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Data Grids rely on the coordinated sharing of and interaction across multiple autonomous database
management systems. They provide transparent access to heterogeneous and autonomous data resources
stored on Grid nodes. Data sharing tools for Grids must include both distributed query processing
and data integration functionality. This paper presents the implementation of a data sharing system
that (i) is tailored to data Grids, (ii) supports well established and widely spread relational DBMSs,

and (iii) adopts a hybrid architecture by relying on a peer model for query reformulation to retrieve
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semantically equivalent expressions, and on a wrapper-mediator integration model for accessing and
querying distributed data sources. The system builds upon the infrastructure provided by the OGSA-
DQP distributed query processor and the XMAP query reformulation algorithm. The paper discusses the
implementation methodology, and presents empirical evaluation results.
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1. Introduction

The Grid is an effective infrastructure for the coordinated use
and sharing of distributed resources in a dynamic manner [1],
enabling the temporary pooling of resources to solve specific
problems [2]. It does not refer only to resources such as CPU power,
storage facilities and memory, but also to data sources.

Many scientific applications are presently facing a common
challenge: managing a distributed data explosion. Detectors,
medical imaging instruments, micro-arrays, and multi-sensor
instruments are producing amounts of data that are rapidly
exceeding the capacities of their current local data storage and
computing environments. In many cases data are distributed
from the very start, being produced by different research
groups. Consider examples like genome and protein analysis data
produced by many research laboratories in the world, biological
databases containing patient data from a variety of hospitals.
Moreover, experiments generating petabytes of data per year,
such in radio-astronomy or in particle physics, need more data
processing power than ever can be located in a single site, with data
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utilized by researchers all over the world. In such a context the Grid
represents a suitable environment for scientific applications.
Accessing and thus sharing multiple data sources is deemed
as a key point to really exploit the availability of such resources
distributed over Grid nodes [2]. A Data Grid can include
and provide transparent access to semantically related data
resources that are maintained in different syntaxes, managed by
different software systems, and are accessible through different
protocols and interfaces. Data Grids that rely on the coordinated
sharing of and interaction across multiple autonomous database
management systems play a key role not only in scientific
initiatives but in many industrial scenarios, as well. This fact has
led to the production of vendor systems, such as Oracle11g and IBM
DB2. At the level of Grid middleware infrastructure, two notable
(and correlated) examples are the OGSA Data Access and Integration
(OGSA-DAI) [3] and the OGSA Distributed Query Processor (OGSA-
DQP)! [4-6] projects. These projects have moved toward a service-
oriented architecture quite early in their lifecycle. OGSA-DAI
exposes database management systems (including Oracle, MySQL,
SQLServer, DB2, and so on) in a uniform way as services, whereas
OGSA-DQP provides distributed query processing functionalities
on top of OGSA-DAI, presenting the multiple databases as a
single one. As such, OGSA-DQP can combine and integrate data
from multiple data sources. To enhance performance, parallel and

1 OGSA-DAI/DQP are publicly available in open source form from www.ogsadai.
org.uk.
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adaptive query execution techniques have been investigated [7].
Nevertheless the semantic interpretation of the data rests with
the user; furthermore, OGSA-DQP does not address any schema
integration requirements. Hence, to a significant extent, the
integration facilities provided by OGSA-DAI and OGSA-DQP are
inadequate to meet the requirements of a number of Data Grid real
cases.

Particularly, due to variety and heterogeneity of both applica-
tions and data-related resources, one of the major objectives here
is to provide higher-level services that assist users in making use
of several databases within a single application such as to com-
bine data from separate, distributed sources to produce new re-
sults. It is frequently the case that the data that applications wish
to combine will have been created by different organisations that
will often have made local, independent decisions about both the
best database paradigm and design for their data. Moreover, it is
also likely to happen that databases holding data on a same do-
main may use heterogeneous notation to refer the same concept.
Even within a single organization, data from disparate sources
must be integrated. In order to provide facilities for addressing
requests over multiple heterogeneous data stores for this more
unpredictable environment, it is not possible to leave aside from
both data integration and distributed query processing mecha-
nisms. As cited before, the biological domain is an example of a
real word scenario where reconciliation of data heterogeneity over
distributed sources represents a key issue to be addressed. Data in-
tegration, in its own right, is one of the most persistent problems
that the database and information management community deals
with despite the fact that efficient techniques and approaches to
reconciliate data heterogeneity have been developed (e.g., schema
mediation languages, query answering algorithms, optimisation
strategies, query execution policies, and so on) [8]. The need for
semantic correlation of data sources is particularly felt in Grid set-
tings. To date, only few projects (e.g., [9,10]) actually meet the
schema-integration requirements that are necessary for establish-
ing semantic connections among heterogeneous data sources. To
this end, the use of the XMAP query reformulation algorithm for
integrating heterogeneous data sources distributed over a Grid has
been proposed [11]. Its aim is to develop a decentralized network
of semantically related schemas, so that the formulation of se-
mantically equivalent distributed queries over heterogeneous data
sources is enabled. XMAP employs a decentralized point-to-point
mediation approach to connect different data sources based on
schema mappings. For instance, if a user submits a query for au-
thors of scientific papers of a certain kind to a certain database con-
taining information about scientific publications, XMAP can return
equivalent queries referring to similar databases, provided that the
semantic mappings have been defined. However, XMAP does not
provide any distributed querying functionality.

A comprehensive data sharing tool needs to include both dis-
tributed query processing and query reformulation functionality.
Thus far, data sharing tools in distributed environments tend to
build upon non-database management systems or immature de-
centralized models. The main novelty of the work described in this
paper is the implementation and presentation of a data sharing
tool that (i) is tailored to data Grids, (ii) supports well-established
and widely spread relational DBMSs, and (iii) adopts a hybrid ar-
chitecture by relying on a peer model for query reformulation for
retrieving semantically equivalent expressions, and on a wrapper-
mediator integration model for accessing and querying distributed
data sources. The functionality offered by OGSA-DQP and XMAP
is complementary and provides an efficient basis on top of which
comprehensive, Grid-enabled data sharing tools can be built. Here
we discuss the design and implementation of a system encapsu-
lating and combining the two aforementioned artefacts, along with
their extended functionality. The result of our work is DQP-XMAP, a

unifying service-oriented middleware system for distributed query
processing and query reformulation driven by semantic connec-
tions, with a view to providing more complete access and integra-
tion services for data Grids. An important feature is that, although
the system incorporates OGSA-DQP and XMAP, the model it con-
forms to is generic and enables the usage of any query reformu-
lation or distributed query processing subsystem. A preliminary
description of the system and some performance results have been
givenin [12].

The prototype that has been developed realizes the Grid
vision with regards to data management in two orthogonal ways.
Firstly, it enables both query reformulation and distributed query
processing across heterogeneous data sources through extensions
to the original work of XMAP and OGSA-DQP, respectively. Second,
it constitutes an example of how independent systems that
seem incompatible at first glance, exposed as services, can work
together. OGSA-DQP accepts queries in a subset of OQL [13] (that
is close to simple SQL) and supports relational databases, whereas
XMAP was initially designed for XPath queries over XML databases.
In our system, this language mismatch has been addressed through
the development of a mapping between a subset of XPath over
the XML representation of the relational schemas into OQL. Our
approach is limited, in the sense that it does not aim to fully
cover the XPath language, but it has proved sufficient for our
environment.

