
A dual-band priority assignment algorithm for dynamic QoS
resource management
Marisol García Vails , Alejandro Alonso Juan Antonio de la Puente

A B S T R A C T

Future high-quality consumer electronics will contain a number of applications running in a highly
dynamic environment, and their execution will need to be efficiently arbitrated by the underlying
platform software. The multimedia applications that currently execute in such similar contexts face
frequent run-time variations in their resource demands, originated by the greedy nature of the
multimedia processing itself. Changes in resource demands are triggered by numerous reasons (e.g. a
switch in the input media compression format). Such situations require real-time adaptation mechanisms
to adjust the system operation to the new requirements, and this must be done seamlessly to satisfy the
user experience. One solution for efficiently managing application execution is to apply quality of service
resource management techniques, based on assigning and enforcing resource contracts to applications.
Most resource management solutions provide temporal isolation by enforcing resource assignments and
avoiding any resource overruns. However, this has a clear limitation over the cost-effective resource
usage. This paper presents a simple priority assignment scheme based on uniform priority bands to allow
that greedy multimedia tasks incur in safe overruns that increase resource usage and do not threaten
the timely execution of non-overrunning tasks. Experimental results show that the proposed priority
assignment scheme in combination with a resource accounting mechanism preserves timely multimedia
execution and delivery, achieves a higher cost-effective processor usage, and guarantees the execution
isolation of non-overrunning tasks.

1. Introduction

High-quality consumer electronics are complex systems with a
rich set of properties to fulfill the expectations of demanding users.
Purely functional properties concerning the variety and type of
applications expected by users are currently key to gain a position
in the market. Non-functional properties are also essential, dealing
with aspects as the quality of the application execution, the
timely response of the interactive interfaces, and the low resource
consumption to increase capacity and autonomy of devices. To
successfully fulfill this complex set of requirements, it is necessary
to develop these systems from a vertical perspective [1,2]: from
the low-level platform execution (i.e., scheduling of tasks2) to the
system-level policies that arbitrate application execution avoiding
the undesired effects of their greedy competition for the resources.

Over the past decades, high quality media processing consumer
electronics have evolved to increase their flexibility in order to
keep up with the fast market evolution. In this way, former
hardware coded functionality (i.e., specific video processing
functions implemented in dedicated hardware chips) has been
progressively coded into software. Functionality upgrades are
easier to integrate in software coded systems. Hardware-based
systems would require a complete system redesign to integrate
extra functionality, having a more expensive time-to-market cycle
that could cause a loss of market share since new products may be
significantly delayed. As a consequence, consumer electronics have
decreased the number of dedicated hardware units to increase the
number of powerful general purpose processors capable of running
multiple software functions. This is the case of current generation
high-definition TV sets, set-top boxes, and other personal devices;
they contain most of its value (functionality and monetary value)
in software design and development.

Enabling a fast time-to-market cycle for new products as an
answer to user demands is only possible if these software intensive
systems have a flexible architecture and design. Structured
software design techniques play a major role in this context,
since they allow to build family products based on a common
software harness; new applications and products (e.g., remote

shopping, picture-in-picture, digital recording, high-end personal
devices, etc.) are easily derived from existing ones by upgrading or
replacing code units.

Nevertheless, some concerns appear from the progressive
increase of the software as opposed to hardware in commercial
products. Despite being significantly less flexible, hardware-
coded systems are, however, more robust than software intensive
systems. Consequently, it becomes vital to manage the execution
of these multiple software functions in a way that robustness is
preserved. In high-quality multimedia processing systems, there
are two main aspects to be considered that have a direct impact
on their robust execution. On the one side, the real-time nature
of the multimedia presentation poses timing requirements on its
processing. For instance, the late delivery of a video frame or an
audio sample can cause a dramatic decrease in the user satisfaction.
On the other side, multimedia applications are greedy resource
consumers. For example, an algorithm for noise reduction or
picture improvement can perform countless operations to increase
the delivered image quality. As a consequence, it is necessary
to arbitrate the execution of applications in such a way that
(i) their greedy execution does not cause interference on the rest
of applications and (ii) the real-time requirements are preserved
during the whole of the system execution cycle.

In this highly dynamic context of multimedia execution, the
underlying platform arbitration mechanisms have to provide
execution adaptation capabilities. This implies that applications
have to include the necessary means for being managed by
the system and for adapting their operation to the changing
system requirements and state. In the context of this work, this
characteristic is achieved by designing and coding applications in
a way that they are capable of running in different execution modes
(or quality levels) that provide different output qualities. Therefore,
the platform arbitration mechanisms (provided as an entity
capable of managing the platform resources) select the execution
mode for each application depending on the system state (i.e.
input media characteristics, resource availability, etc.) or the user
inputs. For example, a video application will have to adapt in order
to seamlessly deliver different image qualities depending on, for
instance, the characteristics of the incoming signal or the amount
of available computational resources. Therefore, former highly-
coupled applications executing over specific hardware platforms
are transformed into operationally flexible software executing
on shared general purpose processors in a way that applications
are able to run in different modes that provide different output
qualities depending on the system state.

There are different approaches to manage application execution
with the goal of guaranteeing isolation among them and achieving
user expectations. Some solutions rely on the extensive use of a
real-time operating system (RTOS) that provides the basics for con­
trolling the execution (i.e., preemptive priority-based scheduling).
Over this baseline, different algorithms have been developed such
as resource reservations [3], budget scheduling [4-6], or constant
bandwidth servers [7,8]. Other solutions introduce extra intelli­
gence over the basic primitives of an RTOS in the form of a quality
of service resource manager entity (QoSRM); the QoSRM is an inter­
mediate software level with higher abstraction management poli­
cies, such as quality level management, system wide optimization
strategies for maximizing the offered output quality, high-level
adaptation protocols, and mode change algorithms, and real-time
reconfiguration algorithms [9]. In this domain, HOLA-QoS [2] de­
fines a thin-layered software architecture for a QoSRM entity that
provides high level strategies and low-level mechanisms for inte­
gral resource management. Close to this area but at a more reduced
scaled, the AQuoSA framework [10] offers a resource management
scheme for executing constant-bandwidth servers in multimedia
environments.

Using an intermediate entity such as a QoSRM allows arbitrating
application execution according to pre-specified criteria as user
expectations, data-dependent requirements, current user focus, or
system load values. In any case, a QoSRM must integrate adaptation
techniques, that are specifically important in the context of
multimedia systems where load changes may happen at any time
with relatively high frequency; load changes may occur due to,
for instance, a user request to launch/stop a new application, to
raise/lower the quality level of an application, or a change in
the nature of the incoming media requiring a different amount
of computational resources. An adaptation protocol contains the
sequence of operations to modify the execution parameters of
applications in response to a change in the overall resource
usage needs to perform a transition to a new state of resource
assignments. An adaptation protocol, therefore, (1) relies on
mechanisms to perform accounting and monitoring of actual
resource consumption of applications, and (2) defines the logic
to react to the obtained information if required, by changing the
quality levels of applications.

