Design and Implementation of the gLite CREAM Job
Management Service

Cristina Aiftimiei®!, Paolo Andreetto®, Sara Bertocco®, Simone Dalla Fina?,

Alvise Dorigo?, Eric Frizziero®, Alessio Gianelle®, Moreno Marzolla*P,

Mirco Mazzucato®, Massimo Sgaravatto®, Sergio Traldi®, Luigi Zangrando®

@Jstituto Nazionale di Fisica Nucleare (INFN)
via Marzolo 8, I-35131 Padova (Italy)
b Dipartimento di Scienze dell’Informazione, Universita di Bologna
Mura A. Zamboni 7, I-40127 Bologna (Italy)

Abstract

Job execution and management is one of the most important functionality
provided by every modern Grid systems. In this paper we describe how
the problem of job management has been addressed in the glite middleware
by means of the CREAM and CEMonitor services. CREAM (Computing
Resource Execution and Management) provides a job execution and man-
agement capability for Grids, while CEMonitor is a general-purpose asyn-
chronous event notification framework. Both components expose a Web Ser-
vice interface allowing conforming clients to submit, manage and monitor
computational jobs to a Local Resource Management System.

Key words: Web Services, gLite Middleware, Grid Computing, Grid Job

*Corresponding Author. Address: Dipartimento di Scienze dell’Informazione, Univer-
sita di Bologna, Mura A. Zamboni 7, 1-40127 Bologna, Italy. This work was done while
the author was with the Istituto Nazionale di Fisica Nucleare (INFN), Padova, Italy.

Email addresses: cristina.aiftimiei@pd.infn.it (Cristina Aiftimiei),
paolo.andreetto@pd.infn.it (Paolo Andreetto), sara.bertocco@pd.infn.it
(Sara Bertocco), simone.dallafina@pd.infn.it (Simone Dalla Fina),
alvise.dorigo@pd.infn.it (Alvise Dorigo), eric.frizziero@pd.infn.it
(Eric Frizziero), alessio.gianelle@pd.infn.it (Alessio Gianelle),
marzolla@cs.unibo.it (Moreno Marzolla), mirco.mazzucato@pd.infn.it
(Mirco Mazzucato), massimo.sgaravatto@pd.infn.it (Massimo Sgaravatto),
sergio.traldi@pd.infn.it (Sergio Traldi), luigi.zangrando@pd.infn.it
(Luigi Zangrando)

1On leave from NIPNE-HH, Romania

Preprint submitted to Future Generation Computer Systems December 24, 2009

Management Service, Notification Service

1. Introduction

Grid middleware distributions are often large software artifacts, which
include a set of components providing a basic functionality. Such capa-
bilities include (but are not limited to) data storage, authentication and
authorization, resource monitoring, and job management. The job manage-
ment component is used to submit, cancel, and monitor jobs which are exe-
cuted on a suitable computational resource, usually referred as a Computing
Element (CE). A CE is the interface to a usually large farm of computing
hosts managed by a Local Resource Management System (LRMS), such as
LSF or PBS. Moreover, a CE implements additional features with respect to
the ones provided by the underlying batch system, such as Grid-enabled user
authentication and authorization, accounting, fault tolerance and improved
performance and reliability.

In this paper we describe the architecture of Computing Resource Ex-
ecution and Management (CREAM), a system designed to efficiently man-
age a CE in a Grid environment. CREAM provides a simple, robust and
lightweight service for job operations. It exposes an interface based on Web
Services, which enables a high degree of interoperability with clients written
in different programming languages: currently Java and C++ clients are pro-
vided, but it is possible to use any language with a Web Service framework.
CREAM itself is written in Java, and runs as an extension of a Java-Axis
servlet inside the Apache Tomcat application server [1].

As stated before, it is important for users to be able to monitor the sta-
tus of their jobs. This means checking whether the job is queued, running,
or finished; moreover, extended status information (such as exit code, fail-
ure reason and so on) must be obtained from the job management service.
While CREAM provides an explicit operation for querying the status of a
set of jobs, it is possible to use a separate notification service in order to be
notified when a job changes its status. This service is provided by CEMoni-
tor, which is a general-purpose asynchronous notification engine. CEMonitor
can be used by CREAM to notify the user about job status changes. This
feature is particularly important for specialized CREAM clients which need
to handle a large amount of jobs. In these cases, CEMonitor makes the ex-
pensive polling operations unnecessary, thus reducing the load on CREAM
and increasing the overall responsiveness.

CREAM and CEMonitor are part of the gLite [2] middleware distribution
and currently in production use within the EGEE Grid infrastructure [3].
Users can install CREAM in stand-alone mode, and interact directly with it
through custom clients or using the provided C++-based command line tools.
Moreover, glLite users can transparently submit jobs to CREAM through
the glite Workload Management System (WMS). For the latter case, a
special component called Interface to Cream Environment (ICE) has been
developed. ICE receives job submission and cancellation requests coming
from a glLite WMS, and forwards these requests to CREAM. ICE then
handles the entire lifetime of a job, including registering each status change
to the gLite Logging and Bookkeeping (LB) service [4].

1.1. Related Works

The problem of job management is addressed by any Grid system. Dif-
ferent job management services have been developed starting from different
requirements; furthermore, each service must take into account the specific
features of the middleware it belongs to.

The UNICORE (Uniform Interface to Computing Resources) [5] system
was initially developed to allow German supercomputer centers to provide
seamless and secure access to their computational resources. Architecturally,
UNICORE is a three-tier system. The first tier is made of clients, which sub-
mit requests to the second tier (server level). The server level of UNICORE
consists of a Gateway which authenticates requests from UNICORE clients
and forwards them to a Network Job Supervisor (NJS) for further processing.
The NJS maps the abstract requests into concrete jobs or actions which are
performed by the target system. Sub-jobs that have to be run at a different
site are transferred to this site’s gateway for subsequent processing by the
peer NJS. The third tier of the architecture is the target host which executes
the incarnated user jobs or system functions.

The Advanced Resource Connector (ARC) [6] is a Grid middleware devel-
oped by the NorduGrid collaboration. ARC is based on the Globus Toolkit?,
and basically consists of three fundamental components: the Computing Ser-
vice which represents the interface to a computing resource (generally a clus-
ter of computers); the Information System which is a distributed database
maintaining a list of know resources; and a Brokering Client which allows

2Globus and Globus Toolkit are trademarks of the University of Chicago

resource discovery and is able to distribute the workload across the Grid.

The Globus Toolkit provides both a suite of services to submit, moni-
tor, and cancel jobs on Grid computing resources. GRAM4 refers to the
Web Service implementation of such services [7]. GRAM4 includes a set of
WSRF-compliant Web Services [8] to locate, submit, monitor, and cancel
jobs on Grid computing resources. GRAM4 is not a job scheduler, but a
set of services and clients for communicating with different batch/cluster job
schedulers using a common protocol. GRAM4 combines job-management ser-
vices and local system adapters with other service components of the Globus
Toolkit in order to support job execution with coordinated file staging.

Initially, the job management service of the glite middleware was imple-
mented by the legacy LGC-CE [9], which is based on the pre-Web Service
version of GRAM. The development of CREAM was motivated by some
shortcomings of the LCG-CE related to performance and security issues.
These issues and other requirements behind the development of CREAM
will be discussed in Section 3.1.

1.2. Organization of this paper

This paper is organized as follows. In Section 2 we give a high level
overview on the job management chain in the glLite middleware. Then, in
Section 3 we restrict our attention on the CREAM and CEMonitor services:
we illustrate the requirements defined in the glLite design document for the
Computing Element, and give a high level description of CREAM and CE-
Monitor. Internal details on CREAM are given in Section 4, and details
on CEMonitor are given in Section 5. The interactions with CREAM and
CEMonitor which are necessary to handle the whole job submission sequence
are then explained in Section 6. Section 7 describes how CREAM and CE-
Monitor are built and deployed in the glLite production infrastructure. Sec-
tion 8 contains performance considerations, and we discuss conclusions and
future works in Section 9.

2. Job Management in the glLite Middleware

In this section we give a brief introduction to the job management archi-
tecture of the gLite middleware. The interested reader is referred to [2, 9]
for a more complete description.

Fig. 1 shows the main components involved in the gLite job submission
chain. We will consider job submission to the CREAM CE only. The Job-

4

Controller+LogMonitor+CondorG and LCG-CE components are responsible
for job management through the legacy LCG-CE, and will not be described
in this paper.

There are two entry points for job management requests: the gLite
WMS User Interface (UI) and the CREAM UI. Both include a set of
command line tools which can be used to submit, cancel and query the
status of jobs. In gLite, jobs are described using the Job Description
Language (JDL) notation, which is a textual notation based on Condor
classads [10]. In Fig. 1 we have emphasized the paths from the WMS Ul
to CREAM (top) and to the legacy LCG-CE (bottom).

