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Abstract
Over the past several years, with the advent of the Open Grid Services Architecture (OGSA) (19)
and the Web Services Resource Framework (WSRF) (25), Service-oriented Architectures (SOA)
and Web service technologies have been embraced in the field of scientific and Grid computing.
These new principles promise to help make scientific infrastructures simpler to use, more cost
effective to implement, and easier to maintain. However, understanding how to leverage these
developments to actually design and build a system remains more of an art than a science. In this
paper, we present some positions learned through experience that provide guidance in leveraging
SOA technologies to build scientific infrastructures. In addition, we present the technical
challenges that need to be addressed in building an SOA, and as a case study, we present the SOA
that we have designed for the National Biomedical Computation Resource (NBCR) (9)
community. We discuss how we have addressed these technical challenges, and present the overall
architecture, the individual software toolkits developed, the client interfaces, and the usage
scenarios. We hope that our experiences prove to be useful in building similar infrastructures for
other scientific applications.
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1 Introduction
Over the last decade, there has been significant advancements made to the core
infrastructure used to build large-scale scientific systems, termed cyberinfrastructures (15).
The current focus has shifted towards the definition and implementation of a standard set of
services, sometimes called Grid services (19), and towards protocols and interoperability
(21). This focus ensures that the services are not tied to any particular middleware
implementation, thereby supporting multi-system, multi-language open architectures.

From a computer science perspective, the architectural concept of service orientation
provides several interesting features:

1. Services reduce complexity through encapsulation of service implementation. A
service publishes its interface and ensures that it provides the appropriate quality of
service, presumably agreed to before the client accesses the service. Service
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implementations can leverage legacy applications, disparate resources, and even
other services to implement their functionality; however, the key is that the
implementation complexity is hidden from the client applications behind the
service interface.

2. Service interfaces enable interoperability across systems and architectures through
the use of open standards. The service interface is specified by a Web Service
Definition Language (WSDL) document that includes all information needed by
client applications to interact with the service. The WSDL specification itself
leverages XML standards such as SOAP for message exchange and XML Schemas
for complex data structures. The broad adoption of these standards has greatly
facilitated interoperability across systems and vendor products unlike in the past
with other distributed systems standards. This lends itself very well to the creation
of workflows, or composition of services for the creation of complex application
pipelines, where the services themselves may be hosted at disparate locations.

3. Services support a loosely-coupled model where clients can bind to service
endpoints at run-time. Such late-binding provides greater fault tolerance and
flexibility. Services can be discovered at run-time using metadata-based discovery
mechanisms (36), and Quality-of-Service (QoS) can be negotiated dynamically.

While the benefits of an SOA approach for building Grid middleware are well known (19),
it is less clear how to use SOA principles to build a cyberinfrastructure for a particular
scientific community. In particular, how can they be leveraged to help build science
infrastructures that are (1) more scalable, powerful, and responsive to the needs of the end-
user community, (2) more flexible and adaptable to changing requirements, and (3) more
manageable and cost effective from a software development standpoint.

In our experience in building infrastructures for a number of different science domains, we
have found that system requirements are hard to determine at the onset and change
frequently as the user community gains experience with the new capabilities. Therefore, it is
essential that the infrastructure be flexible and adaptable as the community evolves. From
the perspective of system scale, the system may have a small number of initial users (tens to
few hundreds). But as the capabilities of the system grow, so will the number of users, and
the system architecture must scale to support more physical resources (e.g. clusters and
storage) without significant re-engineering. Finally from the perspective of cost, while it is
true that the cost of raw hardware (clusters, servers, and disk) is decreasing constantly, the
cost of software development on these large-scale systems is increasing due to the
complexity of the underlying infrastructure.

Given these constraints, building (architecting and engineering) cyberinfrastructures is, in
many ways, more of an art than a science. And answering the above questions is difficult in
absolute terms – as they say in the auto industry ”your mileage may vary”. Nevertheless, it
is an important topic for discussion and in that vein, we present our experiences as a set of
positions on how to effectively use SOA principles to engineer a scientific
cyberinfrastructure.

