
Future Generation Computer Systems 27 (2011) 32–39
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

LAG: Achieving transparent access to legacy data by leveraging grid environment
Yuhui Deng a,∗, Frank Wang b
a Department of Computer Science, Jinan University, Guangzhou, 510632, PR China
b Cambridge-Cranfield High Performance Computing Facility, Cranfield University Campus, Bedfordshire MK430AL, United Kingdom

a r t i c l e i n f o

Article history:
Received 30 September 2007
Received in revised form
2 July 2010
Accepted 10 July 2010
Available online 16 July 2010

Keywords:
Legacy data
Grid
Architecture
Grid service
Web service

a b s t r a c t

Theworld today is experiencing an explosive growth of data generated by information digitization. Due to
the unprecedented advance in software and hardware, large amounts of data gradually becomes legacy
data and inaccessible. This is building a digital black hole, and it is becoming a big challenge to access,
process, and preserve the legacy data. Grid provides flexible, secure, and coordinated resource sharing
among dynamic collections of individuals, institutions, and resources. It allows users and applications
to access the aggregated resources in a transparent manner. This paper proposes a Legacy Application
Grid (LAG) architecture. This architecture deploys diverse legacy applications in a grid environment and
provides a transparent access to the remote LAG users who want to access the legacy data. In contrast
to the existing methods which attempt to tackle legacy data and legacy applications, we wrap a display
protocol into grid services. The service provider, who wants to deploy any legacy applications, just needs
to deploy the protocol based grid service, describe and pass the parameters of those legacy applications
to the service. Compared with the traditional approaches, the method proposed in this paper is very cost-
effective because it avoids converting legacy data from one format to another format or upgrading legacy
applications one by one. An implemented prototype validates that the LAG architecture trades acceptable
performance degradation for a transparent and remote access to legacy data.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

According to a new report from IDC, 161 exabytes of digital
information were created and copied in 2006. The growth will
continue to increase exponentially. The amount of information
in 2010 will surge more than six fold to 988 exabytes which
amounts to a compound annual growth rate of 57% [1]. The
explosive data is normally stored in autonomous repositories
distributed across the Internet and varies in representation from
structured (e.g. relational database) to semi-structured (e.g. e-mail
and HTML pages) and unstructured formats (e.g. image and
video) [2]. The ubiquitous Internet has provided an easy access
to a large number of autonomous and heterogeneous information
sources [3]. However, due to the unprecedented development of
software and hardware, large amounts of legacy data is becoming
a big challenge which we have to face when accessing the digital
information. (Legacy data is the data which has been inherited
from applications, software, languages, platforms, and techniques
earlier than current technology.) The National Archives of the
United Kingdom, which holds 900 years of written material, has
more than 580 terabytes of data in legacy data formats that are
no longer commercially available. Some digital documents held

∗ Corresponding author.
E-mail addresses: tyhdeng@jnu.edu.cn, yuhuid@hotmail.com (Y. Deng).

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.07.004
by the national archives had already been lost forever, because
the programs which could access them no longer exist [4]. There
are two reasons which cause the problem. The first one is the
range of proprietary data formats that proliferated during the early
digital revolution. The different data formats do no work together,
whichmakes interoperability a big problem. The second one is that
the data formats employed by software companies are not only
incompatible with that of the rival companies, but also between
different generations of the same program (e.g. Microsoft) [4,5].
The growing legacy data has propelled research on how to

access, process, and preserve the legacy data. Some research
efforts have been invested in tackling the growing challenge.
Saving data in one format with one program makes it difficult to
open in another program without sacrificing some information.
Extensible Markup Language (XML) [6] offers portability and ease
of machine processing. The wide spread and growing maturity of
XML technologies bring new opportunities to tackle the legacy
data. Chidlovskii and Fuselier [7] investigated data conversion from
the rendering-oriented HTML markup into a semantic-oriented
XML annotation defined by user-specific DTDs or XML Schema
descriptions. They applied a supervised learning framework to
the conversion task according to which the transformations are
learned from a set of training examples. The data which are
in proprietary formats such as PDF, MS Word, etc. have to be
first converted to a standard format like HTML, and then the
layout HTML annotations will be converted to the semantic XML.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tyhdeng@jnu.edu.cn
mailto:yuhuid@hotmail.com
http://dx.doi.org/10.1016/j.future.2010.07.004


Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39 33
Kuikka et al. [8] developed a syntax directed approach to transform
the XML documents from one structure to another. The aim is
to automate a transformation between two grammars that have
common parts, although the grammars and names of elements
may differ. Other driving forces for the research on the legacy
data are from industry. Open XML is a data format developed by
Microsoft. This format can be adopted to save files from programs
such as Word, Excel and Powerpoint. The open XML is an open
international standard under independent control and is free for
access [4]. Working with three partners, Microsoft also released a
translation program which allows users to save Word documents
in the ODF format favoured by the free Open Office application [5].
With support from Microsoft, the National Archive of the United
Kingdom will be able to read older data formats in the format
they were originally saved by running emulated versions of the
older Windows operating systems on modern PCs. For example, if
a Word document was saved using Office 97 under Windows 95,
then the National Archives will be able to open that document by
emulating the operating system and the corresponding software
on a modern machine [4].
The legacy data and legacy application is normally in a one

