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A B S T R A C T 

Future high-quality consumer electronics will contain a number of applications running in a highly 
dynamic environment, and their execution will need to be efficiently arbitrated by the underlying 
platform software. The multimedia applications that currently execute in such similar contexts face 
frequent run-time variations in their resource demands, originated by the greedy nature of the 
multimedia processing itself. Changes in resource demands are triggered by numerous reasons (e.g. a 
switch in the input media compression format). Such situations require real-time adaptation mechanisms 
to adjust the system operation to the new requirements, and this must be done seamlessly to satisfy the 
user experience. One solution for efficiently managing application execution is to apply quality of service 
resource management techniques, based on assigning and enforcing resource contracts to applications. 
Most resource management solutions provide temporal isolation by enforcing resource assignments and 
avoiding any resource overruns. However, this has a clear limitation over the cost-effective resource 
usage. This paper presents a simple priority assignment scheme based on uniform priority bands to allow 
that greedy multimedia tasks incur in safe overruns that increase resource usage and do not threaten 
the timely execution of non-overrunning tasks. Experimental results show that the proposed priority 
assignment scheme in combination with a resource accounting mechanism preserves timely multimedia 
execution and delivery, achieves a higher cost-effective processor usage, and guarantees the execution 
isolation of non-overrunning tasks. 

1. Introduction 

High-quality consumer electronics are complex systems with a 
rich set of properties to fulfill the expectations of demanding users. 
Purely functional properties concerning the variety and type of 
applications expected by users are currently key to gain a position 
in the market. Non-functional properties are also essential, dealing 
with aspects as the quality of the application execution, the 
timely response of the interactive interfaces, and the low resource 
consumption to increase capacity and autonomy of devices. To 
successfully fulfill this complex set of requirements, it is necessary 
to develop these systems from a vertical perspective [1,2]: from 
the low-level platform execution (i.e., scheduling of tasks2) to the 
system-level policies that arbitrate application execution avoiding 
the undesired effects of their greedy competition for the resources. 

Over the past decades, high quality media processing consumer 
electronics have evolved to increase their flexibility in order to 
keep up with the fast market evolution. In this way, former 
hardware coded functionality (i.e., specific video processing 
functions implemented in dedicated hardware chips) has been 
progressively coded into software. Functionality upgrades are 
easier to integrate in software coded systems. Hardware-based 
systems would require a complete system redesign to integrate 
extra functionality, having a more expensive time-to-market cycle 
that could cause a loss of market share since new products may be 
significantly delayed. As a consequence, consumer electronics have 
decreased the number of dedicated hardware units to increase the 
number of powerful general purpose processors capable of running 
multiple software functions. This is the case of current generation 
high-definition TV sets, set-top boxes, and other personal devices; 
they contain most of its value (functionality and monetary value) 
in software design and development. 

Enabling a fast time-to-market cycle for new products as an 
answer to user demands is only possible if these software intensive 
systems have a flexible architecture and design. Structured 
software design techniques play a major role in this context, 
since they allow to build family products based on a common 
software harness; new applications and products (e.g., remote 



shopping, picture-in-picture, digital recording, high-end personal 
devices, etc.) are easily derived from existing ones by upgrading or 
replacing code units. 

Nevertheless, some concerns appear from the progressive 
increase of the software as opposed to hardware in commercial 
products. Despite being significantly less flexible, hardware-
coded systems are, however, more robust than software intensive 
systems. Consequently, it becomes vital to manage the execution 
of these multiple software functions in a way that robustness is 
preserved. In high-quality multimedia processing systems, there 
are two main aspects to be considered that have a direct impact 
on their robust execution. On the one side, the real-time nature 
of the multimedia presentation poses timing requirements on its 
processing. For instance, the late delivery of a video frame or an 
audio sample can cause a dramatic decrease in the user satisfaction. 
On the other side, multimedia applications are greedy resource 
consumers. For example, an algorithm for noise reduction or 
picture improvement can perform countless operations to increase 
the delivered image quality. As a consequence, it is necessary 
to arbitrate the execution of applications in such a way that 
(i) their greedy execution does not cause interference on the rest 
of applications and (ii) the real-time requirements are preserved 
during the whole of the system execution cycle. 

In this highly dynamic context of multimedia execution, the 
underlying platform arbitration mechanisms have to provide 
execution adaptation capabilities. This implies that applications 
have to include the necessary means for being managed by 
the system and for adapting their operation to the changing 
system requirements and state. In the context of this work, this 
characteristic is achieved by designing and coding applications in 
a way that they are capable of running in different execution modes 
(or quality levels) that provide different output qualities. Therefore, 
the platform arbitration mechanisms (provided as an entity 
capable of managing the platform resources) select the execution 
mode for each application depending on the system state (i.e. 
input media characteristics, resource availability, etc.) or the user 
inputs. For example, a video application will have to adapt in order 
to seamlessly deliver different image qualities depending on, for 
instance, the characteristics of the incoming signal or the amount 
of available computational resources. Therefore, former highly-
coupled applications executing over specific hardware platforms 
are transformed into operationally flexible software executing 
on shared general purpose processors in a way that applications 
are able to run in different modes that provide different output 
qualities depending on the system state. 

