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a b s t r a c t

The scheduling and execution of bag-of-tasks applications (BoTs) in Clouds is performed on sets of
virtualized Cloud resources that start being exhausted right after their allocation disregarding whether
tasks are being executed. In addition, BoTs may be executed in potentially heterogeneous sets of Cloud
resources, which may be either previously allocated for a different and fixed number of hours or
dynamically reallocated as needed. In this paper, a family of 14 scheduling heuristics for concurrently
executing BoTs in Cloud environments is proposed. The Cloud scheduling heuristics are adapted to the
resource allocation settings (e.g., 1-hour time slots) of Clouds by focusing on maximizing Cloud resource
utilization based on the remaining allocation times of Cloud resources. Cloud scheduling heuristics
supported by information about BoT tasks (e.g., task size) and/or Cloud resource performances are
proposed. Additionally, scheduling heuristics that require no information of either Cloud resources or
tasks are also proposed. The Cloud scheduling heuristics support the dynamic inclusion of new Cloud
resources while scheduling and executing a given BoT without rescheduling. Furthermore, an elastic
Cloud resource allocation mechanism that autonomously and dynamically reallocates Cloud resources
on demand to BoT executions is proposed. Moreover, an agent-based Cloud BoT scheduling approach
that supports concurrent and parallel scheduling and execution of BoTs, and concurrent and parallel
dynamic selection and composition of Cloud resources (by making use of the well-known contract net
protocol) from multiple and distributed Cloud providers is designed and implemented. Empirical results
show that BoTs can be (i) efficiently executed by attaining similar (in some cases shorter) makespans
to commonly used benchmark heuristics (e.g., Max–min), (ii) effectively executed by achieving a 100%
success execution rate evenwith high BoT execution request rates and executing BoTs in a concurrent and
parallel manner, and that (iii) BoTs are economically executed by elastically reallocating Cloud resources
on demand.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bag-of-tasks applications (BoTs) are sets of numerous uncon-
nected (i.e., without precedence constraints) tasks, which can be
highly parallelized given their unconnected nature. Scheduling and
executing BoTs in Cloud environments is performed on sets of vir-
tualized Cloud resources, which are allocated in terms of fixed
and predefined allocation slots (e.g., 1-hour time slots in Amazon
EC2 [1]) that start being exhausted right after their allocation dis-
regarding whether tasks are being executed. In addition, BoTs may
be executed in potentially heterogeneous sets of Cloud resources,
which may be either previously allocated for a different and fixed
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number of hours or dynamically reallocated as needed (taking ad-
vantage of the elasticity of Cloud environments).

The scheduling of independent tasks in a set of heterogeneous
computing resources has been shown to be an NP-complete
problem [2]. For this reason, many heuristics have been proposed,
from low level execution of tasks in multiple processors [3,4] to
high level execution of tasks in Grid and Cloud environments [5–9].
Scheduling heuristics can be classified into: immediate and batch
mode scheduling heuristics [10]. Immediate mode scheduling
heuristics map BoT tasks to Cloud resources as soon as they
arrive at the scheduler, e.g., the first-come–first-served scheduling
heuristic. Batchmode scheduling heuristics pre-schedule BoT tasks
on a previously defined set of Cloud resources before starting the
execution, e.g., the Min–min and Max–min scheduling heuristics
(first proposed in [4] and implemented in Grid-like settings
in [11]). However, the majority of the scheduling heuristics (both
immediate and batch modes) presumes that BoT holders are only
charged for task execution time or not charged at all, when in
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Cloud environments, consumers are charged for complete (1-hour)
allocation slots.

In this paper, a family of 14 Cloud scheduling heuristics
(including both immediate and batch mode scheduling heuristics)
based on the remaining allocation times of Cloud resources is
proposed. The scheduling heuristics consist of two phases: task
ordering, where tasks are ordered prior to execution (when
possible), and task mapping, where tasks are mapped to available
(unoccupied) Cloud resources. The Cloud scheduling heuristics aim
to maximize resource utilization. Scheduling heuristics supported
by available information about BoT tasks (e.g., task size) and/or
Cloud resource performances are proposed. However, scheduling
heuristics that require no information of either Cloud resources or
tasks are also proposed.

Also, in this paper, an elastic Cloud resource allocation
mechanism that reallocates Cloud resources as needed by the
execution of BoTs is proposed. The elastic resource allocation
mechanism consists of monitoring the remaining allocation times
of Cloud resources as well as their statuses (e.g., busy executing
tasks), and determining whether Cloud resources should be
reallocated. In addition, the elastic Cloud resource allocation
mechanism can dynamically reallocate Cloud resources without
requiring information about task completion times or Cloud
resources’ computing capacities.

