information regarding
the present hardware and software resources as well
as the commandnet view which returns all avail-
able workstations in the Windows 2000 domain. It
is worth noting, however, that above methodology is
general and virtually independent of the particular OS.

Fig. 5 illustratesPCGUI and an instance of its use.
Its functionality is summarized as follows:

• The user can request the automatic detection of the
features of the COW (AUTO key). On the other
hand, it is possible to manually add a certain work-
station (ADD key). All workstations that are eventu-
ally available for computation appear in a list above
the ADD key.

• For each workstation we can illustrate information
about its hardware and software configuration.

• The user can make a selection of the available work-
stations and form a configuration using the SELECT
key. Furthermore, the user can save a configuration
or load a previously saved one.

• The CLEAR key resets the tool and the HELP key
triggers a help dialog.

PCGUI is a general tool, which is useful on its
own, and can be used in applications other than
pseudospectra.

5.2. Numerical experiments

We next present a number of experiments with
PPsGUI. In the first example we usedCobra to com-
pute an initial boundary curve∂Λε(A) with ε = 0.1
for a very small matrix, namelykahan(100). The
total runtime for two processors was 5.5 s. Then we
used the points of this curve as initial points forPsDM
to compute five inner curves∂Λεi(A), log10(εi) =
−3 − 0.05i, i = 1, . . . , , 5. Using again two proces-
sors it required 8 s. Therefore, if we were to use just
Cobra to compute the inner curves we would need
four processors to top the performance ofPPsGUI.

The next test matrices weregre 1107 (the nu-
meral indicates its dimension) from Matrix Market[9]
and a random sparse matrix of sizen = 2000. We
usedTRGRID, that is a hybrid algorithm based on
GRID and transfer functions[7]. Table 2 illustrates
runtimes and corresponding speedups. We witness im-
pressive results that exhibit superlinear speedups due
to the amortization of memory load across the work-
stations of the cluster. We next usedTRCOBRA, that

Table 2
Performance of parallelTRGRID

P

1 2 4 8

Matrix: gre 1107
Time (s) 185 80.3 42.4 20.5
Speedup – 2.3 4.4 9

Random sparse matrix (n = 2000)
Time (s) 77.2 36.2 18.6 10.6
Speedup – 2.1 4.2 7.32

10 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

Table 3
Runtimes (s) and speedups (in parenthesis) for increasing number
of correction points of parallelTRCOBRA for matrix gre 1107
and a bidiagonal matrix with random sparse elements and size
n = 40 000

P Points

2 4 8

gre 1107
1 63 104 194
2 40 (1.58) – –
4 38.5 (1.65) 39.5 (2.65) –
8 38.2 (1.65) 38.8 (2.7) 40 (4.85)

Random matrix
1 402 633 1135
2 244 (1.65) – –
4 182 (2.21) 185 (3.42) –
8 138 (2.91) 139 (4.56) 142 (8)

is a hybrid built fromCobra and the transfer func-
tion framework[3,6]. We used the cluster of the pre-
vious example with test matricesgre 1107 and a
bidiagonal matrix of sizen = 40 000 with random
sparse entries elsewhere[41]. Table 3 lists runtimes
and speedups (in parentheses) for various number of
correction points at each step ofCobra.

The above experiments clearly illustrate that there
is much to be gained by hybrid methods that are
based on domain and matrix-based algorithms in
combination with efficient parallel implementations
running on clusters of workstations. To appreciate
these results, we note that using a parallel implemen-
tation of the classicalGRID algorithm together with a
state-of-the-art general purpose SVD solver[26] for
the large (n = 40 000) sparse matrix of the previous
example on a 50× 50 mesh and an eight-node COW,
the pseudospectrum took in excess of 4 h of runtime.

5.3. Towards a Grid PSE

The key motive behind our efforts was to provide
access to state-of-the-art algorithms that would bring
down the high cost of computing detailed pseudospec-
tra of large matrices. The environment presented in this
paper is a powerful and user-friendly system based on
off-the-shelf software and hardware components and
accomplishes this goal. As mathematical models be-
come more realistic and numerical simulations more
detailed, however, matrices become larger, resolu-

tions finer and even our algorithms running on COWs
will have difficulty producing answers in acceptable
amounts of time. In view of recent advances in mid-
dleware and network enabled server systems designed
for desktop scientific computing (see, e.g.[20]), we
consider the Grid (cf.[18]) as a next framework for our
environment. The fact that several of the algorithms
described inSection 3are amenable to decomposi-
tion at large granularities renders the Grid a viable
framework for computing pseudospectra. Therefore,
our ongoing effort is to evolve the environment into
a Grid-enabled PSE whose components would be
selected and triggered as a function of the proper-
ties of the problem and the availability of the Grid’s
resources.

