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a b s t r a c t

We present a decentralized market-based approach to resource allocation in a heterogeneous overlay
network. This resource allocation strategy dynamically assigns resources in an overlay network to
requests for service based on current system utilization, thus enabling the system to accommodate
fluctuating demand for its resources. Our approach is based on a mathematical model of this resource
allocation environment that treats the allocation of system resources as a constrained optimization
problem. From the solution to the dual of this optimization problem, we derive a simple decentralized
algorithm that is extremely efficient. Our results show the near optimality of the proposed approach
through extensive simulation of this overlay network environment. The simulation study utilizes
components taken from a real-world middleware application environment and clearly demonstrates the
practicality of the approach in a realistic setting.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Recently, information technology systems have begun to rely
heavily on the concept of ServicesOrientedArchitecture (SOA). SOA
is a means of leveraging existing applications as services within a
distributed computing environment to develop new applications.
A framework commonly used to integrate existing applications is
known as the enterprise services bus (ESB) [1]. According to the
Business Integration Journal [2], ‘‘The [ESB] supports the unifying
integration infrastructure required for SOA and heterogeneous
environments’’. By relying on an ESB to communicate with service
providers, service requesters need not depend on the details of
service provider implementations, e.g., the physical location of the
service provider. Instead, service requesters dependon the abstract
definition of the service that they are using and trust the ESB
to forward their requests to an appropriate service provider. In
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our environment, we model the ESB as an overlay network that
interconnects service providers and service requesters. Request
forwarding is provided by a broker service that is deployed within
the overlay network.

Because the service requester relies on the broker service and
is not explicitly dependent on any single instance of a service
provider, multiple service providers could be deployed within
the ESB to provide additional capacity for a service that is in
high demand. In this context, capacity is defined in terms of
the number of service requests that can be processed per unit
time. To take advantage of the added capacity provided by these
additional service providers, the broker service deployed within
the ESB serves as a proxy for communication between the service
requesters and the service providers. That is, the broker service
allocates incoming service requests to the collection of service
providers for processing.

Although the ESB is commonly deployed as a single centralized
platform, the scalability and reliability of the ESB can be greatly
improved through replication of the platform. A common approach
to increasing the reliability of a system is to duplicate that system
many times acrossmany hardware deployments, a technique often
referred to as replication [3,4]. An important aspect of an ESB
implementation is that it can be decentralized both to increase its
reliability and to ensure its scalability [2,4].

Successfully replicating brokers within an ESB requires main-
taining network transparency [3]; i.e., the user of the system
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Fig. 1. An example system where four service requesters are utilizing two brokers
to communicate with three service providers. Service requesters are shown as
triangles, brokers as circles, and service providers as squares. Each input link to a
broker from a service requester has a finite capacity, denoted c(in)

rb . Likewise, each
output link from a broker to a service provider has a finite capacity denoted c(out)

bp .
Finally, each broker has a finite capacity for servicing requests, denoted cb .

should be shielded from the existence of any redundant compo-
nents used to provide the ESB or its attached services. To the user,
the broker service should appear as a single highly available sys-
tem that always has sufficient capacity to route service requests.
Achieving this kind of transparency in service delivery requires a
mechanism for allowing the broker service to adapt dynamically to
the changes in system load. That is, transparently utilizing replica
service providers deployed within the ESB requires that the broker
provide a mechanism for routing requests to their physical desti-
nation that can be decentralized. In this work, we focus on the allo-
cation of resources to the effective transmission of service requests
to service providers.

In this work, we investigate the application of a decentralized
market-based approach to resource management within a hetero-
geneous deployment of an ESB platform. Service requesters send
tasks to service providers using an overlay network provided by
the ESB. The decision of how to allocate broker capacity to service
requests is made in a decentralized manner based on a quantifica-
tion of current resource demand relative to current system capac-
ity. Individual service requesters select transmission rates through
Brokers that maximize their individual benefit, while the brokers
adjust ‘‘prices’’ for network links and broker computing capacity
to reflect current demand for shared resources. Thus, price setting
enables service requester decision making by enabling shared re-
sources to communicate a simple quantification of current system
congestion to requesters.

Fig. 1 presents a graphical model of a simple overlay network
provided by an ESB. Service requesters are depicted in the figure
as triangles, service providers as squares, and brokers as circles.
Each service requester is connected to a collection of brokers
that ‘‘service’’ requests by dispatching them to a service provider
capable of completing the request. The number of requests
produced by each service requester may vary with time according
to some unknown process. The capacity of the brokers to service
incoming requests may differ from one component to another,
i.e., the collection of brokers are assumed heterogeneous in their
performance [5–7]. Finally, each broker is connected to a collection
of service providers by a finite capacity link.

Our mechanism for resource management can be thought of
as a market-based approach where market demand for shared
resources helps the system to set prices for those resources.
Some market-based approaches rely on an auction to create a
market where prices are set by the highest bidder [8–12]. In this
environment, the service requesters, that would be bidding for
service in an auction based mechanism, are part of the resource
management mechanism and are cooperating to maximize the
utility of the overall system. Because the service requesters are not
adversarial participants in the system the complexity of an auction
based mechanism is not required.

Our approach utilizes price setting based on duality theory [13].
In duality theory, selected constraints are directly accounted for in
the optimization criterion as a penalty. This approach is analogous
to that used in congestion control on the Internet [14], in ad-
hoc sensor networks [15–17], and server provisioning within large
scale distributed clusters [18]. In our systemmodel, price variables
are introduced to model market demand for shared resources,
where prices provide a simple quantification of demand relative to
supply. For example, as the number of requests through a broker
increases, the broker raises its ‘‘price’’. Conversely, if the number
of requests through a broker decreases, its quoted price also
decreases. In addition tomeasuring the demand for the component
itself, the broker also is responsible for stating the demand for the
links from that broker to all of the service providerswithwhich the
broker can communicate. The procedure used to calculate optimal
prices for resources is presented in Section 3.

In this study, we are considering an environment where all
brokers are controlled by a single organization. As such, the brokers
are assumed to be cooperating to provide an efficient system.
We assume that all brokers use the common pricing mechanism
presented in Section 3 and as such do not bias their pricing by over
or under stating demand for shared resources. Individual service
requesters directly utilize current pricing information provided by
the brokers to make local resource allocation decisions about how
best to assign their volume of requests within the overlay network,
given current network utilization. Obviously, this requires that
each service requester is logically connected to every brokerwithin
the system. Using all of these components in concert, wewill show
that our decentralized mechanism results in provably optimal
resource allocations.