CREAM host

glite Ul host 1.

e
WMS I

% CREAM CLI
F 1l
o % WMProxy 4% WM
’% % % JC+LM+CondorG LGC CE Host

LGC CE

CREAM

gLite WMS host

)
1
1
1

LB Server host

1
1
1
Legacy components !
RN

for submission to the
LB LCG-CE

Figure 1: Job submission chain (simplified) in the gLite middleware. Emphasized paths
are for job submissions from the WMS User Interface to CREAM (top) and to the legacy
LCG-CE (bottom).

The CREAM Ul is used to interact directly with a specific CREAM CE.
It is a set of command line tools, written in C++ using the gSoap engine [11].
The CREAM CLI provides a set of commands to invoke the Web Services
operations exposed by CREAM (the list of available operations is given in
Section 4).

On the other hand, the glite WMS UI allows the user to submit and
monitor jobs through the gLite Workload Management System (WMS) [12].
The WMS is responsible for the distribution and management of tasks across
Grid resources (in particular Computing Elements), in such a way that appli-

cations are efficiently executed. Job management through the WMS provides
many benefits compared to direct job submission to the CE:

e The WMS can manage multiple CEs, and is able to forward jobs to the
one which better satisfies a set of requirements, which can be specified
as part of the job description;

e The WMS can be instructed to handle job failures: if a job aborts due
to problems related to the execution host (e.g. host misconfiguration)
the WMS can automatically resubmit it to a different CE;

e The WMS provides a global job tracking facility using the LB service;

e The WMS supports complex job types (job collections, job with de-
pendencies) which can not be handled directly by the CEs.

Note that there is a many to many relationship between the gLite
WMS UI and the WMS, that is, multiple User Interfaces can submit to the
same WMS, and multiple WMSs can be associated with the same WMS UL

The WMS exposes a Web Service interface which is implemented by the
WDMProxy component. The core of the WMS is the Workload Manager
(WM), whose purpose is to accept and satisfy requests for job management.
For job submissions, the WM tries to locate an appropriate resource (CE)
where the job can be executed. The decision of which resources should be
used is the outcome of the matchmaking process between the requests and
the available resources. The user can specify a set of requirements in the job
description. These requirements represent a set of constraints which the WM
tries to satisfy when selecting the CE where the job will be executed.

Currently, the gLite WMS can submit jobs to CREAM and to the legacy
LCG-CE. Each CE is uniquely identified by a URI called ce-id. Looking at
the ce-id, the WM is able to discriminate whether the job is to be submit-
ted to a CREAM-based CE, or to a LCG-CE (URIs denoting a CREAM CE
have the prefix cream- in the path). Interaction with the LCG-CE is handled
by the Job Controller/Log Monitor/CondorG (JC/LM/CondorG) modules
within the WMS. In the case of submission to CREAM-based CEs, jobs
are managed by a different module, called ICE. ICE receives job submis-
sions and other job management requests from the WM component of the
WMS through a simple messaging system based on local files. ICE then uses
the operations of the CREAM interface to perform the requested operation.

Moreover, it is responsible for monitoring the state of submitted jobs and for
taking the appropriate actions when job status changes are detected (e.g. to
trigger a possible resubmission if a Grid failure is detected).

ICE can obtain the state of a job in two different ways. The first one is
by subscribing to a job status change notification service implemented by a
separate component called CEMonitor (more details in Section 5). CEMon-
itor [13] is a general purpose event notification framework. CREAM notifies
the CEMonitor component about job state changes by using the shared, per-
sistent CREAM backend. ICE subscribes to CEMonitor notifications, so it
receives all status changes whenever they occur. As a fallback mechanism,
ICE can also poll the CREAM service to check the status of “active” jobs
for which it did not receive any notification for a configurable period of time.
This mechanism guarantees that ICE knows the state of jobs even if the
CEMonitor service becomes unavailable or has not been installed.

In general, jobs may require a set of input data files to process, and pro-
duce a set of output data files. The set of input files is called InputSandBox
(ISB), and the set of output files is called OutputSandBox (OSB). For both
submission to the LCG-CE and to CREAM, data staging (i.e., copying files
from/to remote locations) is performed by the Job Wrapper (JW) which
runs on the execution node and which encompasses the run of the actual
user payload. In either cases, the WM component can safely assume that
data staging is performed downstream on the job submission chain.

The LB service [4] is used by the WMS to store various information on
running jobs, and provide the user with an overall view on the job state.
The service collects events in a non blocking asynchronous way, and this
information can be used to compute the job state. LB is also used to store
events such as the transfer of jobs from one component to another one (e.g.,
from the WMproxy to the WM): in this way, the user knows the location of
each job. The job status information gathered by the LB is made available
through the glite Ul commands. Note that in case of direct submissions
through the CREAM UI, the LB service is not used; however, CREAM itself

provides the JobInfo operation for reporting detailed job status information.

3. CREAM and CEMonitor

3.1. Requirements

The development of CREAM and CEMonitor has been driven by the need
to provide a modern replacement of the LCG-CE for the glLite middleware.

7

The legacy LCG-CE suffered from several problems, including:

e Security issues; in particular, the LCG-CE does not support proper

delegation of user credentials;

Poor performance: the CE could sustain a low submission rate even on
modern hardware (see Section 8 for actual measurements);

Reliability issues: in some situations, user jobs disappeared from the
Grid, while still running on the execution node. In these situations,
only site administrators could terminate such “zombie” jobs.

Lack of support: the code was no longer maintained, so fixing bugs and
making any improvement was increasingly difficult. For this reason, the
EGEE project decided to start the development of a new Computing
Element.

A set of requirements for the new CE were identified and described in the
EGEE design document [14]. Thus, the development of CREAM and CE-
Monitor was constrained by these requirements, which also affected many
architectural decisions which were made. The main (non functional) require-
ments can be summarized as follows:

R1.

R2.

Ezxpose a Web Service interface. One of the cornerstones defined in [14]
is the adoption of the Service Oriented Architecture (SOA) paradigm.
According to the SOA, a complex software system should be realized
as a collection of loosely coupled components, each one providing a
specific service. The SOA paradigm can be implemented in different
ways, the most common one being through Web Services technologies
based on the family of XML languages. Thus, CREAM and CEMonitor
expose Web Service interfaces, defined using the Web Service Descrip-
tion Language (WSDL) notation; details are given in Sections 4 and 5.
Despite the fact that processing XML messages implies a considerable
overhead with respect to ad-hoc binary message protocols, this over-
head was considered acceptable for this particular use case.
Authentication based on VOMS proxies. Authentication in gLite is cur-
rently based on the Public Key Infrastructure (PKI) using GSI proxies
with VOMS extensions [15]. For this reason, CREAM and CEMoni-
tor (like every other component in glite) must support authentication
and authorization based on VOMS proxies. Section 3.3 contains more
details on the security infrastructure.

8

R3. Support for proper credential delegation. The glite architecture heavily
relies on the mechanism of delegation to securely transfer user’s creden-
tials to a service. The delegated service can then act on behalf of the
user as long as the delegation remains valid (see Section 3.3). There-
fore, CREAM supports credential delegation, because it needs to access
input and output data files stored on remote locations. Note that cre-
dential delegation is computationally heavy, and if abused can greatly
reduce the submission throughput to a CREAM CE (see Section 8 for
performance considerations).

R4. Support for multiple batch systems The Compute Element must support
multiple different batch systems (LSF, PBS/Torque, and others).

R5. Provide an asynchronous notification service for job status changes.
Explicit polling of jobs on the execution service is not always efficient,
especially when a large number of jobs are in execution on the under-
lying batch system. This motivated the development of CEMonitor,
which can be coupled with CREAM to notify users each time one of
their jobs changes status. CEMonitor is described in Section 5.

R6. Ability to operate as stand-alone components. CREAM and CEMonitor
were developed to be usable also as stand-alone components, that is,
outside the glLite WMS service. This proved to be a wise decision, as the
recent trend in the area of Grid middleware development is to assemble
middlewares from interoperable components [16]. Section 8 reports
the experience of the ALICE high energy physics experiment which is
uging CREAM in stand-alone mode, that is, without the glLite WMS.

R7. Minimum performance and reliability requirements: the EGEE deploy-
ment team defined a set of minimum performance and reliability re-
quirements for the CE which had to be satisfied before the certification
process could start. According to these requirements, the CE must
handle 5000 simultaneously running jobs submitted from at least 50
different users. The CE must handle the abovementioned load for one
month, during which it must run unattended without significant per-
formance degradation. The acceptable job failure rate due to the CE
must be less than 0.1% over a period of one month. Performance results
are described in Section 8.