to one correspondence, which indicates that a specific legacy
data format can only be accessed by the corresponding legacy
application. If the legacy applications can be upgraded, the
corresponding legacy data will be solved as well. A lot of research
efforts have been invested in tackling the legacy applications.
Generally, the existing solutions can be classified into three
categories [9]. The first one is redevelopment. This method
rewrites or reconstructs the existing legacy applications. The
common activities include parsing the system and analyzing its
syntax to obtain an abstract syntax tree representation of the
source code, extracting the interface fragments from the system,
and performing control flow analysis [10,11]. The redeployment
method requires shutting down the legacy applications either
during development or during the replacement [9]. The second one
is wrapping. This approach surrounds the legacy component with
a new interface. Thiran et al. [12] proposed and designed a generic
and technology independent R/W wrapper architecture. The
wrapper allows a smooth transition from the legacy and deficient
databases to modern architectures, and makes the integration
of a legacy database into current large applications easier. The
third one is migration. This solution moves legacy applications
to a new environment, while retaining the original system’s data
and functionality.Wrapping andmigration are normally employed
to reuse legacy applications. One or more approaches could be
involved when tackling the legacy applications. Bi et al. [11]
investigated a hybrid approach of wrapping and migration for the
reuse of legacy applications from its original environment to the
Internet-based platform based on a thin client using Java RMI.
However, for those companies and organizations that have a

large number of diverse and legacy data, the conversion of all
legacy data or the upgrading of all legacy applications could take
a lot of time and money, and raise many technical problems. For
personal users who have a little legacy data or just want to use the
legacy data temporarily, it is not cost-effective to buy a software
package to convert the data or upgrade the corresponding legacy
application.
Grid is a flexible, secure, coordinated resource sharing among

dynamic collections of individuals, institutions, and resources
[13–16]. The objective is to virtualize resources, and allow users
and applications to access shared resources in a transparent
manner. In recent years, the research community has been very
active in the area of investigating techniques in tackling the legacy
applications in a grid environment. Kacsuk et al. [17] proposed
a new approach to deploy legacy codes as grid services without
modifying the original code. A workflow oriented grid portal is
designed to apply the legacy code based grid services to complex
business processes. Huang et al. [18] designed a wrapping and
data mapping technique for converting the existing legacy code
(e.g. libraries of scientific and mathematical software written in
C language) into composing computational services within a grid
environment. Bodhuin and Tortorella [19] designed a tool which
can automatically transform the source code of legacy applications
and make them compatible with the web or grid technologies.
GEMLCA [20] is a front endOGSI grid service layerwhich surrounds
the target host environment and executes legacy applications
through the OGSI grid service. Plantikow [21] proposed a data
management system architecture and discussed approaches for
the integration of legacy applications and grid scheduling with the
proposed architecture. An integrator is designed to instruct the VFS
driver to add a new logical file system view. Such views are used to
provide the legacy applications with input data and to collect the
results. Each legacy program is run inside a jail/sandbox such that
it only accesses its logical view. LGF [22] is a two-tier architecture
in which the interface layer is decoupled from the legacy layer.
This enables many benefits that surpass the performance penalty
due to the additional interposition layer. The LGF enables semi-
automatic virtualization of legacy codes as grid services. McGough
et al. [23] proposed the use of a standards based job submission
and monitoring system. This approach enables us to deploy legacy
applications into the existing resources within a Grid, to map
applications into Grid applications, and to use a web based portal
to expose these applications to the end users.
In this paper, we propose a Legacy Application Grid (LAG)

which is based on an existing grid environment (GT4) [15,24]
consisting of a Monitoring and Discovery System (MDS) [25], a
certificate authentication centre and several grid service providers.
In contrast to the existing methods, we wrap a display protocol
into grid service, which is registered in a MDS, instead of directly
putting legacy applications into grid service or converting the
legacy data from one format to another format. The service
provider who wants to deploy any legacy applications just need
to deploy the protocol based grid service, describe and pass the
parameters (e.g. application name) of those legacy applications
to the grid service. Therefore, all kinds of legacy applications
can be deployed in the LAG without modifying the source code
and the GUI. LAG users who want to access any legacy data can
locate and discover the required legacy application in LAG, and
then employ the application to access the corresponding legacy
data transparently. The LAG can be maintained by companies or
organizations. Thus, the method is very cost-effective for both
the companies and personal users who want to access legacy
data, because they just need to pay for what they use. A system
prototype is constructed to investigate the overhead involved in
the data access in LAG. The experimental results illustrate that
the LAG can provide transparent access to the legacy data with
acceptable performance degradation.
The remainder of the paper is organized as follows. Section 2

gives a brief description about the background knowledge of
display protocols. Overview of the LAG architecture and workflow
are introduced in Section 3. Section 4 describes how to build a
legacy service, manage lifecycle and state, and service registration.
Section 5 illustrates the prototype systemand evaluates the system
performance. Section 6 concludes the paper with remarks on the
contributions of the paper. There is also a brief discussion in
Section 6.

2. Background

Generally, there are two major display protocols which offer
graphics sharing and guarantee network transparency: Virtual
Networking Computing (VNC) [26] and X Window System (X11).



