
HAL Id: hal-02667533
https://hal.inrae.fr/hal-02667533

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential in-core sorting performance for a sql data
service and for parallel sorting on heterogneous clusters

Christophe Cérin, Michel Koskas, Hazem Fkaier, Mohamed Jemni

To cite this version:
Christophe Cérin, Michel Koskas, Hazem Fkaier, Mohamed Jemni. Sequential in-core sorting per-
formance for a sql data service and for parallel sorting on heterogneous clusters. Future Generation
Computer Systems, 2006, 22 (7), pp.776-783. �10.1016/j.future.2006.02.014�. �hal-02667533�

https://hal.inrae.fr/hal-02667533
https://hal.archives-ouvertes.fr

Sequential In-core Sorting Performance for a

SQL Data Service and for Parallel Sorting on

Heterogeneous Clusters

Christophe Cérin a, Michel Koskas b, Hazem Fkaier c,
Mohamed Jemni c

aUniversité de Picardie Jules Verne, LaRIA, Bat Curi, 5 rue du moulin neuf,
F-80039 Amiens cedex 1- France

bUniversité de Picardie Jules Verne, LaMFA/CNRS UMR 6140, 33 rue St Leu,
F-80039 Amiens cedex 1- France

cEcole Supérieure des Sciences et Techniques de Tunis, Unité de recherche UTIC,
5 Av. Taha Hussein, B.P 56 Bab Menara, 1008 Tunis - Tunisie

Abstract

The aim of the paper is to introduce techniques in order to tune sequential in-core
sorting algorithms in the frameworks of two applications. The first application is
parallel sorting when the processor speeds are not identical in the parallel system.
The second application is the Zeta-Data Project (Koskas , 2003) whose aim is to de-
velop novel algorithms for databases issues. About 50% of the work done in building
indexes is devoted to sorting sets of integers. We develop and compare algorithms
built to sort with equal keys. Algorithms are variations of the 3way-Quicksort of
Segdewick. In order to observe performances and to fully exploit functional units in
processors and also in order to optimize the use of the memory system and the dif-
ferent functional units, we use hardware performance counters that are available on
most modern microprocessors. We develop also analytical results for one of our al-
gorithms and compare expected results with the measures. For the two applications,
we show through fine experiments on an Athlon processor (a three-way superscalar
x86 processor), that L1 data cache misses is not the central problem but a subtil
proportion of independent retired instructions should be advised to get performance
for in-core sorting.

Key words: hardware performance counters, in-core sorting algorithms with equal
keys, two levels memory hierarchy, optimizing memory accesses, parallelism at the
chip level, data structures for databases, parallel sorting.

Preprint submitted to Elsevier Science 2 June 2004

1 Introduction

The story of sorting is long enough to deserve many books, among them the
Knuth series (Knuth, 1998). One reason among others for the popularity of
sorting is that sorted data are easier to manipulate than unordered data, for
instance a sequential search is much less costly when the data are sorted.
The quasi non predictable aspects of memory references in sorting algorithms
make them good candidates to appreciate the performance of processors in
real situations. Two supplementary elements contribute to the ’no-end’ story.

First of all, the data are never accessed instantaneously with current proces-
sors. Computer architects (Hennessy and Patterson, 2002; Shriver and Smith,
1998) have imagined more and more complicated memory designs, called
caches, in order to get the fastest memory accesses. Cache design implies time
penalties and many parameters should be considered (cache line size, write
and read policiess, replacement algorithms. . .).

Second, a majority of processors available on the market place (Athlon, Pen-
tium processors for instance) are now equiped with special registers that record
the activity of the processor at no cost, we mean with no overhead caused by
the observation of events. So, we have now the possibility to observe finely the
behavior of codes and analyse their performance without the use of a simula-
tor. Many works have been accomplished in order to interface the observable
events with codes. Among the current project we deal with Perfctr 1 which
is used by many performance analyzer tools, for instance Papi 2 .

Moreover, modern processors include parallelism in the chip. For instance, the
Athlon processor is a three-way superscalar x86 processor. The chip has three
integer pipelines, three floating point pipelines and three full x86 decoders.
This means that the chip can potentially executes three instructions in parallel.

