
Compute and Storage Clouds Using Wide Area

High Performance Networks

Robert L. Grossman Yunhong Gu Michael Sabala
Wanzhi Zhang

National Center for Data Mining
University of Illinois at Chicago

January 31, 2008

Abstract

We describe a cloud based infrastructure that we have developed that
is optimized for wide area, high performance networks and designed to
support data mining applications. The infrastructure consists of a storage
cloud called Sector and a compute cloud called Sphere. We describe two
applications that we have built using the cloud and some experimental
studies.

1 Introduction

By a cloud, we mean an infrastructure that provides resources and/or ser-
vices over the Internet. A storage cloud provides storage services (block or
file based services); a data cloud provides data management services (record-
based, column-based or object-based services); and a compute cloud provides
computational services. Often these are layered (compute services over data
services over storage service) to create a stack of cloud services that serves as a
computing platform for developing cloud-based applications.

Examples include Google’s Google File System (GFS), BigTable and MapRe-
duce infrastructure [5], [8]; Amazon’s S3 storage cloud, SimpleDB data cloud,
and EC2 compute cloud [2]; and the open source Hadoop system [4], [14].

Data clouds provide some important advantages for managing and analyzing
data compared to competing technologies.

First, for the majority of applications, databases are the preferred infrastruc-
ture for managing and archiving data sets, but as the size of the data set begins
to grow larger than a few hundred terabytes, current databases become less
competitive with more specialized solutions, such as the storage services (e.g.,
[8], [11]) that are parts of data clouds. For example, Google’s GFS manages
Petabytes of data [6]

1

ar
X

iv
:0

80
8.

18
02

v1
 [

cs
.D

C
]

 1
3

A
ug

 2
00

8

Application 1 · · · Application n
Cloud-based Compute Services

Cloud-based Data Services
Cloud-based Storage Services

Figure 1: A data stack for a cloud consists of three layered services as indicated.

Second, data in a data cloud can easily be replicated. Temporary replicas
can be used to improve performance by exploiting locality and caches, perma-
nent replicas can be used for backing up data, and long-term replicas can be
used for archiving data. Replicas are typically placed within a rack, across
racks, and across data centers to handle various types of failures. Automatic
services ensure that after a failure drops a replica, an additional replica is cre-
ated. In addition, once replicated, the replicated data provides a natural way
to parallelize embarrassingly parallel computations in the cloud.

Third, once data is stored in a cloud, the data can wait for computing tasks.
In contrast, in a standard grid computing environment, the data is scattered to
nodes in clusters when a sufficiently large pool of nodes are available; and, in
this sense, the nodes wait for the data. For large data sets, transporting the
data to the nodes can be a significant percentage of the total processing time.

In this paper, we describe a cloud based infrastructure that is optimized for
high performance, wide area networks and designed to support the ingestion,
data management, analysis, and distribution of large terabyte size data sets.
We assume an “OptIPuter” style design in the sense that we assume that geo-
graphically distributed nodes running storage services are connected by a 10+
Gbps network that functions more or less as a wide area “back-plane or bus”.

This paper is organized as follows: Section 2 describes related work. Section
3 describes a storage cloud called Sector. Section 4 describes a compute cloud
that we have developed called Sphere. Section 5 describes two Sector and Sphere
applications. Section 6 is the summary and conclusion.

2 Related Work

The most common platform for data mining is a single workstation. There are
also several data mining systems that have been developed for local clusters of
workstations, distributed clusters of workstations and grids [10]. More recently,
data mining systems have been developed that use web services and, more gener-
ally, a service oriented architecture. For a recent survey of data mining systems,
see [15].

By and large, data mining systems that have been developed to date for
clusters, distributed clusters and grids have assumed that the processors are the
scarce resource, and hence shared. When processors become available, the data
is moved to the processors, the computation is started, and results are computed
and returned [7]. To simplify, this is the supercomputing model, and, in the

2

File Locating and Access Services
Distributed Storage Services

Routing Services

Figure 2: A Sector Server provides file locating and file access services to any
Sector Client. Sector maintains multiple copies of files, locates them using
a P2P-based routing protocol, and transfers them using specialized network
protocols such as UDT. Sector is layered so that other routing protocols may
be used.

distributed version, the Teragrid model [16]. In practice with this approach, for
many computations, a good portion of the time is spent transporting the data.