Adaptation protocols must be well supported by mode change
algorithms that define the operation sequence in which the current
system configuration has to be replaced by the new one and
by an efficient priority assignment scheme. In this context, a
system configuration is the set of all tasks to be executed together
with their associated parameter values (as the priority); also, the
priority of a task determines the urgency of its execution and the
transition order to the new execution mode. Therefore, the priority
assignment scheme is key to the efficiency of the overall adaptation
protocol and, as a consequence, of the system execution.

The current paper extends the work of [5] which describes
an implementation-oriented priority assignment mechanism that
can be executed at run-time with affordable cost as demon­
strated in feasibility experiments. This mechanism supports time-
deterministic dynamic adaptation when contract-based resource
management is used. The mechanism overcomes the lack of flexi­
bility of the contract-based model by allowing the greedy multime­
dia tasks to exceed their assigned budgets as long as this does not
threaten timely execution of non-greedy (i.e. non-overrunning)
tasks. This guarantees application execution isolation. Moreover,
the current paper extends the previous work in three main aspects.
Firstly, develops a definition of the continuous task model for mul­
timedia processing tasks; also, the budget scheduling algorithm is
further elaborated and described in context with the rest of QoS-
based resource management techniques. Secondly, the exact defi­
nition of the priority bands is given and the algorithm is refined to
integrate the scheduling mechanics, decisions, and the proposed
priority assignment. Also, the exact calculation of the task prior­
ity values within the normal and the overrun bands is given and
integrated in the algorithm. Thirdly, this paper also extends sig­
nificantly the validation of the algorithm by including additional
results using new application sets that present more dynamic re­
quirements in a different scenario. Moreover, a new comparison for
actual processor usage is made; the bare budget scheduling tech­
nique is compared to budget scheduling enriched with the pro­
posed dynamic priority assignment protocol. The later shows to be
more efficient in processor utilization by allowing safe overruns.

The paper is structured as follows. Section 2 offers an overview
of the related work. Section 3 presents the context and principles of
run-time mechanisms in a QoS resource management framework.
Section 4 presents the task model for multimedia that includes
the continuous task types; also, it describes the fundamentals
of budget scheduling and of safe resource overruns to increase
resource utilization. Section 5 describes the proposed priority
assignment scheme to perform on-line priority reassignment in a
simple and efficient way. Section 6 presents the validation results
of the proposed approach. Section 7 draws some conclusions of the
work.

2. Background

Different solutions have appeared over the last decade to
schedule time-sensitive applications based on QpS resource
management with the goal of achieving predictable execution in
centralized environments. Nowadays, new application domains
are conceived that introduce even more complexity, as grid
and cloud computing. Therefore, new scheduling paradigms are
needed to overcome the new challenges in order to fulfill time
requirements in consumer electronics in the grid. For instance,
some solutions have appeared to trade-off time for the cost of
the required functionality in utility grids [11] or for estimating
the resource demands of users to offer resource provisioning
strategies [12]. With this new challenging domains in front of us,
still predictability and cost-effective resource usage has not been
fully achieved at node level (i.e., smart phones, TV sets, set-top
boxes, personal computers, servers, lap-tops, etc.) that will be the
predominant interacting nodes requesting services from the grid
and from other peer devices. Resource management techniques
have to be further elaborated to contribute to time-deterministic
solutions in these new domains with higher dynamics. In general,
QpS resource management solutions can be encapsulated in two
broad domains: resource scheduling algorithms and quality of service
architectures (the later are known as resource manager entities).
This section describes the existing contributions most related to
the one proposed in this paper and in these two areas, introducing
also their relation to the priority assignment schemes.

One the one hand, flexible and soft real-time resource schedul­
ing algorithms have appeared with the goal of providing exe­
cution isolation, temporal protection, and cost-effective resource
usage. To reach this point, traditional scheduling applied to hard
real-time systems has undertaken a natural evolution to be appli­
cable to multimedia systems. It has become possible due to the
progressive relaxation of the traditional constraints of classical
real-time scheduling. For instance, prior assumptions such as keep­
ing over 30% spare processor capacity have been overcome in mul­
timedia consumer electronics since cost-effective resource usage is
mandatory from a commercial market perspective. Among other
issues, flexible resource management has introduced some extra
degree of uncertainty that can, however, be dealt with to maxi­
mize resource usage in consumer electronics. In this way, schedul­
ing approaches as proportional share [13] and Pfair [14] algorithms
provide the temporal protection property, in which applications
mark their progress proportionally to its weight value. Along this
line, resource reservation algorithms (RR) [3] are suitable for sys­
tems with hard, soft, and non real-time tasks, providing temporal
protection. Also, the constant bandwidth server (CBS) [7,8] offers
a framework where tasks are granted a computation time (or bud­
get) associated to a server and a reservation; tasks are allowed to
execute whenever they have not exceeded their budget, achiev­
ing temporal isolation in this way. Adaptive scheduling policies
based on QpS were also proposed by [15]; some of these techniques
(as [16]) provided a complete specification of QoS properties, but
it only allowed static allocation due to its high computational re­
quirements. The priority assignment schemes used in the above
presented algorithms are either not mentioned or directly derived
from a rate monotonic approach using fixed priorities. In addition,
schemes based on dynamic priorities following earliest deadline
first approaches are not always able to provide temporal isolation
and are, therefore, not subject of this current work.

On a complementary side, resource management has also
been addressed from an architectural point of view based
on intermediate entities, called Quality of Service Resource
Managers (QoSRM). Originally, QoSRMs targeted at general
purpose distributed systems mainly used for Internet based video
conferencing systems. Their timing requirements are softer than

those of the commercial products for the consumer market. The
later must offer high-quality outputs, e.g., digital TV and set-top
boxes. The user of these systems tolerates no glitches in their
robustness (e.g. no image freezes and no delays in operation are
permitted). The presence of resource manager entities allows the
efficient arbitration of their software applications to avoid any of
these effects that can terribly impact the user satisfaction and the
market success of the product.

Different approaches to developing QoSRMs have appeared
as [17] that do not emphasize the real-time resource management
issues; therefore, they are not able to fully guarantee execution
isolation. Another approach on this field is [18] that focuses on the
design and development of best effort entities in the context of soft
real-time video conferencing. Real-time execution is considered
in other contributions such as AQuoSA [10] that integrates CBS
scheduling in the operating system; however, this framework only
focuses on the enforcement of resource reservations leaving cost-
effective resource usage in a secondary level.