In the replicated broker environment, we assume that each
service provider offers a unique service to the overall system and
that each service provider always has sufficient capacity to service
all incoming requests. In a real system, a service provider may be
implemented using a collection of finite-capacity replica providers,
where the replicas combine to provide a more reliable scalable
service implementation. Within each of these collections, we treat
the allocation of finite-capacity service provider resources as a
separate resource allocation problem. In Fig. 2, we have re-drawn
the distributed environment to show how the collection can be
used to provide such a service to the system. When treated in
isolation, the allocation of service provider capacity within each
collection is simpler than our original distributed broker problem
because there is only one class of shared resource to manage.

To demonstrate resource allocation in this simpler environ-
ment, we apply our approach to a related distributed web hosting
environment [19]. In a distributed web hosting environment, the
hosted web site is replicated to multiple web servers to increase
the apparent reliability and performance of the web site. Incoming
user-driven HTTP requests for data are routed to the web servers
for processing by a collection of independent service requesters. By
indirecting web server access through service requesters, we can
allocate incoming user requests using a decentralized approach
that is similar to that of the ESB environment. The overlay network
topology of this environment includes only service requesters and
service providers, where a service provider is defined to be a web
server. This two-layer overlay network can also be used to model
the allocation of requests by brokers to replicated service providers
as in our previous example. That is, in this simpler model, the bro-
kers act as service requesters to a collection of replicated service
providers.

The contributions of this work include a new mathematical
model of resource management in an overlay network that
treats the allocation of shared resources to service requests as
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Fig. 2. An example use of finite-capacity service provider resources to implement a
scalable reliable service within the context of the distributed ESB system. We have
expanded the depiction of a service provider to reflect the added complexity of
providing a scalable, highly available implementation through replication. In this
example, the ESB environment operates as before and the added complexity within
a service provider can be treated as a separate allocation problem, called out in the
figure in gray. In this sub-problem, the internal service requesters directly allocate
incoming requests to the internal service providers.

an optimization problem. We also present a new decentralized
market-based approach to resource management within an ESB
environment and a distributedweb hosting environment. Through
comparisonwith a known optimal technique,we demonstrate that
our decentralized approach to resource management is capable of
providing near optimal resource management in an ESB setting.
Although an analogous methodology has been studied previously
in the context of Internet congestion control [14], it has never been
applied within the context of an ESB or to route service requests in
a distributed web hosting environment.

In the next section, we present an example derivation of a
decentralized routing mechanism for the distributed web hosting
environment. Using the concepts developed in this example
environment, Section 3 provides a more detailed view of the ESB
system model and develops an analogous decentralized approach.
In Section 4,we analyze the robustness of this approach to resource
allocation in the ESB environment. Sections 5 and 5.2 present our
simulation setup and results for the evaluation of this approach in
a real-world setting.

2. Web hosting example

2.1. System model

The environment in this example is that of a heterogeneous,
distributed computing system designed to service a high-volume
web site of world-wide interest. The system being modeled
was used to implement a portion of the 1998 World Cup web
site [19] that processedmore than 1.3 billion HTTP requests during
the summer of 1998. The web site was provided to a world-
wide audience by four heterogeneous, geographically dispersed
systems, each with their own processing capacity and workload
distribution techniques. This class of system is very challenging
to implement but occurs surprisingly frequently. The World Cup
football tournament is just one example of an event of world-wide
appeal that necessitates web-based coverage. Sites of this type are
typically constructed for specific events, and the volume of traffic
is on the order of billions of requests processed in a period of only a
fewmonths or less. Other such events that are reasonably expected
to draw the attention of a world-wide audience in the billions
might include the Olympics or the Tour de France.

Mapping requests to service providers is challenging because
of the large volume of requests that must be processed. To help
copewith this large volume of requests, the providers of theWorld
Cupweb site [19] chose a hierarchical deployment, wheremultiple
instances of the distributedwebhosting environment are deployed
throughout the world. This work focuses on the application of our
decentralized resource allocation mechanism to the design of a
single instance of a distributed web hosting environment.

Fig. 3 presents a graphical depiction of the distributed web
hosting environment employed to deliver the 1998World Cupweb
site. In this example system, users send requests for data to a web
site over the Internet. These incoming requests are first routed to
an instance of the web hosting environment by a network-layer
load balancer (e.g., [20]). A request in this environment is defined to
be amenu-drivenHTTP request for data that originateswith a user.
When incoming requests arrive to a web-hosting environment,
they are placed into the input queue of a service requester within
that environment. Acting on the user’s behalf, service requesters
remove incoming requests from the input queues and route them
to a service provider (i.e., web server) for processing. The service
provider processes the request and returns the results to the user.

In our model, each distributed web hosting environment
utilizes a collection of service requesters to route incoming requests
to web servers for processing. Each web server is defined to be a
service provider capable of servicing any incoming request.

Let R denote the set of all service requesters and let P denote
the set of all service providers. Each service requester r (r ∈ R)
routes each incoming request to a service provider p (p ∈ P ).
Service requester r produces a variable number of requests at each
time-step k, denoted fr(k), based on the arrival rate of user driven
requests. Each link connecting service requester r and service
provider p is assumed to have a finite capacity formoving requests,
denoted c(in)

rp . Finally, each service provider p can only process a
limited number of requests in each time-step, denoted cp.

For each service requester r , the fraction of incoming requests
that are sent to service provider p is denoted ηrp. In this example,
each service requester r uniquely quantifies the value of using each
service provider p with a simple scalar measure of value, denoted
ζrp, e.g., speed. We expect that the ζrp values can be set by the
system implementer based on the details of their deployed system.
For a given service requester r and service provider p, we can define
an aggregate service quality delivered by the system as:−

p

ηrpζrp. (1)

Intuitively, the service quality delivered by the system for traffic
sent by service requester r can be thought of as the weighted
average route quality realized for this traffic, where the ηrp values
provide the weights. Finally, the system realizes some utility from
delivering service requests to their destination. We account for
differing service quality by quantifying utility, denotedU(x), as the
worth of receiving service quality x. In our model, we have chosen
a utility function that depends on a scalar quantification of service
quality. However, our technique is applicable to a more general
utility function that accepts the full vector of ηrp and ζrp values to
compute a scalar utility value.