34 Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39
The VNC system is a simple protocol working in a client/server
model. This protocol offers remote accesses to graphical user
interfaces (GUI) and works at frame buffer level. The key point
at the display side is putting a rectangle of pixel data at a given
x, y position. Therefore, the encoding is simply an x, y coordinate.
This gives a position in the frame buffer from which the client
can copy the rectangle of pixel data. This encoding is typically
used when the user moves a window across the screen or scrolls
a window’s contents. VNC sends compressed bitmaps across the
network. X11 is a display protocol which provides a standard
toolkit to build GUI for network computers. As a user application
on top of operating systems, X11 is network transparent and
operating system independent. X11 also adopts a client/server
model which can be run on the same computer or on different
ones with different architectures and operating systems [27,28].
The X11 server provides display and I/O services (e.g. keyboard
andmouse) to applications. The X11 client leverages these services
to manipulate applications. Therefore, the X11 server sends user
input to and accepts output requests from client programs through
communication channels. The X11 server machine can run a small
program thatmakes a connection to the remote clientmachine and
starts the client applications. Alternatively, the remote X11 client
is also able to connect to an X11 server. Manipulating graphics in
X11 is at relatively high-level elements including lines, rectangles,
curves, and fonts. This is different to the systems which read and
write individual pixels. X11 can direct graphics to windows or
pixmaps which work in different ways. Drawing to a window
generates a visible result, while drawing to a pixmap simply
updates the pixmap memory which is invisible. Pixmaps can be
used to store frequently drawn images and as temporary backing-
store for pop-up menus. Furthermore, it can animate a series
of images by placing the images into pixmap memory and then
sequentially copying them to a visible window [27].

3. System overview

3.1. Architecture of LAG

A grid environment may consist of hundreds or even thou-
sands of geographically distributed and heterogeneous resources
to match the requirements imposed by all kinds of grid appli-
cations [14,16]. Grid is a Virtual Organization (VO) consisting
of cooperating geographically distributed and diverse resources
that combine into a logical communitywith onlyminimal adminis-
trative requirements. LAG is based on an existingGrid environment
GT4. Therefore, LAG inherits the characteristics of GT4. The main
goal of LAG is providing legacy applications as resources which can
be located and employed by LAG users to access the legacy data
transparently.
LAG is composed of Service Providers (SPs) which offer

diverse legacy applications, MDS, CA centre, and LAG users.
The Grid Security Infrastructure (GSI) [29] provides security
functions including single or mutual authentication, confidential
communication, authorization, and delegation. The security of LAG
is within the GSI framework of GT4. Each service provider has to
request and receive a host certificate from the CA, thus allowing
joining the LAG. In order to access the legacy applications in LAG,
a user has to request and receive a user certificate from the CA
as well. Fig. 1 illustrates the architecture of LAG which consists of
three sub-VOs. The three sub-VOs are connected with each other
through three MDSs. A downstream and upstream mechanism is
employed by the MDSs to exchange information automatically
and efficiently. The interaction between LAG users and the LAG is
mediated through a LAG service published on the Internet. When a
user wants to access the LAG, firstly, it sends a request to the LAG
service with its requirements. Secondly, the LAG service redirects
Fig. 1. Architecture of the legacy application grid.

the request to an MDS which is close to the user. Within the
LAG environment, the users can achieve the following functions
through the VO interface: (1) obtain a security certificate from the
certificate authority. (2)With the help of MDS, search and discover
appropriate legacy applications in terms of their requirements.
(3) Employ the located legacy application to access the legacy data
transparently and remotely.

3.2. Workflow of LAG

Recently, some research efforts have been invested in solving
the legacy applications in gird environment or service oriented
architecture [17–23,30]. However, the methods are either costly
or inflexible (e.g. converting the legacy data from one format
to another format, wrapping or modifying the legacy application
one by one). The main goal of LAG is allowing users to locate
and employ an appropriate legacy application to access the
corresponding legacy data transparently and remotely without
modifying the source code and GUI of the legacy applications.
Therefore, we do not use the traditional methods including
redeployment, wrapping, and migration. We develop a display
protocol based grid service which is called a legacy service in
the remaining discussion of this paper. The legacy service can be
deployed in the LAG at the service provider side. The protocol
can be adopted by LAG users to launch an application remotely
and redirect the original GUI of the legacy applications to the
users. Some parameters such as application name of the legacy
applications are passed to the legacy service, which enables the
LAG users to locate the legacy applications.
In a typical grid environment especially the LAG, the service

providers could have diverse and heterogeneous platforms and
operating systems. The X11 offers a very good opportunity to
access the heterogeneous service providers which provide legacy
applications in LAG, because almost all modern operating systems
and architectures support X11. Unfortunately, the network traffic
between the X11 client and X11 server is not secured, whereas
grid environment requires high security due to its geographic
distribution and crossing domains. The data traffic between the
X11 server and X11 client is secured by a secure shell and GSI
protocol in our implementation. Fig. 2 illustrates that the X11
server and X11 client are deployed on LAG user and service
provider, respectively. Service is becoming a basic application
pattern of grid because the service offers a standard means of
interoperating between different applications running on a variety
of platforms. The X11 client is wrapped in a legacy service.
Each service provider in the LAG has to lunch the legacy service



Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39 35
Fig. 2. X11 server and client deployed on LAG user and service provider.
which is registered in a MDS. The available legacy applications
are published in the legacy service by setting the application
related parameters. The LAG users can locate the published
legacy applications through the legacy service with the help
of MDS. When a user submits a request with corresponding
requirements to the MDS, the MDS will return a list of all matched
legacy applications associated with their Universal Resource
Identifier (URI) by querying the available legacy service. The legacy
applications can be geographically distributed and transparent
to the user. If the user chooses a legacy application from the
list, the remaining steps are labelled with a sequence number as
defined in the following descriptions (see Fig. 2). (1) The URI is
employed by the user to locate the service provider which offers
the legacy application chosen by the user. A connection between
the service provider and the userwill be initialized and established.
The user then sends a command to request the legacy application
which is published with the legacy service. (2) When the legacy
service receives the command, it will launch the requested legacy
application. (3) The requested application creates a new process
and registers itself with the X11 client to display its GUI. (4) The
X11 client sends the GUI stream to the userwith a secured network
connection. The LAG user can then display the GUI on its screen as
if it is processed locally.
There are twomajor jobs in a typical Grid environment. The first

