N
N

N

HAL

open science

JACEP2P-V2: a Fully Decentralized and Fault Tolerant
Environment for Executing Parallel Iterative
Asynchronous Applications on Volatile Distributed
Architectures

Jean-Claude Charr, Raphaél Couturier, David Laiymani

» To cite this version:

Jean-Claude Charr, Raphaél Couturier, David Laiymani. JACEP2P-V2: a Fully Decentralized and
Fault Tolerant Environment for Executing Parallel Iterative Asynchronous Applications on Volatile
Distributed Architectures. Future Generation Computer Systems, 2011, 27 (5), pp.606-613.

00644476

HAL Id: hal-00644476
https://hal.science/hal-00644476

Submitted on 24 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-

https://hal.science/hal-00644476
https://hal.archives-ouvertes.fr

JACEP2P-V2: A Fully Decentralized and Fault
Tolerant Environment for Executing Parallel
Iterative Asynchronous Applications on Volatile
Distributed Architectures

Jean-Claude Charr, Raphaél Couturier, and David Laiymani

Laboratory of computer sciences, University of Franche-Comté (LIFC)
IUT de Belfort-Montbéliard, Rue Engel Gros, BP 527, 90016 Belfort, France
Tel: +33-3-84587781
{jean-claude.charr,raphael.couturier,david.laiymani}@univ-fcomte.fr

Abstract. This article presents JACEP2P-V2, a Java environment
dedicated to designing parallel iterative asynchronous algorithms
(with direct communications between nodes) and executing them on
global computing architectures or distributed clusters composed by a
large number of volatile heterogeneous distant computing nodes. This
platform is fault tolerant, multi-threaded and completely decentralized.
In this paper, we describe the different components of JACEP2P-V2 and
the various mechanisms used for scalability and fault tolerance purposes.
We also evaluate the performance of this platform and we compare
it to JACEP2P by implementing a parallel iterative asynchronous
application and by executing it on a volatile distributed architecture
using both platforms.

Keywords: Decentralized global Convergence, Peer-to-Peer architec-
tures, Distributed clusters, Parallel iterative asynchronous algorithms.

1 Introduction

The simulation of natural and nuclear reactions (like climate change or nuclear
fusion) requires solving very large and complex numerical problems and neces-
sitates computing very large data in order to obtain precise and reliable results.
These problems cannot be solved using a single computing unit because most
of the time, the numerical problems are so huge that a single computing unit
does not have enough memory nor computing power to store the application
and to solve it. These problems could only be solved using simultaneously many
computing resources. With the development of new reliable network equipments
and the emergence of cheap and fast desktops, scientists are able nowadays to
create distributed architectures using only these simple low cost devices. Most
of the time, these distributed architectures tends to replace equally powerful
but more expensive supercomputers. In numerical computing we can distinguish
three kinds of distributed architectures:

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 446{458,{2009.
© Springer-Verlag Berlin Heidelberg 2009

1

2.

to

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 447

. Local clusters are composed of similar workstations connected via a local

network with low latency and large bandwidth.

Distributed clusters are composed of many distant clusters with heteroge-
neous computing units that are connected via heterogeneous networks with
high latency and large bandwidth.

Global computing architectures are mainly composed of public unused
heterogeneous workstations connected to Internet. These architectures offer
free and unlimited computing power but suffer from the volatility of the
nodes and from the slowness of communications.

Most of the time, the local cluster architecture does not have enough computing
power to solve very large numerical problems. Therefore, in this paper, we are
only interested in distributed clusters and global computing architectures. Using
one of these parallel architectures, developers have to parallelize the method that
solves the numerical problem in order to execute a subsystem of the problem on
each computing unit. However, to use these architectures, the developer needs

manage carefully the exchange of data between the different computing units,

especially when using high latency networks with heterogeneous and volatile

nodes.

There are two classes of methods to solve numerical problems:

— Direct methods give the exact solution of a numerical problem after exe-

cuting a finite number of operations. However, they are not really suited to
distributed clusters and global computing architectures because they require
several synchronizations.