The remainder of this paper is structured as follows: Section 2
discusses the motivation for the development of this prototype. Its
main independent components, namely OGSA-DQP and XMAP are
presented in Section 3 together with discussion of related work.
Section 4 deals with the architecture, the design decisions and the
implementation details. Section 5 presents experimental results
that aim to provide useful insight into the actual behavior of the
system, and the overheads incurred by the hybrid architecture.
Finally, Section 6 concludes the paper.

2. Motivation and contributions

Our experience with OGSA-DQP is that, although it provides
the key functionality for the execution of distributed queries
transparently to users [4], its applicability is restricted because of
two main reasons. First, the service oriented architecture and the
SOAP-based communication protocol incur a high overhead when
large data sets are transmitted. This drawback has been partly
ameliorated through the development of adaptive techniques [14,
15] that continuously track the optimum size of data chunks.
Second, as users typically do not have enough information about
the semantics of the data in the autonomous, third-party resources
to which they are provided access, they find it difficult to formulate
semantically correct queries that combine data from multiple
sources.

Our approach to this problem, which is the topic of this
paper, is to make the following option available and provide
the corresponding tool. A user instead of writing a query across
multiple databases has just to compose a query that refers to a
single database. Then the system, through the XMAP algorithm
that has been integrated, returns equivalent queries that refer to
data stored to other databases, and subsequently, executes them
automatically. Without such functionality a user would be forced
first to understand the semantics of the data in all data sources, and
then to compose a union query. Now a query to a single database
is sufficient to trigger the query reformulation mechanism, which
automatically constructs the semantically equivalent queries that
will be then evaluated by the query engine.

To date, to the best of our knowledge, although standalone
proposals to query reformulation and distributed query processing
exist, there are no unified implementations enabling the afore-
mentioned functionality.
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3. Data access and integration in Grids: Background and related
work

This section reviews the basics of data integration systems
and discusses new issues and challenges to face in Internet-based
settings.Then, before presenting the architecture of the DQP-XMAP
prototype, we briefly describe the two systems it integrates, that is
OGSA-DQP and XMAP.

3.1. Data integration

Information integration systems typically provide a uniform
query interface to a collection of distributed and heterogeneous
sources, giving users or other agents the illusion that they query
a centralized and homogeneous information system. As such,
they are considered as mediation systems between users and
multiple data sources which can be syntactically or semantically
heterogeneous while being related to the same domain. The
existing mediator-based information systems (e.g., [16,17]) can
be distinguished according to the type of mappings between
the mediated schemas and the schemas of the sources in two
approaches, the Global As View (GAV) and the Local As View (LAV).
The GAV approach describes the global schemas as a view over
all local schemas, whereas the LAV approach describes each local
schema as a view over the global schemas.

3.1.1. Peer-to-peer data integration

As observed in several contexts, traditional centralized archi-
tectures for data integration are not the best choice for supporting
semantic data integration, cooperation and coordination in highly
dynamic computer networks. The rise in availability of web-based
data sources has led to new challenges in data integration systems
for obtaining decentralized, wide-scale sharing of semantically-
related data. The P2P paradigm has recently been adopted in the
database community to overcome the limitations of distributed
database systems, namely the static topology and the heavy ad-
ministration work, and to exploit the dissemination of data sources
over the Internet. A P2P data integration system uses a decen-
tralized semantic network of mappings between peer schemas
to reformulate user queries over every peer in the network. This
approach to data integration, despite a similar name, is not related
to P2P networks. P2P networks deal with physical peers whereas
in a P2P data integration system, peers are virtual; each peer cor-
responds to the schema of a structured data source.

According to these trends, several peer-to-peer data integra-
tion formalisms have been introduced [18-23]. All these systems
focus on an integration approach not based on a global central-
ized schema. On the contrary, each data source represents an
autonomous information system and information integration is
achieved by establishing mappings directly among the various
source schemas. Thus, a mapping can be defined between any pair
of data sources. Since there is no central mediator node, such sys-
tems refer to data sources as peers and their schemas as peer
schemas. A peer schema is virtual and represents the peer’s view
of the world. In these systems, every peer acts as both client
and server, and provides part of the overall information available
from a distributed environment without relying on a single global
view. In fact, as in data integration, an open world assumption is
made [24]. Peers do not have complete knowledge of the domain
but every peer can contribute new answers to the users’ query.

3.1.2. Grid data integration
Data integration on Grids has to deal with unpredictable, highly
dynamic data volumes. Thus, traditional approaches to data

integration, such as FDBMS [25] and the use of mediator/wrapper
middleware [16], are not suitable in Grid settings. The federation
approach is a rather rigid configuration where resource allocation
is static and optimization cannot take advantage of evolving
circumstances in the execution environment. The design of
mediator/wrapper integration systems must be done globally and
the coordination of mediators has to be done centrally, which is an
obstacle to the exploitation of evolving characteristics of dynamic
environments. As a consequence, data sources cannot change often
and significantly, otherwise they may violate the mappings to
the mediated schema. Further, the decentralized and distributed
nature of the Grid indicates that a centralized structure that
coordinates the activity of all of the nodes in the system may not
be suitable, mostly because it can easily become a bottleneck. Our
judgement has been that a decentralized approach can effectively
exploit the available Grid resources and their dynamic allocation.
For these reasons, following the P2P integration approach, the
XMAP framework [26] for integrating heterogeneous XML data
sources distributed over a Grid has been implemented (see next
section).

To the best of our knowledge, there are only few works that
provide schema integration in Grids. The most notable ones are
Hyper [9] and GDMS [10]. Both systems are based on an approach
similar to ours, i.e., build data integration services by extending
the reference implementation of OGSA-DAI (see next section).
The Grid Data Mediation Service (GDMS) is part of the GridMiner
project [27] and uses a wrapper/mediator approach based on a
global schema. GDMS presents heterogeneous, distributed data
sources as one logical virtual data source in the form of an OGSA-
DAI service. The main difference from our work is that it relies on
the existence of a global schema, which is not necessarily a realistic
assumption to make in Grids. Hyper is a framework that integrates
relational data in P2P systems built on Grid infrastructures. As in
other P2P integration systems, the integration is achieved without
using any hierarchical structure for establishing mappings among
the autonomous peers. In that framework, the authors use a
simple relational language for expressing both the schemas and
the mappings. Our integration model follows an approach that is
not based on a hierarchical structure as well, however it focuses on
XML data sources and is based on schema-mappings that associate
paths in different schemas. Finally, semantic mapping across
relational databases coupled with a Global As View approach is
investigated in the context of the SASF project [28].

Semantics-enhanced distributed query processing over large-
scale networks is also addressed in [29,30]. However, in such
works the focus is not on semantic data integration but rather on
providing a decentralized semantic overlay to support semantic
search in Knowledge Grid applications. In [29] the authors propose
a platform to support complex queries in a dynamic large-scale
network environment. Particularly, the system supports index-
based path queries by incorporating a semantic overlay with an
underlying structured P2P network that provides object location
and management services. Queries are forwarded along the chains
of semantic object pointers to search for objects. In [30] the
DST (Distributed Suffix Tree) overlay is proposed. The DST is an
intermediate layer between the DHT overlay and the semantic
overlay that supports search of keyword sequences by adopting the
sequential semantic relationship approach between words.