one is a batch job which stores output/error streams into remote
files. The files can be retrieved after the job is completed. Batch
jobs are normally adopted when multiple jobs are launched in
parallel, or when the execution time is expected to be very large.
The second one is an interactive job which provides immediate
feedback to Grid users. A Grid job submission normally involves
a client, a gatekeeper, and a job manager. The gatekeeper is a
remote service that receives requests from clients, and performs
mutual authentication with the clients. After authenticating and
authorizing, it starts a job manager running under the credentials
of the authenticated user. Therefore, a job manager is spawned
by the gatekeeper upon receiving each request. The job manager
processes job specifications sent by the clients, most of which
result in a job submission to a local scheduler. It also provides a
mechanism through which the client can check the status of a job
or cancel it [31]. The key point of job submission in Grids is sending
programs to the resources to execute. LAGworks in a differentway.
The reason is because legacy applications sometimes are tightly
coupled with the running environment. It would be a challenge
to decouple the legacy applications from its hardware platform
and switch to a new platform where the legacy data resides. As
mentioned before, LAG users leverage the legacy service to locate
the published legacy applicationswith the help ofMDS. After this is
done, the users who have legacy data to processwill send a request
to the legacy service to start the corresponding legacy application.
When the application is launched, X11 protocol will take over the
whole process. Therefore, in contrast to the Grid job submission, it
is unnecessary for LAG to send the programs (legacy applications)
to the resources to execute.
Fig. 3. Components and workflow of the legacy service.

4. Legacy service

4.1. Building a legacy service

As discussed in Section 3.1, the LAG user locates the available
legacy applications through a legacy service with the help of MDS.
The legacy service consists of four parts that are implemented by
four classes: A legacy service factory, a legacy service instance,
a legacy service home, and the X11 protocol (see Fig. 3).
When dealing with multiple resources, the WSRF specifications
recommend employing the factory/instance pattern that is a
well-known design pattern in software design, and especially in
object oriented languages. The factory/instance pattern adopts one
service (the service factory) in charge of creating the resources
and another one (the service instance) to actually access the
information contained in the resources. Because the SPs offer
resources for hundreds of thousands of LAG users with different
requirements, the factory/instance pattern is employed in the
legacy service. The resource home is responsible for registering and
updating the MDS when it is necessary. (e.g. When a new legacy
application is added to the legacy service, the resource information
in the SP has to be updated in MDS.)
Fig. 3 illustrates the components and workflow of the legacy

service. When an LAG user obtains the URI of a requested legacy
application through MDS, the major steps are defined in the
following descriptions. (1) The URI is employed by the LAG user
to locate the legacy service factory of the SP chosen by the user.
(2) The legacy service factory invokes a createResource method
to create and initialize a new resource assigned with a unique ID
through the legacy resource home. (3) The legacy resource home
which is responsible for all the legacy resources (X11 protocol)
will create a new legacy service instance associated with an
URI. (4) Once the createResource call finishes, a WS-Addressing
EndPointReference (EPR) [32] containing the URI of the created
legacy service instance and the ID of the allocated legacy resource
(X11 protocol) will be sent to the user. (5) The legacy service
instance will employ the legacy resource home to find the exact
legacy resource (X11 protocol) and providemethods to operate the
newly created legacy resource.



36 Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39
Table 1
System configurations of the testbed.

Computer 1 Computer 2 Computer 3

CPU Intel 550 MHz Intel 1.6 GHz Centrino duo 1.66 GHz
Memory 128 MB 256 MB 1 GB
Network 100 Mbit/s 100 Mbit/s 100 Mbit/s
OS Red Hat (Kernel 2.4.21) Red Hat (Kernel 2.4.21) Red Hat (Kernel 2.4.21)
Middleware Globus Toolkit 4 Globus Toolkit 4 Globus Toolkit 4
4.2. State and lifecycle management of the legacy service

Grid service must provide their users with the ability to ac-
cess and manipulate state. WSRF adopts Web Service Resource
(WS-Resource) consisting of a resource document and a corre-
sponding web service to implement a stateful service. Because
web service is stateless, the resource document employs an XML
schema to capture state information for a WS-Resource due to the
portability and ease in machine processing. The web service can
check and alter states contained in the resource document.
The WS-Resource is adopted in the legacy service to describe

and access any state of the legacy resources. Two kinds of
important state information are managed by the legacy service.
The first one is the information of the resource utilization. A service
provider in the LAG is supposed to provide legacy applications
for hundreds of LAG users. The service provider could become a
systembottleneck due to the overload of data traffic. Therefore, the
service providermonitors the utilization of the hardware resources
periodically and stores the state. The stored state will be accessed
by the MDS when the MDS locate the available legacy applications
in terms of the query requirements. The applications residing in the
service providers which could be overloaded will be filtered by the
MDS and are invisible to the LAG users. Because each instance of
the legacy service corresponds to a process of a legacy application,
the second state information is the process. A launched process
in an operating system is identified by a unique number called
Process ID (PID). The legacy service tracks the PID and records the
corresponding information for three reasons. The first, the service
provider is able to monitor which user is running which process.
When it is necessary, the process can be killed due to some reasons
(e.g. security). The second, the service can calculate which user
used which legacy application and how long the user used it. The
information is important for charging the user appropriately. The
third, the service provider is able to calculate how many users are
currently using the licensed legacy application, thus limiting the
simultaneously running processes.
WSRF lifetime management is employed to describe the

resources that are destroyable via grid services interfaces. The
lifecycle management of the legacy service is composed of two
cases. An instance of legacy service is created every time when a
LAG user initiates a connection with a service provider. In the first
case, a legacy service instance allocated for a specific user can be
destroyed immediately by means of the user’s requirement. For
example, when a user finishes data access or wants to terminate
the data access immediately. In the second case, when a user
requests some legacy resources with specified time period, a
scheduled destruction is adopted to calculate the destruction time.
If the termination time is arrived, a message will be sent to the
user. If the user does notwant to renew the legacy service instance,
the instance will be destroyed and the allocated resources will be
reclaimed.