Both the Cloud scheduling heuristics and the elastic Cloud re-
source allocation mechanism were integrated into an agent-based
approach for scheduling and executing BoTs in multiple Cloud
providers in a concurrent andparallelmanner. Agents are endowed
with distributed and cooperative problem solving techniques (in-
cluding the well-known contract net protocol (CNP) [12]) that al-
low automated and dynamic selection and composition of Cloud
resources from a pool of Cloud providers to execute BoTs. In ad-
dition, the agent-based problem solving techniques support dis-
tributed, concurrent, and parallel scheduling and execution of BoTs
in heterogeneous sets of dynamically provisioned Cloud resources
allocated in terms of 1-hour time slots.

The significance of this work is that, to the best of the authors’
knowledge, it is the earliestwork in adopting an agent-based Cloud
BoT concurrent scheduling and execution approach endowed with
a family of both immediate and batch mode scheduling heuristics
adapted to the resource allocation settings (e.g., 1-hour time slots
in Amazon EC2 [1]) of Clouds. In addition, it is the earliest work
in adopting an elastic Cloud resource allocation mechanism that
autonomously and dynamically reallocates Cloud resources to BoT
executions. Moreover, the family of Cloud scheduling heuristics
supports the dynamic inclusion of new Cloud resources while
scheduling and executing BoTs. The contributions of this work are
as follows:

(1) Designing and implementing an agent-based testbed for
scheduling and execution of BoTs in Cloud environments in a
concurrent and parallel manner (Section 2).

(2) Engineering and integrating an elastic Cloud resource alloca-
tionmechanism into the agent-based CloudBoT scheduling ap-
proach (Section 3).

(3) Devising and implementing a family of 14 Cloud scheduling
heuristics adapted to the resource allocation settings of Clouds
(Section 4).

(4) Providing experimental evidence to demonstrate (i) the ef-
ficiency of the Cloud scheduling heuristics (Section 5.1), (ii)
the effectiveness of the agent-based Cloud BoT concurrent
scheduling and execution approach (Section 5.2), and (iii) the
efficiency of the elastic Cloud resource allocation mechanism
(Section 5.3).

This paper is structured as follows. Section 2 describes the
agent-based Cloud architecture for BoT scheduling and execution.
Section 3 presents the elastic Cloud resource allocation mecha-
nism. Section 4 includes the definition of the family of 14 Cloud
scheduling heuristics. Section 5 presents the evaluation and simu-
lation results of both the family of Cloud scheduling heuristics and
of the agent-based Cloud BoT concurrent scheduling and execution
approach, as well as the evaluation and simulation results of the
elastic Cloud resource allocation mechanism. Section 6 includes a
comparisonwith relatedwork. Finally, Section 7 presents conclud-
ing remarks and future research directions.

2. Agent-based Cloud architecture for BoT scheduling and
execution

Agents representing consumer, brokers, Cloud providers, and
Cloud resources interact among themselves to dynamically select
and compose the best (cheapest) available Cloud resources
from a pool of heterogeneous Cloud providers to execute and
schedule BoTs in a distributed manner. The distributed scheduling
and execution of BoTs is supported by an agent-based Cloud
architecture (Section 2.1) as well as by a set of agent interaction
protocols (Section 2.2) including the well-known CNP.

2.1. Agent-based Cloud architecture

The agent-based Cloud architecture for BoT scheduling (Fig. 1)
is composed of: a service ontology, web services, resource agents,
service provider agents, broker agents, consumer agents, and a
Cloud directory.

(1) The service ontology defines both functional andnonfunctional
Cloud resource capabilities. A functional capability defines the
functions performed by Cloud resources, e.g., rendering ser-
vice. A nonfunctional capability defines how Cloud resources
execute their functions, e.g., computing capacity.

(2) Web services are interfaces that provide remote access to
Cloud resources. Web services are described by the descrip-
tions of the Cloud resources to which they provide access.

(3) Resource agents (RAs) wrap and orchestrate web services. RAs
are enlisted in service provider agents.

(4) Service provider agents (SPAs)manage a set of RAs and offer for
lease Cloud resources to broker agents. In addition, SPAs map
service capabilities enlisted in the service ontology with their
RAs’ capabilities by performing a one-to-one matching. More-
over, SPAs handle dynamic and elastic Cloud resource reallo-
cation to execute BoTs (see Section 3 for details) by interacting
with broker agents.