QoS resource managers can follow different architectural
strategies. Some have a simple and non-optimized collection of
entities collaborating in a best effort way. Others present a hierar­
chical homogeneous view that precisely locates all required arbi­
tration mechanisms, such as HOLA-QoS [2]; this approach provides
an architectural design for a QoSRM entity offering a vertical view
to QoS-resource management, from the application-level strate­
gies down to the operating system mechanisms (contract-based
resource assignments and admission control, resource usage ac­
counting, enforcement of resource budgets, real-time scheduling,
task priority assignment, and dynamic adaptation).

Compared to the state of the art, this work provides innovative
contributions. Existing solutions for resource management have
concentrated on achieving temporal isolation by means of fixed
priority assignment schemes that provide resource budgets that
cannot suffer overruns; this has severe limitations in cost-
effective resource usage. We present a scheme for dynamic priority
assignment that allows to maximize resource usage; our approach
allows safe processor overruns, so a task can consume more than
its assigned budget if the processor has spare capacity. This is
programmed inside the kernel using its callback functions, so
little overhead is caused. This approach is based on effective
usage of task priorities in combination with resource budgets
assigned by contract during a negotiation phase. The priority
assignment mechanism focuses on budgets enhancing the target
of the classical dual scheduling algorithm [19] and imprecise
computations [20]. More specifically, the dual scheduling approach
considers a division in three priority bands, assigning to each
crucial task two priorities (one in the upper band and one in the
lower band), whilst other tasks (with firm and soft deadlines)
have medium-band priorities. It always changes the priority of the
crucial tasks from the lower to the upper band after a previously
defined delay after their release. So, the dual scheduling algorithm
focuses on calculation of time instants at which the priorities of
tasks should be upgraded in order to meet their deadlines. So, it
does not use the concept of budgets, and it is suitable for the soft
task scheduling in systems that have a mixture of hard periodic
and hard sporadic tasks. Our work targets to a different concept
which is the analysis of actual processor usage, relying on the exact
characterization of multimedia applications previously made in [2]
and its resource budget model.

3. QpS resource management framework

From an architectural point of view, QoS-based resource
management encompasses a set of activities that must be dealt
with that are (as explained in [2,5]):

Quality Level Management

a p p _ a q i i j ^ a P P _ b q i i

Admission Control and Budget Assignment

Va~|CV r3

Budget Enforcement and Monitoring

app a i . , , . app by ., .
fc,y, r j (Tj,y',r2)

 y K - (T¡, y", r j

T„ x', r j (tj, x", r2)

Applications modeled in
discretequality levels

Quality levels mapped to task
sets with contracted resource
budgets

Scheduling enforces
contracted budgets

Fig. 1. Overview of the contract model with a well defined hierarchical control structure.

• Application and task characterization (with respect to their
structure and resource needs).

• Contract-based negotiation of resource budgets (containing an
admission test).

• Enforcement of resource budgets.
• Monitoring and tracing of actual consumption of resource

budgets, and
• Dynamic adaptation.

In our previous work, most of these issues have been dealt with
in the context of hierarchical QpS-based resource management. As
an example, higher level strategies for handling dynamic behavior,
as [21], have been developed that present a dynamic adaptation
protocol used by QoSRM entities to preserve stability in the context
of cost-effective resource usage environments.

Execution based on a contract model is a system wide operation
that involves two sides: the QoSRM and the applications. A contract
model assures that the following system wide premises are kept at
all times:

• The platform (QoSRM built over the basic services of a RTOS)
has to guarantee applications a given budget for each resource
that they need in order to deliver the agreed quality level, and

• Applications must provide a certain output quality with the
contracted resource budgets.

Under a contract model, complete knowledge of the resource
needs of applications is held by the applications themselves;
for example, high-quality video applications have a heavy video
processing semantics that are known by the application, and it
cannot be fully transferred to a centralized arbitration entity.

A contract model relies on a basic collection of techniques (see
Figs. 1 and 2) that have to be delivered at run-time, which are:

• Negotiation and admission control based on resource bud­
gets. Resource budget assignment is performed at negotiation
time through an admission control test, based on real-time
scheduling policies over a precise characterization of applica­
tions [5,2]. Before a new application is eligible to run, it un­
dergoes a negotiation process based on the execution of an
admission control test that determines if the new applica­
tion system is schedulable. Upon completion of the negotiation
phase, the schedulable resource budgets are assigned to tasks
by contract.

• Budget enforcement. It is a basic technique to implement
the contract model since it avoids application execution
interference. Guaranteeing budgets to tasks is done by means
of forcing tasks not to use more resources than they have
contracted in their admission. This way, even if greedy tasks
of an application are willing to incur in budget overruns, the
QoSRM will preempt them from the resource whenever they
have consumed the budget. It guarantees that no resource

Kernel mechanisms

Fig. 2. Overview of the main QpS resource management functions.

budgets are overrun freely; only if enough resources are
available, may the QoSRM allow safe overruns in order to
improve the quality of the output generated by multimedia
tasks in a safe way.
Resource usage monitoring. To control application execution, it is
essential to keep track of the actual resource consumption. The
QoSRM performs run-time monitoring of budget consumption;
this can be done per task, per task-group, and per application.
This activity is the fundamental process for the detection of
over- or under-utilization of resources, so that risky situations
can be anticipated and corrective actions can be undertaken.
Application prioritizing. Any decision of the QoSRM to apply
corrective actions can be made in two ways: (1) automatic, for
instance when a task is about to incur in overrun, the processor
is instantly stolen from it, or (2) based on some criteria, being
the most important the establishment of priority ordering
among applications and their associated tasks. The importance
application parameter is deeper explained in Section 5.
Adaptation and mode change protocols. The analysis of the
information on actual resource consumption may trigger some
event to initiate an adaptation process. This can require to
change the assignment of parameters of applications and
tasks (resource budgets, activation periods, etc.). If the current
system configuration has to be changed to adapt to the
occurring event, then it is required to initiate a mode change
protocol. Mode change protocols define the operation sequence
to change the current running task set to a different set
(including their associated parameter values).

4. Task model

4.1. Budget scheduling

In multimedia processing, some tasks have a continuous ac­
tivation pattern derived from the arrival pattern of their input
media; a multimedia task executes constantly in a non-stop
fashion as long as it receives input data to process. As a
consequence, this continuous tasks follow the paradigm of impre­
cise computation since the output generated by a multimedia task
improves with the amount of resources that are available for it.

To integrate the continuous task type in a schedulability frame­
work, the continuous activation pattern must be approximated by
a known one. In multimedia applications, it is common to have sets
of tasks connected to form a pipeline [1,22]. Data may arrive to the
pipeline in different formats and with either CBR or VBR (constant
or variable bit rate) to the input data buffer of the first task in the
pipeline. This task consumes the information following a periodic
pattern. Also, the last task in the pipeline is usually the display task;
its activation period is clearly periodic since multimedia presenta­
tion has real-time requirements related to the constraints imposed
by the human perception. The rest of tasks in the pipeline (the in­
termediate tasks) inherit the value of the period from both the last
and first tasks that are, in the end, related to the rate of the incom­
ing media and the displayed image rate.