In this paper, we study how the number of L1 data cache misses and the num-
ber of retired instructions influence the “quality” of parallelism of a modern
chip and for sorting with equal keys. This problem, studied for instance by
Sedgewick 3 (Sedgewick, 1977; Bentley and Sedgewick, 1997), is of crucial im-
portance in the Zeta-Data project. The problem of sequential sorting is also
important for the implementation of parallel sorting when processor speeds
are not identical (Cérin and Gaudiot, 2000a,b, 2002) because the parallel al-
gorithms execute in parallel portions of sequential codes for sorting.

1 See: http://user.it.uu.se/~mikpe/linux/perfctr/
2 See: http://icl.cs.utk.edu/projects/papi/software/
3 For more information, see also Robert Sedgewick home page at
http://www.cs.princeton.edu/~rs

2

In this paper we investigate the performance of 7 sorting algorithms. All the
algorithms are based on invariants that maintain (in different ways) equal keys
in one position, keys lower than equal keys in another one and keys greater to
equal keys in yet another position in the input array.

One goal is to sort ’in place’ i.e. without any supplementary memory. The
maintaining of the invariant implies memory references that can potentially
create excessive cache misses or induces dependent instructions that will freeze
the functional units. We show how to extract temporal and spacial locality in
order to better exploit the different functional units (working in parallel) of
the Athlon microprocessor. In this tuning, we still improve the sorting (with
equal keys) stage of our first implementation by 20% and we beat again the
3way-Quicksort implementation of Sedgewick.

The organization of the paper is as follows. In Section 2 we summarize the
advantage of working at the register level to collect information about the
activity of a processor against the use of simulation techniques. Section 3
is about our motivations and related work on sorting. Section 4 introduces
our selected algorithms incase of our applications. Section 5 introduces our
experimental results. Section 6 concludes the paper.

2 The opportunities of working at the register level

Monitoring the collected processor events facilitates correlation between the
structure of source/object code and the efficiency of the mapping of that code
to the underlying architecture and done by the compiler. This correlation
has a variety of uses in performance analysis including hand tuning, compiler
optimization for better ressource usage, debugging, benchmarking, monitoring
and performance modeling. In addition, it is hoped that this information will
show itself useful in the discovery of commonly occurring bottlenecks in high
performance computing codes.

We address the problem of cache effect on the performance of sorting with
equal keys. We consider only the first level of the memory hierachy: register
and L1 data cache. We do prefer to monitor the hardware events than to use
a simulator. Despite the fact that a (software) simulator has the advantage
to require no hardware, we guess that very fine architectural details are very
difficult to simulate with a good precision.

For instance, modern processors are based on pipelined functional units, multi-
ple functional units, speculative execution, several levels of cache memory and
sometimes cache lines are shared between CPUs. Factors such as variations
in the process scheduling and the operating system’s virtual to physical page

3

mapping policy contribute to the difficulty to analyze cache misses output by
a simulator.

To gain access to the hardware events on Linux/x86 platforms, we use Perfctr.
With Perfctr, each Linux process has its own set of “virtual” counters: the
counters appear to be private to a process and unrelated to the activities of
other processes in the system. The virtual counters can be sampled in user-
space without the overhead of a system call.

3 Motivations

Many works about sequential sorting have been done in the past to analyse
the performances of RISC processors (Agarwal, 1996), (Nyberg et al., 1994),
(Larriba-Pey et al., 1997) or to study processors with a low number of registers
or with small caches (Arge et al., 2001), (Ranade et al., 2000).

In (Rahman and Raman, 2000), N. Rahman and R. Raman studied radix sort
and more precisely the importance of reducing misses in the translation-look
aside buffer (TLB). No experimental measures of the misses are accomplished.
We do not use here radix-sort because LaMarca and Ladner in (LaMarca
and Ladner, 1999) proved that radix trees do not perform well comparing
to QuickSort based sorting algorithms. They showed that despite its lowest
instruction count, radix sort has poor cache performance hence its overall
performance is worse than the memory optimized versions of mergesort and
quicksort.