In order to reduce the development effort, CREAM and CEMonitor rely
on some libraries and software packages developed by the EGEE collabora-
tion. In particular, CREAM use the gLite delegation service to implement

9

credential delegation (needed by requirement R3), and support for multiple
batch systems (needed by requirement R4) is provided by Batch-system Lo-
cal ASCII Helper (BLAH). Additional security components used by CREAM
are LCAS, LCMAPS and glExec, described in Section 3.3.

3.2. Deployment Layout

Fig. 2 shows the typical deployment of a Computing Element based
on CREAM and CEMonitor. Both applications run as Java-Axis servlets [17]
in the Tomcat application server [1]. Requests to CREAM and CEMonitor
traverse a pipeline of additional components which take care of authoriza-
tion issues; one of these components is the Authorization Framework, which
is an Axis plugin for validating and authorizing the requests received by the
services (more details on the security infrastructure will be given shortly).

CREAM uses an external relational database to store its internal state.
This improves fault-tolerance as it guarantees that this information is pre-
served across restarts of CREAM. Moreover, the use of a SQL database
improves responsiveness of the service while performing queries which are
needed by the normal CREAM operations, such as getting the list of jobs
associated with a specific user. The database, which is associated to a sin-
gle CREAM instance, is accessed through the JDBC interface; in the glLite
deployment we are using MySQL [18], but any database accessible through
JDBC is supported. Note that the database server can be installed on a ded-
icated host, as shown in Fig. 2, or can share the same machine as CREAM
and CEMonitor.

CREAM interacts with CEMonitor [13] to provide an asynchronous job
status notification service. For each job status change, CREAM notifies CE-
Monitor, which in turn check whether there are subscriptions registered for
that notification. If so, the notification is sent to the user which requested
that. Further information on CEMonitor will be given in Section 5. Note
that it is also possible to use CREAM without CEMonitor, for example
if CREAM is installed behind a firewall which blocks outbound connections.
In this case, of course, asynchronous job status change notifications are not
available.

CREAM can be associated to multiple batch queues (note the one-to-
many association shown in Fig. 2). CREAM submits requests to the LRMS
through BLAH [19], an abstraction layer providing a unified interface to the
underlying LRMS. BLAH, in turn, interacts with the client-side LRMS en-
vironment, which might consist of a set of command line tools which interact

10

CREAM CE

Tomcat

Axis

Authz Fwk

g Delegation
CREAM DB Host |
(-
% SQL DB Server

% CREAM
LRMS head node x| 3

T
Server-side LRMS 1 Axis
L
% CEMon Authz Fwk

Authz Fwk

oh b

Trust Manager

v

|

Figure 2: Typical deployment of a CREAM service

with the server-side LRMS. At the time of writing BLAH supports LSF,
PBS/Torque, and Condor [20]; support for Sun Grid Engine (SGE) is cur-
rently being implemented as well. It is also possible to create other, ad-hoc
connectors to interact with other types of batch systems. Note that a single
instance of CREAM can provide access to multiple underlying LRMS.

3.3. Security

The Grid is a large collaborative resource-sharing environment. Users
and services cross the boundaries of their respective organizations and thus
resources can be accessed by entities belonging to several different institu-
tions. In such a scenario, security issues are of particular relevance. There
exists a wide range of authentication and authorization mechanisms, but
Grid security requires some extra features: access policies are defined both
at the level of Virtual Organizations (VOs) and at the level of single resource
owners. Both these aspects must be taken into account. Moreover, as we
will see in the following, Grid services have to face the problem of dealing
with the delegation of certificates and the mapping of Grid credentials into
local batch system credentials.

Trust Manager. The Trust Manager is the component responsible for car-
rying out authentication operations. It is external to CREAM and CE-
Monitor, and is an implementation of the J2EE security specifications [21].

11

Authentication is based on PKI. Each user (and Grid service) wishing to
access CREAM or CEMonitor is required to present an X.509 format cer-
tificate [22]. These certificates are issued by trusted entities, the Certificate
Authorities (CA). The role of a CA is to guarantee the identity of a user.
This is achieved by issuing an electronic document (the certificate) that con-
tains the information about the user and is digitally signed by the CA with
its private key. An authentication manager, such as the Trust Manager, can
verify the user identity by decrypting the hash of the certificate with the
CA public key. This ensures that the certificate was issued by that spe-
cific CA. The Trust Manager can then access the user data contained in the
certificate and verify the user identity. One interesting challenge in a Grid
environment is the so-called prozy delegation. It may be necessary for a job
running on a CE to perform some operations on behalf of the user owning
the job. Those operations might require proper authentication and autho-
rization support. For example, we may consider the case where a job running
on a CE has to access a Storage Element (SE) to retrieve or upload some
data. This aim is achieved in the Trust Manager using proxy certificates.
RFC3820 proxy certificates are an extension of X.509 certificates [23]. The
generation of a proxy certificate is as follows. If a user wants to delegate
her credential to CREAM, she has to contact the delegation Port-type of the
service. CREAM creates a public-private key pair and uses it to generate
a Certificate Sign Request (CSR). This is a certificate that has to be signed
by the user with her private key. The signed certificate is then sent back
to CREAM. This procedure is similar to the generation of a valid certificate
by a CA and, in fact, in this context the user acts like a CA. The certificate
generated so far is then combined with the user certificate, thus forming a
chain of certificates. The service that examines the proxy certificate can then
verify the identity of the user that delegated its credentials by unfolding this
chain of certificates. Every certificate in the chain is used to verify the au-
thenticity of the certificate at the previous level in the chain. At the last step,
a CA certificate states the identity of the user that first issues the delegated

proxy.

Authorization Framework. The aim of the authorization process is to check
whether an authenticated user has the rights to access services and resources
and to perform certain tasks. The decision is taken on the basis of policies
that can be either local or decided at the VO level. Administrators need a
tool that allows them to easily configure the authorization system in order to

12

combine and integrate both these policies. For this reason, CREAM adopts
a framework that provides a light-weight, configurable, and easily deployable
policy-engine-chaining infrastructure for enforcing, retrieving, evaluating and
combining policies locally at the individual resource sites. The framework
provides a way to invoke a chain of policy engines and get a decision re-
sult about the authorization of a user. The policy engines are divided in
two types, depending on their functionality. They can be plugged into the
framework in order to form a chain of policy engines as selected by the ad-
ministrator in order to let him set up a complete authorization system. A
policy engine may be either a Policy Information Point (PIP) or a Policy
Decision Point (PDP). PIPs collect and verify assertions and capabilities
associated with the user, checking her role, group and VO attributes. PDPs
may use the information retrieved by a PIP to decide whether the user is al-
lowed to perform the requested action, whether further evaluation is needed,
or whether the evaluation should be interrupted and the user access denied.
In CREAM both VO and “ban/allow” based authorizations are supported.
In the former scenario, implemented via the VOMS PDP, the administrator
can specify authorization policies based on the VOs the jobs’ owners belong
to (or on particular VO attributes). In the latter case the administrator of
the CREAM-based CE can explicitly list all the Grid users (identified by their
X.509 Distinguished Names) authorized to access CREAM services. For what
concerns authorization on job operations, by default each user can manage
(e.g. cancel, suspend, etc.) only her own jobs. However, the CREAM ad-
ministrator can define specific “super-users” who are empowered to manage
also jobs submitted by other users.

Credential Mapping. The execution of user jobs in a Grid environment re-
quires isolation mechanisms for both applications (to protect these applica-
tions from each other) and resource owners (to control the behavior of these
arbitrary applications). In the absence of solutions based on the virtualiza-
tion of resources (VM), CREAM implements isolation via local credential
mapping, exploiting traditional Unix-level security mechanisms like a sepa-
rate user account per Grid user or per job. This Unix domain isolation is im-
plemented in the form of the gLExec system [24], a sudo-style program which
allows the execution of the user’s job with local credentials derived from the
user’s identity and any accompanying authorization assertions. This relation
between the Grid credentials and the local Unix accounts and groups is de-
termined by the Local Credential MAPping Service (LCMAPS) [25]. gLExec

13

also uses the Local Centre Authorization Service (LCAS) to verify the user
proxy, to check if the user has the proper authorization to use the gLExec
service, and to check if the target executable has been properly “enabled” by
the resource owner.

4. The CREAM service

The main functionality of CREAM is job management. Users submit jobs
described as a JDL expression [26], and CREAM executes it on an underlying
LRMS (batch system). The JDL is a high-level, user-oriented notation based
on Condor classified advertisements (classads) [10] for describing jobs and
their requirements. CREAM uses a JDL dialect which is very similar to
the one used to describe jobs in the glite WMS. There are however some
differences between the CREAM and WMS JDL, which are motivated by
the different role of the job execution and workload management services.
As described in Section 2, the glLite WMS receives job submission requests
which possibly include a set of user-defined requirements, which are used
by the WM to select the CE where the job is executed. Of course, once
the selection is done, there is no need for the CE to further process the job
requirements as they are no longer relevant. Similarly, there are other kind
of information which only make sense for the CREAM JDL, and not for
the WMS JDL.