The rest of the paper is organized as follows. Section 2 describes our positions based on our
experience in a variety of cyberinfrastructure projects, and Section 3 discusses the technical
challenges. In Section 4, we present our experiences in building an SOA for biomedical
applications that are part of the NBCR community. We discuss the NBCR SOA architecture,
various software components, service usage, and how we have addressed some of these
challenges. Finally, we present our conclusions in Section 5.
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2 Positions
At the San Diego Supercomputer Center (SDSC) at the University of California at San
Diego (UCSD), we have been involved in building cyberinfrastructures for projects in
various scientific and engineering domains, such as the National Biomedical Computation
Resource (NBCR) (9) project in the field of life sciences and biomedicine, the Community
Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis
(CAMERA) (1) project in the area of metagenomics, the Geosciences Network (GEON) (4)
project in the field of the geosciences, and the Network for Earthquake Engineering
Simulation (NEES) (8) in the area of earthquake engineering. Our positions discussed in this
section are based on our personal experiences in building cyberinfrastructures and SOAs for
these projects. They are as follows:

1. Not everyone needs an SOA
First and foremost, it is worthwhile to consider whether you really need an SOA for the
infrastructure you are building. In cases where 1) the requirements are relatively well
understood and stable, 2) the set of resources are fixed, and 3) a single interface to the
applications is sufficient for the user community, it may well be sufficient to build a
traditional Web portal where the application is integrated into the portal.

However, it may be still be worthwhile to use an SOA-based approach under certain
circumstances. For example, if you have multiple applications that need to be shared,
building a monolithic Web portal to enable access to all of them might be bad from a
software engineering standpoint. It may be a better idea to build a lightweight Web portal
interface for better scalability, and delegate the application-specific functionality to the
back-end Web services.

Next, you have to decide whether the applications you wish to share lend themselves well to
be exposed as Web services. There are certain types of applications that may be very
difficult to wrap as Web services. For instance, highly interactive applications may not be
appropriate as they may incur significant round-trip delays. Furthermore, traditional Web
service toolkits may not be very conducive to handle a high degree of interactive traffic.

In addition, tightly coupled applications – that is, applications with multiple components that
communicate frequently, as is the case for typical parallel applications running on a cluster –
must not be implemented using traditional SOA techniques. SOA implementations typically
use XML-based data representations, which are less efficient than binary data structures.
Furthermore, SOA tools don’t provide the necessary capabilities such as process creation,
multicast communication, or synchronization primitives. Other approaches such as MPI are
designed specifically for parallel applications, and hence should be used for implementing
tightly-coupled applications. Having said that, it might very well be appropriate to wrap
entire parallel or tightly coupled applications as a single service. In this case, the service
would just provide an interface to launch and monitor such an application, but not the
mechanisms for inter-component communication.

2. Focus on application-level services
Until recently, SOAs have only been used to build Grid middleware. For instance, the
Globus Toolkit (18) has been redesigned to be consistent with latest Web service
technologies. This is great for middleware developers who can use the platform-independent
WSRF-based APIs to access standard Grid functionality, such as job submission and data
transfer. However, developers of scientific tools are not experts in Grid technologies,
irrespective of the simpler and more consistent APIs being provided. From their perspective,
the services that are most relevant are services that perform a scientific operation and where
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the semantics of the operations are defined in terms of the domain science. For example, a
Blast service can provide biologists with the capability to compare multiple DNA sequences
against each other or against standard publicly available data sets. The particular
infrastructure used for its calculation is irrelevant. The tool developers would rather focus on
the algorithms and the appropriate interfaces to present to the scientific end-users. In (17),
Foster introduces the term Service-oriented Science. In his words, ”Grid technologies can
accelerate the development and adoption of service-oriented science by enabling a
separation of concerns between discipline-specific content and domain-independent
software and hardware infrastructure.” Enabling access to scientific applications and tools
using a service-oriented approach allows the developers of scientific tools to focus on the
domain science, and delegate the management of the complex back-end resources to others
who are more proficient in Grid middleware.

3. Provide users access to virtualized resources
Users accessing the cyberinfrastructure should not be provided with the raw resources –
rather, the resource access should be virtualized. Resources include data files, computational
cycles, or even application services. For instance, providing individual user accounts on
computation resources does not scale well with the number of users or the number of
computational clusters. Instead, individual application services running on the virtualized
back-end computational resources may be provided to authenticated users. The services can
hide the disparity between the heterogeneous resources in the back-end, and provide a
uniform interface to the users.