— Iterative methods iterate many times the same block of instructions until

obtaining a good approximation of the solution (e.g., Jacobi or Conjugate
Gradient algorithms [I]). An iterative method converges when the “residual
vector” (there is many methods to evaluate the value of the residue, for
example Residue = maz;(|z¥™" — 2%|) where ¥ denotes the value of the
component ¢ at iteration k) is inferior to the precision (€) requested by the
user. Iterative methods are well adapted for very large problems.

Since we would like to solve very large numerical problems, in the rest of this
paper we only focus on iterative methods. Now, from a parallel point of view,
there are two models of parallel iterative algorithms:

— The synchronous iteration model. Using this model, as shown in

figure[I] after each iteration (represented by a filled rectangle in the figure),
a node sends its dependencies to its neighbors and waits for the reception of
all the dependency messages from all its neighbors. Then all the nodes must
synchronize to test if the system has globally converged. This results in large
periods of idle time (represented by white spaces between the rectangles).
These synchronizations can drastically penalize the overall performances in
the case of large scale heterogeneous platforms. Moreover, if a dependency
message is lost, the receiver will wait forever for that message and the ap-
plication will be blocked. In the same way, if a computing node is dead,

448 J.-C. Charr, R. Couturier, and D. Laiymani

Processor 1

Processor 2

i . —
Time >

Fig. 1. Two processors using the synchronous iteration model

Processor 1

Processor 2

Time T

Fig. 2. Two processors using the asynchronous iteration model

all the rest of the nodes will be blocked until the dead node is replaced. In
conclusion, this model is not well suited for large scale volatile computing
environments.

— The asynchronous iteration model [2]. Using this model, as shown in
figure[2] after each iteration, a computing node sends its dependencies to its
neighbors and begins the next iteration using the last received dependency
data. The node does not have to wait for the reception of the dependencies
messages from its neighbors, consequently, there is no idle time anymore
(no white spaces between iterations). The sending and the receiving mech-
anisms are asynchronous and the computing nodes tolerate the loss of data
messages. Even if a node dies, the rest of the nodes can continue the com-
putation process using the last dependency message sent by the dead node.
In conclusion, the asynchronous iteration model is well adapted for volatile
environments like peer-to-peer architectures or distributed clusters.

To tackle the specificities of the asynchronous iteration model on distributed
clusters or global computing architectures, we have developed JACEP2P-V2, a
new and improved version of JACEP2P [3]. JACEP2P-V2 is a fully decentralized
and fault tolerant platform dedicated to designing and executing parallel itera-
tive asynchronous algorithms on volatile architectures. The aim of this paper is
to present the design and the features of this new platform.

The rest of this paper is organized as follows: in the next section we present
some existing platforms related to our work. These platforms are briefly de-
scribed and the differences between our work and these platforms are empha-
sized. In the third section, we present JACEP2P’s architecture and its limits.
Then, we introduce JACEP2P-V2 and we describe in details its mechanisms
and functionalities. In the fourth section, we present the experiments conducted
on the Grid5000[4] testbed using JACEP2P-V2 to solve a numerical problem.
Finally, we end this paper with a conclusion and some perspectives.

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 449

2 Related Work

Recently, many middlewares for distributed clusters and global computing plat-
forms have been developed. However, most of them are not well adapted for
large numerical computing. Here are some examples:

— Seti@home [5]: The amazing success that this platform has achieved,
helped the creation of generalized environments like Xtrem Web [6] and
Boinc [7]. They are independent of the application and fault tolerant. The
user creates a parallel application and executes it using the “workers”. How-
ever, in these platforms, the clients cannot communicate with each others.
So they cannot execute a parallel computing application with dependencies
between nodes.

— JXTA [8]: It is an open-source project, composed of a set of peer-to-peer
protocols that allows any connected device (cell phone to PDA, PC to server)
on the network to communicate and collaborate. However, JXTA is a low
level platform and offers a lot of general functionalities that are not well
adapted for executing complex computing applications.

— ProActive [9]: It is an Open Source Java library for parallel, distributed,
and multi-threaded computing. Although this environment provides direct
communications between nodes using the RMI technology, when two nodes
communicate, they must be synchronized (even if the concept of future ob-
jects exists). Moreover ProActive uses a global checkpointing mechanism [10]
that requires synchronizing all the nodes in case of failures. In consequence,
the asynchronous iteration model cannot simply be used on this platform.