CREAM supports the execution of batch (normal) and parallel (MPI)
jobs. Normal jobs are single or multithreaded applications requiring one
CPU to be executed; MPI jobs are parallel applications which usually require
a larger number of CPUs to be executed, and which make use of the MPI
library for interprocess communication.

As already introduced in Section 2, applications executed by CREAM
might request a set of input data files to process (ISB), and might produce a
set of output data files (OSB). CREAM transfers the ISB to the executing
node from the client node and/or from Grid storage servers. The ISB is
staged in before the job is allowed to start. Similarly, files belonging to
the OSB are automatically transferred out of the execution node when the
job terminates.

As an example, consider the following JDL processed by CREAM:

[
Type = "job";

14

JobType = "normal";

Executable = "/sw/command";
Arguments = "60";

StdOutput = "sim.out";
StdError = "sim.err";

OutputSandbox = {
"sim.err",
"sim.out"
3
OutputSandboxBaseDestURI = "gsiftp://sel.pd.infn.it:5432/tmp";
InputSandbox = {
"file:///home/user/filel",
"gsiftp://sel.pd.infn.it:1234/data/file2",
"/home/user/file3",
"file4"
3
InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

With this JDL a normal (batch) job will be submitted. Besides the
specification of the executable /sw/command (which must already be available
in the file system of the executing node, since it is not listed in the ISB), and
of the standard output /error files, it is specified that the files filel, file2,
file3, filed will have to be transferred to the executing node as follows:

e filel and file3 will be copied from the client UI file system

e file2 will be copied from the specified GridFTP server
(gsiftp://sel.pd.infn.it:1234/data/file2)

e filed will be copied from the GridFTP server specified by the
InputSandboxBaseURI JDL attribute (gsiftp://se2.cern.ch:5678/tmp)

It is also specified that the files sim.err and sim.out (specified
by the OutputSandbox attribute) must be automatically uploaded into
gsiftp://sel.pd.infn.it:5432/tmp when the job completes its execution.

The pre- and post-staging of data is handled by a shell script, called Job
Wrapper (JW), which is what is actually sent for execution on the LRMS. As
the name suggests, the script “wraps” the executable by taking care of fetch-
ing external data, then calling the executable and finally putting the output

15

data to the correct remote locations. The JW is assembled by CREAM
according to the JDL and sent to the LRMS.

Other typical job management operations (job cancellation, job status
with different levels of verbosity and filtering, job listing, job purging) are
supported. Moreover users are allowed to suspend and resume jobs submitted
to CREAM-based CEs, provided that the underlying LRMS supports this
feature.

For what concerns security, authentication (implemented using a GSI
based framework [7]) is properly supported in all operations. Authoriza-
tion on the CREAM service is also implemented, supporting both VO based
policies and policies specified in terms of individual Grid users. A Virtual
Organization is a concept that supplies a context for operation of the Grid
that can be used to associate users, their requests, and a set of resources.
CREAM interacts with the VO Membership Service (VOMS) [15] to man-
age VOs; VOMS is an attribute issuing service which allows high-level group
and capability management and extraction of attributes based on the user’s
identity. VOMS attributes are typically embedded in the user’s proxy certifi-
cate, enabling the client to authenticate as well as to provide VO membership
and other evidence in a single operation.

Authorization Layer (VOMS) Authentication Layer (TLS/SSL) |
CREAM |
<<interface>> <<interface>>
+ BES Interface + Legacy Interface
<<realize>> 1 I <<realize>>

.
| + CREAM Core

<<interface>>
+ CommandManager 0..

<<realize>> i

L
+ JobCommand |

+ JobRegisterCmd + JobStartCmd

Client-side LRMS
+BLAH

Figure 3: CREAM internal architecture

+ OtherCmd |

16

Fig. 3 shows the (simplified) internal structure of CREAM. As can be
seen, CREAM exposes two different Web Service interfaces, which are shown
in Fig. 3: a legacy interface, and a Basic Execution Service (BES)-compliant
one. The operations of the legacy interface are listed in Table 1.

Lease Management Operations

SetLease
GetLease
JobSetLeaseld
GetLeaseList
DeleteLease

Creates a new lease, or renews an existing lease
Gets information on a lease with given 1D
Associates a lease with a job

Gets the list of all active leases

Deletes a lease, and purge all associated jobs

Job Management Operations

JobRegister
JobStart
JobCancel
JobPurge
JobSuspend
JobResume
JobStatus
JobInfo
JobList

Registers a new job for future execution
Starts execution of a registered job
Request terminates a job

Purges all information of a job
Suspends execution of a running job
Resumes execution of a suspended job
Gets the status of a job

Gets detailed information about a job
Gets the list of all active jobs

Service Management Operations

acceptNewJobSubmissions

getServicelnfo

Enables/disables new job submissions

Gets general information about the service

Table 1: CREAM interface operations

The first group of operations (Lease Management) allows the user to de-
fine and manage leases associated with jobs. When job submissions arrive
through the gLite WMS, it is essential that all jobs submitted to CREAM
eventually reach a terminal state (and thus eventually get purged from the
CREAM server), even in cases when CREAM can no longer be contacted due
to network partitioning. The glite WMS has been augmented with an ad-
ditional component, ICE, which is responsible for interacting with CREAM.
ICE and CREAM use a lease-based protocol to ensure that all jobs get even-
tually purged by CREAM. Each job submitted through ICE has an asso-

17

ciated lease time, which must be periodically renewed using the JobLease
CREAM operation. ICE is responsible for renewing the leases associated to
active jobs, i.e. jobs which are not yet terminated. Should a lease expire
before the actual termination of a job, CREAM will purge all jobs associated
with that lease and free all the CE resources used by them.

The second group of operations (Job Management) is related to the core
functionality of CREAM as a job management service. Operations are pro-
vided to create a new job, start execution of a job, suspend/resume or ter-
minate a job. Moreover, the user can get the list of all owned jobs, and it is
also possible to get the status of a set of jobs. The CREAM job state model
is shown in Fig. 4, and job states are described in Table 2.

4 N\

Held

JobRegister Idle-Held Running-Held ReallyRunning-Held
(Registered)

JobSuspend JobResume JobSuspend| JobResume JobSuspend JobResume

JobStart

E Pending : LRMS assgigns ID Idle LRMS executes J Running LRMS Executes the Jol Really—Running)

Job Terminates with errors Job Terminates Succesfully
JobCancel
LRMS Submission Failed Job Terminates with errors
(Cancelled \ (Done-Failed \ (Done-OK)

o

Figure 4: CREAM job states

Finally, the third group of operations (Service Management) deals
with the whole CREAM service. It consists of two operations, one for
enabling/disabling new job submissions, and one for accessing general infor-
mation about the service itself. Note that only users with administration
privileges are allowed to enable/disable job submissions.

Recently we implemented an additional interface to the CREAM service,
compliant with the Basic Execution Service (BES) specification. BES [27]
defines a standard interface for execution services provided by different Grid
systems. The aim of BES is to favor interoperability of computing elements
between different Grids: the same BES-enabled CE could be “plugged” into

18

Registered The job has been submitted to CREAM with the JobRegister

operation

Pending The user invoked the JobStart operation to start the job exe-
cution

Idle The LRMS (batch system) accepted the job for execution.
The job is now in the LRMS queue

Running The Job Wrapper is being executed

Really-Running The actual user job is being executed

Held The job has been suspended, e.g. because the user issued the
JobSuspend operation. The job can be resumed in its previous
state with the JobResume operation

Done-OK The job terminated correctly

Done-Failed The job terminated with errors

Cancelled The job has been cancelled, e.g. because the user invoked the
JobCancel operation to terminate it

Aborted Submission to the LRMS failed

Table 2: Description of the CREAM job states

any compliant infrastructure. BES defines basic operations for job submis-
sion and management. More specifically, the BES specification defines two
Web Services port-types: BES-Factory, containing operations for creating,
monitoring and controlling sets of jobs, and BES-Management, which allows
clients to monitor the details of and control the BES itself. The Port-types
and associated operations are shown in Table 3.

BES uses the Job Submission Description Language (JSDL) [28] as the
notation for describing computational jobs. The legacy CREAM interface
was defined before BES was available, and also provides additional meth-
ods which are not provided by BES (notably, the possibility to renew a
user proxy certificate, which is useful to avoid user proxy expiration while
a job is running). The BES interface for CREAM uses a different security
mechanism, which is based on Security Assertion Markup Language (SAML)
assertions [29]. It should be observed that there are currently no production
users of the BES/JSDL/SAML interface for CREAM; we consider the cur-
rent BES and JSDL specifications too limited to be usable in production [30],
so we are putting effort in improving these specifications within the Open
Grid Forum (OGF) community, rather than support them as they are now.