Indeed, in our Zeta-Data application we sort couples of values (cell value, line
index) and radix-sort based algorithms are in this case more complicated to
implement efficiently.

3.1 Sorting and cache effects

One of the most valuable paper about the influence of cache and the impact
of the memory hierarchy on sorting is the paper of LaMarca and Ladner
(LaMarca and Ladner, 1999). However, the experiments are done with ATOM
(Srivastava and Eustace, 1994) which is a simulator built in the beginning of
nineties.

The paper of LaMarca and Ladner 4 (LaMarca and Ladner, 1999) explores the
performance of four popular sorting algorithms: mergesort, quicksort, heap-

4 A prior technical report is dated from 1994

4

sort and radix sort on DEC Alphastation 250 and trace driven simulation with
ATOM. For each of the four sorting algorithms they choose “an implemen-
tation variant with potential for good overall performance and then heavily
optimize this variant using traditional techniques to minimize the number
of instructions executed”. They concentrate on three performance measures:
instruction count, cache misses and overall performance (time).

The two first competitors, regarding the execution time, are mergesort and
quicksort. The main general lesson of the paper is that “Improving an algo-
rithm’s overall performance may require increasing the number of instructions
executed while, at the same time, reducing the number of cache misses”. We
confirm only in this paper the first part of the sentence. We will show later
that what is important (today with the current technology) is the number of
instructions executed per processor cycle.

The authors apply memory optimizations in order to improve cache perfor-
mance. Optimizations are based on temporal locality and spacial locality prin-
ciples. A program exhibits temporal locality if there is a good chance that an
accessed data will be accessed again in the near future. A program exhibits
spacial locality if there is a good chance that subsequently accessed data are
located near each other in memory.

Databases applications generate duplicates and Quicksort based algorithms
can not provide performance in this case. It is well known for instance that
Quicksort, even optimized for caches, has a complexity of O(n2) in case of
duplicates i.e. in the case of an input “already” sorted.

We absolutely need new algorithms to capture performance for situations that
are part of databases benchmarks such as the TPC benchmark. For instance,
while building or modifying the table of indexes, one has to sort the fields of
each column of the tables. This means for instance that a table with 5 lines
(for instance the “region” table of the TPC) may be expanded in a table with
6 millions of lines (for instance the “lineitem” table of the TPC). Thus one
has to sort the fields of each column of the table “region” expanded in the
table “lineitem”. This means that one has to sort arrays of 6 millions of items
with only 5 different values.

4 Some algorithms for in-core parallel sorting

According to LaMarca and Ladner (LaMarca and Ladner, 1999) results, we
keep Quicksort and Mergesort algorithms because they have produced the best
performance in their simulations. So, we reduce here our study to comparisons
based sorting algorithms.

5

Fastsort (Nilsson and Raman, 1995; Nilsson, 2000) is an O(n log log n) sort
that uses properties of the input (integers) to compress it in order to reduce
the number of compare instructions to execute. No experimental feedback is
known for Fastsort. Due to its potential, we also keep it.

We choose FAME (Ranade et al., 2000) which was drawn for the purpose of
sorting on CPU with a few number of registers. FAME is a m-way merge-
sort, thus, by essence it may reduce also cache misses since reducing register
movements “implies” reducing data movement and L1 misses. The m-streams
are merged by organizing comparaison tournament among the elements at the
heads of the streams. The control structure is a finite state machine. Only time
sorting results are known for FAME. Cache results is not reported in (Ranade
et al., 2000). The implementation results done in (Ranade et al., 2000) are
partly accomplished with m = 4 and thus FAME makes log4 n passes over
memory. We keep the same setting in this paper.