There are different approaches to manage application execution 
with the goal of guaranteeing isolation among them and achieving 
user expectations. Some solutions rely on the extensive use of a 
real-time operating system (RTOS) that provides the basics for con­
trolling the execution (i.e., preemptive priority-based scheduling). 
Over this baseline, different algorithms have been developed such 
as resource reservations [3], budget scheduling [4-6], or constant 
bandwidth servers [7,8]. Other solutions introduce extra intelli­
gence over the basic primitives of an RTOS in the form of a quality 
of service resource manager entity (QoSRM); the QoSRM is an inter­
mediate software level with higher abstraction management poli­
cies, such as quality level management, system wide optimization 
strategies for maximizing the offered output quality, high-level 
adaptation protocols, and mode change algorithms, and real-time 
reconfiguration algorithms [9]. In this domain, HOLA-QoS [2] de­
fines a thin-layered software architecture for a QoSRM entity that 
provides high level strategies and low-level mechanisms for inte­
gral resource management. Close to this area but at a more reduced 
scaled, the AQuoSA framework [10] offers a resource management 
scheme for executing constant-bandwidth servers in multimedia 
environments. 

Using an intermediate entity such as a QoSRM allows arbitrating 
application execution according to pre-specified criteria as user 
expectations, data-dependent requirements, current user focus, or 
system load values. In any case, a QoSRM must integrate adaptation 
techniques, that are specifically important in the context of 
multimedia systems where load changes may happen at any time 
with relatively high frequency; load changes may occur due to, 
for instance, a user request to launch/stop a new application, to 
raise/lower the quality level of an application, or a change in 
the nature of the incoming media requiring a different amount 
of computational resources. An adaptation protocol contains the 
sequence of operations to modify the execution parameters of 
applications in response to a change in the overall resource 
usage needs to perform a transition to a new state of resource 
assignments. An adaptation protocol, therefore, (1) relies on 
mechanisms to perform accounting and monitoring of actual 
resource consumption of applications, and (2) defines the logic 
to react to the obtained information if required, by changing the 
quality levels of applications. 

Adaptation protocols must be well supported by mode change 
algorithms that define the operation sequence in which the current 
system configuration has to be replaced by the new one and 
by an efficient priority assignment scheme. In this context, a 
system configuration is the set of all tasks to be executed together 
with their associated parameter values (as the priority); also, the 
priority of a task determines the urgency of its execution and the 
transition order to the new execution mode. Therefore, the priority 
assignment scheme is key to the efficiency of the overall adaptation 
protocol and, as a consequence, of the system execution. 

The current paper extends the work of [5] which describes 
an implementation-oriented priority assignment mechanism that 
can be executed at run-time with affordable cost as demon­
strated in feasibility experiments. This mechanism supports time-
deterministic dynamic adaptation when contract-based resource 
management is used. The mechanism overcomes the lack of flexi­
bility of the contract-based model by allowing the greedy multime­
dia tasks to exceed their assigned budgets as long as this does not 
threaten timely execution of non-greedy (i.e. non-overrunning) 
tasks. This guarantees application execution isolation. Moreover, 
the current paper extends the previous work in three main aspects. 
Firstly, develops a definition of the continuous task model for mul­
timedia processing tasks; also, the budget scheduling algorithm is 
further elaborated and described in context with the rest of QoS-
based resource management techniques. Secondly, the exact defi­
nition of the priority bands is given and the algorithm is refined to 
integrate the scheduling mechanics, decisions, and the proposed 
priority assignment. Also, the exact calculation of the task prior­
ity values within the normal and the overrun bands is given and 
integrated in the algorithm. Thirdly, this paper also extends sig­
nificantly the validation of the algorithm by including additional 
results using new application sets that present more dynamic re­
quirements in a different scenario. Moreover, a new comparison for 
actual processor usage is made; the bare budget scheduling tech­
nique is compared to budget scheduling enriched with the pro­
posed dynamic priority assignment protocol. The later shows to be 
more efficient in processor utilization by allowing safe overruns. 

The paper is structured as follows. Section 2 offers an overview 
of the related work. Section 3 presents the context and principles of 
run-time mechanisms in a QoS resource management framework. 
Section 4 presents the task model for multimedia that includes 
the continuous task types; also, it describes the fundamentals 
of budget scheduling and of safe resource overruns to increase 
resource utilization. Section 5 describes the proposed priority 
assignment scheme to perform on-line priority reassignment in a 
simple and efficient way. Section 6 presents the validation results 
of the proposed approach. Section 7 draws some conclusions of the 
work. 



2. Background 

Different solutions have appeared over the last decade to 
schedule time-sensitive applications based on QpS resource 
management with the goal of achieving predictable execution in 
centralized environments. Nowadays, new application domains 
are conceived that introduce even more complexity, as grid 
and cloud computing. Therefore, new scheduling paradigms are 
needed to overcome the new challenges in order to fulfill time 
requirements in consumer electronics in the grid. For instance, 
some solutions have appeared to trade-off time for the cost of 
the required functionality in utility grids [11] or for estimating 
the resource demands of users to offer resource provisioning 
strategies [12]. With this new challenging domains in front of us, 
still predictability and cost-effective resource usage has not been 
fully achieved at node level (i.e., smart phones, TV sets, set-top 
boxes, personal computers, servers, lap-tops, etc.) that will be the 
predominant interacting nodes requesting services from the grid 
and from other peer devices. Resource management techniques 
have to be further elaborated to contribute to time-deterministic 
solutions in these new domains with higher dynamics. In general, 
QpS resource management solutions can be encapsulated in two 
broad domains: resource scheduling algorithms and quality of service 
architectures (the later are known as resource manager entities). 
This section describes the existing contributions most related to 
the one proposed in this paper and in these two areas, introducing 
also their relation to the priority assignment schemes. 