2.2. Centralized optimization

We initially model resource allocation in this system as a
constrained optimization problem that will serve as the basis for
the derivation of our decentralized approach to resource allocation.
We combine the elements of our system model presented in the
previous subsection to form the following optimization problem:

maximize
−
r

fr(k)U

−
p

ηrpζrp


(2)
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Fig. 3. An example deployment of a distributed web-hosting environment. The system is designed to provide a web-site of world-wide appeal. Users send requests for data
to a web site over the Internet. These incoming requests are first routed to an instance of the web hosting environment by a network layer load balancer (e.g., [20]). Incoming
requests are queued for a service requester within the environment. The service requester applies our decentralized allocation mechanism to route each incoming request
to one of the service providers. The service provider processes the incoming request and returns the results to the user.
subject to: ∀r ,
−
p

ηrp = 1 (3)

∀r, p, ηrp ≥ 0 (4)

∀r, p, ηrpfr(k) ≤ c(in)
rp (5)

∀p,
−
r

ηrpfr(k) ≤ cp. (6)

Intuitively, for each service requester/service provider pair,
Eq. (2) sums the realized utility of the service quality scaled by the
production rate for that service requester. By taking this sum over
all service requester/service provider pairs, we are evaluating the
total realized utility for the system at time-step k.

The four constraints that must be satisfied for this optimization
enforce the capacity limitations of the system. First, Eq. (3) requires
that, for each service requester r , all of the requests received in
a given time-step are sent to a service provider for processing,
and Eq. (4) enforces the fact that negative decision variables are
meaningless in this context. Eq. (5) enforces the constraint on
processing capacity for each service provider. Eq. (6) enforces the
constraint on capacity for each service provider.

The solution to this constrained optimization problem provides
an optimal allocation of system resources at any given time-step
k. The solution can be applied by a centralized resource manager
to allocate requests to service providers. However, because the
production rates of requests change from one time-step to the
next, the optimal allocation of requests also changes from one
time-step to the next. In a problem of reasonable size, the
time required to solve the centralized constrained optimization
problem may be longer than a single time-step. That is, because
the optimal allocation changes with time, a centralized approach
may continually lag behind the optimal allocation.

2.3. Decentralized approach

To transform the original optimization problem described in
the previous subsection into a decentralized algorithm for resource
allocation, we apply the Lagrangian multiplier method [21,22,13].
In this way, we convert the centralized optimization problem into
an equivalent problem that can be separated into |R| independent
sub-problems where each of the sub-problems is much simpler to
solve. The constraint of Eq. (6) in the centralized problem reflects
a constraint on shared resources. The Lagrangian method provides
a mechanism for introducing Lagrange multipliers (interpreted as
‘‘prices’’) for these shared resources that can be directly accounted
for during optimization as a penalty. An important feature of this
approach is that solving for theηrp values for each service requester
no longer requires detailed knowledge of the ηrp values of the other
service requesters. These detailed values are instead replaced by a
collection of prices produced by the service providers, where each
price reflects the current demand for the capacity of that service
provider. Let φp(k) denote the price of using service provider
p (∀p ∈ P ) at time-step k. Each service requester r must choose
ηrp values to solve the following problem:

maximize fr(k)
−
p


U(ηrpζrp) − φp(k)ηrp


(7)

subject to:
−
p

ηrp = 1 (8)

∀p, ηrp ≥ 0 (9)

∀p, ηrpfr(k) ≤ c(in)
rp . (10)

The above optimization problem only depends on the prices
obtained from each service provider and information that is locally
available to the service requester. Themaximization of this simpler
problem is modified from the centralized approach to account
for the cost of using each service provider. In this way, the
constraint on service provider capacity is accounted for as a penalty
as opposed to a direct constraint [13]. However, the remaining
constraints on local resources must still be enforced as before.

By reformulating the centralized optimization problem in this
manner, we are able to obtain a collection of sub-problems
whose combined solution is mathematically equivalent to the
solution of the original centralized optimization problem. The final
required ingredient in thismodel is an algorithm for computing the
appropriate price for the consumption of capacity at each service
provider.

Each service provider p is required to update the price in the
model for its capacity such that the price reflects expected near-
term future demand for the resource. The price of each shared
resource reflects the amount of excess capacity that the resource
has for processing requests. If the demand for a shared resource
is greater than the supply, then the price of the resource should
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Fig. 4. An example of the price update procedure. In the example, service requester
r1 receives updates for the price of using service provider p1 and service provider
p2 .

increase. Conversely, if the demand is less than the supply, then
the price should decrease. The price of each shared resource is
updated according to the difference between the capacity of the
shared resource and current demand for the resource scaled by
a constant factor. In our model, we introduce a constant step-
size parameter for controlling price updates for service provider
capacity, denoted ν, whose value must be greater than or equal to
0. Each service provider p can simply update prices φp(k) using the
following update procedure where [x]+ = max{x, 0}:

φp(k + 1) =


φp(k) − ν


cp −

−
r

ηrpfr(k)


+

.

The update procedure is intentionally expressed in terms of
abstract time-steps. Each pair of successive time-steps can be
mapped to a specific interval of real time. There are a variety of
possible interpretations of the real time that passes during the
interval between any pair of successive time-steps k and k+1. One
natural interpretation treats all of the time intervals as having the
same constant length, i.e., each interval corresponds to the same
amount of real time.

The step-size ν determines how the system will react to
fluctuations in demand for shared resources. Notice that the step-
size determines the magnitude of price updates. That is, if ν is
too small, then the prices will be slow to react to changes in
demand. For example, if price updates are too small and the
demand for a resource is much greater than its capacity, then
the price for the shared resource may not increase enough to
deter future requesters from using it. Consequently, the number
of queued requests in the input queue of the shared resource may
increase because it is consistently receiving more requests than it
can process. The value ν needs to be large enough to enable the
system to react to substantial changes in demand, i.e., increase
the price enough to deter recurrent excessive demand. Care must
also be taken to prevent the opposite scenario, where prices are
increased so much that future demand for the shared resource is
unnecessarily reduced to 0. That is, if ν is set too high, then the
system may ‘‘thrash’’, i.e., demand may oscillate between shared
resources potentially overwhelming some resource in any given
time-step.

An example to illustrate communicating prices is shown in
Fig. 4. In this example, service requester r1 is sending requests to
service providers p1 and p2. To facilitate the allocation decisions
made by r1, each of the service providers provide prices for using
each of the shared resources that it is responsible for in the system,
e.g., the capacity of service provider p1.