4.1 ZZZmerge and Zmerge

We introduce now our new cache concious algorithms ZZZmerge and Zmerge.
ZZZmerge is simply an optimized version of Zmerge with less copies. So, we
only introduce the principles of ZZZmerge. ZZZmerge is a z-way-mergesort
with two steps. A virtual binary tree is built. We first sort all the leaves by
packets of size z ∗ z. We use insertion sort. Then a merge step occurs: at a
certain level in the tree, we merge all values contained in pointers below nodes
at that level, two by two. As with any mergesort algorithm, the merging step
requires a supplementary buffer of size n but we do not make any copies:
alternatively during the tree search we choose to work on the “original” buffer
or on the “supplement” buffer. A swap on pointers implements the technique.
The trick reduces significantly the cache misses. All of our experiments are
done with z = 4 to facilitate the comparison with FAME.

We developed a single loop that performs n/(z ∗ z) − 1 iterations or merge
steps. A tedious calculus is required to compute the bounds of the portions
to be merged. The last iteration merges the portions between indices 0 and
n/2−1 and n/2 and n−1, the two previous ones merge portions [0 · · ·n/4−1]
with [n/4 · · ·n/2−1] and [n/2 · · ·n/2+n/4−1] with [n/2+n/4 · · ·n−1] and
so on! The first n/z ∗ z ∗ 2 iterations serve to merge the leaves, the following
n/z ∗ z ∗ 4 serve to merge nodes at the first level in the virtual tree, and so
on. Note that the input size should divide z ∗ z and be a power of 2. It is a
limitation of our code at present time.

6

Theorem 1 The number of cache misses of ZZZmerge is

n/(z ∗ z) +
n

z ∗ z
log n/(z ∗ z)

Proof: we decompose the proof into two parts corresponding to the two steps
of the algorithms. We assume that z∗z integers can fit in a line cache and that
M stands for the cache size and it is a multiple of z ∗z i.e. M = k∗z ∗z, k ≥ 1.
Moreover, a cache miss will bring z ∗ z integers in the cache. Since we have
n/(z ∗ z) insertion sorts to accomplish in the first step, each on vectors of size
z ∗ z, we get at most n/(z ∗ z) misses which is optimal.

For the second step now. Let C(p) be the number of cache misses for merging
two sorted sub-lists, each of size p. The cache complexity of this step is given
by:

log n/(z∗z)∑

i=1

2i−1
× C(n/2i)

Clearly, C(n/2i) = 2 ∗ (n/2i)/(z ∗ z) = n/(2i−1 ∗ z ∗ z), thus our sum reduces
to:

log n/(z∗z)∑

i=1

n/(z ∗ z) =
n

z ∗ z

log n/(z∗z)∑

i=1

1 =
n

z ∗ z
log n/(z ∗ z) (1)

The total number of cache misses n/(z ∗ z) +
n

z ∗ z
log n/(z ∗ z) follows.

4.2 Selection of algorithms for the Zeta-Data project

Remind here that our goal is to efficiently sort integers with many duplicates.
Our different strategies for sorting consider 4 bytes long integers. All the tested
algorithms are a variation of the 3way-Quicksort algorithm and are linked to
the ’dutch national flag problem’. So, we maintain here the same invariant
than the invariant used for the dutch national flag problem in the sense that
we maintain, during the execution, the following condition for the partitioning
step:

< = >

The algorithm for the Dutch national flag gathers, in the middle of the array,
elements equal to a partitioning element; on left, elements that are lower
than the partitioning element; on right, elements that are greater than the
partitioning element. After the partitioning step, it remains to sort recursively

7

the left and right portions. Our algorithms differ in the ways they produce the
invariant above.

4.3 The different ways we maintain the invariant

Seven algorithms are under concern: TriEntiers,TriEntiers1, TriEntiers2, 3way-
Quicksort, TriEntiers4, TriEntiers5 and TriEntiers6. 3way-Quicksort has been
developped by Sedgewick, all the others by us. All the algorithms are Quick-
Sort based algorithms and they differ on the partitioning step.

The different strategies in order to maintain the above invariant are presented
in Figure 1. The picture describes the ”intermediate invariant” that we use
before rearranging data in order to produce the Duch national flag invariant.
In practice, our algorithms start to check if the portion under concern is sorted
(forward or backward) then, if not, we select a pivot (median element) in order
to partition the input.