One the one hand, flexible and soft real-time resource schedul­
ing algorithms have appeared with the goal of providing exe­
cution isolation, temporal protection, and cost-effective resource 
usage. To reach this point, traditional scheduling applied to hard 
real-time systems has undertaken a natural evolution to be appli­
cable to multimedia systems. It has become possible due to the 
progressive relaxation of the traditional constraints of classical 
real-time scheduling. For instance, prior assumptions such as keep­
ing over 30% spare processor capacity have been overcome in mul­
timedia consumer electronics since cost-effective resource usage is 
mandatory from a commercial market perspective. Among other 
issues, flexible resource management has introduced some extra 
degree of uncertainty that can, however, be dealt with to maxi­
mize resource usage in consumer electronics. In this way, schedul­
ing approaches as proportional share [13] and Pfair [14] algorithms 
provide the temporal protection property, in which applications 
mark their progress proportionally to its weight value. Along this 
line, resource reservation algorithms (RR) [3] are suitable for sys­
tems with hard, soft, and non real-time tasks, providing temporal 
protection. Also, the constant bandwidth server (CBS) [7,8] offers 
a framework where tasks are granted a computation time (or bud­
get) associated to a server and a reservation; tasks are allowed to 
execute whenever they have not exceeded their budget, achiev­
ing temporal isolation in this way. Adaptive scheduling policies 
based on QpS were also proposed by [15]; some of these techniques 
(as [16]) provided a complete specification of QoS properties, but 
it only allowed static allocation due to its high computational re­
quirements. The priority assignment schemes used in the above 
presented algorithms are either not mentioned or directly derived 
from a rate monotonic approach using fixed priorities. In addition, 
schemes based on dynamic priorities following earliest deadline 
first approaches are not always able to provide temporal isolation 
and are, therefore, not subject of this current work. 

On a complementary side, resource management has also 
been addressed from an architectural point of view based 
on intermediate entities, called Quality of Service Resource 
Managers (QoSRM). Originally, QoSRMs targeted at general 
purpose distributed systems mainly used for Internet based video 
conferencing systems. Their timing requirements are softer than 

those of the commercial products for the consumer market. The 
later must offer high-quality outputs, e.g., digital TV and set-top 
boxes. The user of these systems tolerates no glitches in their 
robustness (e.g. no image freezes and no delays in operation are 
permitted). The presence of resource manager entities allows the 
efficient arbitration of their software applications to avoid any of 
these effects that can terribly impact the user satisfaction and the 
market success of the product. 

Different approaches to developing QoSRMs have appeared 
as [17] that do not emphasize the real-time resource management 
issues; therefore, they are not able to fully guarantee execution 
isolation. Another approach on this field is [ 18 ] that focuses on the 
design and development of best effort entities in the context of soft 
real-time video conferencing. Real-time execution is considered 
in other contributions such as AQuoSA [10] that integrates CBS 
scheduling in the operating system; however, this framework only 
focuses on the enforcement of resource reservations leaving cost-
effective resource usage in a secondary level. 

QoS resource managers can follow different architectural 
strategies. Some have a simple and non-optimized collection of 
entities collaborating in a best effort way. Others present a hierar­
chical homogeneous view that precisely locates all required arbi­
tration mechanisms, such as HOLA-QoS [2]; this approach provides 
an architectural design for a QoSRM entity offering a vertical view 
to QoS-resource management, from the application-level strate­
gies down to the operating system mechanisms (contract-based 
resource assignments and admission control, resource usage ac­
counting, enforcement of resource budgets, real-time scheduling, 
task priority assignment, and dynamic adaptation). 

Compared to the state of the art, this work provides innovative 
contributions. Existing solutions for resource management have 
concentrated on achieving temporal isolation by means of fixed 
priority assignment schemes that provide resource budgets that 
cannot suffer overruns; this has severe limitations in cost-
effective resource usage. We present a scheme for dynamic priority 
assignment that allows to maximize resource usage; our approach 
allows safe processor overruns, so a task can consume more than 
its assigned budget if the processor has spare capacity. This is 
programmed inside the kernel using its callback functions, so 
little overhead is caused. This approach is based on effective 
usage of task priorities in combination with resource budgets 
assigned by contract during a negotiation phase. The priority 
assignment mechanism focuses on budgets enhancing the target 
of the classical dual scheduling algorithm [19] and imprecise 
computations [20]. More specifically, the dual scheduling approach 
considers a division in three priority bands, assigning to each 
crucial task two priorities (one in the upper band and one in the 
lower band), whilst other tasks (with firm and soft deadlines) 
have medium-band priorities. It always changes the priority of the 
crucial tasks from the lower to the upper band after a previously 
defined delay after their release. So, the dual scheduling algorithm 
focuses on calculation of time instants at which the priorities of 
tasks should be upgraded in order to meet their deadlines. So, it 
does not use the concept of budgets, and it is suitable for the soft 
task scheduling in systems that have a mixture of hard periodic 
and hard sporadic tasks. Our work targets to a different concept 
which is the analysis of actual processor usage, relying on the exact 
characterization of multimedia applications previously made in [2] 
and its resource budget model. 

3. QpS resource management framework 

From an architectural point of view, QoS-based resource 
management encompasses a set of activities that must be dealt 
with that are (as explained in [2,5]): 
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Fig. 1. Overview of the contract model with a well defined hierarchical control structure. 

• Application and task characterization (with respect to their 
structure and resource needs). 

• Contract-based negotiation of resource budgets (containing an 
admission test). 

• Enforcement of resource budgets. 
• Monitoring and tracing of actual consumption of resource 

budgets, and 
• Dynamic adaptation. 