3.2. The OGSA-DQP system

OGSA-DQP is an open source service-based Distributed Query
Processor (DQP) supporting the evaluation of queries over
collections of potentially remote data access and analysis services.
The version of OGSA-DQP used in our prototype builds upon the
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Globus Toolkit 4 WSRF infrastructure [31] and on top of the WSRF
2.2 OGSA-DAl release [3].

More specifically, OGSA-DQP [5,4,6] is a service-based dis-
tributed query processor. OGSA-DQP is service-based in two or-
thogonal dimensions:

e It manifests itself as a collection of services, and

e It accesses remote data repositories and analysis tools that are
in the form of services.

OGSA-DQP services are built on top of Data Services (DSs)
developed in the context of the OGSA-DAI project [3], which aims
to provide a common service interface to Grid-connected DBMSs.
DSs are simple WS-I or WSRF services and they expose multiple
local Data Service Resources (DSRs). One DSR may correspond to a
single data resource such as an XML or a relational DBMS. However,
there are special DSRs, called factory resources that can be used for
the runtime creation of other data service resources.

The operations a data service resource can perform are called
activities. For each activity to be called, there needs to be a separate,
dedicated activity element in the perform document received by
the data service resource. Activities are also the extensibility
point of OGSA-DAI and DQP, i.e., additional functionalities are
implemented as new activities. The two main activities that
characterize the prototype described in this paper cover the
execution of declarative queries (which is a basic OGSA-DQP
functionality) and the identification of semantically similar queries
(which is an additional functionality developed in the context of
this work).

OGSA-DQP provides two types of services, Grid Distributed
Query Services (GDQSs) and Query Evaluation Services (QESs). The
former are visible to end users, accept queries from them, construct
and optimise the corresponding query plans and coordinate the
query execution. GDQSs encapsulate and reuse the Polar* compiler
for query compilation and plan generation [32]. Query evaluation
services are hidden from the users, implement the query engine,
interact with other services (such as OGSA-DAI services, ordinary
Web Services and other evaluators), and are responsible for the
execution of the query plans created by a GDQS. The interactions
and functionality of OGSA-DQP services are described in detail
in[5].

Some of the most notable characteristics of the OGSA-DQP
service are that they are lightweight, and communication between
service instances occurs in the form of XML documents transmitted
over SOAP/HTTP. Moreover, QESs can evaluate operation_calls,
which constitute calls to WSs, although they are conceived by the
compiler as typed user-defined functions (UDFs). Finally, note that
OGSA-DQP, same as OGSA-DAI, adopts the factory paradigm: GDQS
is actually an extended type of a factory resource, which enables
the runtime creation of DQP DSRs for each different configuration,
i.e., for each different combination of databases, physical machines
hosting query evaluators and WSs playing the role of UDFs.

3.2.1. Query planning and evaluation in OGSA-DQP

Query planning in OGSA-DQP follows the two-phase optimiza-
tion approach, according to which, firstly, a non-distributed query
planis generated, and secondly, different segments of that plan are
allocated to different query evaluation nodes. The query planning
phase is followed by query execution, whereas no changes in the
query plan are allowed on the fly in the publicly available version
of OGSA-DQP. The planning and execution phases are described in
more detail next.

3.2.1.1. Query plan generation. The single-node, non-distributed
planis constructed by applying logical and physical optimization to
the initial output of the parser of the query expression. The logical
optimizer operates as follows.

e It normalises the plan in monoid calculus [33], which involves
(i) query unnesting, (ii) fusion of multiple selection operators
into a single one, and (iii) application of DeMorgan’s laws to the
predicates.

e It maps the monoid calculus into the logical algebra of [33].
The logical algebra contains object-relational operators such
as scan, unnest, and project without specifying their actual
implementation, when more than one exists (e.g., hash join and
nested loop are both possible implementations of the join logical
operator).

e It creates multiple equivalent logical plans and chooses the
one that results in the production of less intermediate data.
Changing the order of the operators and the shape of the query
results in plans that produce different numbers of intermediate
results.

e It pushes, or inserts, projections as close to the scans as possible.

The multi-node optimizer comprises two components: the
partitioner, which splits the plan into fragments, thereby defining
the points where communication over the network takes place,
and the scheduler, which allocates a set of machines to each such
fragment. The first step to transform a single-node plan into a
multi-node one is by inserting parallelisation operators into the
query plan, by using the exchange operator [34]. Exchanges consist
of two parts that can run independently: exchange producers
and exchange consumers. The producers have an outgoing buffer
for each consumer, in which they add the tuples they collect
from the operators upstream in the query plan. For each exchange
operator, a data distribution policy needs to defined, in order
to identify the consumer for each tuple. The policies supported
include round_robin, hash_distribution and range_partitioning. The
last two policies provide support for non-uniform data distribution
among instances of the same physical operator, something which
is desirable in heterogeneous environments. The fact that data is
shipped in blocks rather than in individual tuples, greatly helps
in reducing the communication cost incurred. Moreover, data
transmission takes place concurrently with processing of the rest
of the operators in the query plan. In this way, the computation
and the communication costs overlap resulting in decreased query
total response time. Note that mitigating the impact of high
data transmission in service based systems is an ongoing activity
already yielding significant results (see [14,15,35]) from which our
unifying architectural proposal can benefit.

The partitioner firstly identifies whether an operator requires
its input data to be partitioned by a specific attribute when
executed on multiple processors (for example, so that the
potentially matching tuples from the operands of a join can
be compared). These operators are called attribute sensitive
operators [36]. Secondly, the partitioner checks whether data
repartitioning is required, i.e., whether data needs to be exchanged
among the processors, for example for joining or for submitting
to an operation_call on a specific machine. The final phase of
query optimisation is to allocate machine resources to each of
the subplans derived by the partitioner, a task carried out by the
scheduler.

3.2.1.2. Query evaluation. The query engine implements each
operator according to the iterator model [37]. As such, operators
implement three main methods: open, next, and close. The root
operator of the query tree calls open on its children, the children
call it on their children, and so on until the open call is propagated
to the leaf operators. Next is called in the same manner for each
tuple, until there are no other tuples to be processed. At that point,
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the propagation of close occurs to finish the execution in a tidied-
up way. In centralised query processing, applying the iterator model
results in a pure pull-based mode of execution. The presence of
exchanges alters this characteristic as it enforces its producers
and consumers to run independently in different threads. Thus,
in a multi-node setting, parts of the query plan are executed
simultaneously.

In summary, query execution in OGSA-DQP is performed as
follows. The evaluators receive a plan fragment from the query
compiler, which is passed on to them via their WSDL interface.
Next, the operators in the plan fragment are executed as iterators.
This operator execution may in turn lead to the transmission of
data between nodes, using SOAP over HTTP. The steps for setting
up distributed query configurations, submitting and executing
queries are as follows:

(1) A GDQS factory service is deployed on a host machine that
plays the role of query coordinator.

(2) Through a client interface, the users configure the DQP setting
and create a specific GDQS service resource by specifying the
machines, databases and WSs they want to integrate.