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

= =< >

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

= =< >

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���������������
���������������
���������������

�������������
�������������
�������������

���
���
���

�������
�������
�������

TriEntier

TieEntier1

TriEntier2

3way−Quicksort

TriEntier4

Tirentier5

TrieEntier6

=

==

< >

< > < >

>=<

=< >

The hachures (unexplored data)
can also be at the left side of equal keys

Fig. 1. “Intermediate invariants”: the different strategies to maintain the invariant.

5 Experimental results

Our experiments are accomplished on an Athlon(tm) XP 1800+ processor
equiped of 512MB of DDR PC2100. Our motherboard is a MS-6373 from
MICRO-STAR INTERNATIONAL CO., LTD which requires 32MB of RAM

8

for video purpose. The front side bus speed is 2 ∗ 137MHz (274MHz data
rate). The Athlon processor is a three-way superscalar x86 processor. The L1
internal data cache on Athlon processors is a 64kB synchronous write-back (2-
way, 64 byte line size). We focus on sorting an array of 32 bit integers chosen
uniformly at random. For each input size, We run 30 trials and we measure
the mean.

In the first part of the work, we employ gcc version 2.96-20000731 (Man-
drake Linux 8.1 2.96-0.62mdk). All our codes are compiled with the following
flags: -O2 -fomit-frame-pointer -Wall. With these settings, we avoid for
instance that MMX registers and MOVNTQ assembler instructions to be (po-
tentially) used: this instruction bypasses the on-chip cache and goes directly
into a write combining buffer, effectively increasing the total write bandwidth.
We denote by E1 the experiments according to such settings. In the second part
of experiments, the -march=athlon -O3 flags are used in conjuction with GCC
2.96 in order to optimize our codes for the Athlon processor. In the third part,
we employ GCC 3.2 with the following flags: -O3 -fprefetch-loop-arrays

-mmmx -m3dnow -march=athlon -fomit-frame-pointer -Wall. We do not
use the -msse -msse2 -march=athlon-xp flags because we observed either a
slowdown in the executions or core dumps, in particular with Zmerge.c file.
We denoted by E2 the experiments according to these settings.

5.1 Results for E1 experiments

Figures 2 and 3 reveal the cache behaviours of our tested algorithms. Fastsort
behaviour is very poor. When we examine its source code, we find bitwise
AND and OR, and unrestricted bit shift, i.e., shift of an entire word (with zero
filling) by a number of bit positions specified in a second word. We know that
the cost of such operations is very high. FAME and 3-way-quicksort exhibit
the best results. The result for FAME validates the approach. ZZZmerge is
ranked third and it is about two times the values of 3-way-quicksort. It can
be explained by the fact that it uses two buffers to manage the merge step.

Figures 4 and 5 show the mean execution times of our tested algorithms.
ZZZmerge and 3-way-quicksort are the best two: Table 5.1 shows the details
for the two best. We observe that ZZZmerge beats 3-way-quicksort by at least
5% despite two times more L1 misses (see Figure 2 and 3). The explanation
is related to the number of instructions executed per cycle of the codes and
we will comment this later on.

The number of retired instructions executed by our codes are given on Figures
6 and 7. We observe that 3-way-quicksort execute approximatively two times
less instructions than ZZZmerge (ranked third). Fastsort is the second best

9

 0

 100000

 200000

 300000

 400000

 500000

 600000

4096 16384 65536

Number of integers

« Mean of L1 Data Cache Misses »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 2. Mean L1 data cache misses
(Part 1)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

262144 1048576 4194304

Number of integers

« Mean of L1 Data Cache Misses »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 3. Mean L1 data cache misses
(Part 2)

int Quicksort(ms) ZZZmerge(ms) Gain

4096 0.45203 0.33952 25%

16384 2.04220 1.55541 24%

65536 9.51033 7.51966 21%

262144 46.2616 43.9141 5%

1048576 219.138 196.967 11%

4194304 912.462 867.897 5%

Table 1
Details of the two best execution times.