3. ESB environment

3.1. System model

In this section, we introduce a more complex system model
involving multiple shared resources. This example system is based
on modeling an ESB as an overlay network (shown in Fig. 1). In
this computing system, there are three types of entities: service
requesters, brokers, and service providers. As in our previous
example, service requesters send requests to service providers;
however, in this example, requests are routed to the service
providers by a collection of independent brokers acting as proxies
for the service providers. In our previous example, all the service
providers performed the same function; e.g., they all served up
pages from the same web-site. In this example, service requesters
request a service by name and it is the responsibility of the brokers
to route service requests to a service provider capable of processing
the request. It is helpful to consider a service requester in this
context as an agent that ismaking requests to an ESBonbehalf of an
application that is external to the ESB system. That is, an external
application passes requests to the service requester which makes
routing decisions to brokers on behalf of the application. In this
way, the service requester can be treated as a component of the
overall ESB infrastructure instead of as an outside entity.

Let B denote the set of all brokers, let R continue to denote the
set of all service requesters, and let P continue to denote of the
set of all service providers. In this system, rates of requests from
individual service requesters are not required to be observable;
instead, the system only requires that each broker be able to
measure the number of requests that have arrived in each time-
step—a value readily available by inspection of the input queue
of each broker. In this system, each service provider is assumed
to provide a unique service to the system. Thus, each service
requester r (r ∈ R) produces requests for a service provider p (p ∈

P ) at a rate of frp(k) requests per time-step k. Service requesters
are modeled as having an output queue, and all requests produced
by the requester are written to this output queue prior to
transmission. Requests are transmitted from the output queue of
the service requester using the appropriate overlay network link
to the input queue of the selected broker. Each broker processes
requests from its input queue, forwarding each request to its
chosen service provider.

In the example of Fig. 1, each service requester is connected
to each broker, i.e., there is a finite-capacity link connecting each
service requester to each broker, where the capacity of each link is
modeled as a constraint on the transmission rate through that link.
Thus, a link between a service requester r ∈ R and a broker b ∈ B

is subject to a capacity constraint c(in)
rb such that the rate of requests

sent from service requester r to broker b cannot exceed c(in)
rb in any

given time-step.
Requests received by a broker are assumed to be queued for

processing in a finite-capacity input queue for that broker. Each
broker also maintains a finite-capacity output queue for storing
requests that have been processed and are ready to be transmitted
to an appropriate service provider. Each broker b ∈ B is subject
to a capacity constraint on its computing capabilities such that the
rate at which each broker b can process requests is limited to cb.
That is, a broker bwith processing capacity cb can move at most cb
requests from its input queue to its output queue in a single time
unit.

The outgoing links from each broker to its attached service
providers are subject to capacity constraints. The link connecting a
broker b to a service provider p ∈ P has a finite capacity c(out)

bp
to move data from the output queue of broker b to the input
queue of service provider p. Finally, in this example, there are
no modeled constraints on the capacity of the service providers.
That is, for this model we chose to focus on applying the market-
based resource allocationmechanism to the broker layer. However,
it should be clear, based on our earlier presentation of the web
hosting example, that the presented approach could easily be
extended to include allocation decisions regardingmultiple service
providers for the same class of service. That is, by applying the
model of Section 2 to the selection of service provider replicas,
the capacity of each service can be extended to accommodate
excessive demand.

There are two types of shared resources for this system:
the brokers and the links connecting the brokers to the service
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providers. For these shared resources, there is a difference between
the advertised capacity (cb and c(out)

bp ) of a shared resource and
the physical capacity of the underlying resource. The physical
capacity of any given shared resource can be viewed as the ‘‘true’’
capacity afforded by the physical limitations of the device, i.e., the
physical capacity is an upper bound on best possible performance
of the device. If a system was sized such that it were required
to operate at its physical limit for the duration of its execution,
then if that system was ever asked to process more than that
limit, it would be incapable. It is incumbent upon each broker
b to construct prices from its advertised capacity and not from
its true capacity. Specifically, the advertised capacity is given as
some reasonable fraction of the true system capacity; e.g., we can
define the advertised capacity as ρ times the true capacity where
ρ ∈ (0, 1) is often called the ‘‘load factor’’. By communicating
availability in terms of advertised capacity, the broker is insulated
from instantaneous fluctuations that occur during the normal
course of system operation that might otherwise overwhelm the
component. Thus the capacity for each shared resource used in our
model (cb and c(out)

bp ) is assumed to be the advertised capacity.
The Information Technology industry is attempting to recover

the cost of maintaining Wide Area Network (WAN) links by
billing for network traffic that is transported across these links.
That is, some companies are beginning to monitor WAN traffic
volume in an attempt to bill customers for the amount of data
transferred across these expensive network links. In a globally
distributed system such as ourmodeled ESB environment, network
link costs need to be accounted for during resource allocation. By
introducing a pricing scheme for WAN links, the network provider
has created a situation where some links are more valuable than
others. To help for illuminating the impact of such a decision,
consider the following simple example. Using the model of Fig. 1,
assume that one broker is physically located in Fort Collins, CO,
in the USA, and another is located in Bangalore, India. If a service
requester located in the USA intends to communicate with a
service provider also in the USA, then the lowest cost route for
this traffic may be through the broker located in Fort Collins. In
this example, by sending traffic through the USA based broker, a
network charge can be avoided. Although somewhat exaggerated,
this example illustrates the heterogeneity of the available routes.
The systemmodel accounts for this heterogeneity by incorporating
a quantification of route quality into the optimization problem. The
quality of each route from service requester r through broker b to
a service provider destination p is given by a single numeric value,
denoted srbp, quantifying the quality (e.g., speed) of the route from
the perspective of each service requester. Just as the ζrp values
are provided by a system implementer in our previous example,
we expect that the srbp values can be determined by the system
implementer based on the details of their deployed environment.

The goal of this model is to help ascertain an optimal allocation
of brokers and associated links to service providers for transmitting
service requests. Recall, each service requester r produces frp(k)
service requests per time-step k for a particular service provider
p. This traffic is sent through some broker in B and all of the
traffic must be eventually transmitted to its destination, e.g., to
some service provider p. Thus, we can identify the percentage of
requests from a service requester r sent to a service provider p
that are transmitted through broker b, denoted grbp. The goal of a
resource management heuristic in this environment is to choose
a combination of the grbp values such that a system-wide goal is
maximized.