Similarly, data files should be accessed through generic object identifiers or uniform
resource identifiers, and not through direct file paths on hosts. This enables the
cyberinfrastructure to perform optimizations such as replication or data migration for better
fault tolerance, and higher availability. The use of virtualized resources through a layer of
indirection allows the system developers to add or move resources as needed without any
interruption. For example, additional clusters can be added, data moved, while the end-user
is completely oblivious to such details.

4. Do not impose a single user interface on scientific users
There are many classes of users using the cyberinfrastructure. On one end of the spectrum,
we have the beginners or casual users who may wish to have simplified interfaces with
Web-based graphical user interfaces. On the other hand, power users, typically find that
graphical interfaces are more of a hindrance, and prefer command-line tools that can be
scripted. From a technical standpoint, it is also difficult for Web-based GUIs to represent
many of the complex functionality of today’s scientific applications. Desktop applications
can provide better visualization and interaction than Web-based tools, but they are harder to
develop and require platform-specific considerations.

For all these reasons, it is difficult to imagine a single user interface satisfying all the
different users for any particular cyberinfrastructure. Hence, we advocate application
services that can be used by a number of end-user tools, including Web-based portals, rich
desktop applications, command-line tools and language-specific libraries.

5. Leverage the right tools
There are a variety of software choices for building SOAs. Web service technologies are the
de facto standard – however, even they come in various flavors. Your choice of tools will
depend on the type of applications that you would like to support. For instance, WSRF
presents a way to model state-ful transient Web services. If your services happen to be
transient, then the WSRF model would be appropriate. However, in general, it is a good idea
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to choose the simplest possible technologies to implement your SOA. Vanilla Web services
have an advantage that there is support in most languages, such as Java, Python, Perl,
JavaScript, etc. WSRF implementations are behind the curve in that respect, but are catching
up fast.

In our experience, open-source community-driven projects have been the right choice for
building cyberinfrastructures. Being open-source and committed to the community has
resulted in software of high quality that not only addresses the requirements of the
community, but also provides the longevity required for long-term scientific projects.

3 Challenges
3.1 Web Services Tooling

In Service-oriented Science, scientific functionality must be exposed via programmatic
interfaces. This implies wrapping of scientific applications as Web services, and providing
science-oriented APIs for tool developers to leverage. The Web services themselves can be
implemented in a number of languages, e.g. using Apache Axis in Java, or the ZSI toolkit in
Python. However, in theory, they can be developed in two distinct ways.

The Web services may all be hand-written in a custom fashion. This involves defining an
application-specific API for a scientific application using WSDL. For instance, a Blast
service may contain an operation searchDatabase, which accepts an input sequence and
Blast-specific options. The implementation of the Web service would receive the input
options, and run the Blast job on Grid resources transparently on behalf of the user. The
inputs and outputs may be strongly-typed, and described in detail using XML schemas. This
approach is quite flexible; however, it does not scale very well as the number of applications
in the system increases.

On the other hand, generic Web services wrapper toolkits may be used to expose scientific
applications as Web services. This approach scales very well with the number of
applications, but also has its cons. First, the implementations are usually not very flexible.
Since the wrapper toolkits do not have any knowledge of the application behavior, they
typically cannot do any processing that is application specific. Second, description of
application I/O and incorporation into the service WSDL is quite challenging. Typically, the
service WSDLs are not as expressive as they would be if they are written by hand.
Depending upon the needs of the system, one of the two approaches described above may be
chosen.

Once the services are defined, they must be discovered by clients. This is done with the help
of registries such as Universal Description, Discovery and Integration (UDDI), or via
semantic discovery techniques (37).