— JACE [17]: “Java Asynchronous Computation Environment” is a multi-
thre- aded Java based library designed to build asynchronous iterative al-
gorithms and execute them in a Grid environment. In JACE, two nodes
exchange data (synchronously or asynchronously) using either Sockets, RMI
or NIO (New Input/Output). However, this platform is not fault tolerant,
so it cannot be used in large scale volatile environments.

3 JACEP2P-V2

3.1 JACEP2P

JACEP2P is a distributed platform implemented using the Java programming
language and dedicated to developing and executing parallel iterative asyn-
chronous applications. JACEP2P executes parallel iterative asynchronous ap-
plications with dependencies between computing nodes. On the other hand, JA-
CEP2P is fault tolerant which allows it to execute parallel applications over
volatile environments and even for stable environments like local clusters and
grids, it offers a safer and crash free platform.

JACEP2P’s architecture. Figure [3 presents the architecture of JACEP2P
and the various components that form the platform:

450

J.-C. Charr, R. Couturier, and D. Laiymani

The first entity is the “super-node” (represented by a big circle in figure [3)).
Each super-node stores in its register the identifiers (IP address) of all the
computing nodes that are connected to it and are not executing an appli-
cation. The super-node regularly receives heartbeat messages (represented
by doted lines in figure B]) from the computing nodes connected to it. If the
super-node does not receive a heartbeat message from a computing node
included in its register for a given period of time, it declares that this com-
puting node is dead and deletes its identifier from the register.

The second entity is the “spawner” (represented by a square in figure [3)).
When a user wants to execute a parallel application, he or she launches a
spawner with the required parameters which contacts a super-node to re-
serve the required computing nodes. The super-node reserves the demanded
daemons (see next paragraph) which are removed from the super-node’s reg-
ister and returns to the spawner a register containing the identifiers of the
reserved computing nodes. When the spawner receives the register, it cre-
ates a task for each computing node and starts the execution of the tasks
on the respective daemons. The spawner has to send its register to all the
computing nodes in order for them to be able to communicate with each
others. Moreover, the spawner is responsible for detecting the disconnection
of a computing node. Indeed, when the computing nodes are reserved by
the spawner, they start sending their heartbeat messages to the spawner. If
the spawner detects that a computing node has not sent to it a heartbeat
message for a while, it declares that this computing node is dead. Then, it
fetches a new one from the super-node in order to replace the dead one. The
spawner initializes the new daemon, which retrieves the last backup of the
dead node and continues the computing task from that checkpoint. Finally,
the spawner is also responsible for detecting the global convergence of the
parallel iterative application. When a subsystem converges locally, the com-
puting node executing it sends a convergence message to the spawner. If the
spawner receives a convergence message from all the computing nodes, it
declares that the parallel iterative application has globally converged.

The third entity is the “daemon” or the computing node (represented in
figure B] by a hashed small circle if it is free and by a white small circle if it
is executing an application). Once launched, it connects to a super-node and

SP2 @ Spawner
7 I WY @Super—node
|
|

/
’

\
’

\ \
, N } @ Daemon
(]]]]]]) ([I:I]]:I) ([[[I]]) ---» Heartbeat
@

— Communicate

Fig. 3. JACEP2P’s architecture and the different components

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 451

waits for a task to execute. During the execution of the parallel application,
the daemons can communicate with each others and they regularly save their
state on their neighbors. At the end of a task, the daemons reconnect to the
super-node.

To be able to execute asynchronous iterative applications, JACEP2P has an
asynchronous messaging mechanism (for more details interested readers can refer
to [3]) and to resist to daemons’ failures, it implements a distributed backup
mechanism called the uncoordinated distributed transparent checkpointing [12].
This method allows daemons to save their data on neighboring daemons without
any user intervention. The asynchronous nature of the application allows two
daemons to execute two different iterations, thus each daemon saves its status
without synchronizing with other daemons. This decentralized procedure allows
the platform to be very scalable, with no weak points and does not require a
secure and stable station for backups. Moreover, if a daemon dies, the other
computing nodes continue their tasks and they are not affected by this failure.

JACEP2P’s limitations. In [I3], the experiments’ results proved that the first
version of JACEP2P performs very well and presents a relatively small overhead.
Nevertheless, this version has some important limits:

— JACEP2P is not fully fault tolerant. Indeed, in this version, spawners’
crashes are not tolerated. Moreover, while executing the global convergence
process, the platform does not resist well to the disconnection of daemons.