19

BES-Management Port-type

StartAcceptingNewActivities Administrative operation: requests that the
BES service start accepting new activities

StopAcceptingNewActivities Administrative operation: requests that the
BES service stop accepting new activities

BES-Factory Port-type

CreateActivity Requests the creation of a new activity; in
general, this operation performs the submis-
sion of a new computational job, which is im-
mediately started

GetActivityStatuses Requests the status of a set of activities

TerminateActivities Requests termination of a set of activities

GetActivityDocuments Requests the JSDL document for a set of ac-
tivities

GetFactoryAttribute Document Requests the XML document containing the
properties of this BES service

Table 3: BES Port-Types and Operations

CREAM can be seen as an abstraction layer on top of an LRMS (batch
system), which extends the LRMS capabilities with an additional level of
security, reliability, and integration with a Grid infrastructure. CREAM
supports different batch systems (requirement R4 on Section 3.1) through
the concept of LRMS connectors. An LRMS connector is an interface for
a generic batch system. Currently, CREAM supports all the batch systems
supported by BLAH [19] through a specific instance of LRMS connector
called the BLAH connector module.

CREAM has been developed around an internal core, which is a generic
command executor. The core accepts abstract commands which are en-
queued and executed by a pool of threads. It is possible to customize the
core by defining concrete implementations of the abstract command inter-
face. Two kind of commands can be defined: synchronous and asynchronous.
Synchronous commands must be executed immediately upon receipt, while
asynchronous command execution can be deferred at a later time. Moreover,
it is possible to define sequential or parallel commands. When a parallel
command is being executed, other commands (parallel or sequential) can be
concurrently executed by other threads in the pool. When a sequential com-

20

mand is being executed, no other commands operating on the same job are
executed by any other thread, until the sequential command terminates. The
job management interfaces (both the BES and the legacy one) instantiate the
correct command type to execute the operations requested by the users.

During the development of CREAM, several design decisions were made
in order to cope with the main limitations of job management systems: a
single operation can take a significant amount of time to complete (depending
on the number of running jobs and/or the kind of underlying LRMS), so
that clients are prone to experience broken connections due to timeouts.
This problem is essential rather than accidental (using the terminology of
Brooks [31]) because it is dependent on the underlying LRMS. In order to
cope with this, the following design decisions were applied:

e Process user requests asynchronously. Given that a single job manage-
ment operation can, in the worst case, take tens of seconds to complete,
the methods exposed by the CREAM interface return as soon as the
appropriate LRMS operation has been scheduled for execution. For ex-
ample, if the JobCancel operation returns succesfully, it does not mean
that the job has been cancelled, but only that the appropriate LRMS
cancel operation has been scheduled. Actual cancellation might require
a longer time, and might even fail eventually due to LRMS internal rea-
sons. After succesfully issuing the JobCancel operation, the client must
either check with JobStatus if the job has actually been terminated, or
wait to receive an appropriate asynchronous status change notification.

e Bulk operations. Job management usually involves users sending hun-
dreds of jobs to a single CE. Sometimes the client wants to execute
the same operation on many jobs, e.g., cancel all running jobs, check
the status of all running jobs and so on. Issuing a single command for
each job is inefficient, so CREAM supports bulk commands. Most of
the operations shown in Table 1 accept a list of job IDs as input, and
apply the same operation to all jobs whose ID appears in the list. If
the underlying batch system supports bulk operations as well, BLAH
issues a single bulk command to the LRMS, otherwise multiple individ-
ual commands are sent. Asynchronous command execution is especially
important in the case of bulk commands, because their completion is
likely to require a much longer than the SOAP connection timeout.

e Favor notifications over polling. Querying the status of a large num-

21

ber of jobs is a particularly slow operation; unfortunately, it is also
one of the most frequently invoked ones, so it must be supported effi-
ciently,. CREAM addresses this problem in two ways. The first is to
rely on BLAH for receiving status change notifications from the LRMS.
BLAH can parse the LRMS log files to get status changes without us-
ing the (usually slow) command line tools provided by the batch sys-
tem. CREAM stores all status changes for each job in its internal
SQL database, so a JobStatus or JobInfo operation only involve a SQL
query. The second is to provide users with an asynchronous job status
notification system provided by CEMonitor (see Section 5).

o Master-Worker paradigm. CREAM, as any other job management ser-
vice, must be able to accept and process multiple commands in parallel.
In order to do so, command execution is delegated to a pool of worker
threads. If different commands are related to different LRMSs, they
can be actually executed in parallel, reducing the response time as
observed by clients.

5. The CEMonitor Service

The purpose of CEMonitor is to provide an asynchronous event notifi-
cation framework, which can be coupled with CREAM to notify the users
when job status changes occur.

Figure 5 shows the internal structure of the CEMonitor service. Similarly
to CREAM, CEMonitor is a Java application which runs in an Axis container
within the Tomcat application server. CEMonitor uses the same authenti-
cation/authorization mechanisms as CREAM, which has been discussed in
Section 3. The operations supported by CEMonitor are shown in table 4.

CEMonitor publishes information as topics. For each topic, CEMonitor
maintains the list of events to be notified to users. Topics can have three
different levels of visibility: public, meaning that everybody can receive events
associated with the topic; group, meaning that only member of a specific VO
can receive notifications; and user, meaning that only the user which created
the topic can receive notifications. Users can create subscriptions for topics
of interest. Each subscription has a unique ID, an expiration time and an
update frequency f. CEMonitor checks every 1/f seconds whether there are
new events for the topic associated to the subscription; if so, the events are
sent to the subscribed users. Unless a subscription is explicitly renewed by

22

Authorization Layer (VOMS) Authentication Layer (TLS/SSL)

CEMonitor |

+ Action |—| + Event |

<<interface>> 0.*
+ CEMonitorPort ?0 .
T
<<realize>> + Topic
: + Subscription 0.* P
" - +Visibility : TopicVisibili
+ CEMonitorService ~ 0.* +requency : Integer 1 Y- Top ty

+ QueryLanguage
+ Sensor

+ Dialect
A D

Figure 5: Internal structure of CEMonitor

its creator, it is removed after the expiration time and no more events will
be notified.

Each topic is produced by a corresponding sensor. A sensor is a com-
ponent which is responsible for actually generating events to be notified for
a specific topic. Sensors can be plugged at runtime: when a new sensor is
added, CEMonitor automatically instantiates the corresponding topic users
can subscribe to. The most important sensor we currently use is called Job-
Sensor, which fires an event for each job status changes. When CREAM
detects that a job changes its status (for example, an Idle job starts execu-
tion, thus becoming Running), it notifies the JobSensor by sending a message
on the network socket where the sensor is listening. Then, the JobSensor
triggers a new notification which is eventually sent to all subscribed users.

Each sensor can provide either asynchronous notifications to registered
listeners, or can be queried synchronously. In both cases, sensors support a
list of so-called query languages. A query language is a notation (e.g., XPath,
classad expressions and so on) which can be used to ask a sensor to provide
only events satisfying a user-provided condition. When an event satisfies a
condition, CEMonitor triggers an action on that event. In most cases, the
action simply instructs CEMonitor to send a notification to the user for that
event. Of course, it is possible to extend CEMonitor with additional types
of user-defined actions. When registering for asynchronous notifications with

23

the Subscribe operation (see Table 4), the user passes a query expressed in
one of the supported query languages as parameter. For that subscription,
only events matching the query are notified.

Sensors support different dialects. A dialect is a specific output format
which can be used to render events. This means that a sensor can publish
information in different formats (e.g., job status change information could
be made available either in Condor classad format [10], or in XML format).
When a user subscribes to a topic, she can also specify an appropriate di-
alect for rendering the notifications. CEMonitor will then apply the correct
rendering before sending the notifications.

We show in Fig. 6 an example of job status change notification. The
notification is in Condor classad format, and contains a set of attributes with
their associated values. CREAM_JOB_ID is the ID of the job which changed
status; CREAM_URL is the endpoint of the CREAM service where the job
is being executed; JOB_STATUS is the current job status (in human-readable
format); TIMESTAMP represents the time (in seconds since epoch) when the job
status change happened; WORKER_NODE is the name of the execution host for
the job. In this case, the job has not started execution yet, so the information
on the worker node is reported as not available. Figure 7 shows an XML
rendering of the same information.