As far as the underlying messaging protocols being used for the above Web service
implementations, there is ongoing debate on what works best. There is the REST (16) over
HTTP camp which promotes simple, lightweight, easy to build services over basic HTTP
primitives such as GET and POST, while there is the SOAP over HTTP camp which
promotes structured XML datatypes described using the WSDL definition of a service. We
believe that the choice of technologies depends on how complicated the services themselves
are, and the data types that are being exchanged. SOAP services promote and enable stricter
type checking, which REST services promote simplicity and ease of use.
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3.2 Data Interoperability
Composing multiple applications together into a scientific workflow can be extremely
difficult because of the numerous data translations that may need to be performed from one
format to another. There are different approaches to enable data mediation between such
applications. On one end of the spectrum, everyone is forced to use the same data formats
and representations. On another, everyone uses their own data formats, and there is some
mechanism to mediate between them, as need arises. In general, mediation can be performed
centrally, or by the individual entities. In the former, a central service performs all the
translations, while in the latter the individual parties are responsible for the translations
themselves (10).

While there are pros and cons to each other, the approach depends on the circumstances.
From a software engineering standpoint, it is much easier to deal with common standardized
formats. From a social standpoint, it is difficult to enforce standards, especially if different
groups have different requirements. In cases where it is possible to do so, a single ontology
model works best. If this is not possible, different groups may have different ontology
models, and semantic mediation approaches may be used to interoperate between them.

Representation of the standard data formats and ontologies is a challenge as well. Although
the use of XML is the de facto standard way of representing data and metadata in the Web,
the use of XML is not very efficient for large amounts of scientific data. Alternatives such as
binary XML and the Data Format Description Language (DFDL) (2) can provide a more
compact representation of scientific data.

3.3 Security
Security is important if you wish to restrict access to the Web services to a certain set of
users. In this context, the keys goals are credential management, authentication, and
authorization.

In the Grid world, GSI-based (20) security is the de facto standard. GSI is a public key
system that uses X509-based user and host certificates signed by trusted Certificate
Authorities (CAs). Every user is typically assigned a GSI certificate, which can be used to
create limited lifetime delegated proxy certificates that form the basis of authentication,
access control and logging. Although GSI-based systems are universally adopted in Grid
systems, they are difficult to deploy and use. However, there are several tools that simplify
the management and retrieval of credentials, such as GAMA (12) from SDSC, and
GAARDS from the caGrid project (31).

Authentication is the process by which the client and the service attempt to confirm their
identities of the other prior to any message exchange. This can be done at the transport-level,
which relies on the creation of a secure point to-point connection between the client and the
server, and at the message-level, which relies on signing and/or encrypting the SOAP
messages between the client and server. Since transport-level security relies on a point-to-
point connection between the client and the service, it is not easy for it to work for a
connection that includes multiple hops, e.g. in the presence of intermediaries. Furthermore,
it doesn’t provide an ability to sign or encrypt specific portions of messages. Message-level
security, on the other hand, addresses both of these problems. However, it suffers from
severe performance problems. In general, transport-level security is better for performance,
while message-level security is better for greater flexibility.

Authorization is the process where a decision is made whether a particular user has the
permissions required to perform a particular operation. In the most basic form, every
resource can use an access control list for authorization. However, managing authorization
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at a per-user level may not scale very well with the number of users. It may be necessary to
define roles where a certain set of users belonging to a certain role may have more privileges
than others (e.g. developers versus users, PIs versus students, etc). Information about the
roles can be embedded into the X509 certificates in the form of assertions using a
mechanism such as the Security Assertion Markup Language (SAML). The resource
provider can extract the assertions before making an authorization decision. This is a push-
based model for authorization. Alternatively, a pull-based authorization model can be used
where the resource provider could query a central authorization service for a user’s roles and
capabilities.

3.4 Fault Tolerance and Scalability
The Web services middleware should support fault tolerance and scalability at multiple
levels. First, there is the Web services container hosting the services themselves, and then
there are the resources on which the jobs are being scheduled. For hosting the Web services,
there are several containers available that provide robust implementations that can contribute
to a high degree of fault tolerance. For instance, Jakarta Tomcat is an open-source container
that is most commonly used in projects in the world of Grid computing, and provides
mechanisms for clustering multiple instances for redundancy and load-balancing purposes.