In our previous work, most of these issues have been dealt with 
in the context of hierarchical QpS-based resource management. As 
an example, higher level strategies for handling dynamic behavior, 
as [21], have been developed that present a dynamic adaptation 
protocol used by QoSRM entities to preserve stability in the context 
of cost-effective resource usage environments. 

Execution based on a contract model is a system wide operation 
that involves two sides: the QoSRM and the applications. A contract 
model assures that the following system wide premises are kept at 
all times: 

• The platform (QoSRM built over the basic services of a RTOS) 
has to guarantee applications a given budget for each resource 
that they need in order to deliver the agreed quality level, and 

• Applications must provide a certain output quality with the 
contracted resource budgets. 

Under a contract model, complete knowledge of the resource 
needs of applications is held by the applications themselves; 
for example, high-quality video applications have a heavy video 
processing semantics that are known by the application, and it 
cannot be fully transferred to a centralized arbitration entity. 

A contract model relies on a basic collection of techniques (see 
Figs. 1 and 2) that have to be delivered at run-time, which are: 

• Negotiation and admission control based on resource bud­
gets. Resource budget assignment is performed at negotiation 
time through an admission control test, based on real-time 
scheduling policies over a precise characterization of applica­
tions [5,2]. Before a new application is eligible to run, it un­
dergoes a negotiation process based on the execution of an 
admission control test that determines if the new applica­
tion system is schedulable. Upon completion of the negotiation 
phase, the schedulable resource budgets are assigned to tasks 
by contract. 

• Budget enforcement. It is a basic technique to implement 
the contract model since it avoids application execution 
interference. Guaranteeing budgets to tasks is done by means 
of forcing tasks not to use more resources than they have 
contracted in their admission. This way, even if greedy tasks 
of an application are willing to incur in budget overruns, the 
QoSRM will preempt them from the resource whenever they 
have consumed the budget. It guarantees that no resource 
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Fig. 2. Overview of the main QpS resource management functions. 

budgets are overrun freely; only if enough resources are 
available, may the QoSRM allow safe overruns in order to 
improve the quality of the output generated by multimedia 
tasks in a safe way. 
Resource usage monitoring. To control application execution, it is 
essential to keep track of the actual resource consumption. The 
QoSRM performs run-time monitoring of budget consumption; 
this can be done per task, per task-group, and per application. 
This activity is the fundamental process for the detection of 
over- or under-utilization of resources, so that risky situations 
can be anticipated and corrective actions can be undertaken. 
Application prioritizing. Any decision of the QoSRM to apply 
corrective actions can be made in two ways: (1) automatic, for 
instance when a task is about to incur in overrun, the processor 
is instantly stolen from it, or (2) based on some criteria, being 
the most important the establishment of priority ordering 
among applications and their associated tasks. The importance 
application parameter is deeper explained in Section 5. 
Adaptation and mode change protocols. The analysis of the 
information on actual resource consumption may trigger some 
event to initiate an adaptation process. This can require to 
change the assignment of parameters of applications and 
tasks (resource budgets, activation periods, etc.). If the current 
system configuration has to be changed to adapt to the 
occurring event, then it is required to initiate a mode change 
protocol. Mode change protocols define the operation sequence 
to change the current running task set to a different set 
(including their associated parameter values). 



4. Task model 

4.1. Budget scheduling 

In multimedia processing, some tasks have a continuous ac­
tivation pattern derived from the arrival pattern of their input 
media; a multimedia task executes constantly in a non-stop 
fashion as long as it receives input data to process. As a 
consequence, this continuous tasks follow the paradigm of impre­
cise computation since the output generated by a multimedia task 
improves with the amount of resources that are available for it. 

To integrate the continuous task type in a schedulability frame­
work, the continuous activation pattern must be approximated by 
a known one. In multimedia applications, it is common to have sets 
of tasks connected to form a pipeline [1,22]. Data may arrive to the 
pipeline in different formats and with either CBR or VBR (constant 
or variable bit rate) to the input data buffer of the first task in the 
pipeline. This task consumes the information following a periodic 
pattern. Also, the last task in the pipeline is usually the display task; 
its activation period is clearly periodic since multimedia presenta­
tion has real-time requirements related to the constraints imposed 
by the human perception. The rest of tasks in the pipeline (the in­
termediate tasks) inherit the value of the period from both the last 
and first tasks that are, in the end, related to the rate of the incom­
ing media and the displayed image rate. 

As a consequence, a continuous task r¡ is specified by its 
computation time, Q, deadline, D¡, priority, P¡, and the activation 
period, T¡. T¡ is derived from the activation period of the pipeline. 

The system model relies on the principles of budget scheduling. 
Each task is assigned a budget, b¡, at the start of its activation 
period t¡. The task can consume its budget during its activation 
period, [t¡, t¡+i[ where T¡ = t¡+i — t¡. In a budget scheduling 
model, the assigned budget corresponds to its computation time 
(bj = Q) that is application-dependent information usually based 
on average case resource requirements in the case of multimedia 
tasks. Therefore, at the end of its activation period, the task may 
have exhausted its budget completely, r¡ = O.orinpart.rj = b¡—Q, 
where r¡ is the remaining budget of task r¡, and c¡ is the processor 
time consumed by r¡ at the end of the activation period defined 
by [tg, t¡+i[. Independent of the consumed budget for the current 
period, the budget of task r¡ is replenished at the start of its next 
activation period. 