In this example, we assume that a service requester receives
some utility from the successful transfer of a request to a service
provider. For example, the service provider may provide a printer
repair service—the data being transferred by the service requester
might be a notification of a printer outage. Delivering this service
request to an appropriate service provider enables the provider
to dispatch a technician to repair the broken printer. That is,
each service requester can realize some quantifiable utility from
each request that is successfully delivered through the system.
Additionally, some service requesters may be considered more
important than others. For example, the system providermaywish
to provide a higher level of service to some special customers than
what is normally offered. To model this behavior, we assume that
the system implementer is capable of prioritizing the traffic sent
by each service requester to each service provider. Let θrp denote
the priority of requests sent from service requester r (r ∈ R) to
service provider p (p ∈ P ).

For a given service requester r and service provider p, we can
define an aggregate service quality delivered by the system as:−

b

grbpsrep. (11)

Intuitively, the service quality delivered by the system for traffic
sent by service requester r to service provider p can be thought
of as the weighted average route quality for this traffic, where the
grbp values provide the weights. As described earlier, the system
realizes some utility from delivering service requests to their
destination. As in our previous example, we account for varying
service quality in the model by quantifying utility, denoted U(x),
as the worth of receiving service quality x. As in our previous
example, we have again chosen a utility function that depends on
a scalar quantification of service quality. However, our technique
is applicable to a more general utility function that accepts the full
vector of grbp and srbp values to compute a scalar utility value.

3.2. Centralized optimization

In a manner similar to our previous example, we first
pose the resource management problem as an optimization
problem. The resulting optimization can be directly solved using
a centralized approach by a system-wide resource manager. Using
the definitions and system constraints from the previous section,
the following constrained optimization problem can be defined,
where each grbp value is chosen such that the following objective is
maximized:

maximize
−
r,p

θrpfrp(k)U

−
b

grbpsrbp


(12)

subject to: ∀r, p,
−
b

grbp = 1 (13)

∀r, b, p, grbp ≥ 0 (14)

∀r, b,
−
p

grbpfrp(k) ≤ c(in)
rb (15)

∀p, b,
−
r

grbpfrp(k) ≤ c(out)
bp (16)

∀b,
−
r,p

grbpfrp(k) ≤ ce. (17)

In the proposed centralized problem, the realized utility of
the overall achieved service quality is scaled by the priority and
volume of the traffic. Eq. (12) expresses the overall goal of the
optimization to maximize the realized utility, given a collection
of service requesters each with their own priority. The constraint
of Eq. (13) ensures that all of the requests for a given service
requester/service provider pair are routed through the overlay
network. Eq. (14) ensures that the grbp values are positive and
Eqs. (15)–(17) enforce the capacity constraints for each of the
constrained system resources.

This centralized approach could be a reasonable solution for
the special case of a static rate of requests from each service
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requester. That is, if the rate of requests produced by all requesters
in the system remains constant, then it may be reasonable to
calculate a solution to the centralized problem off-line. However,
if the rate of requests to be processed is changing with time,
then the centralized solution becomes infeasible to maintain for
all systems of reasonable size because the optimal solution to
the problem changes faster than the centralized solution can be
calculated. Similarly, if the centralized problem requires too many
decision variables, i.e., there are too many service requesters,
service providers, or brokers, then it may be unreasonable to
calculate the solution in advance off-line. That is, the centralized
approach to resource allocation does not scale well.

In this environment, as the rate of requests sent from each
service requester to each service provider, i.e., frp(k), is a function
of time, this centralized form of the problem must be solved
whenever any of the request production rates change. However,
for any problem of reasonable size, the computation time required
to solve this problem makes it difficult to complete the solution
prior to the request production rates changing again. In the next
section, we identify an equivalent solution that is much faster to
calculate and does not require central control.

3.3. Decentralized approach

To transform the centralized optimization problem into a
decentralized algorithm, we apply the Lagrangian multiplier
method to the centralized optimization problem to define an
equivalent problem that is separable into |R| independent sub-
problems.1 The constraints of Eqs. (15) and (16) in the centralized
problem reflect constraints on shared resources. An important
feature of this approach is that solving for the grbp values for
each service requester no longer requires detailed knowledge of
the grbp values of the other service requesters. These detailed
values are instead replaced by a collection of price vectors that
are produced by the brokers, where each price vector reflects
the current demand for shared resources attached to that broker.
Let πb(k) denote the price of broker b (∀b ∈ B) at time k and let
qbp(k) be the price for a link from component b to service provider
p (∀b ∈ B, ∀p ∈ P ) at time-step k. Each service requester r must
choose grbp values to solve the following problem:

maximize
−
p

θrpfrp(k)U

−
b

grbpsrbp


−

−
b,p

(πb(k) + qbp(k))grbpfrp(k). (18)

Service requester r also must enforce the following constraints
corresponding to Eqs. (13)–(15) from the centralized problem,

∀p,
−
b

grbp = 1 (19)

∀b, p, grbp ≥ 0 (20)

∀b,
−
p

grbpfrp(k) ≤ c(in)
rb . (21)

The prices πb(k) and qbp(k) (∀b ∈ B, ∀p ∈ P ) are obtained
from each broker b as input to the above model in the form of an
update πb(k) + qbp(k) (∀p ∈ P ) received at every time-step k.

To complete the decentralized algorithm, we require a mecha-
nism for computing the prices for each of the brokers and the links
connecting them to the service providers. Each broker b is required
to update prices in themodel for its shared resources such that the
prices reflect expected near-term future demand. The price of each

1 A convergence proof for the Lagrange multiplier method is provided in [13].
shared resource reflects the amount of excess capacity that the re-
source has for processing requests. In this model, we differentiate
between updates to broker prices and link prices by introducing
two different constant step-size values, one for the broker prices,
denoted α, and one for the link prices, denoted γ—both step-sizes
must be greater than 0. The broker b can simply update prices πb
and qbp(∀p) using the following update procedure:

πb(k + 1) =


πb(k) − α


cb −

−
rp

grbpfrp(k)


+

qbp(k + 1) =


qbp(k) − γ


c(out)
bp −

−
r

grbpfrp(k)


+

.

As in the previous example, care must be taken in selecting an
appropriate step-size to ensure that prices react expeditiously to
market fluctuations.