6. Conclusions

We have described the design of a software environ-
ment for the effective computation and presentation
of matrix pseudospectra on clusters of workstations.
The computational kernel of the environment consists
of several state-of-the-art domain- and matrix-based
methods. The described environment permits the user
to combine algorithms into hybrid methods that appear
to be much more effective than algorithms that rely
solely on the geometry or matrix numerics. The envi-
ronment is built overMATLAB and the Cornell Multi-
task Toolbox that enablesMPI-based message passing
between concurrent instances ofMATLAB. It must be
noted that in spite of the fact that our implementations
were necessarily based on specific off-the-shelf com-
ponents, one could build a similar tool selecting alter-
native methods to enableMATLAB for parallel process-
ing or even replaceMATLAB altogether with tools such
asSciLab [16,21]. We have also provided motivation
behind the use of Grid computing for the computation
of pseudospectra. The tools described in this paper are
expected to provide important building blocks for the
design of a Grid-enabled Pseudospectrum PSE that we
consider to be the next goal in our efforts.

References

[1] E.L. Allgower, K. Georg, Continuation and path following,
in: Acta Numerica 1993, vol. 2, Cambridge University Press,
Cambridge, 1993, pp. 1–64.

C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 11

[2] J. Baglama, D. Calvetti, L. Reichel, IRBL: an implicitly
restarted block Lanczos method for large-scale Hermitian
eigenproblems, SIAM J. Sci. Comput. 24 (5) (2003) 1650–
1677.

[3] C. Bekas, Efficient computation of matrix pseudospectra:
algorithms and tools, PhD Thesis, Computer Engineering and
Informatics Department, University of Patras, June 2003 (in
Greek).

[4] C. Bekas, E. Gallopoulos, Cobra: parallel path following
for computing the matrix pseudospectrum, Parallel Comput.
27 (14) (2001) 1879–1896.

[5] C. Bekas, E. Gallopoulos, Parallel computation of pseudo-
spectra by fast descent, Parallel Comput. 28 (2) (2002) 223–
242.

[6] C. Bekas, E. Gallopoulos, V. Simoncini, Transfer functions
and path following for computing pseudospectra, in: Procee-
dings of the SIAM Conference in Applied Linear Algebra,
Extended Abstract, Williamsburg, VA, July 2003.

[7] C. Bekas, E. Kokiopoulou, E. Gallopoulos, E. Simoncini,
Parallel computation of pseudospectra using transfer functions
on a MATLAB–MPI cluster platform, in: Proceedings of the
Ninth European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science, vol. 2474,
Springer-Verlag, Berlin, 2002.

[8] C. Bekas, E. Kokiopoulou, I. Koutis, E. Gallopoulos, Towards
the effective parallel computation of matrix pseudospectra,
in: Proceedings of the 15th ACM International Conference
on Supercomputing (ICS’01), Sorrento, Italy, June 2001,
pp. 260–269.

[9] R.F. Boisvert, R. Pozo, K. Remington, R. Barrett, J. Dongarra,
The matrix market: a Web repository for test matrix data,
in: R.F. Boisvert (Ed.), The Quality of Numerical Software,
Assessment and Enhancement, Chapman & Hall, London,
1997, pp. 125–137.

[10] T. Braconnier, R.A. McCoy, V. Toumazou, Using the field
of values for pseudospectra generation, Technical Report
TR/PA/97/28, CERFACS, Toulouse, September 1997.

[11] M. Brühl, A curve tracing algorithm for computing the
pseudospectrum, BIT 33 (3) (1996) 441–445.

[12] L.Y. Choy, Matlab∗p 2.0: interactive supercomputing
made practical, Master’s Thesis, Massachusetts Institute
of Technology, Cambridge, MA, September 2002.http://
theory.lcs.mit.edu/∼cly/survey.html.

[13] J.J. Dongarra, V. Eijkhout, Numerical linear algebra algori-
thms and software, J. Comput. Appl. Math. 123 (2000) 489–
514.