As a consequence, a continuous task r¡ is specified by its
computation time, Q, deadline, D¡, priority, P¡, and the activation
period, T¡. T¡ is derived from the activation period of the pipeline.

The system model relies on the principles of budget scheduling.
Each task is assigned a budget, b¡, at the start of its activation
period t¡. The task can consume its budget during its activation
period, [t¡, t¡+i[where T¡ = t¡+i — t¡. In a budget scheduling
model, the assigned budget corresponds to its computation time
(bj = Q) that is application-dependent information usually based
on average case resource requirements in the case of multimedia
tasks. Therefore, at the end of its activation period, the task may
have exhausted its budget completely, r¡ = O.orinpart.rj = b¡—Q,
where r¡ is the remaining budget of task r¡, and c¡ is the processor
time consumed by r¡ at the end of the activation period defined
by [tg, t¡+i[. Independent of the consumed budget for the current
period, the budget of task r¡ is replenished at the start of its next
activation period.

4.2. Enabling safe overruns

Overload risk is a common situation in multimedia systems.
It means that the amount of resources needed by the running
applications is greater than the amount that is available. The
alternative would be to calculate the worst case execution time
(WCET) for each activation of a task, and assign budgets according
to these values. However, in this type of applications, the worst
case is commonly much larger than the mean or average execution
time. Hence, if budgets are assigned according to WCET, there will
be a large waste of resources.

The alternative is to assign budgets around the average value;
for the case of processor time, the resource time budget will be
higher than the average time. In multimedia, such value will be
anyway much lower than the worst case [1]. As a consequence, it is
needed to detect overload situations at run time and handle them
properly. The basic approach is to preempt a task from a resource
when its assigned budget is exhausted. In this way, budgets are
enforced, and resource usage overload can be controlled as shown
in Fig. 3 (circled). Therefore, the overall system resource usage will
not exceed the threatening maximum value.

An entity, such as the QoSRM, has to enforce the maximum safe
resource budget for all applications. Therefore, the total resource

R£S. Use

Max-

Fig. 3. Execution with budget overrun.

b t
M ^m T ,

1
Fig. 4. Different execution schemes: (a) strict budget enforcement and (b) safe
budget overrun.

usage will not exceed the safe bounds in the system. Interference
may be triggered either by user requests to switch applications
to a higher quality level or by a change to an input media that
requires a higher processing capacity (for instance, a fast motion
scene). By applying adaptation techniques [21] on top of the budget
enforcement mechanism, the QoSRM will allow tasks to consume
more of its resource budget if the overall system resource usage is
not exceeded.

The proposed approach consists precisely of a low level
mechanism for avoiding task execution interference using a
priority assignment scheme based on priority bands. The key idea
is that tasks which incur in execution overruns will be allowed
to run only if they do not threaten execution of non-overrunning
tasks. Fig. 4, part (a), shows a normal execution where resource
assignment is enforced. In it, task rn is allocated x resource units
whereas TJI is allocated y resource units, for rn having higher
priority than TJI . The assignment is enforced by the system relying
on resource usage monitoring and accounting to detect actual
resource consumption for each task. In this case, xn has a budget
assignment of 1 time unit. Therefore, it is preempted from the
resource after exhausting such budget, and TJI takes over the
execution. Both tasks have an execution deadline that coincides
with the activation period; as a consequence, both tasks must
finish their execution before their next activation indicated by the
upright pointing arrows. However, this enforcement scheme is
too severe for multimedia systems; it does not allow to maximize
resource usage as can be seen in part (a) where spare time is left
unused before the next activation period. However, resources can
be used more cost-effectively for both tasks as shown in part (b)
of Fig. 4; as opposed to the previous execution, xn is allowed to
continue using the resource for more than its assigned budget, as
it does not prevent TJI from meeting its execution deadline {x¡\
finishes before its next activation).

The resource accounting and monitoring mechanism is funda­
mental to avoid non tolerable situations as the one shown in Fig. 5
part (a), where deadlines are missed, i.e., task TJI finishes after its
execution deadline. This situation can be avoided as shown in Fig. 5
part (b) where overrunning tasks (rn in this case) are preempted
from the resource if there are tasks that have not consumed their
assigned budget yet (this is the case of TJI). After non-overrunning

Fig. 5. (a) Deadline misses due to lack of budget enforcement (b) resource usage
accountability and budget enforcement enable controlled overruns and guarantee
deadline fulfilment.

f - current timeO
ifmod(f/T)==0

refill budgets(Z T)
else

i=f-ts
r¡ = r¡ - i
assign remaining budget(T¡)
store consumed budget(r¡, b¡ - r¡)
ifr,<0

switch to queue(r¡, exh b queue)

Fig. 6. Budget management through resource accounting.

tasks (Tji) have completed their execution, the overrunning tasks
(tji) can continue for as long as they require, but they must finish
before their deadline.

In the specific case of on-line accountability of processor
usage, it is required to execute a routine at each context switch
occurrence (i.e., every time that the task that is using the processor
leaves it). Resource usage accountability, usually done on a per
task basis, allows on-line computing of data on resource usage
per application; this is the basic instrument to detect overrun
situations and meeting deadlines. The overhead that these routines
introduce in the system is negligible compared to the actual
computation times of multimedia tasks. Moreover, the benefits of a
resource accounting mechanism are worth the light overhead, and
it is required to implement monitoring and adaptation techniques.

Resource accounting is also used as the basis for budget
enforcement. Once a task uses the amount of processor specified
in its budget contract, the task is forced to leave the resource if
overrunning its budget can have a negative effect on other tasks.
Detecting this situation is possible by arming a timer that is set to
the remaining budget time, r¡. If the timer expires, then it means
that the task has exhausted its budget, and this event must be
properly handled. On the other hand, the budget will be refilled
at the beginning of each activation period. Fig. 6 describes the
algorithm that is applied to update the budget of tasks at each
context switch instant, tx.

The system manages an extra queue, exh_b_queue, for tasks
that have exhausted their budgets in the current activation
period. Although tasks in this queue may not have finished
their due work, they cannot interfere with tasks that have not
exhausted their budget. Functions as assign_remaining_budget and
store_consumed_budget perform the actual information updating
functions inside the kernel for the considered task.