3.4. Resource management using this approach

Each service requester r must have a procedure for utilizing the
results obtained by solving the local optimization problem for the
grbp values. Because the service requester cannot send fractions
of a record, we need to approximate the direct use of the grbp
decision variables. The simplest mechanism for converting the grbp
decision variables into a resource allocation is to interpret their
values as probabilities. Recall that the grbp values are constrained
to the interval [0,1]. Thus, each grbp value can be interpreted as
the probability that any given record will utilize the route from
service requester r through broker b to service provider p. We can
apply the grbp values to the route selection process, by constructing
a cumulative distribution function (cdf) where each grbp value is
interpreted as the probability of selecting its associated route. The
service requester then indexes into the constructed cdf using a
generated uniform random number in the range [0,1]. Using the
grbp values in this way will, over many sent records, approximate
the direct use of the grbp values.

4. Robustness of the decentralized approach

In a real-world computing environment, network traffic is often
triggered by world events outside the control of the computing
system. For example, a financialmarket sell off could reasonably be
expected to result in an increase in network traffic communicating
market sell orders to the financial market. In a similar manner,
changes in the volume of service requests that an ESB must
process is a source of system uncertainty. That is, a resource
manager responsible for allocating brokers to service requests
cannot accurately predict the upcoming volume of requests that
will need to be serviced.

A system can be considered robust to perturbations in system
parameters, if the change in system performance due to this
uncertainty is limited [23]. In this system, we utilize an overall
performance measure that accounts for requester priorities, the
number of requests being transferred, and the quality of the
network routes being used. Requests are produced by service
requesters at some rate and transmitted to brokers where they
are queued before being forwarded on to their final destination.
Because the system is decentralized and the production rate of
service requests is changing with time, it is possible for the
system to experience contention for shared system resources.
When contention for shared resources occurs, potentially due to
the changes in the production rate of requests, it is possible for low-
priority requests to inhibit the transfer of high-priority requests
causing the performance measure to degrade.

Intuitively, the robustness [23–26] of the decentralized alloca-
tion approach can be established by answering the following three
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questions. What behavior of the system makes it robust? What
uncertainties is the system robust against? Quantitatively, exactly
how robust is the system? Uncertainty in service request produc-
tion rates can directly impact the system performance measure. In
this system, we might consider a resource allocation strategy ro-
bust as long as it maintains a performance measure that is within
X% of the optimal value, where X is a user defined constraint on the
acceptable performance of the system.We can quantify robustness
in this environment as the proximity of the system performance
measure to its optimal value. Based on this intuitive understand-
ing of robustness in this context, we can utilize the FePIA proce-
dure [23] to derive a more formal definition of robustness.

In step 1 of the FePIA procedure, we derive a robustness
requirement that clearly defines robust operation of the system.
Let the realized utility of the system be defined as:

Ψ (k) =

−
r,p

θrpfrp(k)U

−
b

grbpsrbp


. (22)

From our intuitive definition of robustness, we can state that the
system is robust if at each time-step k the realized utility Ψ (k)
remains within an acceptable range. Let βmin(k) be the smallest
acceptable realized utility value where βmin(k) is expressed in
terms of the optimal realized utility value as given by the
centralized solution found at time-step k. That is, given an optimal
utility value measured at time-step k, denoted ω(k), let βmin(k) =

Xω(k) where X is in the range (0,1). The robustness requirement
for our system can be expressed as βmin(k) ≤ Ψ (k). That is, if
the realized utility at each time-step k remains larger than βmin(k),
then the system can be considered robust.

The principal source of uncertainty in this system that may
cause fluctuation in Ψ (k) is the variability in the production rate
of requests. Recall that the production rate of requests frp(k) is
not known in advance and may differ from one time-step to the
next. This variability in the production rate may directly impact
the realized utility and consequently Ψ (k). Finally, the robustness
of a resource allocation can be quantified as the smallest Ψ (k)
value that occurs over all time-steps k. That is, the robustness of
a resource allocation, denoted Ψ , can be measured through time-
step k and expressed as:
Ψ = min

k
Ψ (k). (23)

5. Simulation study

5.1. Setup

Several simulations were conducted to evaluate both the
accuracy of the implemented system as well as the efficacy of
the overall approach. We evaluate the approach in a realistic
application of the ESB system where the production rate for
each service requester varies as a function of time. The variable
production rate of records in the simulation is modeled using a
simple scaled sinusoid that provides a periodic change in record
production unique to each service requester service provider pair.
The superposition of the record production functions over all
service requester service provider pairs is presented in Fig. 5(a).
The initial values for each service requester service provider pair
were chosen such that the initial system would be slightly under-
subscribed. Each point in the plot corresponds to the number of
records produced in the simulation at that time-step and presents
a view of the load placed on the overall system in that time-step.
The combination of sinusoidswas such that the pattern of summed
traffic repeats approximately every 2200 time-steps, given four
service requesters and three service providers, as in our initial
simulations.

In user driven systems, actual request arrival rates may depend
on the application being executed, the time of day, the popularity
of the web-site, etc. Traces from any one instantiation of these
(a) Production rate.

(b) Priority scaled production rate.

Fig. 5. (a) The summed production rates over all service requesters plotted versus
simulation time-step; (b) the summed production rates scaled by service requester
priority plotted versus simulation time-step.

parametersmaynot capture the challenges posed by other possible
combinations. Therefore, we use a synthetic sinusoidal-based
arrival rate because its periodic changes in load pose a challenging
resource allocation problem. Furthermore, the use of a synthetic
workload facilitates a comparison with an optimal centralized
approach.

The plot of Fig. 5(a) can be scaled according to the priority
of each service requester service provider pair (θrp) producing a
plot (Fig. 5(b)) of the optimal utility, given homogeneous network
routes, i.e., assuming all routes are of equal value (srbp = 1∀r, b, p).
The θrp values in our initial simulations were set to increase by an
order ofmagnitude based on the requesterwhere service requester
r = 0 was given priority 1. Ideally, the solution found by the de-
scribed decentralized routing mechanism will track this optimal
time-varying utility. The initial simulations conducted consisted of
four service requesters, two brokers, and three service providers,
where the collective production rate of the service requesters is
varied according to Fig. 5(a).

5.2. Results

To begin evaluating the decentralized approach,we first created
a simulation where the quality of all routes in the system are
homogeneous (i.e., srbp = 1 ∀r, b, p). In this case, it is possible to
compare the results of the decentralized solution to the sum of
the scaled request production rate over all service requesters.
Under these conditions where ∀r, b, psrbp = 1 and a linear utility
function, Eq. (13) reduces to

∑
r,p θrpfrp, i.e., the scaled production

rate plotted in Fig. 5(b). In other words, we sum the decentralized
realized utility over each time-step for the entire simulation and
do the same for the request production rate scaled by the priority
of the requests. Ideally, these two values should be identical, given
homogeneous route quality. In this evaluation, our decentralized
technique realizes 99.5% of the possible scaled production rate
result.