4.3. Legacy service registration

A typical grid environment (e.g. GT4) is a VO. The interaction
between the VO and grid users is mediated through MDS which
provides a virtual interface between the diverse resources and
maintains a single logical view. Therefore, all grid services have
to be registered in the MDS. There is typically one MDS per VO,
but in a large VO, several MDSs are normally organized in a
hierarchy. MDS provides service discovery, execution supervision,
and monitoring of resource status information. A very important
objective of LAG is enabling authorized LAG users to locate the
required legacy applications across the geographically distributed
service providers in LAG, and then employ the legacy applications
to access the corresponding legacy data. Therefore, in order to
discover the legacy applications which are published in the legacy
service, the legacy service has to be registered in MDS.
The purpose of the service container is to shield the application

from environment specific run-time settings, control the lifecycle
of services, and dispatch of remote requests to service instances. A
grid service provided by a service provider is first registered in the
local service container, and then registered in the MDS container.
There are two important services which are employed by a
container tomonitor and discovery resources in grid environment.
One is container registry service which keeps tracks of all services
running in the local container. Another one is default index service
which can collect local resource information and remote resource
information with the help of the upstream and downstream
mechanism.
After the X11 protocol is wrapped as a legacy service, it is

important to register the service in MDS to make it available
to the users. The registration process can be divided into
four steps: (1) Creating a default instance for service provider.
(2) Updating the instance by including the newly added legacy
service. (3) Registering the instance in the default index service
of the local service container of service provider. (4) The MDS
container receives information from the registered downstream or
upstream connection and registers the default instance of the new
service provider. Finally, the LAG users can discover all available
resources by querying the MDS.

5. Performance evaluation

We constructed a system prototype with three computers
which were connected through a 100 M switch. All computers
were installed with Redhat and Globus Toolkit 4. Table 1
shows the system configurations of the three computers. All the
performances reported in this paper are based on the average of
100 measurements.

5.1. Evaluation of service registration

In the test of this section, the three computers all play the role
of service provides to investigate the impact on the registration
process of the different computer platforms. The legacy service can
be registered in the service provider locally or remotely by the
clients who want to deploy legacy applications in LAG. We will
explore the exact overheads involved in the registration process
by registering locally which excludes the network overhead.
As discussed in Section 4.3, the registration process can be

divided into 4 steps. We will investigate the overheads of the first
three steps. The fourth step actually depends on the poll interval of
MDS. We set the poll interval as 60 s which indicate that the MDS
checks the downstream or upstream connections every 60 s. There
are four legacy applicationswhichwere updated in the second step
of our test. Fig. 4 illustrates the average registration overheads of



Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39 37
Fig. 4. Average registration overhead.

Fig. 5. CPU utilization.

Fig. 6. Test scenario of a grid service invocation.

the three steps on three computers, respectively. Fig. 5 shows the
processing power consumed by the three steps on three different
computers. The above tests demonstrate that the registration is
very resource consuming (e.g. the CPU utilization of computer 1
and computer 2 both reach 100%when dealing with the step 1 and
step 3) which is mainly caused by the SOAP messages.
By using grid service, it is easy to construct a heterogeneous

and Internet-scale system which guarantees interoperability. The
core of grid service is ExtensibleMarkup Language (XML) [6]which
offers portability and ease of machine processing, because both
the Web Services Description Language (WSDL) [33] and Simple
Object Access Protocol (SOAP) [34] are based on XML. Due to
the involved XML, requests and replies become much larger and
parsing the XMLmessages on both the sender and the receiver side
incurs additional overhead. Tian et al. [35] discovered that sending
589 bytes of content involves additional 3363 bytes by using
web service. Mani and Nagarajan [36] reported that XML’s way
of representing data takes more than 400% overhead compared
with the way adopted by binary. Therefore, it is very important to
explore the exact overheads involved in the processing of XML.
Fig. 6 shows the test scenario of a typical grid service invocation.

When a client needs to invoke a grid service, it wraps the required
data into SOAP messages and sends the messages with HTTP
protocol through network to the service provider. The service
provider then analyzes the SOAP messages, extracts the data, and
uses the data to invoke the corresponding service. The results
of the invocation are transferred back to the client with SOAP
messages through the network. Finally, the client extracts the
Table 2
Registration overheads and the corresponding SOAP overheads.

Step 1 (ms) Step 2 (ms) Step 3 (ms)
Overall SOAP Overall SOAP Overall SOAP

Computer 1 10140 10131 533 532 522 466
Computer 2 8110 8106 331 330 195 160
Computer 3 1063 1061 68.2 68 51 33

Table 3
Query overhead of a single request submitted to MDS.