In this way, the BACC (BudgetACCountant) is a software compo­
nent that performs basic budget accounting and enforcement [23].
It also captures execution information to evaluate whether the as­
signed budgets are sufficient for the tasks to complete their func­
tions or whether they are being under-utilized. Upon detection of
an overload situation, a call-back function is invoked, in order for
the QoSRM to handle this event. The BACC has been ported to pSoS
running on a TriMedia processor, and to Linux running on x486 and
ARM processors.

5. Dynamic priority assignment

Priority assignment among application tasks is a hard problem.
If a global reassignment scheme is chosen, the problem becomes
NP hard at run-time. For this reason, a simple scheme has
been proposed that allows prioritizing applications in an easy
way according to a user driven algorithm based on the relative
importance of applications. This approach is both effective in
computation time and at user level.

In our model, we assume a realistic interplay among applica­
tions. Therefore, each application has a relative importance accord­
ing to different issues. For example, the nature of the processed
data or the preferences of the user. Consequently, also tasks are
prioritized according to the following:

• The importance of the application it belongs to, and
• Role/importance of the task in the application; this is related to

its position in the application pipeline.

Priority assignment to tasks is based on the establishment of
importance bands for applications as shown in Fig. 7. Application
importance can be inherent (due to the general well-established
knowledge of the type of media that the application processes)
or temporal (based on the user preferences). As an example,
high-quality video processing systems assume that audio has
higher inherent importance over imaging. It is incomparably more
annoying for users to hear the outcome of an audio signal that is
being processed incorrectly or late than to watch an application
that has to freeze previous images every once in a while due to the
late processing of the frames.

In any case, the inherent importance is also deeply related to
the user preferences in everyday life. The user determines the
temporal importance of an application, i.e., the application with
the highest temporal importance is the one that currently has the
user's attention. If the user is watching a reduced-size picture-in-
picture application, it has to deliver the highest quality among the
rest of applications.

Critical applications can also be integrated in the model by
assigning them to priority bands higher than non-critical ones,
even if the non-critical ones have a higher temporal importance.
For execution of applications that raise their temporal importance,
the system can provide a high priority band (urgent band).

An importance limit value is defined that sets the frontier
between critical and non-critical applications. It should be noticed
that, in this context, critical refers to applications that have a high
inherent importance value.

There are different alternatives to assign importance values.
On the one hand, absolute priority values can be assigned to
applications (as stated before) based on their nature, user focus,
etc. On the other hand, cooperation schemes (cooperation between
applications and a central QoSRM entity) can also be implemented
as described initially in [2]. The proposed approach is compatible
with a flexible and general purpose HOLA-QoS framework that
uses a real-time operating system providing preemption and
priorities; therefore, a priority-based scheme (as presented in
Fig. 7) has been designed. This scheme is a simple and efficient
way to implement the mechanisms that enforce resource budgets
to tasks and, therefore, provide temporal isolation among them.

In (1), it is shown the essential characterization of an application
a¡, Ch(aj), based on the set of its quality levels, <t>u its task set
Hx\ (also, S¡ = {T1}), and its importance value /¡. The extended
characterization was presented in [2]. <í¡ corresponds to the set
of discrete output qualities (quality level) that the application can
deliver. Each quality level is physically implemented by a set of
tasks with their assigned resource budgets.

(* < . ! > ' <) • (1)

\ Vjefl¡ /

Application
importance^

Importance
Limit •*

Critical Band

Normal Band

+ A

I
Real-Time OS

QoSRM tasks

Application tasks

Overrun zone

App. 1

App. n

App. Priorization

t (system profile)

Fig. 7. Importance bands and application priority bands.

cfiüí
ora

T¡1 T¡2 *¡3 TJ1 T¡2 . 3

T i l Ti2 h3 xü T¡2 | T i 3

PB(a¡)>PB(a;)

PB(aJ>PB(aJ

Fig. 8. Example of execution conforming to application prioritization.

Based on this characterization where all applications have a
specific importance value, /¡, the application importance deter­
mines the task priority values that are assigned. As shown in Fig. 8,
this assignment determines the execution pattern in the system.
Each application is allocated to a priority band according to its im­
portance, so applications assigned to a given priority band have
a priority value contained inside that band. This idea is shown in
Fig. 9.

It should be noticed that the overall system task set has
undergone the admission control test and that resource budgets
are guaranteed (that means that they are schedulable for the
average case resource assignments). Once the priority bands have
been assigned to applications, the dynamic application assignment
scheme, described below, establishes dual priority bands per
application to support the safe overruns of resource budgets.

Taking as the basis the budget scheduling model, our approach
divides the priority range of each application in two halves: a
normal priority band and an overrun priority band, as shown in
Fig. 9. The status of the budget consumption determines in which
band should be task priority be at an instant. Therefore, global
priority reassignment is not considered since this problem is NP-
hard, and the computations cannot be performed by an efficient
and realizable resource management entity.

A task that has still not consumed its budget is allowed to run
in the normal priority band. Similarly, a task that exhausts its
budget is immediately lowered to the overrun priority band. At the
beginning of each refill period, budgets are refilled and all tasks are
raised to their normal priority band. There is no collision among
the normal priority bands and overrun priority bands, and they are
separated by a priority limit value, f. All bands have disj oint values,
as illustrated in Fig. 9.

The priority value P¡ for each task T, of application a¡, that has
a priority band of size y beginning at the lower bound value &>¡, is
limited by:

Normal priority
band

* ~ ~ Í ; (Priority limit)

Overrun priority
band

Fig. 9. Priority bands for applications.

being &>¡ = £ + (nLA*y), where nLA¡ is the number of applications
that belong to L4¡, the set of applications with lower importance
than cij : L4¡ = {a¡}, Vj/(aj) < /(a¡). Similarly, HA¡ is the set of
applications with higher importance than a¡ : HAt = {a¡}, Vj/(aj)
> Ka,).

As a consequence, each application a¡ has the following two
priority bands: the normal band, HPit and the overruns band, LPt
(or lower priority band):

HPi = H + (nIA*y), % + (nIA*y) + y - 1] (3)
LPi = H- (nHA*y) - y, £ - (nHA*y) - 1]

where nHA¡ and nLA¡ are the number of applications with higher
and lower importance than application a¡, respectively.

The dynamic priority assignment scheme manages the priority
values of tasks fluctuating between the normal band and the
overrun band, depending on the status of its budget consumption.
LetSj = {r'Jbe the task set of application Oj, the priority values for
each r1 of a¡ will be within HPi if its budget has not been exhausted
yet, r? > 0. At the instant when r1 exhausts its budget, r? = 0, its
priority value is lowered to the overrun band, LPi. Following, the
priority value, PL of task r1 is shown for both priority bands.

If r1 is a task of application a¡, then we define hpj as the set of
tasks of application a¡ with higher priority than r1, and nhpj is the
size of hpj. Similarly, Zpj is the set of tasks with lower priority than
r1, and n/pj is the size of Zpj. The exact priority value for each task
T,1 is defined as follows:

if r¡ > 0, P\

if r, : o, p;

£ + (nLA*y)+nipj + l

I - (n H A f y) - n h p j - l .