An alternative approach has become more common during the last few years.
In this approach, the data is persistently stored and computations take place
over the data when required. In this model, the data waits for the task or query.
To simplify, this is the data center model (and in distributed data version, the
distributed data center model). The storage clouds provided by Amazon’s S3
[1], the Google File System [8], and the open source Hadoop Distributed File
System (HDFS) [4] support this model.

To date, work on data clouds [8, 4, 1] has assumed relatively small bandwidth
between the distributed clusters containing the data. In contrast, the Sector
storage cloud described in Section 3 is designed for wide area, high performance
10 Gbps networks and employs specialized protocols such as UDT [13] to utilize
the available bandwidth on these networks.

The most common way to compute over GFS and HDFS storage clouds is
to use MapReduce [5]. With MapReduce: i) relevant data is extracted in par-
allel over multiple nodes using a common “map” operation; ii) the data is then
transported to other nodes as required (this is referred to as a shuffle); and, iii)
the data is then processed over multiple nodes using a common “reduce” oper-
ation to produce a result set. In contrast, the Sphere compute cloud described
in Section 4 allows arbitrary user defined operations to replace both the map
and reduce operations. In addition, Sphere uses specialized network transport
protocols [13] so that data can be transferred efficiently over wide area high
performance networks during the shuffle operation.

3 Sector Storage Cloud

Sector has a layered architecture: there is a routing layer and a storage layer.
Sector services, such as the Sphere compute cloud described below, are imple-
mented over the storage layer. See Figure 2.

The routing layer provide services that locate the node that stores the meta-
data for a specific data file or computing service. That is, given a name, the
routing layer returns the location of the node that has the metadata, such as
the physcial location in the system, of the named entity. Any routing protocols

3

that can provide this function can be deployed in Sector. Currently, Sector uses
the Chord P2P routing protocol [17]. The next version of Sector will support
specialized routing protocols designed for uniform wide area clouds, as well as
non-uniform clouds in which bandwidth may vary between portions of the cloud.

Data transport itself is done using specialized high performane network
transport protocols, such as UDT [13]. UDT is a rate-based application layer
network transport protocol that supports large data flows over wide area high
performance networks. UDT is fair to several large data flows in the sense that
it shares bandwidth equally between them. UDT is also friendly to TCP flows
in the sense that it backs off, enabling any TCP flows sharing the network to
use the bandwidth they require.

The storage layer manages the data files and their metadata. It maintains
an index of the metadata of files and creates replicas. A typical Sector data
access session involves the following steps:

1. The Sector client connects to any known Sector server S, and requests the
locations of a named entity.

2. S runs a look-up inside the server network using the services from the
routing layer and returns one or more locations to the client.

3. The client requests a data connection to one or more servers on the re-
turned locations using a specialized Sector library designed to provide
efficient message passing between geographically distributed nodes.

4. All further requests and responses are performed using UDT over the data
connection established by the message passing library.

Figure 3 depicts a simple Sector system. Sector is meant to serve a com-
munity of users. The Sector server network consists of nodes managed by ad-
ministrators within the community. Anyone within the community who has an
account can write data to the system. In general, anyone in the public can
read data from Sector. In contrast, systems such as GFS [8] and Hadoop [4]
are targeted towards organizations (only users with accounts can read and write
data), while systems such as Globus [7] are targeted towards virtual organiza-
tions (anyone with access to a node running GSI [7] and having an account can
read and write data). Also, unlike some peer-to-peer systems, while reading
data is open, writing data in Sector is controlled through access control lists.

Below are the typical Sector operations:

• The Sector storage cloud is automatically updated when nodes join or
leave the cloud — it is not required that this be done through a centralized
control system.

• Data providers within the community who have been added to the access
control lists can upload data files to Sector Servers.

• The Sector Storage Cloud automatically creates data replicas for long
term archival storage, to provide more efficient content distribution, and
to support parallel computation.