 0

 10

 20

 30

 40

 50

 60

 70

 80

4096 16384 65536

m
s

Number of integers

« Mean of Execution Time »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 4. Mean execution times (Part
1).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

262144 1048576 4194304

m
s

Number of integers

« Mean of Execution Time »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 5. Mean execution times (Part
2).

and this result was expected since the algorithm “compress” in some way the
integers in order to reduce the number of comparisons.

Figure 8 shows the measured IPC (Instructions per Cycle). For a given input
size, it is computed as the ratio of the mean value of the measured retired
instructions over the mean value of the execution time (normalized by the

10

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

4096 16384 65536

Number of integers

« Mean of Retired Instructions »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 6. Retired instructions (Part 1).

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

262144 1048576 4194304

Number of integers

« Mean of Retired Instructions »

 Legend
 Zmerge
 Fastsort
 Mergesort
 3way−quicksort
 Fame
 ZZZmerge

Fig. 7. Retired instructions (Part 2).

chip frequency). We note that in the best cases, the IPC varies between 1.3
and 1. We note that the IPC of ZZZmerge is 45% more important than the IPC
of 3-way-quicksort: the number of independent instructions is probably more
important with ZZZmerge than the others. Thus the execution units are better
exploited. Since we cannot distinguish on Athlon the kind of instructions that
the processor really execute we cannot analyze more in deep the observation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4096 16384 65536 262144 1048576 4194304

Number of integers

« Instructions per processor Cycle »

 Legend
 Zmerge
 Fastsort

 Mergesort
 3way−quicksort

 Fame
 ZZZmerge

Fig. 8. Ratio of the mean value
of the measured retired instructions
over the mean value of the execu-
tion time (normalized by the chip
frequency).

 0

 200

 400

 600

 800

 1000

 1200

 1400

65536 262144 1048576 4194304

Number of integers

« Retired Instructions / L1 misses »

 Legend
 Zmerge
 Fastsort

 Mergesort
 3way−quicksort

 Fame
 ZZZmerge

Fig. 9. Ratio of mean values of re-
tired instructions over the mean val-
ues of L1 data cache misses.

The maximal value of the IPC on Athlon is 3, compared to 1.3 (or 1) in the
best cases. There is a potential to improve the IPC, perhaps in increasing
carefully a little bit more the number of instructions executed by the code.

Figure 9 shows the ratio of the mean values of retired instructions over the
mean values of L1 data cache misses. We observe that fastsort results are very
poor as expected (we have a miss each 50 instructions). We observe that the
curve for ZZZmerge is very flat: we guess that a miss arrives in a regular way
independently of the input size. This is a good property. In a converse way,
the performance of 3-way-quicksort decreases as the input size increases. The

11

curves for ZZZmerge and 3-way-quicksort are very close for 4194304 integers.
This observation explains why ZZZmerge finally beats 3-way quicksort in time.
At least, we observe that FAME offers the best ratios but its IPC are not
high enough to get a good execution time. On this point, FAME achieves the
objective of reducing misses but at a price of a bad IPC: too many operations
are needed to manage the FAME data structures.

Note: results of experiments with -march=athlon -O3 flag settings and still
for GCC 2.96 can be obtain upon request. Globally, they confirm the previous
observations and in particular that ZZZmerge is the fastest algorithm.

5.2 Results for E2 experiments

All results of experiments with GCC 3.2 and -O3 -fprefetch-loop-arrays

-mmmx -m3dnow -march=athlon -fomit-frame-pointer -Wall flag settings
can also be obtained upon request. Again, they confirm the previous obser-
vations and in particular that ZZZmerge is the fastest algorithm. The use of
GCC 3.2 confirms that more aggressive optimizations enforce the superiority
of ZZZmerge. For instance, when we examine ZZZmerge assembler code, we
find prefetch instructions and alignments.

5.3 Summarize

The experiments demonstrate that a subtle combination between the number
of L1 data cache misses and the number of instructions executed by the Athlon
processor leads, in practical cases, to the best algorithms when considering
execution times. Despite the fact that the distinction between the types of
instructions (load, store, add. . .) is not possible to observe on Athlon, we
put forward the following conjecture: Any (sorting) program X with an IPC
superior by a factor of at least two to a (sorting) program Y executing two
times less instructions with two times less L1 data cache misses, is better in
time than program Y.