(4)

Vtj ea¡=> Pj c [cou £u¡ + y] (2)

Therefore, S¡ = {r1, hpj, Zpj}, and all tasks in S¡ can only take
priority values within the two priority bands of application a¡ : HPi
and LPj. If a task x¡ exceeds its budget (r¡ = 0), its priority is
immediately lowered to the overrun band. Therefore, it will not
interfere with other tasks that have not exceeded their budgets.

The dynamic priority algorithm is described in Fig. 10. Initially,
all tasks are within the normal priority band. As budgets are
exhausted, priorities are lowered to the overrun band.

f = current time()

ifmod(f/Ti)==0

for all t] in a¡

r¡ = b¡

PI =£, + (nLAi * y) + nip} + 1
else

t = f-ts
r} = r}-i
ifr}<0

P} = \ + (nHA¡ * f) - nhp} - 1

Fig. 10. Dynamic priority assignment for budget scheduling.

Let tx be the instant of decision for budget recalculation: (i) a
context switch, (ii) the occurrence of the next activation period for
the application, or (iii) the exhausting of a budget. As mentioned
before, an exhausted budget is detected by arming a timer with
the remaining budget, r¡, when the task is dispatched for using
a resource. If the timer expires, this means that the budget is
exhausted and the priority value is lowered to the overrun band. In
addition, at every activation period (mod(tx/r¡) = = 0), all budgets
are refilled and the priorities of tasks are assigned a value within
the normal band. Tasks which have exhausted their mandatory
budget will not, therefore, interfere with tasks that have still not
incurred in overruns. Lowering the priority of a greedy task means
that it will be allowed to run whenever there are no tasks running
at their normal priority bands; in that case, either all tasks are in the
overrun band or they are in the normal band though not requesting
the processor. Such mechanism is an efficient way to guarantee
that applications do not suffer execution interference from tasks
which are most greedy resource consumers.

6. Validation results

From an architectural perspective, the implementation of the
dynamic priority assignment protocol relies on the existence of
two entities with complementary responsibilities. On one side,

the resource accountant (BACC) is an active entity that constantly
performs on-line monitoring (i.e. accountability) of resource usage
on a per task and per application basis. The resource accountant
uses callback functions of the kernel scheduling and dispatching
functionality to build an accountability strategy for processor
usage of each application. Therefore, it has precise information
about budget utilization per task and per application at any point
in time. On the other side, the resource manager entity analyzes the
accountability information to determine which tasks, if any, have
incurred in execution overrun. At architectural level, the priority
assignment protocol (shown in Fig. 11) requires the interaction
between the resource accountant and the resource manager to
determine at which point in time overrunning tasks must be
downgraded to a lower priority band where they will not cause
interference to the execution of non-overrunning tasks.

The resource accountant is invoked when the armed timer
for detecting overruns expires. Then, the resource accountant
informs the resource manager of the situation. Since some task has
attempted to execute for more time than contracted, the resource
manager then executes the priority assignment algorithm, and
overrunning tasks will be downgraded to the lower priority
band. An overrunning task is only punished for the remaining of
its activation period. At the next activation period, budgets are
refilled and the priority is again raised to the normal band. The
implementation overview is shown in Fig. 12 where an HOLA-QoS
framework is used. Tasks, applications, and the QoSRM require
the support of the real-time operating system kernel: timely
primitives for basic thread management (stop, start, delete, and
set the basic parameters of threads) and the management of
time facilities such as timers for budget calculations and periodic
execution activations.

Different setups were proposed both for experimental vali­
dation and for validation through use cases. Experiments were
carried out that showed the efficiency of applying the dynamic as­
signment priority algorithm over a budget scheduling model with
admission control based on contracts. These mechanisms have
been implemented on a QoSRM following the scheme of Fig. 12 and
adjusting to the HOLA-QoS harness architecture [2]. Experiments

Resource
Accountant

Resource
Manager

Task/ Taskn

If deadline timer of
running task expires

store overrun tifo

z
signal_overrun_detection

priorecalcandreassign

lower_task_prio_to_ >verrun_band

At start of budget
refill period,
for all overrun tasks

refill_tasks_budget \z
restoretaskprioto normal band

restore_task_prio_to normal_band

Fig. 11. Sequence diagram showing an overview of the different entities involved in the priority assignment protocol.

Task 4 Application

Resource
Accountant

QoS Res.
Manager

Kernel

HOLA-QoS f ramework

Fig. 12. Overview of implementation architecture.

Table 1
System profile.

<
<
*Z
ri
i

Sys

HP

13

12

11

10
12

>18

LP

9

8

7

6
12
n/a

b(li,s)

8000

4000

8000

3100
2000
n/a

Act. (u.s)

T = 40000

T = 40000

T = 40000

T = 40000
T = 40000
n/a

have been carried out in both, real video processing and rendering
applications with presence of synthetic load. The initial implemen­
tation has been on a multiprocessor architecture running raw high
quality video processing and rendering applications. The architec­
ture harness was implemented originally on TriMedia platforms
(TM1000 and TM1100) from former Philips Semiconductors on the
real-time operating system pSOSystem. Although the current har­
ness architecture and the above mentioned mechanisms have been
ported on an ix86 platform running Red Hat Linux and its real-time
patch for TimeSys real-time Java virtual machine, in this section the
experiments reported have been on the multicore TriMedia 1100
embedded platform, which is specifically designed for multimedia
processing. This platform, as the successor NeXperia, includes ded­
icated coprocessors for specific memory- and bus-intensive media
processing operations.

The experimental set up for use case validation, as described
in Table 1, presents two multimedia applications, A and B,
each containing two multimedia tasks forming a pipeline of
two connected processing tasks. Both are synthetic high quality
video display applications offering an output rate of 25 frames/s.
Therefore, tasks are approximated as periodic tasks of 1/25 s,
40 000 u,s. The assigned budgets are equal to their average
computation times: between 4000 and 8000 u,s. The normal and

overrun priority bands are established around a limit value of
| = 10 and the priority band size is y = 2. Experiments account
for extra interference from the real-time operating system (sys)
that executes in the highest priority range reserved to the kernel;
also there is interference of other applications represented by the
single-task application, t, that consumes a budget of 2000 u,s, and
that executes at the normal priority band assigned to application A.

Table 2 presents experiments showing that using dynamic
priority assignment based on budgets (right part of table) results in
greater cost-effective processor utilization than using pure budget
scheduling (left part of table).