(3) The coordinator creates a global database schema by collating
the schemata of the databases specified during the previous
phase; only naming conflicts are resolved at this stage. The
WSs are interpreted as typed UDFs, based on their WSDLs. After
this step, the GDQS service resource created is ready to accept
queries. Note that this resource is permanent.

(4) The client submits a query to the query coordinator specifying
the GDQS service resource it refers to. The latter is responsible
for parsing the query statement, creating a query plan,
optimizing and parallelising it.

(5) The static coordinator dynamically chooses the QESs needed
for query evaluation, enacts query execution and collects the
query results.

(6) The results are returned to the client.

Steps (4)-(6) can be repeated any number of times for a resource
created in steps (1)-(3).

3.3. The XMAP framework

The XMAP framework [11] is a decentralized network of
semantically related schemas that enables the formulation of
queries over heterogeneous, distributed data sources. XMAP
abstracts from the underlying network infrastructure; it is
modeled as a number of autonomous nodes (that can be also
referred to as sites, sources, peers, etc.) holding information, which
are linked to other nodes by mappings. More precisely, XMAP is
composed of a collection & of nodes which are logically bound to
XML data sources. That is, each data source D, is represented by
exactly one node n and, conversely, each node has access to a single
data source, named local data source. Naturally, a local schema S,
is associated to this data source D,. Data sources employ the XML
data model and each source defines its own XML Schema. Each
node also holds a collection of mappings M, from its local schema
to other foreign schemas. Finally, a node knows a list (also named
partial view or, simply, view) of other nodes (called neighbors).
These nodes are connected to each other through declarative
mappings rules. Thanks to such mappings it is possible to translate
queries from a source to another.

We recover schema heterogeneity by mapping different
schemas following the peer-to-peer (P2P) integration approach
recently adopted in the database community and described in
Section 3.1. This approach is not based on a global schema but each
database (peer) represents an autonomous information system,
and data integration is achieved by establishing mappings directly
among the various peers. Such an approach relies on pre-existing
centralized query reformulation techniques also cited in 3.1.

3.3.1. Schema-mappings

Our approach is based on schema mappings to translate
queries between different schemas. The goal of a schema
mapping is to capture structural as well as terminological
correspondences between schemas. To perform translation, we
must understand how two schemas correspond to each other.
We use a simple form of correspondence: element (attribute)
correspondences that also specify the logical access paths that
define the associations between elements involved. Intuitively, an
element correspondence is a pair of a source element and a target
element. We require the database administrator or the final user to
supply only very simple correspondences. These correspondences
can either be created by hand or through some (semi-)automatic
mapping discovery algorithm. From such correspondences we
specify mappings as path expressions that relate a specific element
or attribute (together with its path) in the source schema to related
elements or attributes in the destination schema.

While semantically simple, we use simple element correspon-
dences for two main reasons. First of all, our mappings are to be
considered in a large-scale framework and we do not expect a
database administrator/user to know the rule machinery, whereas
itis reasonable to assume that even users unfamiliar with the com-
plex structure of the schema can provide such correspondences.
Therefore, differently from related works, XMAP does not require
heavyweight mapping creation from the user who has only to es-
tablish simple correspondences among paths in different schemas
and the system supplies the rest. In particular, XMAP uses an
algorithm which automatically determine rewritings of the user
query, from the correspondences. Hence, the design was motivated
by practical considerations. In addition, automated techniques for
schema matching (including CUPID, LSD and DIKE) have proven to
be very successful in extracting such correspondences. Moreover,
note that our focus is on middleware for the Grid, therefore we do
not really compete with most of the P2P data integration works
that are mainly targeted towards theoretical issues.

The data integration model we propose is indeed based on path-
to-path mappings expressed in the XPath [38] query language,
assuming XML Schema as the data model for XML sources.
Specifically, this means that a path in a source is described in terms
of XPath expressions. As a first step, we consider only a subset
of the full XPath language. The expressions of such a fragment of
XPath are given by the following grammar:

q—nllq/qlq//qlqlq]

where “n” is any label (node tests), “.” denotes the “current node”,
“/” indicates the child axis (/) whereas “//” the descendant axis, and
“[ ]” denotes a predicate.

A schema mapping is defined as a set of “formulas” that relate
a pair of schemas. More precisely, we define a mapping M over a
source schema S as a set of mapping rules ¥ = {RM, R), .. . RM}.
As we perform path-to-path mappings, a mapping rule associates
paths in different schemas. Specifically, a mapping rule is an
expression of the form:

RM . {Ss, Ps} —> -m{Sp, Pp}, where:

RM is the label of the rule; Ss is the source schema with respect
to which the rules are established; Ps is a path expression in the
source schema; Sp is the target schema with respect to which the
semantic connections are established; Pp is a path expression in
the destination schema (the cardinality of this element may be
more than one); CM is the element denoting the cardinality of
the mappings between the two schemas. Mappings are classified
as 1-1, 1-N, N-1, N-N according to the number of nodes (both
elements and attributes) of the schemas involved in the mapping
relationship.
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<schema targetNamespace="http://XMAP/XMAPDocument"
xmlns="http://www.w3.org/2001/XMLSchema" 7>
<element name="Mapping">
<complexType>
<sequence>
<element name="sourceSchema" type="string"
minOccurs="1" max0Occurs="1"/>
<element name="Rule" minOccurs="1">
<complexType>
<sequence>
<attribute name="Cardinality" type="string"
minOccurs="1" maxOccurs="1"/>
<element name="sourcePath" type="string" minOccurs="1"/>
<element name="destSchema" type="string"
minOccurs="1" maxOccurs="1"/>
<element name="destPath" type="string" minOccurs="1"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

Fig. 1. XML schema for XMAP documents.

The mapping rules are specified in XML documents called XMAP
documents. Each source schema in the framework is associated to
an XMAP document containing all the mapping rules related to it.

The structure of XMAP documents is conform to the schema
shown in Fig. 1. One can notice the presence of a single
sourceSchema element, and a set of Rule elements defining the
mapping rules. Rule elements have a complex structure which
specifies the paths involved in the mappings and the cardinality
constraints among them.

3.3.2. Query reformulation in XMAP

Our query processing approach exploits the semantic connec-
tions established in the system by performing the XPath query re-
formulation algorithm before executing the input query, in order
to gain further knowledge. This way, when a query is posed over
the schema of a source, the system will be able to use data from
any source thatis transitively connected by semantic mappings. In-
deed, it will reformulate the given query expanding and translating
itinto appropriate queries for each semantically related source. Ev-
ery time the reformulation reaches a node that stores no redundant
data, the appropriate query is posed on that node, and additional
answers may be found. Thus, a user can retrieve data from all the
related sources in the system by simply submitting a single XPath
query.

The rationale of the algorithm is to perform individual
reformulation steps. A reformulation step corresponds to the
reformulation of a given query with respect to the schemas directly
connected to it only. Therefore, the algorithm is composed of
several reformulation steps, and each of such steps performs direct
reformulations by using the point-to-point mappings. To obtain
transitive reformulations of a query it is necessary to concatenate
individual reformulation steps. Each time a reformulated query is
obtained, the algorithm tries to rewrite it by recursively invoking
the XMAP algorithm using its direct mappings.