Moreover, there is a potential for improving the IPC, perhaps in increasing
carefully a little bit more the number of independent instructions executed by
the codes. The next array summarizes the result of experiment for the case of
duplicates. It gives the rank of the different algorithms for the execution time,
retired instructions and cache misses metrics:

12

IPC Exec Time L1 data misses

1: TriEntier 1: TriEntier4, 1: TriEntier,

TriEntier5 TriEntier5

2: TriEntier4 2: TriEntier1 2: TriEntier4

7: TriEntier5

Surprisingly, we observe that with two wins for the IPC and the number of
misses, TriEntier is beaten in execution time. It is probably due to the fact
that the instructions executed by TriEntier are much more dependent than
those of TriEntier4 and TriEntier5. TriEntier does not execute enough “useful
work”, that is to say in putting elements at the final place.

We note that there is no absolute winner for the tests. To get performance
in our application, a choice among algorithms should be made according to
the number of duplicates. More work needs to be done to evaluate the most
important problem and system parameters and make a quick decision for
sorting in presence of duplicates.

6 Conclusion

In this paper we have investigated the cache effects between the first two level
of memory hierarchy for sorting algorithms. We have in mind two applications
where sequential sorting is important to get performance. The first application
is parallel sorting for heterogeneous clusters and the second one is the devel-
opment of a SQL service where sorting with equal keys is important. With the
first application in mind, we devised a new mergesort algorithm that performs
well in practice.

We will examine in the future if the organization of a tournament “à la FAME”
could be reused more efficiently and could be added to ZZZmerge. Moreover,
since ZZZmerge was invented to take into account two-levels memory prob-
lems, what is the amount of work to accomplish to provide an out-of-core
version of ZZZmerge that could be a concurrent of existing out-of-core sorting
algorithms?

In the case of sorting with equal keys, an important problem that occurs with
the implementation of our SQL service in the Zeta-Data project, we devised
new algorithms that performs well in practice, better than the known 3way-
Quicksort when we have duplicates, typically 100-200 different values in an
input vecteur of size four million. Our new algorithms improve by 20% the

13

performance of the initial sort implemented in the Zeta-Data project which is
also better than 3way-Quicksort. We better exploit the functional units and
we have relaxed the dependencies between instructions.

We plan also to experiment with our freely available codes on other processors
than Athlon. Codes are simply dependent of Perfctr in the sense that AMD
Athlon, Intel Pentium Series on Linux 2.2, 2.4 can be tested. The goal is to
check if the assumptions done in a previous section is still true.

We are currently interfacing our sorting codes with the current release of Zeta-
Data. We expect to improve significantly the performance since the internal
data structure we are revisiting in Zeta-Data permit us to know the number
of different values in the input and thus to adapt the choice of the best sorting
algorithm. We are guessing here that the solution will be to build an hybrid
algorithm.

References

Agarwal, R. C., june 1996. A super scalar sort algorithm for RISC processors.
SIGMOD Record (ACM Special Interest Group on Management of Data)
25 (2), 240–246.

Akl, S., 1985. Parallel Sorting Algorithms. Academic Press.
Arge, L., Chase, J., Vitter, J. S., Wickremesinghe, R., 2001. Efficient sorting

using registers and caches. Lecture Notes in Computer Science 1982, 51–61.
Bentley, Sedgewick, 1997. Fast algorithms for sorting and searching strings.

In: SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical and Experimental Analysis of Discrete Algorithms).

Cérin, C., Gaudiot, J.-L., 6May 2000a. Evaluation of two bsp libraries
through parallel sorting on clusters. In: Proceedings of WCBC’00 (The Sec-
ond International Workshop on Cluster-Based Computing) in conjuction
with ICS’00 (International Conference on Supercomputing, sponsored by
ACM/SIGARCH). Santa Fe, New Mexico, pp. pp 21–26.