4.2. Enabling safe overruns 

Overload risk is a common situation in multimedia systems. 
It means that the amount of resources needed by the running 
applications is greater than the amount that is available. The 
alternative would be to calculate the worst case execution time 
(WCET) for each activation of a task, and assign budgets according 
to these values. However, in this type of applications, the worst 
case is commonly much larger than the mean or average execution 
time. Hence, if budgets are assigned according to WCET, there will 
be a large waste of resources. 

The alternative is to assign budgets around the average value; 
for the case of processor time, the resource time budget will be 
higher than the average time. In multimedia, such value will be 
anyway much lower than the worst case [ 1 ]. As a consequence, it is 
needed to detect overload situations at run time and handle them 
properly. The basic approach is to preempt a task from a resource 
when its assigned budget is exhausted. In this way, budgets are 
enforced, and resource usage overload can be controlled as shown 
in Fig. 3 (circled). Therefore, the overall system resource usage will 
not exceed the threatening maximum value. 

An entity, such as the QoSRM, has to enforce the maximum safe 
resource budget for all applications. Therefore, the total resource 
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Fig. 3. Execution with budget overrun. 
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Fig. 4. Different execution schemes: (a) strict budget enforcement and (b) safe 
budget overrun. 

usage will not exceed the safe bounds in the system. Interference 
may be triggered either by user requests to switch applications 
to a higher quality level or by a change to an input media that 
requires a higher processing capacity (for instance, a fast motion 
scene). By applying adaptation techniques [21 ] on top of the budget 
enforcement mechanism, the QoSRM will allow tasks to consume 
more of its resource budget if the overall system resource usage is 
not exceeded. 

The proposed approach consists precisely of a low level 
mechanism for avoiding task execution interference using a 
priority assignment scheme based on priority bands. The key idea 
is that tasks which incur in execution overruns will be allowed 
to run only if they do not threaten execution of non-overrunning 
tasks. Fig. 4, part (a), shows a normal execution where resource 
assignment is enforced. In it, task rn is allocated x resource units 
whereas TJI is allocated y resource units, for rn having higher 
priority than TJI . The assignment is enforced by the system relying 
on resource usage monitoring and accounting to detect actual 
resource consumption for each task. In this case, xn has a budget 
assignment of 1 time unit. Therefore, it is preempted from the 
resource after exhausting such budget, and TJI takes over the 
execution. Both tasks have an execution deadline that coincides 
with the activation period; as a consequence, both tasks must 
finish their execution before their next activation indicated by the 
upright pointing arrows. However, this enforcement scheme is 
too severe for multimedia systems; it does not allow to maximize 
resource usage as can be seen in part (a) where spare time is left 
unused before the next activation period. However, resources can 
be used more cost-effectively for both tasks as shown in part (b) 
of Fig. 4; as opposed to the previous execution, xn is allowed to 
continue using the resource for more than its assigned budget, as 
it does not prevent TJI from meeting its execution deadline {x¡\ 
finishes before its next activation). 

The resource accounting and monitoring mechanism is funda­
mental to avoid non tolerable situations as the one shown in Fig. 5 
part (a), where deadlines are missed, i.e., task TJI finishes after its 
execution deadline. This situation can be avoided as shown in Fig. 5 
part (b) where overrunning tasks (rn in this case) are preempted 
from the resource if there are tasks that have not consumed their 
assigned budget yet (this is the case of TJI ). After non-overrunning 



Fig. 5. (a) Deadline misses due to lack of budget enforcement (b) resource usage 
accountability and budget enforcement enable controlled overruns and guarantee 
deadline fulfilment. 
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Fig. 6. Budget management through resource accounting. 

tasks (Tji) have completed their execution, the overrunning tasks 
(tji) can continue for as long as they require, but they must finish 
before their deadline. 

In the specific case of on-line accountability of processor 
usage, it is required to execute a routine at each context switch 
occurrence (i.e., every time that the task that is using the processor 
leaves it). Resource usage accountability, usually done on a per 
task basis, allows on-line computing of data on resource usage 
per application; this is the basic instrument to detect overrun 
situations and meeting deadlines. The overhead that these routines 
introduce in the system is negligible compared to the actual 
computation times of multimedia tasks. Moreover, the benefits of a 
resource accounting mechanism are worth the light overhead, and 
it is required to implement monitoring and adaptation techniques. 

Resource accounting is also used as the basis for budget 
enforcement. Once a task uses the amount of processor specified 
in its budget contract, the task is forced to leave the resource if 
overrunning its budget can have a negative effect on other tasks. 
Detecting this situation is possible by arming a timer that is set to 
the remaining budget time, r¡. If the timer expires, then it means 
that the task has exhausted its budget, and this event must be 
properly handled. On the other hand, the budget will be refilled 
at the beginning of each activation period. Fig. 6 describes the 
algorithm that is applied to update the budget of tasks at each 
context switch instant, tx. 

The system manages an extra queue, exh_b_queue, for tasks 
that have exhausted their budgets in the current activation 
period. Although tasks in this queue may not have finished 
their due work, they cannot interfere with tasks that have not 
exhausted their budget. Functions as assign_remaining_budget and 
store_consumed_budget perform the actual information updating 
functions inside the kernel for the considered task. 

In this way, the BACC (BudgetACCountant) is a software compo­
nent that performs basic budget accounting and enforcement [23]. 
It also captures execution information to evaluate whether the as­
signed budgets are sufficient for the tasks to complete their func­
tions or whether they are being under-utilized. Upon detection of 
an overload situation, a call-back function is invoked, in order for 
the QoSRM to handle this event. The BACC has been ported to pSoS 
running on a TriMedia processor, and to Linux running on x486 and 
ARM processors. 