[
CREAM_JOB_ID = "CREAM986407854";
CREAM_URL = "https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2";
JOB_STATUS = "REGISTERED";
TIMESTAMP = "1232444196000";
WORKER_NODE = "N/A"

Figure 6: Job status change notification in classad Dialect

It must be stressed that CEMonitor is not strictly coupled with CREAM.
It is instead a generic framework for information gathering and provisioning.
For example in the context of the Open Science Grid (OSG) ReSS project is
used to manage Grid resource information [32].

24

<status>
<cream_job_id>CREAM986407854</cream_job_id>
<cream_url>

https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2

</cream_url>
<job_status>REGISTERED</job_status>
<timestamp>1232444196000</timestamp>
<worker_node>N/A</worker_node>

</status>

Figure 7: Job status change notification in XML Dialect

6. Putting the components together

In this section we summarize the interactions between ICE
and CREAM/CEMonitor with the UML Sequence Diagram shown in
Fig. 8. The same kind of interaction can be performed by a generic client
submitting jobs directly to CREAM (i.e., without using the glite WMS).

The relevant messages shown in the diagram are as follows:

1. ICE invokes the getProxyReq operation on the Delegation service. The
request parameter is a string which represents the delegation ID which
will be associated to the delegated credentials.

2. The delegation service replies with a Certificate Sign Request (CSR),
which is a RFC3280 style proxy certificate request in PEM format with
Base64 encoding [22].

3. ICE signs the CSR on behalf of the user which originally submitted the
job. This is possible because ICE itself is using a user proxy certificate
which has been delegated to the WMS. Then, ICE sends back: the
ID of the delegation session initiated on step 1 and the RFC3280 style
proxy certificate, signed by ICE on behalf of the user, in PEM format
with Base64 encoding.

4. The Delegation service transfers the delegation ID/signed proxy to
CREAM. Note that both CREAM and the delegation service execute
on the same physical host, so they can communicate locally.

5. ICE requests the creation of a new lease, with a given lease ID. ICE
maintains a single lease for each user submitting jobs, so there are as
many lease IDs as the number of unique users submitting to a specific

CREAM CE.

25

Service Management Operations

Getlnfo

Gets information about the CEMonitor service, including the
version and a brief description of the service, plus a list of
available Topics and Actions.

Lease Management Operations

Subscribe

Update

GetSubscriptionRef

GetSubscription

Unsubscribe

PauseSubscription

ResumeSubscription

GetTopics
GetTopicEvent

Subscribes for notifications. The user specifies the topic, a
query to be executed and a set of actions to trigger when the
Query succeeds. The notification rate can also be specified as
parameter.

Updates an existing Subscription: it is possible to modify the
topic, query, triggered actions and/or notification rate.

Gets the list of all subscription IDs and associated expiration
times belonging to the caller.

Gets detailed information on a set of subscriptions given their
unique IDs.

Removes an existing subscription. Events associated to that
subscription will no longer be notified.

Pauses the stream of notifications associated with a given sub-
scription ID.

Resumes sending notifications associated with a previously
paused subscription.

Gets the list of Topics supported by CEMonitor.
Gets the list of events associated with the specified Topic.

Table 4: CEMonitor interface operations

6. ICE is now ready to submit jobs to CREAM using the existing del-
egation ID and lease ID. The first step is to invoke the JobRegister
CREAM operation: this operation prepares the job for execution, by
first creating some temporary files for internal use on the CE host.

7. The CREAM service registers the job, creates all the temporary files
and returns a CREAM job ID which can be used from now on to refer

to this job.

8. ICE invokes the JobStart operation, using the CREAM job ID as pa-
rameter, to request that the job is actually transferred to the LRMS,
and to request that execution begins.

26

10.

11.

12.

13.

14.

| ICE | | Delegation | | CREAM | |CEMonit0r

| 1: Ge(ProxyReqL |
>

\ \ \
2: CSR | | |

< — — — — —
3: PutProxy() ‘ ‘ ‘ ‘
e — — — — — 4: Put Delegation ‘ ‘ ‘
! 5: SetLease(lease_id) - | |
\ '|_| \ \
T~ — = = - - - T | |
@) f 6: JobRegister(JDL, lease_id) > ! I I
7: cream_job_id ‘ |_| ‘ ‘
| \ \

- 9: LRMS start()

13: Notify()

|

|

|

|

| |
v v v v v

Figure 8: Overall job submission sequence diagram

CREAM forwards the job to the LRMS; the job is added to the LRMS
batch queue, and will eventually be executed.

ICE subscribes to CEMonitor to receive job status change notifications.
This is done only if there are no active subscriptions on that specific
CREAM CE; if so, there is no need to create a new subscription, as it
is possible to use the existing one.

CEMonitor returns a Subscription ID, which can be used later on to
renew, modify or cancel the subscription.

The LRMS, through BLAH (see Section 4), notifies CREAM about
each job status change. CREAM in turn informs CEMonitor.
CEMonitor notifies ICE a job status change; note that, in order to
reduce round-trip times, CEMonitor batches multiple related notifica-
tions which are sent together to subscribed clients.

ICE periodically queries the job states directly to the CREAM service

27

using the JobStatus operation.

15. When the job terminates, ICE invokes the JobPurge operation to re-
move all temporary files which have been created on the CE node.

We remark that it is sufficient to perform a single delegation operation
and to create a single lease for each user. So, after the first job has been
submitted, all subsequent submissions for the same user require only the in-
teractions shown in box (a) of Fig. 8. The interactions in box (b) are executed
whenever CEMonitor notifies new job status changes. Finally, the interac-
tions shown in box (c) are executed only when ICE does not receive status
change notifications for some jobs for longer than a configurable threshold.

We omitted from Fig. 8 the operations required to renew the delegations
when they are about to expire, and to renew the leases when they are about
to expire. Delegation renewal involves exactly the same operations required
for delegating credentials for the first time (operations 1 through 4 in the
sequence diagram); lease renewal is performed by calling SetLease with an
existing lease ID, as in operation 5 in the diagram.

7. Build, Installation and Usage

All the components of the gLite middleware (including CREAM and CE-
Monitor) are built using the ETICS Build and Test facility [33]. ETICS is
an integrated system for the automated build, configuration, integration and
testing of software. Using ETICS it is possible to integrate existing proce-
dures, tools and resources in a coherent infrastructure, additionally providing
an intuitive access point through a Web portal. The ETICS system allows
developers to assemble multiple components, each one being developed inde-
pendently, into a coherent software release. Each software component can use
its own build method (e.g., Make for C/C++ code, Ant for Java code and so
on), and ETICS provides a wrapper around that so that components or sub-
systems can be checked out and built using a common set of commands. The
ETICS system can automatically produce and publish installation packages
for the components it builds; multiple target platforms can also be handled.

CREAM and CEMonitor are included in the gLite 3.1 software distribu-
tion, which is provided as a set of different deployment modules (also called
node types) that can be installed separately. CREAM and CEMonitor are in-
stalled and configured together as one of these modules, called creamCE. For
what concerns the installation, the main supported platform, at present, is

28

CERN Scientific Linux 4 (SLC4), 32-bit flavor; porting the whole gLite stack
to CERN Scientific Linux 5 (64 bit) is underway. For the SLC4 platform, the
gLite creamCE module is available in RPM [34] format and the recommended
installation method is via the gLite yum repository. For what concerns the
configuration, there exists a manual configuration procedure, and a gLite
compliant configuration tool also exists. The tool adopted to configure gLite
Grid Services is YAIM (YAIM Ain’t an Installation Manager) [35]. YAIM
provides simple configuration methods that can be used to set up uniform
Grid sites. YAIM has been implemented as a set of bash scripts: it supports a
component based model with a modularized structure including a YAIM core
component, common to all the gLite middleware software, supplemented by
component specific modules, all distributed as RPMs. For CREAM and CE-
Monitor appropriate plugins for YAIM were implemented in order to get a
fully automated configuration procedure.

8. Performance Considerations

We evaluate the performance of the CREAM service in term of through-
put (number of submitted jobs/s), comparing CREAM with the LCG-CE
currently used in the gLite middleware, considering the submission through
the WMS. To do so, we submit 1000 identical jobs to an idle CE. The jobs
are submitted using the credentials of four different users (each user submits
250 jobs).

The layout of the testbed is shown in Fig. 9. All jobs are submitted
using a WMS UI installed on the host cream-15.pd.infn.it located at
INFN Padova. We always use the glite WMS UI (see Fig. 1) for sub-
missions to both CREAM and the LCG-CE (that is, we do not use direct
CREAM submission): the reason is that, at the moment, the vast major-
ity of users are submitting jobs through the glite WMS. The UI transfers
the jobs to the WMS host devel19.cnaf.infn.it located at INFN CNAF
in Bologna. The WMS submits jobs through ICE to the CREAM service
running on cream-21.pd.infn.it located at INFN Padova. The JobCon-
troller+CondorG+LogMonitor components of the WMS submit jobs to a
LCG-CE running on cert-12.pd.infn.it, also located at INFN Padova.
Both CREAM and the LCG-CE are connected to the same (local) batch
system running the LSF batch scheduler.