For the back-end resources, Grid-based schedulers, such as the Sun Grid Engine (SGE) and
Condor, provide scalability by launching jobs on a large number of distributed resources,
and also provide mechanisms for fault tolerance, such as restart on failures. Furthermore,
meta-schedulers, such as the Community Scheduler Framework (CSF4) (38) and GridWay
(22), are capable of scheduling jobs across multiple clusters running different schedulers.
Care must be taken not to reinvent the work on fault tolerance and scalability at the Web
services level, and rather use the support provided by the back-end scheduler frameworks,
where possible.

3.5 Accounting and QoS
Accounting is the process by keeping track of service usage, and enforcing allocations per
user. For instance, it is unacceptable for users to be stuck in a queue behind a user who
happens to be running thousands of jobs. It should be possible to limit the number of jobs
for a particular user to enforce fair share scheduling of jobs on the back-end resources.

Qualities of services and Service Level Agreements (SLA) are related to user accounting
and allocations. It should be possible for users and service providers to agree on service
quality metrics, and associated penalties if these metrics are not satisfied. For example, one
particular metric could be that the average turnaround time for Blast jobs of a particular size
be less than 2 minutes. The SOA should be able to specify such metrics, and implement this
capability. Different users may have different priorities and different qualities of service - it
is a challenge to build a system that maximizes the adherence to the service level
agreements, and minimizes the penalties if they are indeed broken.

4 Case Study: The NBCR SOA
4.1 Goals

Our goals for the NBCR user community are twofold. First, we wish to provide transparent
access to the emerging Grid-based computational infrastructure by ”grid-enabling”
biomedical codes and providing access to distributed biological and biomedical databases.
This will allow biomedical researchers to harness the computational power and securely
access very large resources and specialized instruments available in the emerging and
distributed Grid environment.
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Secondly, our goal is to enable integration of applications across different scales (e.g. atomic
to macro-molecular, molecular to cellular, tissue to organ). For instance, a user may wish to
utilize the highly accurate quantum models to calculate atomic charges (24), but opt for the
less accurate but significantly more computationally tractable classical molecular dynamics
approach for determining protein-ligand docking (28). Each of these capabilities has been
developed by independent developer communities over long periods of time sometimes
decades and in some cases by different but related domain communities. Currently,
integrating these capabilities requires users to learn the intricacies of each software
implementations and perform time-consuming data format conversions and/or other code
restructuring. Our goal is to provide a mechanism for scientific users to discover and
leverage these capabilities, in a standard easy-to-user manner, possibly with the use of
commodity freely available software tools.

4.2 Architecture Overview
Web service technologies have become the de facto standard for accessing applications on
the Grid, and we use the same to build our SOA. Web services are language and platform
independent; this enables access via a multitude of user interfaces. Our Web services
architecture is described in greater detail in (34). However, we provide an overview of the
same in this section.

Figure 1 shows our multi-tiered architecture for enabling easy access to scientific
applications on Grid resources. The bottom tier consists of the Grid resources where the jobs
are scheduled. Accessing these resources via Grid schedulers can be quite complicated for
the end-user, because the end-user would have to learn about mechanisms and tools to 1)
manage Grid credentials using the Grid Security Infrastructure (20), 2) access Grid
schedulers such as Condor (11) and the Sun Grid Engine (SGE), and 3) manage data
transfers using tools such as GridFTP (14). Furthermore, installation and deployment of
scientific software on the heterogeneous Grid resources is no easy task in itself, and end-
users may spend countless hours compiling and installing their complex scientific tools.

Hence, in the middle tier, we enable programmatic access to scientific applications and
security services running on Grid resources via simple Web service wrappers. The Web
service wrappers address many of the problems described above. In particular, scientific
applications are installed once, and available to a set of authorized users. Users are shielded
from the complexities of Grid schedulers and data management software. Internally, the
services use APIs such as the Globus GRAM (26) and the Distributed Resource
Management Application API (DRMAA) (3) to leverage Grid schedulers; however, this is
completely transparent to the end-user. Grid security is simplified by the Grid Account
Management Architecture (GAMA), as described in Section 4.3.

Various client tools, available in the top tier, leverage the easy-to-use Web services APIs to
securely access these applications running on the complex back-end infrastructures. Using
the clients, the scientific end-users are completely shielded from the complexity of the back-
end resources, and even from the simpler Web services APIs. In fact, they are mostly
oblivious of where their applications are being run, and interact with the applications as if
they are running locally. In Section 4.3, we present a list of available client interfaces.