5. Dynamic priority assignment 

Priority assignment among application tasks is a hard problem. 
If a global reassignment scheme is chosen, the problem becomes 
NP hard at run-time. For this reason, a simple scheme has 
been proposed that allows prioritizing applications in an easy 
way according to a user driven algorithm based on the relative 
importance of applications. This approach is both effective in 
computation time and at user level. 

In our model, we assume a realistic interplay among applica­
tions. Therefore, each application has a relative importance accord­
ing to different issues. For example, the nature of the processed 
data or the preferences of the user. Consequently, also tasks are 
prioritized according to the following: 

• The importance of the application it belongs to, and 
• Role/importance of the task in the application; this is related to 

its position in the application pipeline. 

Priority assignment to tasks is based on the establishment of 
importance bands for applications as shown in Fig. 7. Application 
importance can be inherent (due to the general well-established 
knowledge of the type of media that the application processes) 
or temporal (based on the user preferences). As an example, 
high-quality video processing systems assume that audio has 
higher inherent importance over imaging. It is incomparably more 
annoying for users to hear the outcome of an audio signal that is 
being processed incorrectly or late than to watch an application 
that has to freeze previous images every once in a while due to the 
late processing of the frames. 

In any case, the inherent importance is also deeply related to 
the user preferences in everyday life. The user determines the 
temporal importance of an application, i.e., the application with 
the highest temporal importance is the one that currently has the 
user's attention. If the user is watching a reduced-size picture-in-
picture application, it has to deliver the highest quality among the 
rest of applications. 

Critical applications can also be integrated in the model by 
assigning them to priority bands higher than non-critical ones, 
even if the non-critical ones have a higher temporal importance. 
For execution of applications that raise their temporal importance, 
the system can provide a high priority band (urgent band). 

An importance limit value is defined that sets the frontier 
between critical and non-critical applications. It should be noticed 
that, in this context, critical refers to applications that have a high 
inherent importance value. 

There are different alternatives to assign importance values. 
On the one hand, absolute priority values can be assigned to 
applications (as stated before) based on their nature, user focus, 
etc. On the other hand, cooperation schemes (cooperation between 
applications and a central QoSRM entity) can also be implemented 
as described initially in [2]. The proposed approach is compatible 
with a flexible and general purpose HOLA-QoS framework that 
uses a real-time operating system providing preemption and 
priorities; therefore, a priority-based scheme (as presented in 
Fig. 7) has been designed. This scheme is a simple and efficient 
way to implement the mechanisms that enforce resource budgets 
to tasks and, therefore, provide temporal isolation among them. 

In (1), it is shown the essential characterization of an application 
a¡, Ch(aj), based on the set of its quality levels, <t>u its task set 
Hx\ (also, S¡ = {T1}), and its importance value /¡. The extended 
characterization was presented in [2]. <í¡ corresponds to the set 
of discrete output qualities (quality level) that the application can 
deliver. Each quality level is physically implemented by a set of 
tasks with their assigned resource budgets. 

( * < . ! > ' < ) • ( 1 ) 
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Fig. 8. Example of execution conforming to application prioritization. 

Based on this characterization where all applications have a 
specific importance value, /¡, the application importance deter­
mines the task priority values that are assigned. As shown in Fig. 8, 
this assignment determines the execution pattern in the system. 
Each application is allocated to a priority band according to its im­
portance, so applications assigned to a given priority band have 
a priority value contained inside that band. This idea is shown in 
Fig. 9. 

It should be noticed that the overall system task set has 
undergone the admission control test and that resource budgets 
are guaranteed (that means that they are schedulable for the 
average case resource assignments). Once the priority bands have 
been assigned to applications, the dynamic application assignment 
scheme, described below, establishes dual priority bands per 
application to support the safe overruns of resource budgets. 

Taking as the basis the budget scheduling model, our approach 
divides the priority range of each application in two halves: a 
normal priority band and an overrun priority band, as shown in 
Fig. 9. The status of the budget consumption determines in which 
band should be task priority be at an instant. Therefore, global 
priority reassignment is not considered since this problem is NP-
hard, and the computations cannot be performed by an efficient 
and realizable resource management entity. 

A task that has still not consumed its budget is allowed to run 
in the normal priority band. Similarly, a task that exhausts its 
budget is immediately lowered to the overrun priority band. At the 
beginning of each refill period, budgets are refilled and all tasks are 
raised to their normal priority band. There is no collision among 
the normal priority bands and overrun priority bands, and they are 
separated by a priority limit value, f. All bands have disj oint values, 
as illustrated in Fig. 9. 

The priority value P¡ for each task T, of application a¡, that has 
a priority band of size y beginning at the lower bound value &>¡, is 
limited by: 

Normal priority 
band 

* ~ ~ Í ; (Priority limit) 

Overrun priority 
band 

Fig. 9. Priority bands for applications. 

being &>¡ = £ + (nLA*y), where nLA¡ is the number of applications 
that belong to L4¡, the set of applications with lower importance 
than cij : L4¡ = {a¡}, Vj/(aj) < /(a¡). Similarly, HA¡ is the set of 
applications with higher importance than a¡ : HAt = {a¡}, Vj/(aj) 
> Ka,). 

As a consequence, each application a¡ has the following two 
priority bands: the normal band, HPit and the overruns band, LPt 
(or lower priority band): 

HPi = H + (nIA*y), % + (nIA*y) + y - 1] (3) 
LPi = H- (nHA*y) - y, £ - (nHA*y) - 1] 

where nHA¡ and nLA¡ are the number of applications with higher 
and lower importance than application a¡, respectively. 