Query time (ms) CPU utilization (%)

Computer 1 1460 62
Computer 2 1105 34
Computer 3 821 8

response data from the SOAPmessages. In our experiment, in order
to eliminate the network overhead, the client software which is
used to deploy legacy services is located in the same computer
with the service provider. The overheads involved in the three
steps of the registration ismeasured by two fine granularity timers
(Timer 1 and Timer 2) which reside in the source code of the client
software and service provider.
The major steps of test are labelled with the sequence number

as defined in the following descriptions (see Fig. 6). (1) Timer 1 in
the source code of client software is started when the client starts
executing a function provided by the service provider. (2) When
the service provider obtains the data from the SOAP messages
which are from client and begin to invoke the required service, the
Timer 2 starts to work. (3) When the service provider finishes the
required operation and starts to wrap the information into SOAP
messages, Timer 2 stopsworking. (4) After extracting the data from
the SOAP messages sent by the service provider, the Timer 1 is
stopped. According to the above descriptions, it is easy to calculate
the overheads of processing the SOAP messages at the client side
and the service provider side as ((4)–(1))–((3)–(2)).
Table 2 shows the overall overheads and the corresponding

SOAP overheads involved in the three steps of the registration.
Basically, the processing overhead of SOAP messages is a big
portion of the overall overhead ranging from 64.7% to 99.9%.
Table 2 also depicts that the overheads are decreased with
the increase in performance of different hardware platforms.
The above tests demonstrate that the registration is resource
consuming. Fortunately, the overhead is transparent to the LAG
users, and the registrationdoes not happen frequently. Itmaydelay
the registration process when the service is available, but it is
unlikely to interfere with the users.

5.2. Evaluation of service query

The query response time seen by the LAG users is an important
metric in evaluating the performance of resource discovery of the
LAG. The measured query time is the time between when a user
submits a query request to the LAG through network and when
the last byte of the response is delivered to the user. We employed
average query time to measure the performance.
We employed the three computers listed in Table 1 as MDS

and used another computer to investigate the query overhead,
respectively. Table 3 shows the query overhead of a single
request to the MDS. The first column illustrates the query time
with different computers. The second column depicts the CPU
utilization of the three MDSs when they are processing the query
request. The trend is that the query time seen by the user and
the CPU utilization of MDS is decreased with the improvement
of the hardware platform of computers. According to Table 3, we
believe that to a great extent, the query time is determined by the



38 Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39
Fig. 7. Average query time.

Fig. 8. CPU and network utilization.

processing power of MDS. The reason is that the large processing
overhead of the query request is caused by the SOAPmessages sent
by the users.
The LAG is designed to support hundreds of thousands of

users. However, if hundreds of thousands query requests go to a
particular MDS simultaneously, the MDS could become a potential
system bottleneck. The I/O traffic travelling network and LAG is
also a big concern. Therefore, it is important to investigate how
many simultaneous query requests a MDS can support, and the
corresponding network overhead involved in the query process.
We used computer 3 which has the highest performance as the
MDS and other computers as client machines. In the experiment,
each client machine can simulate many different users with
different connections to the MDS.
Fig. 7 illustrates that the average query time of 10, 50, 100,

500, and 1000 users are 1.5, 5.2, 9.8, 39.8, and 86.5 s, respectively.
The query time here is the time between when the first user
submits a query request and when the last user receives the
query result. Fig. 8 depicts the CPU utilization of the MDS and
the network utilization when 10, 50, 100, 500, and 1000 users
simultaneously send query requests to the MDS, respectively. It
shows that 10, 50, 100, 500, and 1000 simultaneous query users
incur 41%, 61%, 79%, 82%, 85% CPU utilization of the MDS. The 85%
CPUutilization ofMDS results in a significant performance penalty,
i.e., 86.5 s of query time. Fig. 7 also illustrates that the network is
not a performance bottleneck. Even when 1000 users send query
requests to the MDS simultaneously, the network utilization is
about 3%. The reason is that the query requests are all small
messages. The above tests illustrate that the potential performance
bottleneck of LAG is the processing power of MDS.
Nielsen [37] presented that 10 s is the limit for users to keep

their attention on the task. Anything slower than 10 s needs a
percent-done indicator as well as a clearly signposted way for
the user to interrupt the operation. Delays of longer than 10 s
are only acceptable during natural breaks in the user’s work, for
example when switching tasks. Therefore, the 86.5 s of query time
is unacceptable when the MDS serves 1000 users. A solution to
tackle the potential performance bottleneck is distributing the
query requests across multiple MDSs (see Fig. 1). Therefore, the
query traffic taken over by each MDS will be decreased with the
increase in number of MDS.
Fig. 9. Local and remote launch time of different applications.

5.3. Evaluation of service access

The objective of LAG is achieving transparent access to the
legacy data by leveraging a grid environment. Therefore, it is
very important to measure the performance between starting an
application locally and in the LAG environment. The launch time
of an application which is employed to access the corresponding
legacy data is a very important metric tomeasure the performance
of LAG. Local launch time denotes the time spent starting an
application locally in the service provider. Remote launch time
measures the time between when a user submits a request to a
service provider to launch an application andwhen the application
is successfully displayed on the screen of the client machine. Local
launch time ismeasured as a baseline performance. Remote launch
time is the performance of the LAG.
In our experiment, we employed computer 3 as a service