On the left part of Table 2, it is shown the execution results
when only budget scheduling is used. In this case, the QoSRM
arbitrates the execution by preempting tasks that exhaust their
budget, and they are only allowed to continue their execution
in the next activation period. Total processor utilization is, with
this strategy, around 62.5%. Although application tasks run greedy
continuous media processing functions, they are not allowed to run
more than its assigned budget (b) during each activation period.
On the contrary, the right part of Table 2 shows the execution
of the system using the proposed dynamic priority assignment.
This technique allows budget overruns (for example, ra

2 overruns
its contracted budget of 8000 u,s up to a maximum value of
12 980 u,s) in a safe way. Safe budget overruns occur due to the
dynamic priority assignment algorithm since greedy tasks exceed
their budgets only if the processor has spare capacity and no tasks
that are in their normal priority band require to execute; if there
are still tasks that have not exhausted their budgets, they will have
higher priority over exhausted ones that will have to wait to incur
in a safe overrun.

Table 3 and Fig. 13 summarize a set of experiments running
three synthetic applications that introduce a very high overall load.
For each application, three quality levels are given: b{(¡)1), b(<p2),
and b(<p3). Experiments show the frame processing rendering
times. Despite the average processor load being over 80%, the
frame processing and rendering times that are obtained are stable.
The frame rendering represents the time taken by a frame that
enters the application processing pipeline until the frame is ready
to be rendered on screen. Application quality levels fluctuate
during the experiment and no unstable behavior is caused. This
is due to the effectiveness of the budget enforcement mechanism.
The feasibility of achieving predictable execution by means of
the implementation of the contract model is, therefore, evidenced
as a key step for achieving system dependability. For these
experiments the full characterization of applications has been
utilized. Resource budgets assigned by the system coincide in this
case with the required average computation time. Periodic peaks
correspond to the high level monitoring algorithms of the QoSRM
implemented in HOLA-QoS that arbitrate application execution
to avoid interference and to maximize the utilization of platform
resources.

Table 2
Validation describing differences in processor usage without and with the dynamic priority assignment scheme. Units are ixs.

Budget scheduling

rl
7982
7988
8006
8006
8001
7999
7989
8005
8007
8001
7998
7989

<
3992
4003
4002
3995
4000
4001
4003
4002
3995
3999
4000
4003

<
7986
8006
8005
7988
8001
7999
8006
8006
7989
8000
7999
8005

r¿
3018
3012
3012
3018
3019
3018
3013
3012
3018
3019
3018
3012

í

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

%cpu

62,445
62,524
62,563
62,519
62,550
62,543
62,524
62,562
62,522
62,550
62,538
62,525

Dynamic

rl
11497
11749
11077
12 980
12 896
12 967
11049
11638
11222
11716
12 700
12357

priority assignment with budgets

r1 r2

5841
5833
5771
5459
5402
5845
5999
5938
5981
5660
5856
5611

9561
8887
8734
9903
9082
8922
8610
9351
9206
9735
9806
9177

r¿
3502
3392
3616
3479
3444
3542
3418
3778
3714
3507
3518
3659

%cpu

81,003
79,654
77,995
84,554
82,058
83,190
77,687
81,762
80,307
81,548
84,700
82,012

Table 3
Scenario with real load video application and synthetic interference.

r¡
rl
r]
I

%cpu
tout

b(<P3) (M-s)

4000

2000

2000
2000
83

~8500

b(<P2) (t>.s)

3000

2000

2000
2000
75

~5800

b(<p'){[i.s)

3000

1000

2000
2000
67

~4800

HP

13

12

11
12

LP

9

8

7
12

|— Processing |

12

10

E
T 6

E
¡= *

2

0

51 101 151

Frame
201 251 301

Fig. 13. Frame rendering for real video application at quality levels (p3 and (p .

In these experiments, resource budgets coincide with the
required computation times. As for the previous experiment, some
peaks are present that coincide with the high-level monitoring of
the QoSRM. Fig. 13 presents the processing times of a real video
application that handles raw video, expressed also in Table 3 as tout.
The application is interfered by the synthetic load described above.
High processor usage is achieved (near 93%) and still behavior is
shown to be very stable even in the event of a switch in the quality
level (from a high quality level with inter-frame processing time
of 8.5 ms to a low quality level with inter-frame processing time of
around 4.5 ms).

7. Conclusions

The paper has described an approach towards supporting
cost-effective resource usage of multimedia tasks in high-quality
embedded multimedia systems by means of a simple priority
assignment scheme based on equal size, 2S priority bands. The
paper describes the proposal inside a complete QpS-based resource
management framework. Typically, assignment of priorities is a
NP hard problem. This paper shows a simple approach that is
implementable on-line at the cost of containing some restrictions
as the inclusion of priority bands of homogeneous size for a
set of applications known a priory. This scheme allows greedy
multimedia tasks to incur in safe overruns as long as they do
not interfere in the normal execution of non-greedy tasks. This
paper shows the advantage of this proposed scheme with respect
to cost-effectiveness of processor usage, compared to the usage
of constant bandwidth server techniques based only on budget
enforcement. The proposed technique also allows a QoS resource
manager to perform dynamic adaptation in a safe and stable way.
The proposed protocol has been validated through experiments
and use case design and analysis; it has been integrated and
implemented in a QoSRM based on the architecture harness of
HOLA-QpS. Validation results have been presented for synthetic

and real applications in high load execution conditions. Results
show that using the proposed priority reassignment scheme on top
of an effective resource accounting mechanism preserves timely
multimedia delivery, and it increases cost-effective processor
usage allowing safe overruns that also enable the improvement of
the quality of multimedia delivery.

Acknowledgments

This work has been partly funded by the ARTEMIS Calll project
iLAND (ARTEMIS-JU 100026) funded by the ARTEMIS JTU and the
Spanish Ministry of Industry, Commerce, and Tourism. Also, this
work has been partly funded by the ARTISTDesign NoE (IST-2007-
214373) of the EU 7th Framework Programme, by the Spanish
national projects "DDS Gateway for Web Services" (TSI-020501-
2008-159) and RT-MODEL(TIN2008-06766-C03).

References

[1] C. Otero, L. Steffens, P. van der Stok, S. van Loo, A. Alonso, J. Ruiz, R. Bril,
M. Garcia-Valls, QpS-based resource management for ambient intelligence,
in: Ambient Intelligence: Impact on Embedded Systems Design, Kluwer
Academic Publishers, 2003 (Chapter on).

[2] M. García-Valls, A. Alonso, J. Ruiz Martinez, A. Groba, An architecture of a QpS
resource manager for flexible multimedia embedded systems, in: Proc. of 3rd
International Workshop on Software Engineering and Middleware, SEM2002,
in: Lecture Notes in Computer Science, vol. 2596, 2003.

[3] R. Rajkumar, K. Juwa, A. Molano, S. Oikawa, Resource kernels: a resource-
centric approach to real-time and multimedia systems, in: Proc. of the
SPIE/ACM Conference on Multimedia Computing and Networking, San José,
CA, January 1998.