In a real-world environment, the rate of requests submitted to
the system will vary with time in an unpredictable manner. To
assess the viability of our approach, we modeled the production
rate of requests from service requesters as a function of time. Thus,
at each instant in time the optimal allocation is given by a unique
optimization problemwith its own unique solution. Consequently,
a centralized solution in this environment is impractical because
it would require recalculating the entire solution at every time-
step. Alternatively, in the decentralized approach, each service
requester can solve their own optimization problem locally using
the prices provided by the brokers along with information that
is locally available to each requester. Recall that the centralized
solution provides an optimal solution as described in Section 3.
The combined results of all of the service requesters should be
equivalent to that found using the centralized solution, i.e., the
decentralized implementation should be capable of tracking the
optimal solution as it varies over time.
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(a) Request production rate.

(b) Realized utility.

(c) Average shared resource price.

Fig. 6. Sample results for a homogeneous network, i.e., srbp = 1 ∀r, b, p, given service request production rates that vary as functions of time. (a) The collective request
production rate for the system as a function of time. (b) The realized utility for our decentralized approach (plotted as a line). Periodically, throughout the simulation, an
equivalent centralized optimization problem was extracted from the state of the simulation at a given time-step and solved. These results are plotted as circles in plot (b)
overlaid on the top of the decentralized solution. (c) The average shared resource price in the network as a function of time.
We compared the results of our decentralized approach to
the solution generated by applying the centralized approach.
To calculate the centralized solution at a given time-step, we
extracted the information required to produce the centralized
optimization problem from the details of the dynamic simulation.
We solved these instances of the centralized problem offline and
compared the result to the result produced by our decentralized
approach. Fig. 6 presents a more detailed view of the results
for the homogeneous simulation discussed earlier (where srbp =

1 ∀r, b, p). The three plots of Fig. 6 present (a) the total number of
requests at each time-step during the simulation, (b) the realized
utility over time, and (c) the average price for shared resources in
the system over time.

Embeddedwithin the plot of realized utility (Fig. 6(b)), we have
plotted the exact centralized solution overlaid as circles on the
top of the decentralized solution. From the plots of the figure, we
can clearly see that the decentralized solution tracks the periodic
results of the centralized solution. However, there is a slight
(less than 1%) fluctuation in performance due to the queuing of
requests within the system. That is, each service requester/service
provider pair has a different priority and in any given instant
there may be minor contention for a shared resource (i.e., a broker
or broker to service provider link). When this contention occurs,
some high-priority requests may be delayed due to the system
processing lower priority requests. In this case, the realized utility
will temporarily be reduced as a result of the delay butwill increase
in some subsequent time-step as the delayed records arrive at
their destination. Thus, the realized utility from the decentralized
solution in this later time-step will appear to be greater than
optimal. However, because of contention and request delays in a
previous time-step, the decentralized and centralized approaches
are considering different sets of requestswhen this apparent better
than optimal behavior occurs.

Our second simulation includes routes of differing quality,
where the srbp values were different for each route. For this
simulation, individual srbp values were selected at random in the
range [1,10]. Recall that the srbp values appear in the utility function
as a multiplier for the grbp values. In this way, the grbp values
are scaled according to the srbp values prior to calculating utility.
Consequently, a centralized controller might attempt to maximize
the likelihood that high priority traffic will be assigned to its best
route, thus maximizing the realized utility. In Fig. 7, we can see
that, given heterogeneous routes, the results of the decentralized
solution still effectively track the results of the centralized solution.

In both Figs. 6(c) and 7(c), we plotted the average shared
resource price over the entire simulation. Notice that the prices
are periodic, with a period identical to that of the production rates
plotted in Figs. 6(a) and 7(a), respectively. For these simulations the
system appears stable. That is, because the request production rate
is periodic, a stable system would imply that the average shared
resource price would return to its starting point at the end of any
given period. Recall that the periodicity of the request production
rate is such that the pattern repeats approximately every 2200
time-steps; similarly the average shared resource price is periodic
repeating the exact same pattern every 2200 time steps. In our
simulations, the initial configuration of the system represents a
slightly over-provisioned system. Thus, the initial prices of the
shared resources are all 0. At the end of the period, we should
expect the average shared resource price to return to 0, and indeed,
it does.

The previous two simulations were structured to facilitate
a direct comparison of our decentralized approach with an
equivalent centralized approach that provides a known optimal
solution. To complete our simulation study, we demonstrate the
performance of our decentralized approach in a more complex
environment. In this simulation, four brokers are used to route
requests to eight service providers where requests originate
with four service requesters. The increased complexity of this
simulation prohibits the use of the centralized approach. That is,
using the centralized solver from our previous simulations, an
attempt to solve the centralized problems in this more complex
environment required several hours to calculate a solution for
a single time-step in this simulation. Thus, calculating the
centralized solution over the entire simulation in this more
complex environment is impractical because it would require
potentially thousands of hours of calculation.
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(a) Request production rate.

(b) Realized utility.

(c) Average shared resource price.

Fig. 7. Sample results for a heterogeneous network, i.e., each route through the network connecting a service provider to a service requester has a unique service quality
associated with it. Plots a, b, and c correspond to the same plots in Fig. 6 for the homogeneous case.
(a) Request production rate.

(b) Realized utility.

(c) Average shared resource price.

Fig. 8. Results taken from a simulation of an environment where four service requesters produce on average 950 requests per time unit that are routed to one of the eight
service providers.
Fig. 8 presents the results for this more complex simulation.
In Fig. 8, plot (a) in the figure presents the request production
rate per unit time over the entire simulation. For this simulation,
we employed the same periodic process for generating service
requests, but because we increased the number of service
providers in the simulation the absolute number of requests
produced by each requester is increased. In evaluating the results
of this simulation, recall that each service requester is assigned a
unique priority. Thus, in a successful system, the pattern of realized
utility in each time unit should mimic the pattern of the request
production rate. The realized utility for traffic processed by service
providers during the simulation is plotted in Fig. 8(b). Notice that
the realized utility throughout the simulation directly mimics the
request production rate of Fig. 8(a).
Fig. 8(c) plots the average price for a resource over the life of
the simulation. In these results, there is an initial period where
the average price for resources is inflated due to contention for
the shared resources of the system. After this initial period, the
average price for a shared resource increases when the request
production rate is over 950 requests per time-step and decreases
when the request production rate is below this threshold. This
regular pricing pattern suggests that the system represented by
this simulation is inherently stable. That is, as long as the request
production rate averages 950 requests per time-step then the
system will be capable of servicing all requests.