The current set of deployed applications services in the middle tier consists of key scientific
software, plus numerous secondary resources and utilities, and includes a combination of
hand-written and auto-generated services based on the Opal toolkit (35):

1. GAMESS, a general atomic molecular electronic structure package which uses
general ab initio quantum chemistry techniques,
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2. APBS, a classical modeling package for electrostatics computations, important in
several areas of biomolecular simulation,

3. PDB2PQR, a utility for converting protein files from the Protein Data Bank (PDB)
format to PQR format used by applications such as APBS,

4. AutoDock and AutoGrid, a suite of automated molecular docking software tools
used in applications such as X-ray crystallography and structure-based drug design,

5. MEME and MAST, software tools for discovery and search of motifs (highly
conserved regions) in groups of related DNA or protein sequences,

6. SIESTA, a macromolecular plane wave density functional software which is used
for performing electronic structure calculations and ab initio molecular dynamics
simulations of molecules and solids,

7. MolPrep, a tool enabling manipulation of molecular structures such as rotational
conformations,

8. Babel, a toolkit that enables users to search, convert, analyze, or store data from
molecular modeling, chemistry, solid-state materials, biochemistry, or related areas,

9. Blast, the Basic Local Alignment Search Tool which enables users to compare a
query biological sequence with a database of sequences, and identify any
resemblance,

10. HMMER, an implementation for profiling hidden Markov Models (HMM) for
biological sequence analysis.

11. Continuity, a toolkit for multi-scale modeling in bioengineering and physiology,
especially cardiac biomechanics, transport and electrophysiology.

4.3 Software Tools
Apart from the application-specific services that we have built for the NBCR SOA, we have
also developed tools to help build generic SOAs for a scientific communities. In particular,
the Opal toolkit (35) was developed to wrap legacy applications with Web services and
integrate the back-end cluster and security services. It has been downloaded and used by a
variety of external projects, and has been extended in a number of ways, e.g. to provide
WSRF compatibility (27). Similarly, the GAMA security infrastructure (12) (co-developed
by UCSD’s Telescience and GEON Grid projects) directly supports services infrastructures.
GAMA is being used in production for a variety of UCSD-based and external
cyberinfrastructure projects.

1. The Opal Toolkit—The Opal toolkit enables application providers to automatically
wrap legacy scientific applications as Web services. Application providers configure the
Web service wrapper using configuration files, and the Opal toolkit automatically deploys
the application as a Web service fully integrated with the local cluster scheduler and with
GSI-based authentication (if desired). This enables the rapid deployment of legacy
applications as Web services on the Grid without having to write a single line of source
code. The 1.0 version of the Opal toolkit was released in Sept 2006, and has been used
effectively by a number of projects in the Grid community apart from NBCR, e.g. the
CAMERA project (1) sponsored by the Moore Foundation which addresses marine
microbial genomics. The current stable version of the Opal toolkit is 1.9.4, and is available
via SourceForge from our website (30). The latest version of Opal includes new features
such as a Dashboard, which provides usage statistics for all the deployed services, and
automatically generated Web interfaces for services that provide optional metadata for
command-line arguments (13).
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2. Data Schemas and Strongly-typed Services—In Section 3.1, we described the
benefits of hand-written Web services, viz., stronger data typing and greater flexibility. In
particular, strong data typing is beneficial to the creation of complex scientific workflows. If
the data is strongly typed, it is easy to extract information from the output of a particular
application, in order to couple it with another application. With this in mind, we have
developed a standard molecule definition using XML schemas, which is used across
applications in computational chemistry and continuum electrostatics. When such codes are
connected together into a workflow, e.g. in order to perform protein-ligand interaction
studies ((28)), it becomes straightforward to share data across them. If these applications
used their own legacy file formats, doing so would be difficult without writing messy error-
prone data translators that perform conversions from one file format to another. We are
working actively with developers in several scientific communities in order to standardize
common data types that may be shared between applications. The standardized data types
will be in XML format so that it can be easily imported by the Web service wrappers, and
used by standard workflow tools.