(5) Broker agents (BAs) offer for lease BoT execution and schedul-
ing services to consumer agents. BAs compose Cloud resources
frommultiple SPAs, and then schedule for execution consumer
agents’ BoTs in their corresponding previously composed sets
of Cloud resources. In addition, BAs handle dynamic and elastic
Cloud resource reallocation to execute BoTs (see Section 3 for
details) by interacting with SPAs.

(6) Consumer agents (CAs) submit BoTs to BAs and map BoT tasks
to available Cloud resource types by performing a one-to-one
matching between tasks’ requirements and available Cloud re-
source types.

(7) The Cloud directory is a listing of BAs’ and SPAs’ addresses
as well as their functional and nonfunctional capabilities. BAs’
capabilities are denoted as broker, and SPAs’ capabilities are
described by the functional and nonfunctional capabilities of
their enrolled RAs. The Cloud directory is provided by a system
agent, to which BAs and SPAs register, and CAs and BAs consult
to look for BAs and SPAs, respectively.
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Fig. 1. Agent-based Cloud architecture for BoT scheduling.

2.2. Agent-based Cloud BoT scheduling and execution

Interaction among CAs, BAs, and SPAs is based on the CNP.
The CNP has two roles: initiator (or manager) and participant (or
contractor). An agent (e.g., a CA) playing the initiator role of the CNP
sends a call-for-proposalsmessage containing a task to be executed
(e.g., a BoT) to n participant agents (e.g., BAs). Then, the participant
agents reply with either a refuse message to discard the call-for-
proposals or a proposal message containing a bid for executing the
task (e.g., overall cost for executing a BoT) to participate in the bid
process. From the m (m < n) participant agents that replied to
the call-for-proposals message, the initiator agent selects the best
(e.g., cheapest) proposal and sends an accept-proposal message to
the winning participant agent, andm− 1 reject-proposalmessages
to the remaining participant agents. Subsequently, the winning
participant agent executes the task and sends the output to the
initiator agent.

A BoT scheduling scenario is as follows (see Fig. 2): firstly, a
CA submits a BoT to BAs by adopting the initiator role of the CNP
(the CA’s call-for-proposalsmessage include the BoT to be executed)
with BAs as participants (BAs’ proposals include the overall cost
for executing the BoT). Then, the CA selects the cheapest BA to
execute the BoT. Afterward, the winning BA composes a set of
Cloud resources frommultiple SPAs by adopting parallel CNPs (one
for each Cloud resource to be allocated) with SPAs as participants.
The BA’s call-for-proposalsmessage includes a Cloud resource type
and the number of hours to be allocated, and the SPAs’ proposals
contain the allocation cost of a given Cloud resource type, for
a given number of hours. The resultant set of winning SPAs
allocate the Cloud resources via their RAs by sending allocation
request messages. Once all the Cloud resources are allocated, the
BA schedules (by using one of the 14 scheduling heuristics, see
Section 4 for details) and executes the BoT in the previously
composed set of Cloud resources by delegating the BoT tasks to
SPAs, which in turn, delegate the tasks to their RAs. Then, the RAs
execute the tasks and return the outputs to the SPAs. SPAs forward
the BoT tasks’ outputs to the BA, which receives and collects all the
tasks’ outputs for later delivery to the CA.

3. Individualized elastic Cloud resource allocation mechanism

The individualized elastic Cloud resource allocationmechanism
(I-ElasticAM) is a distributed and cooperative problem solving
technique to reallocate Cloud resources on demand for executing
BoTs based on dynamic information about Cloud resources’
statuses (e.g., idle or busy executing tasks).

There are two main agent behaviors (i.e., agent functionalities
implemented as threads) in I-ElasticAM: I-ElasticAM_BA (see
Fig. 3) and I-ElasticAM_SPA (see Fig. 4), which are built into BAs
and SPAs, respectively.

(1) Behavior I-ElasticAM_BA (Fig. 3) is added to BAs for each
Cloud resource initially allocated for 1 h to execute a given
BoT. In doing so, an individualized elastic allocation mechanism
is assigned to each Cloud resource, which may have different
allocation times. Behavior I-ElasticAM_BA is implemented as a
cyclic behavior, i.e., an agent behavior periodically activated by
a time-driven event. The time-driven event activation (see the
5th input parameter in Fig. 3) of I-ElasticAM_BA is defined by the
initial Cloud resource allocation time, the length of the allocation
time slots (e.g., 1 h), and the reallocation threshold (i.e., amount
of time required to reallocate Cloud resources). Thus, a behavior
I-ElasticAM_BA is activated (by a time-driven event activation)
just before the allocation time of its corresponding Cloud resource
expires. Then, the BA verifies whether the Cloud resource is idle
or busy executing a previously assigned task (see line 2 of Fig. 3).
If the Cloud resource is idle, i.e., it is not currently executing any
task, the behavior is terminated (see line 3 of Fig. 3), under the
assumption that idle Cloud resources are no longer receiving tasks
for execution and therefore no reallocation is needed anymore.
On the other hand, if the Cloud resource is busy executing tasks
(see line 4 of Fig. 3), the BA (i) requests the reallocation of
the Cloud resource to the corresponding SPA, (ii) waits for an
acknowledgment message, (iii) updates the corresponding contract,
and (iv) establishes a new time-driven event activation for the
behavior I-ElasticAM_BA (see lines 5–8 of Fig. 3).