We are interested in examining the submission rate from ICE and
JC/CondorG/LM to CREAM and LCG-CE respectively; this is an HB

29

User Interface (U1) = gLite WMS host = glite CREAM CE D
1
1
cream-15.pd.infnit

devell9.cnafinfn.it LSE Batch System

Figure 9: Layout of the testbed

(Higher is Better) metric, as higher submission rate denotes better perfor-
mance. To compute the submission rate we consider the time elapsed since
the first job is dequeued by ICE or JC from their respective input queues, to
the time the last job has been successfully transferred to the batch system.
Note that we do not take into consideration the time needed to complete
execution of the jobs, as this time is independent from the CE.

In order to ensure that the transfer from the WMS UI to the WMS is not
the bottleneck in our tests, we execute the following steps:

1. We switch off the ICE or JC component of the WMS;

2. We submit 1000 jobs from the WMS UI;

3. When all the jobs have been successfully transferred to the WMS node,
we switch on ICE (or JC, depending on the kind of test we are perform-
ing). At this point ICE (or JC) finds all the jobs in its input queue, so
what we measure here is the actual transfer rate from the WMS to the

CE.

We analyze the impact of two factors on the submission throughput. The
factors we consider are the following:

e Use of an automatic prozy renewal mechanism vs no proxy renewal. The
automatic proxy renewal mechanism is normally used for long-running
jobs, to ensure that the credentials delegated to the CE are automat-
ically refreshed before expiration. Automatic proxy renewal works by
first having the user register her credentials to a so-called MyProxy
Server. The glite WMS receives a “fresh” proxy from the MyProxy
server, and ICE or JC+CondorG are responsible for delegating the new

30

Proxy Delegation Submission Rate (jobs/sec)
Renewal CREAM/ICE | LCG-CE/JC+CondorG+LM
Test A | Disabled | Explicit 0.9624 0.3952
Test B | Disabled | Automatic 0.1660 0.3633
Test C | Enabled Explicit 0.8976 0.3728
Test D | Enabled | Automatic 0.9191 0.3863

Table 5: Test results; higher (better) submission rates are shown underlined

credentials to the CE. We remark that no proxy is actually refreshed
in our tests, since transfer of all jobs to the CE completes long before
the user credentials expire. Nevertheless, the proxy renewal mechanism
has an impact on the submission rate to CREAM via ICE, as will be
explained later.

e Use of automatic vs explicit delegation (see Section 3.3). When auto-
matic delegation is active, the WMS UI delegates a new proxy certifi-
cate to the WMS, which in turn delegates the proxy again to the CE,
for each job submitted to the CE. Thus, a new delegation operation on
the CE is executed before each submitted job. If ezplicit delegation is
used, the user explicitly delegates a proxy before the first job is submit-
ted, and uses the same delegation ID for all subsequent submissions.
Thus, in this case only a single delegation operation is performed on
the CE node.

We analyze four different scenarios with a total of 8 independent runs,
corresponding to a 2% factorial design with two replications [36]; each test
has been repeated two times, and the average of the measured submission
rates is considered.

Table 5 shows the submission rates for all the experiments. We observe
that the submission rates from JC+CondorG+LM to the LCG-CE remain
more or less the same across the different experiments. On the other hand,
submission rates from ICE to the CREAM CE are higher in three of our
experiments, but incur a significant penalty in Test B.

The reason for this is in the different way in which CREAM/ICE and
LCG-CE/JC+CondorG+LM implement the transfer of user credentials from
the WMS to the CE node. As already described in section 3, CREAM exposes
a delegation port-type to allow clients to securely delegate their credentials to

31

the CE. The delegation operation (steps 1-4 from Fig. 8) involves the creation
on the server side of a public/private key pair, which takes a considerable
amount of time. Explicit delegation (Test A and C) allows ICE to delegate
only once for each user: in our tests, as we are submitting 250 jobs for each
of 4 different users, only four delegation operations are performed, and this
causes a significant improvement of the submission rate.

The JC+CondorG+LM does not implement a proper delegation opera-
tion, but for each job transfers the user credentials to the LCG-CE using a
more lightweight mechanism. This explains why the submission rate achieved
by LCG-CE/JC+CondorG+LM is more or less independent from the delega-
tion mechanism used (automatic or explicit). The lack of delegation on the
LCG-CE was one of the reasons why CREAM was developed, as credential
transfer without proper delegation is no longer considered acceptable.

In Test D we have automatic delegation together with proxy renewal.
This implies that all delegated user proxies are automatically renewed. Note
that if the same user performs two delegations, the delegated credentials will
expire on different times, and thus in general should be treated separately.
However, if the proxy renewal mechanism is active, all delegations will be
renewed before expiration, so from the user point of view all her credentials
have duration equal to the duration of the proxy renewal mechanism. For
this reason, in situations like Test D, ICE considers all proxies “equivalent”
by performing a single delegation operation to CREAM for each user which
requested automatic credentials renewal.

The CREAM based CE was also tested and used for real production ac-
tivities. To assess the performance and the reliability of CREAM, and in
particular to verify its usability in production environments, the Alice LHC
experiment [37] performed some tests which took place during the summer
of 2008. About 55000 standard production Alice jobs, each one lasting about
12 hours, were submitted on a CREAM based CE at the FZK? Tier-1 center.
The CREAM service showed a remarkable stability: no failures were seen
and no manual interventions were needed during the whole test period. It
should be observed that Alice is using CREAM in stand-alone mode (i.e.,
using direct job submissions, bypassing the gLite WMS). For users which do
not need the sophisticated matchmaking capabilities of the gLite WMS, it is

3Forschungszentrum Karlsruhe, now Karlsruher Institut fiir Technologie, http://www.
kit.edu/

32

much more efficient to submit directly to CREAM. Doing so it is possible
to bypass the intermediate steps shown in Fig. 1; furthermore, it is much
easier to deploy a single CREAM server rather than a full WMS installation.
When used outside the glite middleware, CREAM provides access to multi-
ple batch queues, using a Web Service interface, with a security layer based
on PKI so that job submissions can happen from remote clients. CREAM
clients can be written in any language with support for Web Services and re-
lated technologies (tools for generating stubs from WSDL interfaces exist for
almost any programming language). CEMonitor provides an asynchronous
notification service which is usually not provided by conventional batch sys-
tem managers.

After this first successful assessment, the submission to CREAM based
CREAM CEs has been fully integrated in the Alice Alien software environ-
ment [38]. Alice jobs are currently being submitted in about a dozen of
CREAM CEs deployed in several sites of the EGEE Grid.

9. Conclusions

In this paper we described CREAM and CEMonitor, two software compo-
nents which are used to implement a job execution and management service
in the glite middleware. CREAM manages submissions of jobs to a LRMS.
CREAM provides additional features on the top of the underlying batch
system, such as Grid-enabled user authentication and authorization and in-
tegration with the rest of the gLite infrastructure. CEMonitor is a general
purpose event notification service, which can be coupled with CREAM to
allow users to receive notifications about job status changes without polling
the service.

CREAM and CEMonitor have been integrated into the gLite WMS us-
ing an additional component called ICE. ICE receives requests from the
glLite WM, and handles all interactions with CREAM and CEMonitor. ICE
takes care of delegating user credentials to CREAM, subscribing to CEMoni-
tor for receiving job status change notifications, and actually submitting and
monitoring jobs. ICE registers to the glite LB service all status changes,
such that Grid users know exactly the location and the status of their jobs.

CREAM and CEMonitor expose a Web Service interface, which allows
easy interoperability with heterogeneous client applications. Recently, the
Grid community is putting considerable effort in defining standard interfaces
to Grid services. The reason for this interest is twofold: standard interfaces

33

allow different middlewares to easily share resources and services. Moreover,
standard interfaces improve the software development cycle by allowing de-
velopers to import software components from other middleware stacks. For
these reasons, we implemented a prototype support for the BES and JSDL
specifications in CREAM [30]. It must be observed that these specifications,
in their current status, are inappropriate for production use, as they only
provide basic functionality. The JSDL specification is severely limited be-
cause it only allows users to describe simple (batch) jobs, while structured
jobs such as collections of tasks with dependencies cannot be represented us-
ing the current JSDL. Furthermore, security considerations are outside the
scope of the BES specification, which results in the possibility for different
services to claim standard-compliance without being interoperable due to the
use of mutually incompatible security settings. To address these problems,
the Grid community is currently defining extensions of the BES and JSDL
specifications within the Production Grid Infrastructure Working Group .