3. GAMA Security—The Grid Account Management Architecture (GAMA) provides the
security infrastructure for the SOA. In general, Grid systems use a GSI-based security
mechanism to administer resources. However, they are known to be difficult for
administrators to deploy, and end-users to use. GAMA provides a simple mechanism for
administrators to deploy the security services in the form of Rocks Rolls (32), and a Web
services API for user interfaces (on various platforms) to interact with. Users have the
option of retrieving the Grid credentials from the GAMA Web services for use in a stand-
alone mode. However, in most cases, lightweight GAMA clients are incorporated into
various clients shown in the top tier of Figure 1.

4. Client Interfaces—In Section 2, we describe how access to scientific applications
should be enabled via a multitude of interfaces. With that in mind, our architecture does not
impose a single user interface on the end-users. Although a detailed description of the UIs
being used is beyond the scope of this paper, some of them are as follows:

i. Gemstone, a rich client application (28) built on top of the Mozilla Firefox
platform. Gemstone runs on the user’s desktop, and provides an interface for
discovering and accessing remote application Web services.

ii. MGLTools, a suite of Python tools (7) developed at The Scripps Research Institute
(TSRI) for visualization and analysis of molecular structures. This includes the
Python Molecular Viewer (PMV) for displaying molecular surfaces and advanced
volume rendering, AutoDockTools (ADT) which is a graphical front-end for setting
up and running AutoGrid and AutoDock, and the accompanying visual
programming tool called Vision for the creation of scientific workflows for tasks
such as molecular dynamics simulations and energy minimization calculations.

iii. Kepler (23), which is a scientific workflow toolkit being developed at the
University of California, San Diego (UCSD). Kepler provides a visual interface to
create a scientific pipeline, and provides a standard set of tools to interact
seamlessly with emerging Grid-based resources.

iv. GridSphere (5), which provides an open-source portlet based Web portal
framework, also being developed at UCSD. The portlet model gives users a flexible
easy-to-use interface, and it gives portal developers a model to create pluggable and
dynamic application support.

v. Continuity (6), which is a problem-solving environment for multi-scale modeling in
bioengineering and physiology. Continuity consists of a GUI client which runs on a
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user’s desktop, and a set of computational components which may run locally or on
remote clusters via Web services.

4.4 System Usage
The SOA infrastructure is hosted at various locations, such as clusters maintained by the
Advanced Cyberinfrastructure Laboratory at SDSC, the NBCR at the University of
California at San Diego, and the University of Zurich.

The SDSC cluster is used as a development cluster for our alpha and beta services. The head
node is a 3.2GHz Intel Xeon with 3GB memory. There are 7 compute nodes, which are 4-
CPU Intel Xeons varying from 2.8GHz to 3.2GHz, and from 3GB to 6GB of memory. The
Web services are hosted within a Jakarta Tomcat container version 5.0.30, in both secure
and non-secure fashion, as appropriate. Apache Axis 1.2.1 is used as the SOAP
implementation for the Web services.

Figure 2 shows the geographical location of the users who have accessed our Web services
hosted on the SDSC cluster. Data from May 2006 to June 2007 was collected from Tomcat
logs which record the IP address and request path for each access. These statistics show that
over the past year, our services have been accessed by users having nearly 300 unique IP
address, spread over 35 countries and 20 US states. Most of our users are clustered around
Europe, and the United States.

Figure 3 shows the job executions per application over the same time period. In total
roughly 4500 jobs were run, with around 1500 GAMESS jobs, 1000 APBS jobs and slightly
over 2000 other jobs (deployed using the Opal toolkit). On average, this works out to around
75 jobs per week, or 15 jobs per day (excluding week-ends).

On the other hand, the NBCR cluster functions as a production cluster hosting stable NBCR
services. The NBCR cluster is a 17 node (dual 3.0 GHz processor, 2 GB RAM, 60 GB disk)
Sun Microsystems commodity cluster system. Figure 4 shows the access statistics for
services on the NBCR cluster from Dec 2007 to June 2008, generated via the Opal
dashboard. It can be observed that the services have been running constantly and reliably
during this time period. The access patterns of various services vary - MEME has been our
most used service with more than 200 hits per day on a very frequent basis. The PDB2PQR
service also averages close to 50 hits per day. Other services have fewer hits per day
depending on the size of the user community, but are valuable all the same.