The query reformulation algorithm uses as input an XPath query
Q formulated over the schema S and the mappings M concerning
S, and it produces as output zero, one or more reformulated
queries Qg,.

We performed an extensive set of experiments to evaluate
the performance and effectiveness of our approach. From such
experiments we can realize that XMAP addresses the scalability
concern scaling well with the number of participating nodes
and guaranteeing quick production of reformulations, within few
milliseconds even for the most demanding configurations [39].

In our architecture the reformulation algorithm has been re-
engineered as a Web Service, referred to as XMAPAIgorithm Web
Service (XMAP-WS).

4. System architecture

4.1. The hybrid model

A comprehensive data integration architecture needs to com-
bine both the query reformulation and the query processing ser-
vices. Motivated by this reason, we extended the OGSA-DQP
distributed query processor by introducing on top of it a data in-
tegration service based on the reformulation of the original query.
The proposed system adopts a wrapper/mediator-based approach
to integrate data sources, and it is characterized by three core com-
ponents: a query reformulator engine, a distributed query processor,
and a wrapper module (see Fig. 2).

XMAP plays the role of the reformulation engine by recovering
semantic heterogeneity over data sources, OGSA-DQP is the
distributed query processor with GDQS playing the role of
mediator, whereas wrappers are provided by OGSA-DAI At high
level, the behavior of the developed system can be briefly outlined
as follows. The user query is handled by the reformulator engine
that through the XMAP query reformulation algorithm produces
zero, one or more reformulations of the original query. All the
obtained reformulations (including the original query) are then
processed by the DQP module that partitions each of such queries
in several sub-queries to be executed in parallel. Then, each
produced sub-query execution plan is processed by OGSA-DQP’s
Query Evaluation Services (QESs) that access data sources through
OGSA-DAI data service resources and produce the query result.

The model above can be implemented in several ways.
Three main options include: (i) to incorporate the reformulation
algorithm within the DQP module; (ii) to map the reformulation
algorithm to a stand-alone module that is called from within
DQP; and (iii) to make the reformulation algorithm a stand-
alone module that is called from a third module that acts as the
bridge between DQP and the former module. The basic advantage
of the first option is that the overheads due to inter-module
communication are minimized at the expense of generality. In the
third option, both DQP and query reformulation algorithms can be
replaced and modified easily, i.e., the design is more generic, but
the system becomes less efficient. In our system, we followed the
second option that is the middle solution, as shown in Fig. 3. In
our architecture, the query reformulation algorithm is exposed as
a completely independent service, so that any such algorithm can
be plugged in and out of the system. However, this service is called
from within OGSA-DQP, which has been extended accordingly, and
as such, if we want to replace OGSA-DQP with another DQP system,
we need to re-implement these extensions.

After having exposed the XMAP framework as a stand-alone
WS, reusing it for other examples and in other settings does not
pose significant problems. However, in order to integrate it with
OGSA-DQP as in our case, two main technical issues had to be
overcome. The first was to adhere to OGSA-DAI design principles,
which entailed that the additional data integration functionality
must be implemented in the form of an OGSA-DAI activity with
all its complexities. The second main technical challenge stemmed
from the fact that a solution to the language mismatch problem had
to be developed. Both issues are discussed in the next subsection.

4.2. System functionalities

The main features, that provide added value to stand-alone
OGSA-DQP are query reformulation and query transformation
that we have integrated in OGSA-DQP by modifying the DQP
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Fig. 3. The high-level architecture. The arrows denote (remote) service calls.

coordinator to: (i) locate the XMAP-WS forwarding it the XPath
query; (ii) wait until the XMAP-WS produces a set of semantically
equivalent queries; (iii) call a module that given an XPath
query it produces the equivalent OQL one. To this aim we
have implemented a new activity, called XPathMappingActivity.
The schema of the new activity is shown in Fig. 4. The
expression element contains the submitted XPath query, whereas
ServiceLocation contains the address of the web service to be
contacted for the actual query reformulation, according to the
architecture discussed previously. As such, each OGSA-DQP data
service resource supports two main operations, one for OQL
queries and one for XPath queries that are reformulated and
translated into OQL (see Fig. 5).

As mentioned before, query reformulation is enabled with the
help of the XMAP-WS, the descriptor of which is shown in Fig. 6.
However, the reformulated queries returned by the XMAP-WS
cannot be evaluated in their current form by OGSA-DQP, as the
latter accepts only OQL queries. Thus a query transformation step
is required. The policy for that is as follows. In general, the set
of meaningful XPath queries over the XML representation of the
schema of relational databases supported by OGSA-DQP fits into
the following template:

/database_A[predicate_A]/table_A[predicate_B]/column_A

where

predicate_A ::= table_pred_A[column_pred_A = value_pred_A],
and

predicate_B ::= column_pred_B = value_pred_B

As such, the mapping to the select, from, where
clauses of OQL is straightforward. column_A defines the select
attribute, whereas table_A, table_pred_A populate the from clause.
If column_pred_A = value_pred_A, column_pred_B = value_pred_B
exist, they go into the where field.

The approach above is simple but effective; nevertheless two
important observations are: firstly, it does not benefit from the
full expressiveness of the XPath queries supported by the XMAP
framework, and secondly, although it allows for join queries, it
requires the join conditions between tables table_A, table_pred_A to
be inserted in a post-processing step. Such a transformation falls in
an active area of research (e.g., [40,41]), and is implemented as an
additional component within the query compiler. Even though, the
transformation into OQL does not limit the scalability of the system
that it is inherently scalable due to the P2P nature of XMAP and the
OGSA-DQP’s support for parallelism. This does not mean that there
is not scope for further improvement. As an example, Section 3.2.1
outlines how issues related to data transmission impact on the
overall system performance and scalability.



518 C. Comito et al. / Future Generation Computer Systems 25 (2009) 511-524

<?xml version="1.0" encoding="UTF-8"7> ...
<xsd:schema
<xsd:complexType name="XPathMappingType">
<xsd:complexContent>
<xsd:extension base="gds:ActivityType">
<xsd:sequence>
<xsd:element name="expression"
minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType"/)
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="ServiceLocation"
minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType" />
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="webRowSetStream"
minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityDutputType"/)
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:element name="XPathMappingStatement"
type="gds :XPathMappingType"
substitutionGroup="gds:activity"/>
</xsd:schema>

Fig. 4. The schema of the new activity.

<activityConfiguration>
<activityMap>
<activity name="XPathMappingStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.XPathMappingActivity"
schema="xpath_mapping_statement.xsd"/>

<activity name="oqlQueryStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.0QLQueryStatementActivity"
schema="oql_query_statement.xsd"/>

</activityMap>
</activityConfiguration>

Fig. 5. Fragment of the activity configuration document of an OGSA-DQP data
service resource.

<?xml version="1.0" encoding="UTF-8"?> <deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<globalConfiguration>
<parameter name="adminPassword" value="admin"/>...
</globalConfiguration>...
<service name="XMAPAlgorithmService" provider="java:RPC">
<parameter name='"className" value="xmap.XMAPAlgorithm"/>
<parameter name="allowedMethods" value="*"/>
</service>...
</deployment>

Fig. 6. Fragment of the WSDD of the XMAP-WS.