CREAM and CEMonitor have been deployed and are currently in produc-
tion use in the glite infrastructure of the EGEE project. Some of the larger
sites have begun to experiment with usage scenarios which are beyond those
which were foreseen in the original requirements. In particular, deployments
were a single CREAM server manages a large batch system consisting of
thousands of execution nodes pose a real challenge. We are currently consid-
ering new ways to improve the scalability of CREAM far beyond the levels
defined by the requirements (see Section 3.1). One approach is to adopt
clustered configuration, allowing multiple service instances to balance load
and tolerate failures. However, as CREAM and CEMonitor are both stateful
services, special care must be taken in order to guarantee that each instance
shares the same internal status, while avoiding single points of failure. We are
also investigating how some ideas from the cloud computing paradigm could
be integrated into CREAM. In particular, we are considering the possibility
of dynamically adjusting the size (number of hosts) of the underlying LRMS
to allow the system to automatically scale whenever needed. This could be
done, for example, by implementing a LRMS based on Amazon’s EC2 ser-
vice, such that the batch system pool could be dynamically increased by
instantiating new virtual hosts.

‘http://forge.gridforum.org/sf/projects/pgi-vg

34

Acknowledgments

EGEE-3 is a project funded by the European Union under contract

INFSO-RI-222667.

References

1]

2]

Apache Software Foundation. Jakarta Tomcat Servlet Container, http:
//tomcat.apache.org/.

E. Laure, S. M. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek,
O. Mulmo, F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hem-
mer, A. Di Meglio, A. Edlund, Programming the Grid with gLite, Com-
putational Methods in Science and Technology 12 (1) (2006) 33-45.

Enabling Grid for E-sciencE (EGEE) project web site, http://www.
eu-egee.org/.

D. Kouril, et al., Distributed tracking, storage, and re-use of job state in-
formation on the grid, in: Proceedings of CHEP’04, Interlaken, Switzer-
land, 2004.

D. W. Erwin, UNICORE-a grid computing environment, Concur-
rency and Computation: Practice and Experience 14 (2002) 1395-1410.
doichttp://dx.doi.org/10.1002/cpe.691.

M. Ellert, M. Grgnager, A. Konstantinov, B. Kénya, J. Lindemann,
I. Livenson, J. Nielsen, M. Niiniméki, O. Smirnova, A. Waénanen, Ad-
vanced resource connector middleware for lightweight computational
grids, Future Generation Computer Systems 23 (2) (2007) 219-240.
doi:http://dx.doi.org/10.1016/j.future.2006.05.008.

I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems, in: IFIP International Conference on Network and Parallel Com-
puting, 2005, pp. 2-13.

I. Foster, et al., Modeling Stateful Resources with Web Services,
White paper, version 1.1, Available online at http://www.ibm.com/
developerworks/library/ws-resource/ws-modelingresources.pdf
(Mar. 5 2004).

35

[9]

[10]

[11]
[12]

S. Burke, S. Campana, E. Lanciotti, P. M. Lorenzo, V. Miccio, C. Nater,
R. Santinelli, A. Sciaba, glLite 3.1 User Guide-Manuals Series, Version
1.2, Document identifier CERN-LCG-GDEIS-722398. Available online
at https://edms.cern.ch/document/722398/1.2 (Jan.7 2009).

R. Raman, Matchmaking Frameworks for Distributed Resource Man-
agement, Ph.D. thesis, University of Wisconsin-Madison (2001).

R. van Engelen, gSOAP 2.7.11 User Guide (Oct. 2 2008).

P. Andreetto, et al., The gLite Workload Management System, Journal
of Physics, Conference Series 119 (6) (2008) 062007 (10pp). doi:http:
//dx.doi.org/10.1088/1742-6596/119/6/062007.

CEMonitor home page, http://grid.pd.infn.it/cemon.

EGEE middleware architecture and planning (release 2), EU Deliver-
able DJRA1.4, https://edms.cern.ch/document/594698/1.0 (Jul. 15
2005).

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner,
K. Léentey, F. Spataro, From gridmap-file to VOMS: managing autho-
rization in a Grid environment, Future Generation Computer Systems
21 (4) (2005) 549-558. doihttp://dx.doi.org/10.1016/j.future.
2004.10.006.

M. Riedel, et al., Interoperation of world-wide production e-science in-
frastructures, Concurrency and Computation: Practice and Experience
21 (8) (2009) 961-990. doi:http://dx.doi.org/10.1002/cpe.1402.

Apache Software Foundation. Axis SOAP Container, http://ws.
apache.org/axis/.

P. DuBois, MySQL, Addison-Wesley Professional, 2008.

E. Molinari, et al., A local Batch System Abstraction Layer for Global
Use, in: Proc. XV International Conference on Computing in High En-
ergy and Nuclear Physics (CHEP’06), Mumbay, India, 2006.

D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:
the Condor experience, Concurrency—Practice and Experience 17 (2-4)
(2005) 323-356. doihttp://dx.doi.org/10.1002/cpe.v17:2/4.

36

[21]

[22]

23]

[24]

[25]

[26]

[29]

Sun Microsystems, Inc., Java™Platform Enterprise Edition, v5.0, API
Specifications (2007).

R. Housley, W. Polk, W. Ford, D. Solo, RFC3280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, http://www.ietf.org/rfc/rfc3280.txt (Apr. 2002).

S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson, RFC3820:
Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Pro-
file, http://www.ietf.org/rfc/rfc3820.txt (Jun. 2004).

D. Groep, O. Koeroo, G. Venekamp, glLExec: gluing grid computing to
the Unix world, Journal of Physics: Conference Series 119 (6) (2008)
062032 (11pp). doihttp://dx.doi.org/10.1088/1742-6596/119/6/
062032.

Site authorisation and enforcement services: LCAS and LCMAPS,
http://www.nikhef.nl/grid/lcaslcmaps/.

M. Sgaravatto, CREAM Job Description Language Attributes Specifica-
tion for the EGEE Middleware, document Identifier EGEE-JRA1-TEC-
592336, Available online at https://edms.cern.ch/document/592336
(Aug. 2005).

I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse,
S. Pickles, D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execu-
tion Service Version 1.0, OGF Specification GFD.108, http://wuw.ogf .
org/documents/GFD.108.pdf (Aug. 2007).

A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. Mc-
Gough, D. Pulsipher, A. Savva, Job Submission Description Lan-
guage (JSDL) Specification, Version 1.0, OGF Specification GFD-R.056,
http://www.gridforum.org/documents/GFD.56.pdf (Nov. 2005).

S. Cantor, J. Kemp, R. Philpott, E. Maler, Assertions and protocols
for the oasis security assertion markup language (SAML) v2.0, OASIS
Standard saml-core-2.0-0s, http://docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-os.pdf (Mar. 15 2005).

37

[30]

[31]

[32]

[33]

P. Andreetto, S. Andreozzi, A. Ghiselli, M. Marzolla, V. Venturi, L. Zan-
grando, Standards-Based Job Management in Grid Systems, Techni-
cal Note INFN/TC_08/6, Istituto Nazionale di Fisica Nucleare (INFN)
(Oct. 9 2008).

F. Brooks, Jr., No silver bullet-essence and accidents of soft-
ware engineering, Computer 20 (4) (1987) 10-19. doichttp://doi.
ieeecomputersociety.org/10.1109/MC.1987.1663532.

G. Garzoglio, T. Levshina, P. Mhashilkar, S. Timm, ReSS: A Resource
Selection Service for the Open Science Grid, in: S. C. Lin, E. Yen (Eds.),
Grid Computing, International Symposium on Grid Computing (ISGC
2007), Springer, 2009, pp. 89-98.

M.-E. Bégin, G. D.-A. Sancho, A. D. Meglio, E. Ferro, E. Ronchieri,
M. Selmi, M. Zurek, Build, configuration, integration and testing tools
for large software projects: Etics, in: N. Guelfi, D. Buchs (Eds.), RISE,
Vol. 4401 of Lecture Notes in Computer Science, Springer, 2006, pp.
81-97. doichttp://dx.doi.org/10.1007/978-3-540-71876-5_6.

E. Foster-Johnson, Red Hat RPM Guide, 1st Edition, Red Hat, 2003.
YAIM Home Page, http://yaim.info/.

R. Jain, The Art of Computer System Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing, Wiley, 1991.

ALICE-A Large Ion Collider Experiment at CERN LHC, http://
aliceinfo.cern.ch/.

S. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras,
A. Hayrapetyan, A. Harutyunyan, A. J. Peters, , P. Saiz, AliEn: ALICE
environment on the GRID, Journal of Physics, Conference Series 129 (6).
doi:http://dx.doi.org/10.1088/1742-6596/119/6/062012.

38