The dynamic priority assignment scheme manages the priority 
values of tasks fluctuating between the normal band and the 
overrun band, depending on the status of its budget consumption. 
LetSj = {r'Jbe the task set of application Oj, the priority values for 
each r1 of a¡ will be within HPi if its budget has not been exhausted 
yet, r? > 0. At the instant when r1 exhausts its budget, r? = 0, its 
priority value is lowered to the overrun band, LPi. Following, the 
priority value, PL of task r1 is shown for both priority bands. 

If r1 is a task of application a¡, then we define hpj as the set of 
tasks of application a¡ with higher priority than r1, and nhpj is the 
size of hpj. Similarly, Zpj is the set of tasks with lower priority than 
r1, and n/pj is the size of Zpj. The exact priority value for each task 
T,1 is defined as follows: 

if r¡ > 0, P\ 

if r, : o, p; 

£ + (nLA*y)+nipj + l 

I - ( n H A f y ) - n h p j - l . 

(4) 

Vtj ea¡=> Pj c [cou £u¡ + y] (2) 

Therefore, S¡ = {r1, hpj, Zpj}, and all tasks in S¡ can only take 
priority values within the two priority bands of application a¡ : HPi 
and LPj. If a task x¡ exceeds its budget (r¡ = 0), its priority is 
immediately lowered to the overrun band. Therefore, it will not 
interfere with other tasks that have not exceeded their budgets. 

The dynamic priority algorithm is described in Fig. 10. Initially, 
all tasks are within the normal priority band. As budgets are 
exhausted, priorities are lowered to the overrun band. 



f = current time() 

ifmod(f/Ti)==0 
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r¡ = b¡ 

PI =£, + (nLAi * y) + nip} + 1 
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r} = r}-i 
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P} = \ + (nHA¡ * f) - nhp} - 1 

Fig. 10. Dynamic priority assignment for budget scheduling. 

Let tx be the instant of decision for budget recalculation: (i) a 
context switch, (ii) the occurrence of the next activation period for 
the application, or (iii) the exhausting of a budget. As mentioned 
before, an exhausted budget is detected by arming a timer with 
the remaining budget, r¡, when the task is dispatched for using 
a resource. If the timer expires, this means that the budget is 
exhausted and the priority value is lowered to the overrun band. In 
addition, at every activation period (mod(tx/r¡) = = 0), all budgets 
are refilled and the priorities of tasks are assigned a value within 
the normal band. Tasks which have exhausted their mandatory 
budget will not, therefore, interfere with tasks that have still not 
incurred in overruns. Lowering the priority of a greedy task means 
that it will be allowed to run whenever there are no tasks running 
at their normal priority bands; in that case, either all tasks are in the 
overrun band or they are in the normal band though not requesting 
the processor. Such mechanism is an efficient way to guarantee 
that applications do not suffer execution interference from tasks 
which are most greedy resource consumers. 

6. Validation results 

From an architectural perspective, the implementation of the 
dynamic priority assignment protocol relies on the existence of 
two entities with complementary responsibilities. On one side, 

the resource accountant (BACC) is an active entity that constantly 
performs on-line monitoring (i.e. accountability) of resource usage 
on a per task and per application basis. The resource accountant 
uses callback functions of the kernel scheduling and dispatching 
functionality to build an accountability strategy for processor 
usage of each application. Therefore, it has precise information 
about budget utilization per task and per application at any point 
in time. On the other side, the resource manager entity analyzes the 
accountability information to determine which tasks, if any, have 
incurred in execution overrun. At architectural level, the priority 
assignment protocol (shown in Fig. 11) requires the interaction 
between the resource accountant and the resource manager to 
determine at which point in time overrunning tasks must be 
downgraded to a lower priority band where they will not cause 
interference to the execution of non-overrunning tasks. 

The resource accountant is invoked when the armed timer 
for detecting overruns expires. Then, the resource accountant 
informs the resource manager of the situation. Since some task has 
attempted to execute for more time than contracted, the resource 
manager then executes the priority assignment algorithm, and 
overrunning tasks will be downgraded to the lower priority 
band. An overrunning task is only punished for the remaining of 
its activation period. At the next activation period, budgets are 
refilled and the priority is again raised to the normal band. The 
implementation overview is shown in Fig. 12 where an HOLA-QoS 
framework is used. Tasks, applications, and the QoSRM require 
the support of the real-time operating system kernel: timely 
primitives for basic thread management (stop, start, delete, and 
set the basic parameters of threads) and the management of 
time facilities such as timers for budget calculations and periodic 
execution activations. 

Different setups were proposed both for experimental vali­
dation and for validation through use cases. Experiments were 
carried out that showed the efficiency of applying the dynamic as­
signment priority algorithm over a budget scheduling model with 
admission control based on contracts. These mechanisms have 
been implemented on a QoSRM following the scheme of Fig. 12 and 
adjusting to the HOLA-QoS harness architecture [2]. Experiments 
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Fig. 11. Sequence diagram showing an overview of the different entities involved in the priority assignment protocol. 
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have been carried out in both, real video processing and rendering 
applications with presence of synthetic load. The initial implemen­
tation has been on a multiprocessor architecture running raw high 
quality video processing and rendering applications. The architec­
ture harness was implemented originally on TriMedia platforms 
(TM1000 and TM1100) from former Philips Semiconductors on the 
real-time operating system pSOSystem. Although the current har­
ness architecture and the above mentioned mechanisms have been 
ported on an ix86 platform running Red Hat Linux and its real-time 
patch for TimeSys real-time Java virtual machine, in this section the 
experiments reported have been on the multicore TriMedia 1100 
embedded platform, which is specifically designed for multimedia 
processing. This platform, as the successor NeXperia, includes ded­
icated coprocessors for specific memory- and bus-intensive media 
processing operations. 