The interactions of the services are as follows (see also Fig. 3):

(1) The user contacts the GDQS through a client application and
requests a view of the schema for each database he/she is
interested in. The schema is returned in XML with the elements
database, table and column forming an hierarchy. At this point,
there is no assumption that a user has a priori knowledge of
the semantics of these databases and the semantically-related
ones.

Based on the retrieved schema, a user composes an XPath
query, which is sent to the GDQS, and not directly to the

—
N
—

corresponding database service, following the OGSA-DQP ap-
proach. An example of an XPath query is “/database[@dbname
= [IEEE]/table[@name = Publications]/column[@name =
author]”, or, in a simpler form, /IEEE/Publications/author.
(3) GDQS contacts a XMAP-WS service, which encapsulates the
XMAP algorithm.
(4) The XMAP-WS retrieves the locally stored mapping schema,
which contains the mapping information that links the paths
in the submitted query with paths referring to other databases.
It returns a set of n queries that all return results that are
semantically similar to those of the initial query.
For each of the results of the previous step, the GDQS trans-
forms the XPath expression in OQL, and parses, optimises and
schedules it so that a query execution plan is compiled. The re-
sulting query execution plan is sent to the corresponding QES,
which returns the results asynchronously, after contacting the
local databases via OGSA-DAI services. The final results pro-
duced by the root QES are fetched in XML using WebRowSet.

In order to make clearer the concepts introduced, in the
following we describe an example of using the overall prototype.

(5

=

4.3. An example

Suppose that several publishers (such as IEEE and ACM) make
their databases accessible from anywhere, and when a user wants
to retrieve the publications of a specific author in a certain year it is
sufficient to submit a query only to one of the databases, with the
system being responsible for querying the remaining databases. Or,
when querying a museum database for artifacts of a specific artist,
the system is able to return similar results from other museum
databases as well. Supporting scenarios like that, coupled with the
emergence of Grid technologies, has motivated the architecture
and the system of this paper.

Considering the publisher example, we used a modified real-
world data set to validate our prototype, the DB-Research data set
that has been created for the Piazza system [22].? The data set
is based on data available on web sites concerning research in
the database field. It includes the schemas corresponding to the
structure and terminology of 19 such web sites (such as DBLP,
CiteSeer, ACM Digital Library, and a few university sites). On the
basis of these schemas, we have defined XMAP mappings between
the schemas that are semantically similar. More precisely, for each
source schema we have defined mapping rules toward, on average,
three other source schemas.

In OGSA-DQP, the table schemas are retrieved and exposed in
the form of XML documents. We exploit such representation of
database schemas in order to integrate XMAP within the OGSA-
DQP. In fact, users can have a view of the XML representation of
relational schemas, so instead of translating the tabular view in a
XML one, they can directly query the XML representation by using
the XPath query language.

Examples of semantic mappings among the databases are
illustrated in Fig. 7: here, the column “title” of the table “paper” of
the database “ACM” is mapped to the column “paper” of the table
“proceedings” of the database “DBLP”. The latter is mapped to the
column “article” of the “journal” table of “IEEE” data source. This
information resides in the mapping document associated with the
XMAP Web Service. Note that it is not necessary to map the ACM
to the IEEE database directly. The XMAP mappings need to capture
the semantic relationships between the data fields in different
databases, including the primary and foreign keys. This can be done
as shown in Figs. 8 and 9.

Suppose a user wants to find the title of the paper published in
the year 2000. To this aim the following tasks are performed:

2 permission to use this data set has been kindly granted by Igor Tatarinov.
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Fig. 7. Example of mappings.

<Mapping>
<sourceSchema>ACM</sourceSchema>
<Rule cardinality="Mappingl-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/title</sourcePath>
<destinationPath>/dblp/proceedings/paper</destinationPath>
</Rule>
<Rule cardinality="Mappingl-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/year</sourcePath>
<destinationPath>/dblp/proceedings/year</destinationPath>
</Rule>...

</Mapping>

Fig. 8. Fragment of the ACM XMAP document.

<Mapping>
<sourceSchema>DBLP</sourceSchema>
<Rule cardinality="Mappingl-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/paper</sourcePath>
<destinationPath>/ieee/journal/article</destinationPath>
</Rule>
<Rule cardinality="Mappingl-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/year</sourcePath>
<destinationPath>/ieee/journal/year</destinationPath>
</Rule>...

</Mapping>

Fig. 9. Fragment of the DBLP XMAP document.

(1) The user asks the GDQS for a view of the schema of the
ACM database, which has a table called “paper”, with columns
“year” and “title”.

(2) Based on the retrieved schema, the user composes the
following XPath query formulated over the ACM schema:
Qacv = /acm/paper[year = *“2000"]/title, which is sent to
the GDQS.

(3) GDQS contacts a XMAP-WS service, which encapsulates the
XMAP algorithm.

(4) The XMAP-WS service retrieves the locally stored ACM
mapping schema (see Fig. 8). More specifically, the schema
ACM is connected to the schema DBLP and thus we can
rewrite the query Qacy over the schema DBLP obtaining the
query Qpgp = /dblp/proceedings[year = *“2000"]/paper.
Then exploiting the semantic mappings concerning the
schema DBLP (see Fig. 9) we obtain the query Qg =
/ieee/journallyear = “2000"]/article.

Table 1

The different locality configurations used for the evaluation of OGSA-DQP.

Name Client Sourcel Source2
Local-Local Manchester Manchester Manchester
Local-Remote Manchester Manchester Rende
Remote-Local Nicosia Manchester Manchester
Remote-Remote Nicosia Manchester Rende

(5) For each of the results of the previous step, the GDQS trans-
forms the XPath expressions in OQL producing the following
corresponding OQL queries: select a.title from a in paper where
year = “2000”; select d.paper from d in proceedings where
year = “2000"; and select i.article from journal where year =
“2000”. OGSA-DQP automatically detects the remote databases
for each query; in this case the ACM database for the first one,
the DBLP for the second one, and the IEEE for the third.

The scenario examined does not require any postprocessing,
since the result set returned to the user consists of the union
of the results from multiple sources. However, in many cases,
postprocessing, such duplicate removal and ordering may be
required. OGSA-DQP cannot support these functionalities at the
moment, but it can be easily extended in this direction; this would
be an interesting topic for future development work.

5. Experimental evaluation

The aim of this section is to evaluate the efficiency of the data
integration system we described previously. Having this objective
in mind, since the complete system actually consists of two
subsystems, we first evaluate these two subsystems separately,
and then, we investigate the performance of the overall system.
As such, the experiments presented at this section provide useful
insights into the behavior of the whole system; nevertheless
the focus is on the additional overhead because of the hybrid
architecture. For a more detailed description of the behavior of
individual components the interested reader may refer to works
such as [42,11].

5.1. The OGSA-DQP subsystem

The OGSA-DQP system is capable of seamlessly integrating
remote data and computational resources in order to combine
their data and benefit from their available computational capacity.
Here, some representative distributed scenarios involving up to
three remote sites, are considered. In these scenarios, there are
two accessible data sources, in Manchester, UK, and Rende, Italy,
respectively. The query processing coordinator, i.e., the host of the
GDQS service is always in Manchester. Finally, the query client is
either in Manchester, local to the coordinator, or in Nicosia, Cyprus.
The different configurations with respect to resource locations are
summarized in Table 1.