[14] J.J. Dongarra, V. Eijkhout, Self-adapting numerical software
for next generation applications, Technical Report Lapack
Working Note 157, ICL-UT-02-07, University of Tennessee,
Knoxville, TN, August 2002.

[15] M. Embree, Convergence of Krylov subspace methods for
non-normal matrices, PhD Thesis, Balliol College, University
of Oxford, April 2000.

[16] E. Caron, et al., SCILAB to SCILAB//: the OURAGAN
project, Parallel Comput. 27 (2001) 1497–1519

[17] J. Fernandez, A. Canas, A.F. Diaz, J. Gonzalez, J. Ortega, A.
Prieto, Performance of message-passing MATLAB toolboxes,

in: Proceedings of the Fifth International Conference on
High Performance Computing for Computational Science
(VECPAR 2002), Porto, Portugal, Lecture Notes in Computer
Science, vol. 2565, Springer, Heidelberg, January 2003,
pp. 228–241.

[18] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, San Mateo,
1998.

[19] M. Frigo, FFTW: an adaptive software architecture for the
FFT, in: Proceedings of the ICASSP Conference, vol. 3, 1998,
p. 1381.

[20] NetSolve/GridSolve Web site.http://icl.cs.utk.edu/netsolve.
[21] Scilab Group, Introduction to Scilab: User’s Guide, Technical

Report, INRIA-Unité de recherche de Rocquencourt-Project
Méta2, 1997.http://www-rocq.inria.fr/scilab.

[22] N.J. Higham, The matrix computation toolbox, Technical
Report, Manchester Centre for Computational Mathematics,
2002.http://www.ma.man.uc.uk/∼higham/mctoolbox.

[23] M.E. Hochstenbach, Subspace methods for eigenvalue
problems, PhD Thesis, Department of Mathematics, Utrecht
University, May 2003.

[24] E.N. Houstis, J.R. Rice, E. Gallopoulos, R. Bramley
(Eds.), Enabling Technologies For Computational Science:
Frameworks, Middleware, and Enviroments, Kluwer
Academic Publishers, Dordrecht, 2000.

[25] Z. Jia, D. Niu, An implicitly restarted refined bidiagona-
lization Lanczos method for computing a partial singular
value decomposition, SIAM J. Matrix Anal. Appl. 25 (1)
2003.

[26] E. Kokiopoulou, C. Bekas, E. Gallopoulos, Computing
smallest singular triplets with implicitly restarted Lanczos
bidiagonalization, Appl. Numer. Math. 49 (1) (2004).

[27] R. Lehoucq, D.C. Sorensen, C. Yang, Arpack User’s
Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,
1998.

[28] The MATLAB JIT-Accelerator, Mathworks Technology
Backgrounder, September 2002.http://www.mathworks.com/
company/digest/sept02/accelmatlab.pdf.

[29] D. Mezher, A graphical tool for driving the parallel
computation of pseudosprectra, in: Proceedings of the 15th
ACM International Conference on Supercomputing (ICS’01),
Sorrento, Italy, June 2001, pp. 270-276.

[30] Message Passing Interface Forum.http://www.mpi-forum.org.
[31] Pseudospectra gateway, At the Oxford University site

http://web.comlab.ox.ac.uk/projects/pseudospectra.
[32] J.R. Rice, The algorithm selection problem, in: Advances

in Computers, vol. 15, Academic Press, New York, 1976,
pp. 65–118.

[33] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, 2003.

[34] V. Simoncini, E. Gallopoulos, Transfer functions and resolvent
norm approximation of large matrices, Electron. Trans.
Numer. Anal. 7 (1998) 190–201.

[35] MPI Software Technology, MPI/Pro.http://www.mpi-
softtech.com.

http://theory.lcs.mit.edu/cly/survey.html
http://theory.lcs.mit.edu/cly/survey.html
http://icl.cs.utk.edu/netsolve
http://www-rocq.inria.fr/scilab
http://www.ma.man.uc.uk/higham/mctoolbox
http://www.mathworks.com/company/digest/sept02/accel_matlab.pdf
http://www.mathworks.com/company/digest/sept02/accel_matlab.pdf
http://www.mpi-forum.org
http://web.comlab.ox.ac.uk/projects/pseudospectra
http://www.mpi-softtech.com

12 C. Bekas et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

[36] K.-C. Toh, L.N. Trefethen, Calculation of pseudospectra by
the Arnoldi iteration, SIAM J. Sci. Comput. 17 (1) (1996)
1–15.