4

Figure 3: With Sector, only users in a community who have been added to
the Sector access control list can write data into Sector. On the other hand,
any member of the community or of the public can read data, unless additional
restrictions are imposed.

• Sector Storage Cloud clients can connect to any known server node to
access data stored in Sector. Sector data is open to the public (unless
further restrictions are imposed).

Using P2P for distributing large scientific data has becomed popular recently.
Some related work can be found in [20], [21], and [22].

4 Sphere

Sphere is middleware that provides distributed computing services for persistent
distributed data managed by Sector. Sphere is designed to perform computa-
tions over data without moving it whenever possible. If an application uses the
Sphere client API, then Sphere provides the following services: locating data,
moving data (if required), locating and managing computing resources, load bal-
ancing, and fault tolerance. The distributed parallelization is done implicitly
by Sphere: Sphere automatically locates computing nodes to run the processing
function in parallel, while Sector provides a uniform data access interface.

Sphere is broadly based upon the stream approach to data processing in the
sense that all processing assumes that each record in the stream is processed
independently by the same processing function. More specifically, the data
is viewed as a stream that is divided into chunks. The chunks are already
naturally distributed over the nodes managed by the Sector Storage Cloud. A

5

Sphere application provides one or more processing functions that are applied
to each record in the data stream independently. Sphere automatically invokes
the processing function over multiple nodes in parallel. After a processing stage,
data can be transfered from node to node as required. The cycle then repeats by
applying another data processing function, followed by another data transfer.

As an example, consider the following loop in a serial program.

for (int i = 0; i < 100000000; ++ i)
process(data[i]);

In the stream process paradigm used by Sphere, this loop will be replaced
by:

sphere.run(data, process);

The majority of the processing time for many data intensive applications
is spent in loops like these; developers often spend a lot of time parallelizing
these types of loops using MPI or PVM. Parallelizing these loops in distributed
environments presents additional challenges. Sphere provides a simple way for
application developers to express these loops and then automatically parallelizes
and distributes the required computations.

The approach taken by Sphere is to provide a very simple distributed appli-
cation development interface by limiting the type of operations supported. The
stream processing paradigm used in Sphere is fundamentally a simplified data
parallel and master/worker pattern.

Although the stream processing paradigm is a special-purpose parallel com-
puting model, it has been used successfully in general purpose GPU program-
ming (GPGPU). Google’s MapReduce system [5] also uses the stream processing
paradigm to process very large data sets managed by the Google File System
(GFS) [8].

5 Sector/Sphere Applications

5.1 Experimental Setup

The applications described in this section run on a wide area, high performance
testbed called the Teraflow Testbed [19]. The various sites on the testbed are
connected using 10 Gbps networks. Each site contains a small cluster of 2
– 16 dual dual-core (i.e., total 4-core) Opteron servers. There are sites in
Chicago, Pasadena (CA, USA), McLean (VA, USA), Greenbelt (MD, USA),
Tokyo (Japan), Daejeon (Korea). Each Opteron server has a 2.4Ghz CPU and
4GB memory. The furthest two nodes in the testbed have a RTT of 200ms
between them.

6

Source Destination Throughput (Mb/s) LLPR
Greenbelt,MD Daejeon, Korea 360 0.78
Chicago, IL Pasadena, CA 550 0.83
Chicago, IL Greenbelt, MD 615 0.98
Chicago, IL Tokyo, Japan 490 0.61
Tokyo, Japan Pasadena, CA 550 0.83
Tokyo, Japan Chicago, IL 460 0.67

Table 1: This table shows that the Sector Storage Cloud provides access to
large terabyte size e-science data sets at 0.60% to 0.98% of the performance
that would be available to scientists sitting next to the data.

5.2 Distributing the Sloan Digital Sky Survey (SDSS)

One of the the first applications we developed over Sector was a content dis-
tribution network for large e-science data sets. In particular, we have used the
Sector Cloud to distribute the Sloan Digital Sky Survey data [9] to astronomers
around the world.

The SDSS data consists of the 13TB DR5 data release (60 catalog files, 64
catalog files in EFG format, 257 raw image data collection files) and the 14TB
DR6 data release (60 catalog files, 60 Segue files, 268 raw image collection files).
The sizes of these files range between 5GB and 100GB each.