[4] M.H.P. van den Heuvel, R.J. Bril, S. Schiemenz, C. Hentschel, Dynamic resource
allocation for real-time priority processing applications, IEEE Transactions on
Consumer Electronics (TCE) 56 (2) (2010) 879-887.

[5] M. Garcia-Valls, P. Basanta-Val, I. Estévez-Ayres, Dynamic priority assignment
scheme for contract-based QpS resource management, in: Proc. of 7th IEEE
Conference on Embedded Software and Systems, Bradford, UK, June 29th-July
1st, 2010.

[6] M. García-Valls, A. Alonso, J.A. de la Puente, Mode change protocols for
predictable resource management in embedded multimedia systems, in: Proc.
of 6th IEEE Conference on Embedded Software and Systems, Hanzhou, Zeijan,
China, May 2009.

[7] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-time
systems, in: Proc. of the IEEE Real Time Systems Symposium, Madrid, Spain,
December 1998.

[8] L. Abeni, L. Palopoli, C. Scordino, G. Lipari, Resource reservation over general
purpose applications, IEEE Transactions on Industrial Informatics 5(1) (2009)
12-21.

[9] M. Garcia-Valls, P. Basanta-Val, I. Estévez-Ayres, Real-time reconfiguration in
multimedia embedded systems, IEEE Transactions on Consumer Electronics
57 (3) (2011)1280-1287.

10] L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari, AQuoSA—adaptive quality of
service architecture, Software: Practice and Experience 39 (2009) 1-31.

11] S.K. Garg, R. Buyya, H.J. Siegel, Time and cost trade-off management for
scheduling parallel applications on utility grids, Future Generation Computer
Systems 26 (8) (2010) 1344-1355.

12] S. Islam, J. Keum, K. Lee, A. Liu, Empirical models for adaptive resource
provisioning in the cloud, Future Generation Computer Systems (2011)
doi:10.1016/j.future.2011.05.027. Available online.

13] K. Jeffay, S. Goddar, A theory of rate-based execution, in: Proc. of the IEEE Real-
Time Systems Symposium, Phoenix, AZ, December 1999.

14] S. Baruah, N. Cohen, C. Plaxton, D. Varvel, Proportionate progress: a notion of
fairness in resource allocation, Algorithmica 16 (1996) 600-625.

15] A. Pavan, R. Jha, L Graba, S. Cooper, I. Cardei, V. Gomal, S. Parthasarathy,
S. Bedros, Real-time adaptive resource management, The Computer Journal
(ISSN: 0018-9162) 34 (7) (2001) 99-101.

16] R. Rajkumar, C. Lee,J. Lehoczky, D. Siewiorek, Practical solutions forQoS-based
resource allocation, in: Proc. of IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

17] M. Shankar, M. de Miguel, J. Liu, An end-to-end QoS management architecture,
in: Proc. of the 5th IEEE Real-Time Technology and Applications Symposium,
RTAS 99, IEEE Computer Society, 1999.

18] W.Jeon, K. Nahrstedt, QoS-aware middleware support for collaborative multi­
media streaming and caching service, in: Microprocessors and Microsystems,
Elsevier Science, 2002, (special issue on) QoS-enabled multimedia provision­
ing over the Internet.

19] R. Davis, A. Welling, Dual priority scheduling, in: Proc. of 15th IEEE Real-Time
Systems Symposium, RTSS'95, San Juan, Puerto Rico, 1995.

[20] N. Audsley, A. Burns, R. Davis, A. Wellings, Integrating unbounded software
components into hard real-time systems, in: Imprecise and Approximate
Computation, in: The Kluwer International Series in Engineering and
Computer Science, vol. 318,1995, pp. 63-86.

[21] M. García-Valls, A. Alonso, J.A. de la Puente, Dynamic adaptation mechanisms
in multimedia embedded systems, in: Proc. of 7th International IEEE
Conference on Industrial Informatics, Cardiff, UK, 24-26 June 2009.

[22] M. Gabrani, C. Hetschel, L. Steffens, R. Bril, Dynamic behaviour of consumer
multimedia terminals: video processing aspects, in: International Conference
on Multimedia and Expo, ICME, Tokio, 2001.

[23] A. Alonso, E. Salazar, J. López, Resource management for enhancing
predictability in systems with limited processing capabilities, in: Proceedings
of the 15th IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA 2010, Bilbao, Spain, 13-16 September 2010.

Marisol Garcia Vails obtained her Ph.D. from Technical
University of Madrid in 2001, and her Computer Science
Engineering degree from Universitat Jaume I de Castellón
in 1996. Currently, she is professor at Universidad Carlos

I de Madrid in the Telematics Engineering Department.
Since 2002, she is the head of the Distributed Real-

I Time Systems Lab of the Telematics Engineering Depart­
ment. Her research is focused on the resource manage­
ment for multimedia systems and consumer electronics
and quality-of-service in middleware platforms for real­
time networked embedded systems.

She has been enrolled in a number of European projects (6th and 7th EU Frame­
work Programmes and ARTEMIS JU programme). She has been coordinator of dif­
ferent national research projects. Currently, she is the technical coordinator of the
¡LAND European project (an EU ARTEMIS Call 1 project) and the principal investi­
gator of the Spanish national project REM4VSS (TIN 2011-28339).

Alejandro Alonso received his Ph.D. in Computer Science.
He became associate professor of Computer Science in
1994 and professor in 2008. He belongs to the Depart-

I ment of Telematic Systems Engineering at the School of
I Telecommunication Engineering of the Universidad Po­

litécnica de Madrid. His current research interests are in
real-time and embedded systems, including design meth­
ods, software architectures, QpS and resource manage­
ment, and real-time operating systems and security.

He has participated in the EU funded projects, such
1 as IPTES, ARES, and COMITY, Modelware, HIJA, MORE and

GUARANTEE. He has also participated in several national government and industry
funded research projects.

Dr. Alonso has authored or co-authored more than 75 technical papers and
reports. He teaches courses on Operating Systems and Real-Time Systems. He
is active member of ACM, IFAC, IEEE and Ada-Europe. He was Secretary of
Ada-Europe.

Juan Antonio de la Puente is a full Professor in the
Department of Telematic Systems Engineering of Univer­
sidad Politécnica de Madrid. His research interests are in
embedded and real-time systems, including design meth­
ods, software architectures, and operating systems. He is
the leader of the STRAST research group.

He has participated in several European and National
projects in this area. Prof, de la Puente has contributed to
more than 80 technical papers and reports. He is a member
of IEEE, ACM, CEA-IFAC, and Ada-Spain, and he is Editor-in-
Chief of IFAC-PapersOnLine.