It should be noted that behavior I-ElasticAM_BA was designed
to be periodically activated based on the allocation time of
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Fig. 2. Agent interaction protocols for Cloud BoT scheduling and execution.

Fig. 3. Agent behavior I-ElasticAM_BA.

Cloud resources, so BAs can execute BoTs (supported by elastic
resource allocation) with Cloud scheduling heuristics that are
either endowed with or not endowed with information about task
completion times and/or Cloud resources’ computing capacities, as
empirically demonstrated in Section 5.3.

(2) Behavior I-ElasticAM_SPA (Fig. 4) is added to each SPA
to handle reallocation requests from BAs, regarding currently
allocated Cloud resources. Behavior I-ElasticAM_SPA is activated
by the reception of reallocation requests from BAs (see line 1
of Fig. 4). Then, the SPA (i) updates the allocation record of the
corresponding Cloud resource, (ii) charges the BA based on the
hourly cost rate assigned to the Cloud resource, (iii) updates

Fig. 4. Agent behavior I-ElasticAM_SPA.

the corresponding contract, and (iv) sends an acknowledgment
message to the BA (see lines 2–5 of Fig. 4).

4. Cloud scheduling heuristics

The Cloud scheduling heuristics are focused on maximizing
Cloud resource utilization based on the remaining allocation times
of Cloud resources by taking advantage of the Cloud resource
allocation settings (e.g., 1-hour time allocation slots). The Cloud
scheduling heuristics are supported by information about BoT
tasks (e.g., task size) and/or Cloud resource performances.

The Cloud scheduling heuristics consist of two phases: task
ordering (Table 1) and task mapping (Table 2). The ordering types
of BoT tasks are:

(1) Unordered (U). Tasks are sent for execution in an unordered
manner whenever no information about the tasks is available
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Table 1
Task ordering types.

ID Task ordering type

U Unordered tasks
LtoS Ordered by size from large to small
StoL Ordered by size from small to large

Table 2
Task mapping policies.

ID Mapping policy

R Random
MaxET Maximum expected remaining allocation time
MaxCT Maximum current remaining allocation time
MinET Minimum expected remaining allocation time
MinCT Minimum current remaining allocation time

either because not all the tasks are available at the moment
of starting the execution or no information is disclosed by
BoT holders. By executing tasks in an unordered manner,
BoTs can be executed without information about expected
task execution times. Cloud scheduling heuristics using the U
ordering type are immediate mode scheduling heuristics.

(2) Tasks ordered by size from large to small (LtoS). When
information about tasks (e.g., number of instructions, which
can be used to compute the expected execution time of
tasks in a heterogeneous pool of Cloud resources) is available,
tasks are sorted from large to small tasks, with larger tasks
being executed first. By executing larger tasks first, a higher
parallelization of execution of tasksmay take place, sincemany
small tasks can be parallely executed at the same time that
large tasks are being executed. Cloud scheduling heuristics
using the LtoS ordering type are batch mode scheduling
heuristics.

(3) Tasks ordered by size from small to large (StoL). Tasks are ordered
from small to large, with smaller tasks being executed first. By
executing smaller tasks first, a faster response rate from Cloud
providers may be obtained. Cloud scheduling heuristics using
the StoL ordering type are batch mode scheduling heuristics.

The taskmapping policies are based on the remaining allocation
time of Cloud resources. The task mapping policies in Cloud
resources are:
(1) Random mapping (R). Tasks are executed in randomly selected

and available (unoccupied) Cloud resources whenever no
information about Cloud resource performances is available
or Cloud resources have high variations on performance. By
executing tasks in randomly selected Cloud resources, BoTs
can be executed without information about Cloud resource
performances.

(2) Maximum expected remaining allocation timemapping (MaxET).
Tasks are executed in Cloud resources with the maximum
expected remaining allocation time after assigning a given
task. The expected completion time of tasks in a given Cloud
resource is taken into account whenever information of both
tasks and Cloud resource performances is available. TheMaxET
mapping policy was designed to make use of Cloud resources
that have been allocated for more hours under the assumption
that such resources are capable of executing more and longer
tasks.