provider and computer 2 as a client machine. Four different
applications were launched from the service provider locally and
remotely. The three applications including Firefox, Gimp, and
Openoffice are normally adopted to access three typical data
formats, i.e., web pages, pictures, and documents. The Xclock
which is a simple application (timer) is employed to evaluate the
overhead of very light applications involved in the LAG. Fig. 9
shows the local and remote launch time of the four different
applications, where the Y axis is in logarithmic scale. As expected,
launching applications in the LAG environment is longer than
launching them locally. Compared with the local launch time,
the remote launch times of the four different applications are
increased 2610%, 103%, 83.2%, and 21.2%, respectively. The leftmost
bar of Fig. 9 illustrates that the performance of Xclock is degraded
significantly. The reason is that the local launch time of Xclock
is too small, which makes the network transfer time become
relatively big (e.g. The network transfer time of Xclock takes 96%
of the remote launch time.). It is very interesting to observe that
the performance degradation of heavy applications is alleviated. It
is because that the network overhead is relatively small compared
with the large local launch time. (e.g. Openoffice spends only 17.5%
of the remote launch time on network transfer.)
The legacy service introduces a fixed amount of overhead on

each instance. The less data being transferred, the higher this
overhead is relative to the data transfer portion of the legacy
application. The test results demonstrate that it is more interesting
to deploy heavy applications than light applications with the
legacy service since the involved overhead is relatively too high for
light applications.

6. Discussions and conclusions

Legacy data is growing explosively due to the rapid develop-
ment of software and hardware. The legacy data and legacy pro-
gram is normally a one to one correspondence,which indicates that
a specific data format can only be accessed by the corresponding



Y. Deng, F. Wang / Future Generation Computer Systems 27 (2011) 32–39 39
program. In contrast to the traditional approaches, this paper pro-
posed and designed a LAG architecture which can deploy diverse
legacy applications in it. By employing the legacy applications de-
ployed in LAG, the LAG users can access the legacy data like local
access. A salient feature is that a display protocol is wrapped as a
legacy service which could enable service providers to deploy any
applications on heterogeneous platforms and operating systems.
This approach avoids converting the legacy data from one format
to another format or wrapping the legacy application in grid ser-
vice one by one, because it is not cost-effective. Furthermore, the
LAG is a win–win design, because some out of date computers can
be used to host some old legacy applications which can be adopted
by users to access the corresponding legacy data.
A prototype was constructed and evaluated. The experimental

results demonstrate that it is feasible to build such a LAG
architecture in terms of the required network bandwidth and
processing power. The main goal of LAG is to make the software
functionality available to all people who need it and who are
authorized to use it at anytime and anywhere. Please note that
the LAG is a general architecture, the current applications can
also be deployed in LAG besides the legacy applications. By taking
advantage of the LAG, the LAGusers do not have to pay a full licence
for a specific software package if they just need to use the software
to access or process some data temporarily.
Service composition can significantly accelerate rapid applica-

tion development, service reuse, and complex service consumma-
tion. Multiple atomic services can also be automatically combined
together as a composite service in terms of requirements. If the
legacy service is designed as an atomic service, the integration of
legacy applications would not be a problem. This will be explored
in our future work.

Acknowledgements

We would like to thank the anonymous reviewers whose
insightful and constructive comments have significantly enhanced
this paper. Thanks also to Adrian Ciura who constructed the initial
platform used in this work. In addition, we are grateful to Prof.
Peter Sloot for giving us the opportunity to clarify our thoughts.

References

[1] The expanding digital universe: a forecast of worldwide information growth
through 2010. IDCwhite paper—Sponsored by EMC.March, 2007. http://www.
emc.com/about/destination/digital_universe/.

[2] A.P. Sheth, V. Kashyap, T. Lima, Semantic information brokering: how can
a multi-agent approach help? in: Proceedings of the Third International
Workshop on Cooperative Information Agents III, 1999, pp. 303–322.

[3] Y. Deng, F. Wang, Opportunities and challenges of storage grid enabled by grid
service, ACM SIGOPS—Operating Systems Review 41 (4) (2007) 79–82.

[4] Warning of data ticking time bomb. July, 2007. http://news.bbc.co.uk/1/hi/
technology/6265976.stm.

[5] Word works with open file styles. February, 2007. http://news.bbc.co.uk/1/hi/
technology/6323575.stm.

[6] Extensible Markup Language. http://www.w3.org/XML/.
[7] B. Chidlovskii, J. Fuselier, Supervised learning for the legacy document
conversion, in: Proceedings of the 2004 ACM Symposium on Document
Engineering, 2004, pp. 220–228.

[8] E. Kuikka, P. Leinonen, M. Penttonen, Towards automating of document
structure transformations, in: Proceedings of ACM Symposium on Document
Engineering, 2002, pp. 103–110.

[9] J. Bisbal, D. Lawless, B. Wu, J. Grimson, Legacy information systems: issues and
directions, IEEE Software 16 (5) (1999) 103–111.

[10] N.F. Schneidewind, How to evaluate legacy system maintenance? IEEE
Software 12 (1) (1998) 34–42.

[11] Y. Bi, M.E.C. Hull, P.N. Nicholl, An XML approach for legacy code reuse, Journal
of Systems and Software 61 (2) (2002) 77–89.

[12] P. Thiran, J. Hainaut, G. Houben, D. Benslimane, Wrapper-based evolution of
legacy information systems, ACM Transactions on Software Engineering and
Methodology 15 (4) (2006) 329–359.

[13] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable
virtual organizations, International Journal of High Performance Computing
Applications 15 (3) (2001) 200–222.
[14] Y. Deng, F.Wang, A heterogeneous storage grid enabled by grid service, in: File
and Storage Systems, ACM SIGOPS Operating Systems Review 41 (1) (2007)
7–13 (special issue).

[15] Y. Deng, F. Wang, N. Helian, S. Wu, C. Liao, Dynamic and scalable
storage management architecture for grid oriented storage devices, Parallel
Computing 34 (1) (2008) 17–31.

[16] Y. Deng, F.Wang, A. Ciura, Ant colony optimization inspired resource discovery
in P2P grid systems, Journal of Supercomputing 49 (1) (2009) 4–21.