4.5 Experiences
In Section 4.1, we mentioned that our goals were 1) to provide seamless access to Grid
resources through a multitude of user interfaces, and 2) to enable novel scientific pipelines
across different scales. We have successfully demonstrated success in addressing both of
these goals with the help of our SOA. With the help of several intuitive user interfaces
described above, scientific end-users have been accessing several scientific applications
without having to deal with the complexity of the back-end Grid middleware. Furthermore,
with the help of workflow toolkits like Kepler, and rich problem solving environments such
as Gemstone, users have been able to integrate multiple applications across different scales.

As appropriate, we have used an automatic Web services wrapper toolkit (Opal), and hand-
written services to help bring scientific applications into our SOA frame work. We have
addressed a number of the technical challenges listed in Section 3. In particular, we have
tackled issues of data standardization and interoperability, and Web services tooling for
scientific applications, security, and scalability. However, several issues still remain.
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In the area of Web services tooling, we are working towards improving on the Opal toolkit,
and making it more generic and flexible. For instance, at this time, the Opal toolkit uses a
generic WSDL API for representing application inputs and outputs. While this is useful, it is
impossible to figure out the input and output types for the scientific applications by just
looking at the service WSDL. It will be beneficial for the toolkit to be able to import
application input and output schemas into the WSDL, when available. This will provide
easier inspection of the WSDL, and incorporation into Web services workflow tools.
Furthermore, we are also planning on using alternate protocols for application inputs and
outputs for better performance, as need be. We are investigating support for different styles
of scientific applications (currently limited to serial and parallel). We are planning on adding
these features to Opal 2, which is currently being implemented. We are also working with
developers in different communities to define standard schemas and ontologies, to enable
interoperability and integration between different applications.

While the current GAMA toolkit provides a simple Web services API for credential
management, we are working on improving it at different levels. From a software
engineering standpoint, we are working on making GAMA more modular, so that different
back-end credential management systems can be plugged in seamlessly. We are planning to
use an LDAP-based back-end to enable non-Web services access to the authentication
mechanisms as well. This will enable integration with clusters via the Pluggable
Authentication Module (PAM), and other portals and content management systems which
use LDAP-based authentication. Furthermore, we are investigating authorization
frameworks such as CAS (29), VOMS (33), and Grid Grouper (31), which provide
mechanisms for role-based and coarse grained authorization.

In our current system, we do not deal with accounting and quality of service constraints,
which must be addressed as our resource utilization grows. Although our framework is fault
tolerant by design, we have not invested a significant amount of time in investigating the
limits at which it breaks down. We plan on addressing this in our future efforts.

5 Conclusions
In this paper, we presented Service-oriented Architectures (SOA) from the perspective of
scientific applications. We presented some of our positions about SOAs and
cyberinfrastructures, viz. (1) not everyone needs an SOA, (2) focus on application-level
services, (3) provide access to virtualized resources (4) via a multitude of user interfaces,
and (5) leverage the right software tools for the job. We also discussed the technical
challenges to be addressed while building such an SOA, viz. Web services tooling, data
interoperability, security, fault tolerance, scalability, accounting, and quality of service. As a
case study, we described the NBCR SOA for biomedical applications, presented the
individual components, and illustrated how we have addressed these technical challenges.
These positions and challenges are relevant to other scientific cyberinfrastructures as well,
as demonstrated by similar projects such as CAMERA.

The work on the NBCR SOA has been funded by the NIH through the National Center for
Research Resources program grant P41RR08605. We wish to thank Wilfred Li and Peter
Arzberger for their leadership and vision for NBCR, and the Gemstone, PMV, CAMERA
and Kepler teams for their work on applications, user interfaces and workflows leveraging
our SOA.
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Fig. 1.
NBCR SOA Architecture
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Fig. 2.
SOA Usage Map
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Fig. 3.
Cumulative jobs run on the SOA
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Fig. 4.
Job statistics via the Opal dashboard
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