(3) Maximum current remaining allocation time mapping (MaxCT).
Tasks are executed in Cloud resources with the maximum
current remaining allocation time before assigning a given
task, i.e., the expected completion time of tasks is not taken
into account either because no task information or no Cloud
resource performances are available. Similar to MaxET, MaxCT
favors the use of Cloud resources that have been allocated for
more hours. However, MaxCT does not require information
about Cloud resource performances.

Fig. 5. General heuristic algorithm for agent-based Cloud scheduling of BoTs.

(4) Minimum expected remaining allocation time mapping (MinET).
Tasks are executed in Cloud resources with the minimum
expected remaining allocation time after assigning a given
task, i.e., the expected completion time of tasks in a given
Cloud resource is taken into account whenever information
of both tasks and Cloud resource performances is available.
MinET aims tomaximize the utilization of Cloud resources that
are about to expire.

(5) Minimum current remaining allocation time mapping (MinCT).
Tasks are executed in Cloud resources with the minimum
current remaining allocation time before assigning a given
task, i.e., the expected completion time of tasks is not taken
into account either because no task information or no Cloud
resource performances are available. Similar to MinET, MinCT
aims to maximize the utilization of Cloud resources that are
about to expire. However, MinCT does not require information
about Cloud resource performances because tasks are allocated
to Cloud resources with the minimum current remaining
allocation time regardless of the task completion times.

From the combination of the task ordering types (Table 1) and
task mapping policies (Table 2), a total of 14 scheduling heuris-
tics are obtained: {U, LtoS, StoL} × {R,MaxET,MaxCT,MinET,
MinCT}/(U, R). The (U, R) heuristic represents a completely ran-
dom immediate mode scheduling heuristic that follows a first-
come–first-served allocation policy. Therefore, the (U, R) heuristic
is used for comparison and detailed evaluation of the agent-based
scheduling (see Section 5.1, incise b).

BAs make use of the Cloud scheduling heuristics to execute
BoTs. The general algorithm used by BAs for the two-phase Cloud
scheduling heuristics is shown in Fig. 5. The Cloud scheduling
algorithm is as follows. The scheduling algorithm receives as
input four parameters: a BoT, a set of previously composed Cloud
resources where the BoT is going to be executed, a type of task
ordering (either U, LtoS or StoL), and a type of mapping policy
(either R, MaxET, MaxCT, MinET or MinCT). Then, a BA sorts a set
of BoT tasks based on the selected task ordering type (line 1 in
Fig. 5) and for all the unexecuted BoT tasks (line 2 in Fig. 5), the
BA maps each task onto the best unoccupied Cloud resource based
on the selected task mapping policy (line 3 in Fig. 5). Afterward,
the BA sends for execution the recently mapped tasks to the
corresponding SPAs (line 4 in Fig. 5), i.e., SPAs where the selected
Cloud resources are located. Subsequently, when all the Cloud
resources are busy executing tasks (line 5 in Fig. 5), the BA waits
for the reception of tasks’ outputs indicating that a Cloud resource
is available (line 6 in Fig. 5). Right after, the BA proceeds tomap the
next unexecuted tasks onto the recently available Cloud resources
and so on until all the BoT tasks are completely executed giving as
a result a completely executed BoT.

Since the 14 Cloud scheduling heuristics are based on selecting
either the largest or smallest tasks or the maximum or minimum
remaining allocation time of Cloud resources, the time complexity
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of the scheduling heuristics is mainly based on the complexity
of a sorting algorithm to select either the first or last element
of an array. For programming the 14 Cloud scheduling heuristics,
the mergesort algorithm was used, which has a time complexity
of O(x ∗ log(x)) [13], where x stands for number of array
elements. Therefore, the time complexity of U-based ({U} ×

{MaxET,MaxCT,MinET,MinCT}) Cloud scheduling heuristics is
bounded by O(m ∗ n ∗ log(n)), where m stands for number
of tasks contained in a given BoT and n stands for number of
Cloud resources where a given task can be assigned. The second
factor (n ∗ log(n)) is included because only the set of Cloud
resources is sorted, and the first factor (m) because for every
task to be mapped, the current best (e.g., based on MaxET) Cloud
resource is selected. The time complexity of R-based ({LtoS, StoL}×
{R}) Cloud scheduling heuristics is bounded by O(m ∗ log(m)),
because only BoT tasks are sorted, and the Cloud resources are
arbitrarily selected among the unoccupied Cloud resources. Finally,
the time complexity of the remaining Cloud scheduling heuristics
({LtoS, StoL}×{MaxET,MaxCT,MinET,MinCT}) is O(m∗ log(m)+
m ∗ n ∗ log(n)) because BoT tasks are sorted only once, and the
current best Cloud resource is selected for assigning each task.