— JACEP2P has a centralized failure detection. The spawner receives heart-
beat messages from all the daemons and detects if a daemon is dead. If the
application is being executed by a large number of daemons, the spawner
will be overloaded with heartbeat messages. This will delay the detection of
a dead daemon and could even lead to a false crash detection. Moreover, if
many daemons die successively and there is only one spawner to handle the
dead daemons, then the spawner will take a lot of time to replace them. This
may reduce the performance of the platform.

— JACEP2P has a centralized global convergence detection mechanism which
is not well adapted for executing asynchronous parallel iterative algorithms
on volatile architectures. The daemons executing such applications do not re-
ceive dependencies messages from their neighbors at each iteration. This may
lead to a false local convergence and thus result to false global convergence
detection. Furthermore, the spawner could be overloaded by convergence
messages, if many daemons converge locally at the same time.

— JACEP2P has many centralized mechanisms like launching the application,
detecting the global convergence and detecting the dead nodes. These cen-
tralizations limit the scalability of JACEP2P.

— In JACEP2P, each daemon receives the whole register which contains the
identifiers of all the daemons executing the application. If a daemon crashes
and is replaced by a new one, the spawner has to notify the modifications to
all the daemons in order to update their registers. This could overload the
spawner and increase the congestion of messages in the network.

452 J.-C. Charr, R. Couturier, and D. Laiymani

To remedy these problems we present JACEP2P-V2 a fully decentralized and
fault tolerant platform. In the next subsection, we will describe in details the
functionalities and characteristics of the new platform.

3.2 JACEP2P-V2’s Architecture

Figure @l shows the architecture of JACEP2P-V2 where we notice that there are
two spawners handling the execution of a single application and each group of en-
tities (spawners, daemons and super-nodes) forms a circular network. JACEP2P-
V2 has similar entities as JACEP2P but with different functionalities:

— Super-nodes. They form a circular network now and store in an equally
distributed manner the identifiers of all the computing nodes that are con-
nected to the platform and that are not executing any application. Each
super-node has a status table containing the number of connected comput-
ing nodes to each super-node and all the super-nodes share a “token” that
is passed successively from a super-node to the next one. Once a super-node
has the token, it computes the average number of computing nodes con-
nected to a super-node (avg) using the status table. If avg is lower than the
number of computing nodes connected to it, then it sends the identifiers of
the extra computing nodes to the super-nodes that have the number of com-
puting nodes connected to them less than awvg. If the number of computing
nodes connected to it has changed, it broadcasts the information to all the
super-nodes in the platform. Finally, it passes the token to the next super
node. This distribution reduces the overload of the super-nodes.

— Spawners. When a user wants to execute a parallel application that requires
N computing nodes, he or she launches a spawner. The spawner contacts a
super-node to reserve the N computing nodes plus some extra nodes in order
to transform them into spawners. When the spawner receives the register
from the super-node, it transforms the extra daemons into spawners and
stores the identifiers of the rest of the daemons in its own register. Once

Spawner
@Super—node
@ Daemon

---» Heartbeat

— Communicate

Fig. 4. JACEP2P-V2’s architecture and different components

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 453

the extra nodes are transformed into spawners, they form a circular network
and they receive the register containing the identifiers of the computing
nodes. Then each spawner becomes responsible for a subgroup of computing
nodes, starts the tasks on the computing nodes under its command and sends
a specified register to them. So each computing node receives a specified
register that only contains the identifiers of the daemons it interacts with
and that depends on the application being executed. These specified registers
reduce the number of messages sent by the spawners to update the register
of the daemons after a daemon crashes because usually a small number of
daemons is affected by this crash.

— Daemons. Once they begin executing an application they form a circular
network which is only used in the failure detection mechanism. Each daemon
can communicate directly with the daemons whose identifiers it has in its
register.