The experimental set up is as follows. The query evaluator
server in Manchester is a Fedora Core 4 machine with 1 GB
memory size and CPU Intel Pentium 4 at 3.20 GHz. The evaluator
host in Rende has 1 GB of memory, and a P4 2.4 GHz CPU. The
test queries are simple select-from-where expressions over the
TPC-H benchmark database (the scale is 1), which is deployed
on both sites. They comprise a single join and the data volume
they return is from one hundred to ten thousand tuples. The
queries are chosen to be small in size (two databases accessed
and a single join) and small-medium in terms of data volume
(up to 10 K tuples) so that the relative overheads of accessing
XMAP services can be identified. For larger queries, the query
processing cost is several orders of magnitude larger than the other
costs.
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Fig. 10. Response times and corresponding standard deviations for different
locality configurations and different sizes of results per query.

Fig. 10 shows the end-to-end response time of queries, i.e., the
time elapsed from when a query is submitted to the client until the
complete result set is gathered from the OGSA-DQP coordinator.
The figure shows results for all the configurations in Table 1 when
the result set comprises 100, 1000 and 10 000 tuples, respectively.
In all queries an equal amount of tuples is retrieved from both
data sources. The join selectivity is 16% for the 100-tuples query,
1.6% for the 1K-tuples one, and 0.16% for the third one. The times
presented in the figure are calculated as the average of 10 runs,
after the outliers were eliminated.

Three observations on Fig. 10 can be noted: (i) the cost of
returning the results to a remote client is significant for small
queries, as made apparent from the difference between the first
and the third, and the second and the fourth bar in each bar
group. When only 100 tuples are returned, the relative overhead
for sending the results to the client is 50% approximately, whereas,
when there are 10K result tuples, this overhead drops by three
times (around 15%). Furthermore, the standard deviation increases,
a phenomenon that is ascribed to the combination of the following
two facts; firstly, the communication cost is highly affected by the
volatility of the distributed environment, and secondly, the query
coordinator-to-client communication cost does not overlap with
any other more stable cost; thus the volatility of this cost surfaces
in the form of higher standard deviation. (ii) Even for medium
queries, the communication cost ceases to be the dominant cost,
as can be easily verified by the difference in the response times
in the rightmost bar group. The importance of this observation
stems from the fact that, in principle, the smaller the impact of the
communication cost, the higher the possibility for parallelism to
yield performance benefits. (iii) Essentially, the OGSA-DQP query
processor exhibits a desirable scalability property with regard
to the data volume in tuples both when the client is collocated
with the coordinator or not; and when the source databases are
collocated or not.

In the previous example, the raw size of a tuple in the result
set is 10 bytes, and there is one query being processed by the
query coordinator and evaluators at a time. Fig. 11 shows the
behavior of the previous query, when the locality configuration is
“Remote-Remote”, the number of result tuples is 10K, and their
size varies from 10 to 100 bytes. From this figure it can be argued
that the system is scalable with regard to the data size in bytes,
as well. Actually, the increase in the response time appears to
be sub-linear with regard to the tuple size. However, if the extra
XML bytes needed for SOAP over HTTP messages, which is the
typical communication choice for WS-based solutions, are taken
into account, the behavior becomes linear. Fig. 12 depicts the
response times along with the standard deviation, when there
are multiple concurrent queries utilizing the OGSA-DQP services.
Again, the system exhibits a scalable behavior. Nevertheless it must
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Fig. 11. Response times and corresponding standard deviations for different tuple
sizes in the query results.

be noted that this may not be the case when memory limitation
problems are encountered.

5.2. XMAP services

Here we show the results of the new XMAP “activity”
responsible for contacting services containing semantic mappings
and performing query reformulation. Before presenting such a
kind of evaluation, we briefly discuss about the performance
of the XMAP reformulation algorithm as a stand-alone piece of
software.

5.2.1. XMAP reformulation algorithm evaluation

We have implemented the XMAP reformulation algorithm
in Java and evaluated its performance by executing a set of
experiments. Our goals with these experiments are to demonstrate
the feasibility of the XMAP integration model and to identify
the key elements determining the behavior of the algorithm. The
experiments discussed here have been performed to evaluate
the execution time of the reformulation algorithm on the basis
of some parameters like the rank of the semantic network, the
mapping topology, the input query, and the number of reformulations
produced. The rank corresponds to the average rank of a node in
the network, i.e., the average number of mappings per node. A
higher rank corresponds to a more interconnected network. The
topology of the mappings relates to how mappings are established
among the different nodes; it is the shape of the semantic
network.

The experimental results were obtained by averaging the
output of 1000 runs of a given configuration. Here we report only
the most significant results of the performed evaluations.

Fig. 13 shows the total reformulation time as a function of the
number of paths in the query for three different ranks. The main
result showed in the figure is the low time needed to execute the
algorithm that ranges from few milliseconds, when a single path
is involved, to one second where four paths are considered. As
should be noted from that figure, for a given rank value, the running
times are lower when the mappings guarantee a uniform semantic
connection. This happens because some mappings provide better
connectivity than others.

Fig. 14 shows the time the XMAP algorithm takes to retrieve
1-16 queries when all similar queries are in co-located (that
is, on the same node) mapping documents. From that figure
one can note that the system is scalable with regard to the
number of produced reformulated queries. Time ranges from 15 ms
when 2 reformulated queries are produced to 60 ms when 16
reformulations are obtained.
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Fig. 14. Total reformulation time as function of the number of reformulations
produced.

5.2.2. XMAP web service evaluation

The metrics that are of interest in the evaluation of the XMAP
Web Service include: (i) the number of reformulated queries to be
returned by a XMAP Web Service; and (ii) the response time to call
the XMAP Web Service and retrieve for a given XPath query the set
of its equivalent queries along with their OQL transformations. We
choose two configurations, namely a local one, according to which
both the XMAP service and GDQS are collocated (in Manchester),
and a remote one, where the XMAP service is in Greece. The host
machine runs Fedora Core 4 and is equipped with 1 GB RAM
and 3.20 GHz Intel Pentium 4 CPU. The XPath queries correspond
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Fig. 15. Time to access a XMAP WS and corresponding standard deviation for
different numbers of reformulated queries.
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Fig. 16. The proportion of the time to evaluate the XMAP algorithm compared to
the cost to call a XMAP WS for different numbers of reformulated queries.

to Select-From-Where expressions scanning a single table. The
semantic mappings reside on a single XMAP Web Service.

Fig. 15 shows the total cost (in terms of time) to contact
the XMAP web service, invoke the reformulation algorithm and
transform each produced reformulations from XPath to OQL.
The times and standard deviations shown are averaged over
15 runs. From the figure it can be concluded that, for both
configurations, the cost remains stable with an increasing number
of reformulated queries returned. More specifically, the XMAP web
service response time including the XPath to OQL transformation
takes around 2 s, whereas 4 s is a typical additional overhead when
the WSs are dispersed across Europe.