5. Evaluation and results

Three series of experiments were carried out for evaluating:
(i) the Cloud scheduling heuristics (Section 5.1), (ii) the agent-
based concurrent BoT scheduling and execution (Section 5.2),
and (iii) the agent-based Cloud BoT concurrent scheduling
approach endowed with I-ElasticAM (Section 5.3), respectively.
The experiments were conducted using the agent-based testbed
(implemented using the java agent development framework
(JADE) [14]) defined in Section 2.

The experiments were carried out on a computer with the
following specifications: Intel Core 2 Duo E8500 3.16 GHz, 4 GB
RAM, with a Windows Vista Enterprise (32 bits) operating system,
service pack 2.

5.1. Evaluating the Cloud scheduling heuristics

(a) Objective. A series of experiments was designed to evaluate
the efficiency of the 14 Cloud scheduling heuristics.

(b) Benchmark scheduling heuristics. A total of five commonly
used scheduling heuristics [15,8,16,17] were used for benchmark-
ing the proposed scheduling heuristics:

• First-come–first-served (FCFS) consisting of assigning BoT tasks
(in an unordered manner) as soon as they are ready for
execution to any available Cloud resource.

• Greedy (response) scheduling (Greedy-R) consisting of assigning
BoT tasks with the quickest execution time first to the
most powerful available Cloud resource to maximize system
response time.

• Greedy (parallelization) scheduling (Greedy-P) consisting of
assigning BoT tasks with the quickest execution time first to
the less powerful available Cloud resource to maximize task
parallelization as well as system response time.

• Min–min heuristic (Min–min) consisting of assigning BoT tasks
to Cloud resources with the minimum earliest completion time
first.

• Max–min heuristic (Max–min) consisting of assigning BoT tasks
to Cloud resources with themaximum earliest completion time
first.

The FCFS is an immediate mode scheduling heuristic that re-
quires no information about tasks or Cloud resources. Conversely,
Greedy-R, Greedy-P, Min–min, and Max–min are batch mode
scheduling heuristics that require information about tasks and
Cloud resources’ computing capacities.

Section 5.1 includes a quantitative comparison between the
benchmark scheduling heuristics and the proposed heuristics, see
Section 6 for a qualitative comparison.

(c) Experimental settings. The testbed has three different sets
of input parameters: (1) Cloud environment’s input data (Table 3)
consisting of nonfunctional types of Cloud resources (e.g., cluster)
described by their computing capacities and hourly cost rates. (2)
BoT-related input data (Table 4) consisting of number of tasks
per BoT, number of instructions per task, probability distributions
used for creating randomly generated BoTs, and a functional
Cloud resource type, i.e., type of requirement that Cloud resources
fulfill, e.g., encrypting/decrypting data. (3) Agent-based testbed
parameters (Table 5) consisting of number of agents involved in
the simulation grouped by agent type, number of agents involved
per CNP execution, Cloud scheduling heuristics, a set of Cloud
resources to be composed by BAs where BoTs were executed, and
a simulation time rate.

Nonfunctional Cloud resource types (Table 3) were based on
Amazon EC2 instance types [1] to have a heterogeneous pool
of Cloud resources that can highlight the differences among the
scheduling heuristics. In addition, only 7 out of 11 currently
available Amazon EC2 instance types were considered because the
remaining instances were considerably much more powerful than
the selected instances types, e.g., clusters, and thus some of the
scheduling heuristicsmay focus on such Cloud resources flattening
the performance differences among them.

The number of tasks per BoT (Table 4) was set from 100 to
300 in 100-task increments to evaluate the performance with
respect to the BoT size. The number of instructions per task was
randomly selected from 400 to 4000 million of instructions in
400 million increments to create heterogeneous BoTs and provide
awide variety of scenarios to the scheduling heuristics. In addition,
BoTswere randomly generated following four different probability
distributions. Nonetheless, for the sake of fairness, the same
randomly generated BoTs (of a given probability distribution and
BoT size) were assigned to CAs, e.g., whenever agents executed a
BoT of 200 tasks generated using a normal distribution, the BoT
was the same.

BoTs were composed of tasks that required the same functional
Cloud resource type to be executed: s1, e.g., an encrypting service.
In doing so, the evaluation was focused on scheduling rather
than focusing on the composition and selection of heterogeneous
functional Cloud resources.