3.3 JACEP2P-V2 Functionalities and Characteristics

After describing quickly the modifications made on the architecture of
JACEP2P-V2, in this section we present in details the different new functional-
ities and characteristics implemented in JACEP2P-V2:

— Completely decentralized. JACEP2P-V2 is completely decentralized. In
fact, all the tasks are divided between the entities of the same type. For
example, a daemon can be connected to any super-node and the group of
super nodes shares equally the control of the free daemons connected to the
super-node network. The spawners are also decentralized: once a spawner
is launched to execute an application, it quickly duplicates itself into sev-
eral spawners (depending on the number of daemons required to execute the
parallel application) by transforming some daemons into spawners. Each
spawner becomes responsible for starting the application on a subgroup
of daemons and handling the needs of that subgroup. For the computing
nodes, each one executes a part of the application and the sum of their work
gives the solution of the global problem. This distribution of tasks, allows
JACEP2P-V2 to solve very large problems and thus to become very scalable
with theoretically no limiting conditions.

— Completely fault tolerant. We have implemented many mechanisms to
make the three entities that form the core of JACEP2P-V2 fault tolerant. An
important concept available for the three entities is the decentralized crash
detection mechanism. It enables the neighbors of a node to detect if it is dead
or alive. Each group of entities forms a circular network. This organization
is needed to apply the decentralized crash detection mechanism we have
implemented. Each entity has a “heartbeat thread” that signals regularly
to the next node in the circular network that the sender is still alive and
another thread, the “scan thread” , that tests at each iteration if the previous
node in the circular network has recently sent a heartbeat message. If for
a given period of time the node does not receive a heartbeat message from

454

J.-C. Charr, R. Couturier, and D. Laiymani

the previous one, the scan thread detects that the previous node is probably
dead. Depending on the type of the dead node, the disconnection is handled.
In fact, each entity has a restoring mechanism which is also dependent on
the saving mechanism used for each type of entity.

e For daemons we use the distributed backup mechanism described be-

fore and we have implemented two types of backup in JACEP2P-V2.
The first backup contains all the information concerning the state of a
node (convergence data) and its computing process (solution vector).
This backup is saved each N iterations (N given by the user and usu-
ally depends of the length of an iteration) on a different neighbor using
the “round-robin” strategy. On the other hand, the second backup only
contains the status data. This backup has a smaller size and it is saved
when the status of a daemon has changed, especially when it concerns
the global convergence detection mechanism. This backup is saved on
all the backup neighbors simultaneously. Once a daemon detects that
the previous daemon is dead, the daemon signals it to the spawner re-
sponsible for it. The spawner contacts a super-node and acquires a new
daemon. The new daemon replaces the dead one and retrieves the last
status backup and the last data backup. Once it has the backups, it
continues the task from that last checkpoint. During all this operation,
all the other daemons continue their tasks normally.

For spawners, we use the duplication mechanism. The spawner is du-
plicated into many spawners. All the spawners have all the information
concerning all the daemons and each one manages only a subgroup of
daemons. If a spawner dies, the next spawner detects it (using the same
scheme described before). Then, that spawner contacts a super-node,
gets a new daemon and transforms it into a spawner. Once it becomes a
spawner, it receives the register containing the identifiers of all the dae-
mons executing the application, it identifies its subgroup of daemons, it
informs them that it is the new spawner and it is reintegrated into the
circular spawner network.

For super-nodes, there is no saving mechanism, they do not contain very
valuable information. When a dead super-node is detected by the next
super-node, it is rejected from the circular super-node network. All the
daemons that were connected to the dead super-node will reconnect onto
another super-node.

— Multi-threaded. JACEP2P-V2 is multi-threaded. The computing process

is never blocked by the exchange of data messages between daemons. Each
functionality (communicating, detecting crashes, saving and computing) has
its own thread.

— Decentralized global convergence detection algorithm: JACEP2P-

V2 has implemented this algorithm to detect efficiently the global conver-
gence of the asynchronous iterative parallel algorithms executed on the plat-
form. It consists of two phases: the detection phase and the verification phase.
This algorithm is presented in details in these papers [2/13].