Our simulation results clearly demonstrate the viability of our
decentralized market-based approach to resource management
in a heterogeneous distributed computing system such as the
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distributed ESB environment. The plots of realized-utility in both
Figs. 6(b) and 7(b) demonstrate the ability of the decentralized
approach to successfully track the optimal performance of the
system as defined by an impractical but known optimal approach.
Finally, the results of Fig. 8 demonstrate the viability of this
approach in more complex environments.

6. Related work

A related field to the studyof an Enterprise Services Bus is that of
a Content Delivery Network (CDN) commonly used to improve the
apparent performance and reliability of web sites by distributing
their content throughout the world wide web [27]. In a CDN,
web-site content is cached at replica servers that are capable of
replying to the web requests on behalf of the owning web site.
In [28], the authors introduce the concept of a collaborative CDN
(CCDN). A CCDN is described as being an overlay network that
utilizes end-user machines in a peer-to-peer fashion to provide
a CDN across a wide-area network. In the Globule system, user
requests for data available on the CCDN are delivered to replica
servers using a redirection service capable of HTTP redirection.
In [29], the authors present the AS-path length heuristic used in
Globule to provide a redirection policy for user requests. The AS-
path length heuristic greedily redirects user requests to the closest
replica server available in the CDN, where proximity is defined
in terms of the number of network hops between the requester
and the replica. This simple greedy approach does not account
for contention among the shared resources of the CCDN, i.e., the
replica servers. Because the Globule system is an instance of an
overlay network it can be modeled as a trans-shipment network
flow problem. Bymodeling an overlay network in this manner, our
market-based resource allocation technique can be applied to the
routing of web-site requests to replica servers based on current
network load, where the proximity of the requester to the caches
and the network bandwidth of the caches can be used to construct
a quality value for each route in the CDN, i.e., srep. In this way, our
approach can account for both the proximity of replicas to users as
well as any contention for the shared resources of the CCDN,where
contention is not considered in [29].

Another approach tomarket-based resource allocation involves
the use of an auction as opposed to price setting [9,10,30,31]. The
Tycoon resource allocation system presented in [11] provides such
an auction based market for resource allocation in a distributed
system. In the Tycoon system, users bid for the right to use compute
resources within the Tycoon network. Bids are accepted by a
collection of auctioneers that manage access to Tycoon compute
resources. In an auction system, the auctioneer must accept bids
for a resource for some period of time before closing the auction.
The waiting period for an auction to close is acceptable as long
as the time required to complete the auction is less than that of
the task to be executed. In our environment, tasks are extremely
short lived; e.g., the time required to produce a static web page or
deliver a message in an overlay network. Consequently, the time
delays incurred by an auction for a resource are infeasible within
our context. However, prices for shared resources are set within
our network based on current demand. Thus, our price setting
approach is more analogous to a bid-ask auction systemwhere the
resource seller sets an asking price and the buyer accepts that price
by purchasing the right to that resource. In this way, as demand for
a shared resource fluctuates, so do the prices for that resource.

In [9], the authors provide a survey of existing market-based
models applicable to resource management systems. In their
taxonomy, our system can be described as a commodity market
model where resource pricing is driven by supply-and-demand.
This type of price setting model is applicable to our problem
domain because of the non-adversarial nature of our distributed
system. Recall that our evaluation of system performance is based
on the collective realized utility that the system achieves. Recently,
some authors have begun to investigate the use of auctions in
resource allocation problems where the objective is to maximize
the collective performance of the overall system [10]. However, in
our system, the service requesters that use shared resources are
not in competitionwith each other. For example, given two service
requesters a and b the systembenefits from the total realizedutility
gained by processing the requests from a and b. That is, the system
benefits from a and b cooperating in the use of shared resources.
Auction approaches to market-based resource allocation are more
commonly used in environments where the service requesters
have an adversarial relationship. The added complexity of an
auction-based mechanism is not required in this system because
of the cooperative relationship among service requesters.

In [32], a system called WebSeAl is introduced that provides
resource allocation in a CDN. One of the many claims of the
WebSeAl system is its ability to balance the request load for a web
site across multiple geographically dispersed replica web servers.
Their approach to resource management of the server pool is to
introduce prices for the use of servers in their network that force
the clients to route their requests based on this price information.
Clients in theWebSeAl environment make routing decisions based
on a combination of performance data about the response time
of each replica server and a weighting factor for each replica. The
authors assume that clients in the WebSeAl environment will be
‘‘sensitive’’ to the weighting factor and account for current system
weightswhilemaking resource allocation decisions. As the authors
of [32] state, the WebSeAl environment is therefore best suited
to serving web sites where there is no incentive to circumvent
the balancing aspects of the system, e.g., web sites delivered on
a corporate intranet. By ignoring the weighting factor a client
may instead request solely based on selfish performance data,
i.e., always selecting the replica that provides the best possible
performance to the client.

Like the WebSeAl environment our system utilizes a price
setting scheme to enable clients in the system to make routing
decisions. However, unlikeWebSeAl, prices in our environment are
set based on direct feedback from the system regarding current
demand for shared resources. Furthermore, the clients (service
requesters) in our system solve an optimization problem locally
that leverages current prices for shared resources to account for
network congestion. By solving the local optimization problem to
maximize their individual utility, the system as a whole is able to
maximize its realized utility. In our system, because the prices are
set by current demand and utilization, there is no benefit to the
client to try and ‘‘cheat’’ the pricing scheme, i.e., the prices in the
system directly reflect the impacts of congestion on the client’s
selfish interests.

7. Conclusion

In this paper, we have demonstrated a technique for resource
allocation in overlay network based environments that are derived
from Lagrangian optimization techniques similar to those used
in Internet congestion control. Our approach has some clear
advantages over some obvious solutions for routing data within an
overlay network. Principally, our decentralized approach is capable
of producing a near-optimal assignment, and maintains the more
attractive attributes of a decentralized solution, e.g., scalability and
reliability. In addition, we use the model of this overlay network
to derive a metric suitable for measuring the robustness of this
approach.

Throughout this paper, we have assumed that a feasible
solution to the centralized allocation problem exists. Future
work in this area may explore problems where fluctuations in
the production rate of requests results in an infeasible system.
Additional research also may include combining the two example
environments into a single system.
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