The number of agents involved in the experiments was fixed
to 5 CAs, 5 BAs, and 5 SPAs to focus the evaluation on scheduling
rather than on interlayer agent interaction. RAs were fixed to
2500 to simulate the unlimited resources of Clouds. In addition,
the nonfunctional Cloud resource types of RAs were randomly
assigned from the available types (see Table 3) and their functional
Cloud resource type was set to s1. Moreover, RAs were randomly
assigned to SPAs to create a heterogeneous and asymmetrical
Cloud environment.

The number of agents involved per CNP was limited to 1
manager (this role is played by either CAs or BAs) and 3 contractors
(these roles are played by either BAs or SPAs) following the price
studies presented in [18] to have a sufficient price sample and
avoid unnecessary message exchanges. In addition, the content of
agents’ proposals for executing either BoTs (in the case of BAs) or
allocating a given Cloud resource (in the case of SPAs)was the same
in all cases, and thus agents arbitrarily selected any of the agents
that replied to a given call for proposals. In doing so, the evaluation
was focused on scheduling rather than on service selection.

BAs allocated a highly heterogeneous set of Cloud resources for
10 h to execute the BoTs. In doing so, BAs had enough time to
execute the BoTs, and the characteristics of the Cloud scheduling
heuristics were highlighted due to the variety of computing
capacities of the Cloud resources.
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Table 3
Cloud environment’s input data for Experiments 5.1–5.3.

Nonfunctional Cloud resource types Computing capacitya Hourly cost rateb

Standard–small 1.00 $0.085
Standard–large 4.00 $0.34
Standard–extra large 8.00 $0.68
Micro 2.00 $0.02
High-memory–extra large 6.50 $0.50
High-memory–double extra large 13.00 $1.00
High-CPU–medium 5.00 $0.17

a Computing capacities were expressed in EC2 compute units (ECU) [1], which for experimental purposes were defined as 1 EC2 compute unit = 1,000,000 million of
instructions per second.

b Hourly cost rates were expressed in USD and were based on the EC2 pricing model [1].

Table 4
BoT-related input data source for Experiment 5.1.

Input data Possible values

BoT size (No. of tasks per BoT) {100, 200, 300} tasks
Task size (No. of instructions per task) {400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000} million of instructions

Probability distributions used for creating randomly generated
BoTs

Uniform distribution.
An equitable
number of tasks of
each task size
category were
contained in BoTs

Normal distribution.
Many middle size
tasks, and fewer big
and small tasks were
contained in BoTs

Left half of a normal
distribution. Many
big tasks and fewer
small tasks were
contained in BoTs

Right half of a normal
distribution. Many
small tasks and fewer
big tasks were
contained in BoTs

Functional Cloud resource type Homogeneous: {s1}

Table 5
Agent-based testbed parameters for Experiment 5.1.

Input data Possible values

Agent types CAs BAs SPAs RAs
No. of agents 5 5 5 2500
Agents involved per CNP 1 manager and 3 contractors

Cloud scheduling heuristics {(U, MaxET), (U, MaxCT), (U, MinET), (U, MinCT), (LtoS, R) (LtoS, MaxET), (LtoS, MaxCT), (LtoS, MinET),
(LtoS, MinCT), (StoL, R), (StoL, MaxET), (StoL, MaxCT), (StoL, MinET), (StoL, MinCT)} ∪ {FCFS, Greedy-R,
Greedy-P, Min–min, Max–min}

Cloud resources to be composed by BAs {1 standard–small, 1 standard–large, 1 standard–extra large, 1 micro, 1 high-memory–extra large, 1
high-memory–double extra large, 1 high-CPU–medium} all of them allocated for 10 h

Simulation time rate 60 s in simulation is equal to 1 h

Table 6
Performance measure for Experiment 5.1.

Performance measure Description

Av. BoT makespan (grouped by BoT size
category and scheduling heuristic)

Σ (M[BoTsize,Heuristic])/N[BoTsize,Heuristic]

Performance measure’s variables Description

M[BoTsize,Heuristic] Makespan of a BoT of size BoTsize executed using a given scheduling Heuristic
N[BoTsize,Heuristic] No. of BoTs of size BoTsize executed using a scheduling Heuristic

Performance measure’s constants Possible values

BoT size category {100, 200, 300} tasks
Heuristics {(U, MaxET), (U, MaxCT), (U, MinET), (U, MinCT), (LtoS, R), (LtoS, MaxET), (LtoS, MaxCT), (LtoS, MinET), (LtoS,

MinCT), (StoL, R), (StoL, MaxET), (StoL, MaxCT), (StoL, MinET), (StoL, MinCT), FCFS, Greedy-R, Greedy-P, Min–min,
Max–min}

CAs submittedBoTs to BAs such that the BoTswere not executed
simultaneously to avoid any possible noise (e.g., additional time)
resulted from concurrent scheduling of BoTs (see Section 5.2
for an evaluation of the agent-based concurrent handling of BoT
scheduling and execution). The simulation time rate was set to 1 h
for every 60 s of simulation time for its convenience in conducting
the experiments.