Cérin, C., Gaudiot, J.-L., 28Nov.-2Dec. 2000b. An over-partitioning scheme
for parallel sorting on clusters running at different speeds. In: Cluster 2000.
IEEE International Conference on Cluster Computing. Technische Univer-
sität Chemnitz, Saxony, Germany. (Poster).

Cérin, C., Gaudiot, J.-L., 17-20Dec. 2000c. Parallel sorting algorithms with
sampling techniques on clusters with processors running at different speeds.
In: HiPC’2000. 7th International Conference on High Performance Comput-
ing. Bangalore, India. Lecture Notes in Computer Science. Springer-Verlag.

Cérin, C., Gaudiot, J.-L., 2002. On a scheme for parallel sorting on heteroge-
neous clusters. FGCS (Future Generation Computer Systems 18 (issue 4),
the special issue is preliminary scheduled for publication in future vol.

Frigo, M., Leiserson, C. E., Prokop, H., Ramachandran, S., 1999. Cache-

14

oblivious algorithms. In: IEEE (Ed.), 40th Annual Symposium on Foun-
dations of Computer Science: October 17–19, 1999, New York City, New
York,. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, pp. 285–297.

Hennessy, J. L., Patterson, D., 2002. Computer Architecture, A Quantitative
Approach (third edition). Morgan Kauffmann.

Knuth, D. E., 1998. Sorting and Searching, 2nd Edition. Vol. 3 of The Art of
Computer Programming. Addison-Wesley, Reading, MA, USA.

Koskas, M., 2003. A hierarchical database management algorithm. Personal
communication.

LaMarca, A., Ladner, R. E., Apr. 1999. The influence of caches on the perfor-
mance of sorting. Journal of Algorithms 31 (1), 66–104.

Larriba-Pey, J.-L., Jimenez, D., Navarro, J., 1997. An analysis of superscalar
sorting algorithms on an r8000 processor. In: Proceedings of the 17th Inter-
national Conference of the Chilean Computer Science Society (SCCC ’97),
November 12-14, Valpariso, IEEE Computer Society.

Nilsson, A. A. T. H. S., Raman, R., 1995. Sorting in linear time. In: ACM
(Ed.), In Proceedings of the 27th Annual ACM Symposium on the Theory
of Computing (STOC). ACM Press, New York, NY 10036, USA, pp. 427–
436.

Nilsson, S., Apr. 2000. The fastest sorting algorithm? Dr. Dobb’s Journal of
Software Tools 25 (4), 38, 40, 42, 44–45.

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., Lomet, D. B., Jun. 1994.
AlphaSort: A RISC machine sort. SIGMOD Record (ACM Special Interest
Group on Management of Data) 23 (2), 233–242.

Rahman, N., Raman, R., October 2000. Adapting radix sort to the memory
hierarchy. Tech. Rep. TR-00-02, Department of Computer Science, King’s
College London, a preliminary version of the paper appeared in the Pro-
ceedings of the 2nd Workshop on Algorithm Engineering and Experiments
(ALENEX’00).

Ranade, A., Kothari, S., Udupa, R., 96-103Dec. 2000. Register efficient merge-
sorting. In: HiPC’2000. 7th International Conference on High Performance
Computing. Bangalore, India. Lecture Notes in Computer Science. Springer-
Verlag.

S.Chatterjee, S., 2000. Towards a theory of cache efficient algorithms. In: Pro-
ceedings of the Eleventh Annual ACM/SIAM Symposium on Discrete Al-
gorithms (SODA’00). San Francisco, California, United States, pp. 829 –
838.

Sedgewick, R., 1977. The analysis of quicksort programs. Acta Informatica
7 (25), 327–355.

Shriver, B., Smith, B., 1998. The anatomy of a High-Performance Micropro-
cessor - A Systems Perspective. IEEE Computer Societ.

Srivastava, A., Eustace, A., 1994. Atom: a system for building customized
program analysis tools. In: In Proceedings of the SIGPLAN ’94 Conference
on Programming Language Design and Implementation, 1994. pp. 196–205.

15