We can draw the following conclusion. As shown in Fig. 14,
the XMAP reformulation algorithm time stays in the orders
of milliseconds with the increasing number of reformulations
produced. Further, the time to transform queries from XPath to
0OQL takes less than 1 ms. Therefore, both of these costs are orders
of magnitude smaller than the cost to contact the WS (see Fig. 15).
Thus, we can conclude that the dominant cost is the one necessary
to locate and access the web service. That cost remains stable with
an increasing number of produced reformulations. This is more
obvious in Fig. 16, which shows the proportion of the time spent
to evaluate the XMAP algorithm when a XMAP service is called.

5.3. Complete system

After providing clear insights into the behavior of the two
main components of our system, we investigate the overall system
behavior. In more detail, we are interested in:
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Table 2
Response Times and Overhead (in ms), when the calls to the GDQS and XMAP
services are local.

Table 3
Response Times and Overhead (in ms), when the calls to the GDQS and XMAP
services are remote.

#queries Result size QRT XRT Overall Overhead #queries Result size QRT XRT Overall Overhead

2 100 1726 2056 3872 90.2 (2.33%) 2 10 9139 6177 16390 1074 (6.55%)
2 10 1485 2111 3688 91.8 (2.49%) 2 100 9155 5956 16 069 958 (5.96%)

4 100 2948 1977 5010 85.4(1.7%) 4 10 17970 5971 25032 1092 (4.36%)
4 10 2727 1971 4785 86.2 (1.8%) 4 100 18308 5947 25344 1089 (4.3%)

8 100 5613 2031 7730 86.6 (1.12%) 8 10 34291 6133 42233 1809 (4.29%)
8 10 5248 2045 7380 86.6 8 100 38269 6247 46487 1971 (4.24%)
16 100 11670 2964 13824 89.2 (0.65%) 16 10 72300 6269 79787 1218 (1.53%)
16 10 11256 2034 13377 86.6 (0.64%) 16 100 75266 6177 82609 1166 (1.41%)

e Measuring the overhead incurred by the integrated architec-
ture;

e Establishing whether there is any varying property of the input
queries that the overhead depends on; and finally,

e Establishing whether the various costs and overheads still allow
query evaluation to benefit from parallelism as it is the case
with stand-alone OGSA-DQP [43].

For the system evaluation we define an integrated task as
a sequence of submitting a query, finding the semantically
equivalent queries, evaluating them and returning the results to
the client. The time cost to complete an integrated task (that is, the
overall response time) is dominated by:

e The cost to call the XMAP Web Service(s) and retrieve for a given
XPath query the set of its equivalent queries along with their
OQL transformations (XRT cost); and

e The time required for executing the complete set of these
queries (QRT cost).

The system overhead is given by the difference of the overall
response time and the two dominant costs mentioned above.
In other words, the system overhead captures (i) the time cost
incurred to transform the first subsystem output into the input of
the second subsystem and (ii) the service communication times.
Note that, unless explicitly mentioned, all time costs are measured
at the client side.

Tables 2 and 3 present the measurements taken when all service
calls are local and remote, respectively. The times in columns
“QRT”, “XRT”, and “overall” are the average times of five runs in
milliseconds; moreover the overhead column also shows inside
the parentheses the percentage in the overall response time. All
the queries are simple Select-From-Where expressions scanning
a single table and they retrieve 10-100 entries each time. The
semantic mappings reside on a single XMAP Web Service. From
Table 2 we can see that the QRT cost increases linearly with the
number of executed queries (as expected), whereas both the cost
to reformulate and transform queries, and the overhead remain
stable. The XRT, as already shown in in Fig. 15, is around 2 s, and the
overhead is less than a tenth of a second. Moreover, the overhead
incurred can be deemed as negligible, as, even when there are
just two small queries (i.e., retrieving only 10 tuples each), the
overhead does not exceed 2.5 %.

Similar observations can be made when the service calls are
remote, as shown in Table 3. In this experiment the client resides
in continental Europe (in Greece in particular), whereas the other
services are on Grid nodes in Manchester in the UK. Due to the
network cost, the response times are higher, but the pattern of the
previous setting is the same: linear increase of QRT and overall
time, and stable XRT and overhead. The former is 6 s while the
latter is approximately 1 s, which is clearly outweighed by other
costs.

To check whether there is still scope to benefit from parallelism
we must check how much of the overall time to evaluate
an integrated task is attributed to query processing. Fig. 17
illustrates these proportions for the less expensive query in Fig. 10

(corresponding to a join query returning 100 tuples for the
“Local-Local” configuration of Table 1) for two settings: when
1 to 16 XMAP services are contacted but the overall number of
equivalent queries remains 16; and when 1 to 16 XMAP services
are contacted each of which returns 16 equivalent queries. The
XMAP services are remote, and all equivalent queries are assumed
to be equal in terms of cost. As can be shown from the figure,
in the first case, the reformulation cost starts dominating when
7 or more XMAP WSs are accessed. However, in the second
case, even when 16 XMAP services are accessed, the associated
cost contributes less than 13% to the aggregate cost. If the most
expensive query of Fig. 10 is considered, then the reformulation
cost is always dominated by the query execution cost (see Fig. 18).
When 16 queries are returned by 16 services, it is just over
20% of the aggregate cost, and it becomes negligible when each
service returns 16 queries. Finally, in previous experiments, we
have found out that, when a single service is contacted, the
query reformulation cost does not increase with the number of
equivalent queries returned, contrary to what happens with the
aggregate query execution time.

In summary, the conclusions that can be drawn are twofold:
firstly, there is no single property of the input queries (such as
the result size or the number of database entries retrieved) that
the overhead depends on. The cost to reformulate and translate
queries, and the system overhead are both stable, which entails
that if we are able to estimate (with the help of a cost model,
or based on previous experience) the execution time of queries,
we can find the overall execution time by adding to the query
execution cost the flat overhead and the cost to access the services
holding the semantic mappings. Secondly, the overheads still allow
query evaluation to benefit from parallelism when the queries
are not very small, and as such, the query execution cost that
is parallelisable in general, is the dominant cost. In other words,
after the extensions added to OGSA-DQP to integrate the query
reformulation functionality, it is still the case that parallelism can
yield performance benefits.

6. Summary

The contribution of this work is the proposal of a unifying
architecture and of an approach that combines a semantic data
integration methodology with existing services for querying Grid-
enabled distributed databases, followed by real implementation
and testing. This architecture is used for providing an enhanced,
data integration-enabled service middleware for data Grids. The
architecture employs a wrapper-mediator approach for distributed
query processing across autonomous databases exposed as Grid
resources, and a decentralized model for establishing semantic
connections between such databases. The instantiation of this
architecture is service-based and builds upon two existing
artefacts, namely OGSA-DQP for distributed query processing, and
XMAP for semantic query reformulation. The paper, apart from
describing the generic model and the system developed, presents
evaluation results that provide insights into the actual behavior
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Fig. 17. The overall and query execution response times for “Local-Local” queries returning 100 tuples (i) when there are 16 semantic queries overall (left), and (ii) when

there are 16 semantic queries returned by each XMAP WS contacted (right).
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Fig. 18. The overall and query execution response times for “Remote-Remote” queries returning 10K tuples (i) when there are 16 semantic queries overall (left), and

(ii) when there are 16 semantic queries returned by each XMAP WS contacted (right).

of the prototype when remote Grid-enabled data sources are
accessed. The results show that the additional cost is both stable
and relatively low, which renders the practical application of the
proposal appealing.
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