The Sector Cloud has been used to distributed the SDSS since July 2006.
During the last 18 months, we have had about 5000 system accesses and a total
of 200TB of data was transferred to end users.

In order to evaluate Sector’s wide area data transfer performance we defined
a measure called LLPR, or long distance to local performance ratio, which is
the ratio of the performance measured over the wide area network divided by
the performance over a local area network containing machines with the same
configuration.

The higher the LLPR, the better the performance. The maximum possi-
ble performance is when the LLPR is equal to 1.0. That is, a long distance
data transfer cannot be faster than a local transfer with the same hardware
configuration.

5.3 Identifying Emergent Behavior in TCP/IP Traffic

Angle is a Sphere application that identifies anomalous or suspicious behavior
in TCP packet data that is collected from multiple, geographically distributed
sites [12]. Angle contains Sensor Nodes that are attached to the commodity
Internet and collect IP data. Connected to each Sensor Node on the commodity
network is a Sector node on a wide area high performance network. The Sensor
Nodes zero out the content, hash the source and destination IP to preserve
privacy, package moving windows of anonymized packets in pcap files [3] for
further processing, and transfer these files to its associated Sector node. Sector

7

Number records Number of Sector
Files

Time

500 1 1.9 s
1000 3 4.2 s
1,000,000 2850 85 min
100,000,000 300,000 178 hours

Table 2: The time spent clustering using Sphere scales as the number of records
increases, as is illustrated in the table above from 500 records to 100,000,000
records.

services are used to manage the data collected by Angle and Sphere services are
used to identify anomalous or suspicious behavior.

Angle Sensors are currently installed at four locations: the University of Illi-
nois at Chicago, the University of Chicago, Argonne National Laboratory and
the ISI/University of Southern California. Each day, Angle processes approxi-
mately 575 pcap files totaling approximately 7.6GB and 97 million packets. To
date, we have collected approximately 140,000 pcap files.

For each pcap file, we aggregate all the packet data by source IP (or other
specified entity), compute features, and then cluster the resulting points in fea-
ture space. With this process a model summarizing a cluster model is produced
for each pcap file.

Through a temporal analysis of these cluster models, we identify anomalous
or suspicious behavior and send appropriate alerts. See [12] for more details.

Table 2 shows the performance of Sector and Sphere when computing cluster
models using the k-means algorithms [18] from distributed pcap files ranging in
size from 500 points to 100,000,000.

5.4 Hadoop vs Sphere

In this section we describe some comparisons between Sphere and Hadoop [4]
on a 6-node Linux cluster in a single location. We ran the TeraSort benchmark
[4] using both Hadoop and Sphere. The benchmark creates a 10GB file on each
node and then performs a distributed sort. Each file contains 100-byte records
with 10-byte random keys.

The file generation required 212 second per file per node for Hadoop, which
is a throughput of 440Mbps per node. For Sphere, the file generation required
68 seconds per node, which is a throuhgput of 1.1Gbps per node.

Table 3 shows the performance of the sort phase (time in seconds). In this
benchmark, Sphere is significantly faster (approximately 2 to 3 times) than
Hadoop. It is also important to note that in this experiment, Hadoop uses all
four cores on each node, while Sphere only uses one core.

8

Node 1 2 3 4 5 6
Hadoop 1708 1801 1850 1881 1892 1953
Sphere 510 820 832 850 866 871

Table 3: This table compares the performance of Sphere and Hadoop sorting a
10GB file on each of six nodes. The time is in seconds.

6 Summary and Conclusion

Until recently, most high performance computing relied on a model in which
cycles were scarce resources that were managed and data was moved to them
when required. As data sets grow large, the time required to move data begins
to dominate the computation. In contrast, with a cloud-based architecture, a
storage cloud provides long-term archival storage for large data sets. A compute
cloud is layered over the storage to provide computing cycles when required and
the distribution and replication used by the storage cloud provide a natural
framework for parallelism.

In this paper, we have described a high performance storage cloud called
Sector and a compute cloud called Sphere that are designed to store large dis-
tributed data sets and to support the parallel analysis of these data sets. Sector
and Sphere rely on specialized high performance data transport protocols such
as UDT that use bandwidth efficiently over wide area high bandwidth networks.