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 455

— Acknowledge mechanism: JACEP2P-V2 tolerates the loss of data mes-
sages when it executes parallel asynchronous iterative algorithms. However,
it has to ensure the right reception of the convergence messages by the re-
ceivers in order to ensure a coherent system. Therefore, we had to imple-
ment an acknowledge mechanism dedicated to the convergence messages.
When a computing node sends a convergence message to another one, the
receiver handles the received message (this usually changes the state of the
receiver) then it saves its new state on its backup neighbors and next it re-
turns an acknowledge message to the sender. Once the sender receives the
acknowledge message, it knows that the receiver has received the conver-
gence message and then it saves its state on its backup neighbors so it does
not send the convergence message again. On the other hand, if the sender
does not receive the acknowledge message, it knows that the message did
not reach its destination and that it has to send the convergence message all
over again.

4 Experiments

In order to evaluate the benefits of the improvements that have been im-
plemented in JACEP2P-V2, we have conducted two sets of experiments on
Grid’5000 French national grid. The same experiments were realized using JA-
CEP2P and JACEP2P-V2 in order to compare both platforms. Both sets of
experiments were realized on two different architectures. During these tests,
both platforms had to execute a parallel iterative application that solves a three
dimensional advection-diffusion equations system. This system represents math-
ematically the transport processes of pollutants, salinity, and so on, combined
with their bio-chemical interactions.

4.1 Mathematical Description

A system of 3D advection-diffusion-reaction equations has the following form:

dc
ot

where ¢ denotes the vector of unknown species concentrations, of length m, and
the two vectors A(c,a) = [J(c)] * a® and D(c,d) = [J(c)] * d x VT respectively
define the advection and diffusion processes (J (¢) denotes the Jacobian of ¢ with
respect to (z,y, z)). The local fluid velocities u, v and w of the field a = (u, v, w)
and the diffusion coefficients matrix d are supposed to be known in advance. A
simulation of pollution evolution in shallow seas is obtained if a is provided by a
hydro-dynamical model. The chemical species dynamic transport is defined by
both advection and diffusion processes, whereas the term R includes interspecies
chemical reactions and emissions or absorption from sources. For more details,
readers can refer to [14].

+ A(c,a) =D (c,d) + R(c,t) (1)

456 J.-C. Charr, R. Couturier, and D. Laiymani

Table 1. Execution time with 3 random crashes every n seconds

n oo 90 60 30

Execution time for JACEP2P 522s 873s 1003s 1611s

Total number of crashes for JACEP2P 0 30 51 159
Execution time for JACEP2P-V2 495s 565s 595s 744s

Total number of crashes for JACEP2P-V2 0 18 28 68

4.2 First Experiment: Local Cluster

In this experiment, we compare JACEP2P to JACEP2P-V2 while executing the
same application on a single site. This application solves a system containing
405.224.000 components and that simulates a 90 seconds time interval. 252 bi-
processors computing units, located in Orsay, were used to run this application.
The computing nodes were equipped with 2 AMD Opteron 246 2.0GHz or 250
2.4GHz processors. To prove that the two platforms are fault tolerant, we used
a shell script that randomly kills three computing nodes each n seconds.

The results for this set of experiments are presented in tabldll It shows the
execution times taken by JACEP2P and JACEP2P-V2 to solve the problem
with various frequencies of nodes crashes. It is obvious that JACEP2P-V2 out-
performs JACEP2P in each category. We also notice that JACEP2P-V2 is less
affected than JACEP2P by the disconnection of computing nodes. Indeed, when
the computing nodes disconnect frequently, JACEP2P suffers a lot because of
the centralized nature of some of its components. On the other hand, with the
JACEP2P-V2’s decentralized dead nodes detection, the dead nodes are detected
faster by their neighbors and thus they are replaced quickly by new ones to con-
tinue their tasks. These mechanisms reduce the influence of the crashes on the
performance of JACEP2P-V2 platform.

4.3 2nd Experiment: Distributed Clusters

In this second set of experiments, we aimed at simulating a global computing ar-
chitecture which has the following characteristics: large number of heterogeneous
computing units, high latency communications and volatile nodes. So, we used
the same number of computing nodes but this time we have chosen them from
three distant sites in order to have heterogeneous computing nodes. Moreover,
the latency between two nodes from distinct sites is superior to the one between
two nodes located on the same site, thus the latency of the communications is
also heterogeneous. The computing nodes were selected from the following sites:
Nancy where each station is equipped with 2 double cores 1.6 GHz Intel Xeon
5110, Sophia where each station is equipped with 2 processors AMD Opteron 246
2.0GHz and Orsay which is described in the first experiment. We executed the
same application as in the first experiment using JACEP2P and JACEP2P-V2.
We have also simulated the volatility of the computing nodes by using the same
perturbator script. However in this experiment, the script killed one daemon on
each site each n seconds. The results for this set of experiments are presented in