[17] P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas, T. Boczko, High-level
grid application environment to use legacy codes as OGSA grid services,
in: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, 2004, pp. 428–435.

[18] Y. Huang, I. Taylor, D.W. Walker, R. Davies, Wrapping legacy codes for grid-
based applications, in: Proceedings of International Parallel and Distributed
Processing Symposium, 2003.

[19] T. Bodhuin, M. Tortorella, Using grid technologies for web-enabling legacy
systems, in: Proceedings of the Eleventh Annual International Workshop on
Software Technology and Engineering Practice, 2003, pp. 186–195.

[20] T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss, G.Z. Terstyanszky, S.C. Winter,
GEMLCA: grid execution management for legacy code architecture design,
in: Proceedings of the 30th Euromicro Conference, EUROMICRO04, 2004,
pp. 477–483.

[21] S. Plantikow, K. Peter, M. Högqvist, C. Grimme, A. Papaspyrou, Generalizing
the data management of three community grids, Future Generation Computer
Systems 25 (3) (2009) 281–289.

[22] B. Bali, M. Bubaka, M. Wegiel, LGF: a flexible framework for exposing
legacy codes as services, Future Generation Computer Systems 24 (7) (2008)
711–719.

[23] A.S. McGough, W. Lee, S. Das, A standards based approach to enabling legacy
applications on the grid, Future Generation Computer Systems 24 (7) (2008)
731–743.

[24] I. Foster, Globus toolkit version 4: software for service-oriented systems,
in: IFIP International Conference onNetwork and Parallel Computing, in: LNCS,
vol. 3779, Springer-Verlag, 2006, pp. 2–13.

[25] Monitoring and Discovery System. http://www.globus.org/toolkit/mds/.
[26] T. Richardson, Q. Stafford-Fraser, K.R. Wood, A. Hopper, Virtual network

computing, IEEE Internet Computing 2 (1) (1998) 33–38.
[27] R.W. Scheifler, J. Gettys, The X window system, ACM Transactions on Graphics

5 (2) (1986) 79–109.
[28] X Window System. http://www.x.org/wiki/.
[29] V. Welch, Globus toolkit version 4 grid security infrastructure: a stan-

dards perspective, 2004. http://www.globus.org/toolkit/docs/4.0/security/
GT4-GSIOverview.Pdf.

[30] D. Kuebler, W. Eibach, Adapting legacy applications as web services, 2002.
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312.

[31] M. Feller, I. Foster, S. Martin, GT4 GRAM: a functionality and performance
study, in: Proceedings of the 2007 TeraGrid Conference, 2007.

[32] WS-Addressing. http://msdn2.microsoft.com/enus/library/ms951225.aspx.
[33] Web Services Description Language. http://www.w3.org/TR/wsdl.
[34] Simple Object Access Protocol. http://www.w3.org/TR/soap/.
[35] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, J. Schiller, Performance consider-

ations for mobile web services, Computer Communications 27 (11) (2004)
1097–1105.

[36] A. Mani, A. Nagarajan, Understanding quality of service for web services. Jan-
uary, 2002. http://www-106.ibm.com/developerworks/library/ws-quality.
html.

[37] J. Nielsen, Usability Engineering, Morgan Kaufmann, San Francisco, 1993.

Yuhui Deng is a professor at the computer science
department of Jinan University. Before joining Jinan
University, he worked at EMC Corporation as a senior
research scientist from 2008 to 2009. He worked as a
research officer at Cranfield University in the United
Kingdom from 2005 to 2008. He received his Ph.D. degree
in computer architecture from Huazhong University
of Science and Technology in 2004. He has authored
and co-authored two book chapters and more than 20
refereed academic papers. He is on the editorial board
of International Journal of Grid and High Performance

Computing and a book titled Grid Technologies and Utility Computing: Concepts
for Managing Large-Scale Applications. He has served as a committee member
for several professional conferences in the field. He is also a reviewer of several
academic journals. His research interests cover green computing, data storage,
computer architecture, Grid Computing, performance evaluation, etc.

Frank Wang is the director of Centre for Grid Computing,
Cambridge-Cranfield High Performance Computing Facil-
ity (CCHPCF), Cranfield University. He is Chair in e-Science
and Grid Computing. He is on the editorial board of IEEE
Distributed Systems Online, International Journal of Grid
and Utility Computing, International Journal of High Per-
formance Computing and Networking, and International
Journal on Multiagent and Grid Systems. He is on the High
End Computing Panel for the Science Foundation Ireland
(SFI). He is the Chair (UK & Republic of Ireland Chapter) of
the IEEE Computer Society.

http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://www.emc.com/about/destination/digital_universe/
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://news.bbc.co.uk/1/hi/technology/6323575.stm
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://www.x.org/wiki/
http://www.x.org/wiki/
http://www.x.org/wiki/
http://www.x.org/wiki/
http://www.x.org/wiki/
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSIOverview.Pdf
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://www.ibm.com/developerworks/library/ws-legacy/?n-ws-1312
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://msdn2.microsoft.com/enus/library/ms951225.aspx
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html

	LAG: Achieving transparent access to legacy data by leveraging grid environment
	Introduction
	Background
	System overview
	Architecture of LAG
	Workflow of LAG

	Legacy service
	Building a legacy service
	State and lifecycle management of the legacy service
	Legacy service registration

	Performance evaluation
	Evaluation of service registration
	Evaluation of service query
	Evaluation of service access

	Discussions and conclusions
	Acknowledgements
	References