We have also described two applications that use this infrastructure and
shown that with wide area high performance networks and a cloud-based archi-
tecture that computing with distributed data can be done with approximately
the same efficiency as computing with local data.

Acknowledgments

This work was supported in part by the National Science Foundation through
grants SCI-0430781, CNS-0420847, and ACI-0325013.

References

[1] Amazon. Amazon Simple Storage Service (Amazon S3). Retrieved from
www.amazon.com/s3 on November 1, 2007.

[2] Amazon Web Services LLC. Amazon web services developer connection.
Retrieved from developer.amazonwebservices.com on November 1, 2007.

[3] Jay Beale, Andrew R Baker, and Joel Esler. Snort IDS and IPS Toolkit.
Syngress, 2007.

[4] Dhruba Borthaku. The Hadoop Distributed File System: Architecture and
Design. Retrieved from lucene.apache.org/hadoop, 2007.

9

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data process-
ing on large clusters. In OSDI’04: Sixth Symposium on Operating System
Design and Implementation, 2004.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM, Volume 51, Number
1, pages 107—113, 2008.

[7] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Comput-
ing Infrastructure. Morgan Kaufmann, San Francisco, California, 2004.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File
System. In SOSP, 2003.

[9] Jim Gray and Alexander S. Szalay. The world-wide telescope. Science,
293:2037–2040, 2001.

[10] Robert L. Grossman. Standards, services and platforms for data mining: A
quick overview. In Proceedings of the 2003 KDD Worskhop on Data Mining
Standards, Services and Platforms (DM-SSP 03), 2003.

[11] Robert L. Grossman. A review of some analytic architectures for high
volume transaction systems. In The 5th International Workshop on Data
Mining Standards, Services and Platforms (DM-SSP ’07), pages 23—28.
ACM, 2007.

[12] Robert L Grossman, Michael Sabala, Yunhong Gu, Anushka Anand, Matt
Handley, Rajmonda Sulo, and Lee Wilkinson. Distributed discovery in e-
science: Lessons from the angle project. In Next Generation Data Mining
(NGDM ’07), page to appear, 2008.

[13] Yunhong Gu and Robert L. Grossman. UDT: UDP-based data transfer
for high-speed wide area networks. Computer Networks, 51(7):1777—1799,
2007.

[14] Hbase Development Team. Hbase: Bigtable-like structured storage for
hadoop hdfs. http://wiki.apache.org/lucene-hadoop/Hbase, 2007.

[15] Hillol Kargupta, editor. Proceedings of Next Generation Data Mining 2007.
Taylor and Francis, to appear.

[16] D.A. Reed. Grids, the teragrid and beyond. Computer, 36(1):62–68, Jan
2003.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H Balakrishnana.
Chord: A scalable peer to peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM ’01, pages 149–160, 2001.

[18] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Data Mining.
Addison-Wesley, 2006.

10

http://wiki.apache.org/lucene-hadoop/Hbase

[19] The Teraflow Testbed. The teraflow testbed architecture.

[20] Giancarlo Fortino, Wilma Russo Using P2P, GRID and Agent technologies
for the development of content distribution networks Future Generation
Computer Systems, Volume 24, Issue 3 (March 2008), Pages 180-190.

[21] Mustafa Mat Deris, Jemal H. Abawajy, Ali Mamat An efficient replicated
data access approach for large-scale distributed systems Future Generation
Computer Systems, Volume 24, Issue 1 (January 2008), Pages 1-9

[22] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M.
Pennanen, K. Popov, V. Vlassov, S. Haridi Peer-to-Peer resource discov-
ery in Grids: Models and systems Future Generation Computer Systems,
Volume 23, Issue 7 (August 2007), Pages 864-878

11

	Introduction
	Related Work
	Sector Storage Cloud
	Sphere
	Sector/Sphere Applications
	Experimental Setup
	Distributing the Sloan Digital Sky Survey (SDSS)
	Identifying Emergent Behavior in TCP/IP Traffic
	Hadoop vs Sphere

	Summary and Conclusion