The experimental set up for use case validation, as described 
in Table 1, presents two multimedia applications, A and B, 
each containing two multimedia tasks forming a pipeline of 
two connected processing tasks. Both are synthetic high quality 
video display applications offering an output rate of 25 frames/s. 
Therefore, tasks are approximated as periodic tasks of 1/25 s, 
40 000 u,s. The assigned budgets are equal to their average 
computation times: between 4000 and 8000 u,s. The normal and 

overrun priority bands are established around a limit value of 
| = 10 and the priority band size is y = 2. Experiments account 
for extra interference from the real-time operating system (sys) 
that executes in the highest priority range reserved to the kernel; 
also there is interference of other applications represented by the 
single-task application, t, that consumes a budget of 2000 u,s, and 
that executes at the normal priority band assigned to application A. 

Table 2 presents experiments showing that using dynamic 
priority assignment based on budgets (right part of table) results in 
greater cost-effective processor utilization than using pure budget 
scheduling (left part of table). 

On the left part of Table 2, it is shown the execution results 
when only budget scheduling is used. In this case, the QoSRM 
arbitrates the execution by preempting tasks that exhaust their 
budget, and they are only allowed to continue their execution 
in the next activation period. Total processor utilization is, with 
this strategy, around 62.5%. Although application tasks run greedy 
continuous media processing functions, they are not allowed to run 
more than its assigned budget (b) during each activation period. 
On the contrary, the right part of Table 2 shows the execution 
of the system using the proposed dynamic priority assignment. 
This technique allows budget overruns (for example, ra

2 overruns 
its contracted budget of 8000 u,s up to a maximum value of 
12 980 u,s) in a safe way. Safe budget overruns occur due to the 
dynamic priority assignment algorithm since greedy tasks exceed 
their budgets only if the processor has spare capacity and no tasks 
that are in their normal priority band require to execute; if there 
are still tasks that have not exhausted their budgets, they will have 
higher priority over exhausted ones that will have to wait to incur 
in a safe overrun. 

Table 3 and Fig. 13 summarize a set of experiments running 
three synthetic applications that introduce a very high overall load. 
For each application, three quality levels are given: b{(¡)1), b(<p2), 
and b(<p3). Experiments show the frame processing rendering 
times. Despite the average processor load being over 80%, the 
frame processing and rendering times that are obtained are stable. 
The frame rendering represents the time taken by a frame that 
enters the application processing pipeline until the frame is ready 
to be rendered on screen. Application quality levels fluctuate 
during the experiment and no unstable behavior is caused. This 
is due to the effectiveness of the budget enforcement mechanism. 
The feasibility of achieving predictable execution by means of 
the implementation of the contract model is, therefore, evidenced 
as a key step for achieving system dependability. For these 
experiments the full characterization of applications has been 
utilized. Resource budgets assigned by the system coincide in this 
case with the required average computation time. Periodic peaks 
correspond to the high level monitoring algorithms of the QoSRM 
implemented in HOLA-QoS that arbitrate application execution 
to avoid interference and to maximize the utilization of platform 
resources. 

Table 2 
Validation describing differences in processor usage without and with the dynamic priority assignment scheme. Units are ixs. 
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Table 3 
Scenario with real load video application and synthetic interference. 
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Fig. 13. Frame rendering for real video application at quality levels (p3 and (p . 

In these experiments, resource budgets coincide with the 
required computation times. As for the previous experiment, some 
peaks are present that coincide with the high-level monitoring of 
the QoSRM. Fig. 13 presents the processing times of a real video 
application that handles raw video, expressed also in Table 3 as tout. 
The application is interfered by the synthetic load described above. 
High processor usage is achieved (near 93%) and still behavior is 
shown to be very stable even in the event of a switch in the quality 
level (from a high quality level with inter-frame processing time 
of 8.5 ms to a low quality level with inter-frame processing time of 
around 4.5 ms). 

7. Conclusions 

The paper has described an approach towards supporting 
cost-effective resource usage of multimedia tasks in high-quality 
embedded multimedia systems by means of a simple priority 
assignment scheme based on equal size, 2S priority bands. The 
paper describes the proposal inside a complete QpS-based resource 
management framework. Typically, assignment of priorities is a 
NP hard problem. This paper shows a simple approach that is 
implementable on-line at the cost of containing some restrictions 
as the inclusion of priority bands of homogeneous size for a 
set of applications known a priory. This scheme allows greedy 
multimedia tasks to incur in safe overruns as long as they do 
not interfere in the normal execution of non-greedy tasks. This 
paper shows the advantage of this proposed scheme with respect 
to cost-effectiveness of processor usage, compared to the usage 
of constant bandwidth server techniques based only on budget 
enforcement. The proposed technique also allows a QoS resource 
manager to perform dynamic adaptation in a safe and stable way. 
The proposed protocol has been validated through experiments 
and use case design and analysis; it has been integrated and 
implemented in a QoSRM based on the architecture harness of 
HOLA-QpS. Validation results have been presented for synthetic 

and real applications in high load execution conditions. Results 
show that using the proposed priority reassignment scheme on top 
of an effective resource accounting mechanism preserves timely 
multimedia delivery, and it increases cost-effective processor 
usage allowing safe overruns that also enable the improvement of 
the quality of multimedia delivery. 
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