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 457

Table 2. Execution time with one crash every n seconds at each site

n oo 90 60 50

Execution time for JACEP2P 565s 1438s 2008s 2050s

Total number of crashes JACEP2P 0 48 100 122
Execution time for JACEP2P-V2 581s 624s 632s 663s
Total number of crashes JACEP2P-V2 0 19 30 38

table 2l As in the previous experiment, JACEP2P-V2 outperforms JACEP2P,
in particular when the environment is highly volatile. Moreover, the crashes
overhead is totally acceptable in JACEP2P-V2. These experiments prove that
the modifications implemented in JACEP2P improve its performance on volatile
architectures that suffer from high latency between computing nodes.

5 Conclusion and Perspectives

In this paper we have presented the new version of JACEP2P, called JACEP2P-
V2. This parallel platform is dedicated for designing and executing parallel asyn-
chronous iterative applications in volatile environments. This new version is fully
fault tolerant which makes it able to resist the failure of any node in the plat-
form, especially the ones executing an application. We have also implemented a
decentralized mechanism for detecting dead nodes in order to replace them. We
also conducted two sets of experiments using two different architectures. In all
these tests JACEP2P-V2 outperformed JACEP2P.

In the near future, we want to test JACEP2P-V2 using more computing units.
We also would like to test it on a real global computing architecture, using unused
public computing units connected via Internet. Finally, we want to implement
many types of iterative asynchronous applications on JACEP2P-V2 to show the
benefits of this platform and its general utility.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS publishing (1996)

2. Babhi, J., Contassot-Vivier, S., Couturier, R.: Parallel Tterative Algorithms: from
sequential to grid computing. Numerical Analysis & Scientific Computating, vol. 1.
Chapman & Hall/CRC, Boca Raton (2007)

3. Babhi, J., Couturier, R., Vuillemin, P.: JACEP2P: an environment for asynchronous
computations on peer-to-peer networks. In: Cluster 2006, pp. 1-10 (2006)

4. grid 5000, http://grid5000.fr

. Seti@home, http://wuw.setiathome.berkeley.edu/

6. Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., Lodygen-
sky, O.: Computing on large-scale distributed systems: XtremWeb architecture,
programming models, security, tests and convergence with grid. Future Genera-
tion Computer Systems 21(3), 417-437 (2005)

7. BOINC, http://wuw.boinc.berkley.edu/

8. JXTA, http://www.jxta.org/

ot

http://grid5000.fr
http://www.setiathome.berkeley.edu/
http://www.boinc.berkley.edu/
http://www.jxta.org/

458

11.

12.

13.

14.

J.-C. Charr, R. Couturier, and D. Laiymani

. ProActive, http://www.proactive.inria.fr/
. Cao, G., Singhal, M.: On coordinated checkpointing in distributed systems. IEEE

Transactions on PDS-9 (12), 1213-1225 (1998)

Bahi, J., Domas, S., Mazouzi, K.: Jace: a java environment for distributed asyn-
chronous iterative computations. In: PDP 2004, Spain, February 2004, pp. 350-357
(2004)

Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing
under UNIX. In: USENIX Winter, pp. 213-224 (1995)

Charr, J.C., Couturier, R., Laiymani, D.: A decentralized convergence detection al-
gorithm for asynchronous iterative algorithms in volatile environments (submitted,
2008)

Bahi, J., Couturier, R., Mazouzi, K., Salomon, M.: Synchronous and asynchronous
solution of a 3D transport model in a grid computing environment. Applied Math-
ematical Modelling 30(7), 616-628 (2006)

http://www.proactive.inria.fr/

	JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment for Executing Parallel Iterative Asynchronous Applications on Volatile Distributed Architectures
	Introduction
	Related Work
	JACEP2P-V2
	JACEP2P
	JACEP2P-V2's Architecture
	JACEP2P-V2 Functionalities and Characteristics

	Experiments
	Mathematical Description
	First Experiment: Local Cluster
	2nd Experiment: Distributed Clusters

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