[37] L.N. Trefethen, Pseudospectra of matrices, in: D.F. Griffiths,
G.A. Watson (Eds.), Proceedings of the 14th Dundee
Conference on Numerical Analysis 1991, Essex, UK,
Longman Science and Technical, London, 1991, pp. 234–266.

[38] L.N. Trefethen, Computation of pseudospectra, in: Acta
Numerica 1999, vol. 8, Cambridge University Press,
Cambridge, 1999, pp. 247–295.

[39] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll,
Hydrodynamic stability without eigenvalues, Science 261
(1993) 578–584.

[40] T. Wright, Eigtool: a graphical tool for nonsymmetric
eigenproblems, December 2002. At the Oxford University
Computing Laboratory site http://web.comlab.ox.ac.uk/
pseudospectra/eigtool.

[41] T. Wright, L.N. Trefethen, Large-scale computation of
pseudospectra using ARPACK and Eigs, SIAM J. Sci.
Comput. 23 (2) (2001) 591–605.

[42] T.G. Wright, Algorithms and software for pseudospectra, PhD
Thesis, University of Oxford, 2002.

[43] J.A. Zollweg, A. Verma, The Cornell Multitask Toolbox,
Directory Services/Software/CMTM. http://www.tc.
cornell.edu.

Constantine Bekas is a Post Doctoral
associate at the Computer Science and
Engineering Department of the Univer-
sity of Minnesota. His research interests
include computation of pseudospectra of
very large matrices, eigenvalue and large
singular value problems and high perfor-
mance and parallel computing. He was
a recipient of a Bodossaki Foundation
Doctoral Scholarship and a Technical

Chamber of Greece award for excellent academic performance.
He received a Computer Engineering Diploma in 1998 (with
distinction), Master’s Diploma in 2001 and PhD in 2003, all
from the Computer Engineering and Informatics Department of
the University of Patras, Greece.

Effrosyni Kokiopoulou is a graduate
student and research associate at the
Computer Science and Engineering De-
partment of the University of Minnesota.
Her research interests include large
singular value problems, data mining,
information retrieval and parallel com-
puting. She was a recipient of a Bodos-
saki Foundation scholarship for graduate
studies and numerous awards from the

Hellenic Scholarship Foundation for excellent performance in
undergraduate studies. She received an Engineering Diploma
(class valedictorian) in 2002, from the Computer Engineering and
Informatics Department of the University of Patras, Greece.

Efstratios Gallopoulos has been pro-
fessor at the Department of Computer
Engineering and Informatics since 1996.
Before that he held positions of Senior
Computer Scientist at the University of
Illinois at Urbana-Champaign; assistant
professor at the University of Califor-
nia Santa Barbara; visiting researcher at
NASA Goddard Space Flight Center. As
senior computer scientist he participated

in research and development of the Cedar vector multiprocessor
at the University of Illinois Center for Supercomputing Re-
search and Development and in the software development of the
Goodyear Aerospace Massively Parallel Processor (MPP). He
has been member of scientific committees of many international
conferences; editor of Computing in Science and Engineering
(1994–1999) and the International Journal of High Speed Com-
puting; co-organizer in 1992 of the NSF Workshop in Future
Directions PSEs for Computational Science and member of the
Steering Committee of the European Research Foundation EU-
RESCO Conference on Advanced Environments and Tools for
High Performance Computing. He received his PhD (computer
science) at the University of Illinois at Urbana-Champaign in
1984 and his BSc (first class honors) in Mathematics from the
Imperial College of Science and Technology in 1979.

http://web.comlab.ox.ac.uk/pseudospectra/eigtool
http://web.comlab.ox.ac.uk/pseudospectra/eigtool
http://www.tc.cornell.edu
http://www.tc.cornell.edu

	The design of a distributed MATLAB-based environment for computing pseudospectra
	Introduction and motivation
	Computing pseudospectra
	Parallel algorithms for the pseudospectrum
	Domain-based methods
	Matrix-based methods and hybrids

	Computational platforms and issues
	MATLAB and the Cornell multitask toolbox (CMTM)

	PPsGUI
	Automatic and manual configuration
	Numerical experiments
	Towards a Grid PSE

	Conclusions
	References