The 14 Cloud scheduling heuristics (proposed in Section 4)
together with the benchmark scheduling heuristics (FCFS, Greedy-
R, Greedy-P, Min–min, and Max–min) were used for executing the
randomly generated BoTs (Table 4) using the randomly generated
Cloud environments (Tables 3 and 5) for a total of 1140 scheduled
and executed BoTs.

(d) Performance measure. The performance measure is average
BoT makespan (amount of time required to execute a BoT). See
Table 6 for details.

(e) Results. Experimental results are shown in Figs. 6–9. From
these results, five observations were drawn.

Observation 1. In general, BoTs containing many small tasks
and few big tasks scheduled using the MaxET task mapping policy
({U, LtoS, StoL}×{MaxET}) had the shortestmakespans regardless
of the task ordering type.

Analysis. As shown in Fig. 6 in the overall series, BAs schedul-
ing right-half-normally distributed BoTs using the MaxET task
mapping policy attained the shortest makespans. This is be-
cause the MaxET mapping policy was designed to execute
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Fig. 6. Average makespan of right-half-normally distributed BoTs for all the heuristics.

Fig. 7. Average makespan of uniformly distributed BoTs for all the heuristics.

tasks in Cloud resources with the maximum expected remain-
ing allocation time after completing tasks, and since the Cloud
resourceswere all allocated by the samenumber of hours, themax-
imum expected remaining allocation time implied that tasks were
executed in the most powerful Cloud resources that provided the
earliest task execution times. In addition, given that most of the
tasks were small, the load unbalance produced by the few big tasks
was quickly balanced by the remaining unexecuted small tasks.

MaxET-based scheduling heuristics not only had the shortest
makespan in some scenarios (e.g., when scheduling right-half-
normally distributed BoTs) by naturally balancing the load
among Cloud resources but also they can be used with and
without information about tasks and Cloud resource computing
capacities in both immediate and batch scheduling modes and yet
outperforming Greedy-R, Greedy-P, Min–min, and Max–min.

Observation 2. In general, BoTs containing uniformly distributed
heterogeneous tasks (regarding size) scheduled using the LtoS task

ordering type ({LtoS} × {R,MaxET,MaxCT,MinET,MinCT}) had
the shortest makespans comparable to Min–min and Max–min
regardless of the task mapping policy.

Analysis. As can be seen in Fig. 7 in the overall series, BAs
scheduling uniformly distributed BoTs using the LtoS task ordering
type attained among the shortest makespans. This is because
the LtoS task ordering type was designed to schedule larger
tasks first. In doing so, the big tasks were assigned to Cloud
resources at the beginning of the BoT executions, and when the
remaining unexecuted tasks in decreasing size were assigned, the
load of Cloud resources was progressively balanced, achieving a
performance better thanMin–min and similar to Max–min (which
was the best).

Scheduling uniformly (and right-half-normally) distributed
BoTs using some of the heuristics supported by the remaining
allocation time of Cloud resources can attain better or at least
similar performances than commonly used benchmark scheduling
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Fig. 8. Average makespan of normally distributed BoTs for all the heuristics.

Fig. 9. Average makespan of left-half-normally distributed BoTs for all the heuristics.

heuristics: FCFS, Greedy-R, Greedy-P, Min–min, and Max–min, as
suggested byObservations 1 and 2 of Experiment 5.1, and as shown
in Figs. 6 and 7.

Observation 3. In general, the immediate mode scheduling
heuristics ({U} × {MaxET,MaxCT,MinET,MinCT}) supported by
the remaining allocation time of Cloud resources attained similar
performances (in terms of makespan) among them and with
respect to the FCFS’ performance, regardless of the type of BoT
scheduled (either uniformly, normally, right-half-normally, or left-
half-normally distributed). In addition, the performance achieved
by the immediate mode scheduling heuristics was similar (e.g., no
more than a 10% difference in makespan) to the performance
achieved by the batch mode scheduling heuristics.

Analysis. As shown in Figs. 6–9, the makespan attained by all
the immediate mode scheduling heuristics was similar (except
for some immediate mode scheduling heuristics when scheduling
right-half-normally distributed BoTs, e.g., (U, MaxET) in Fig. 6,

which considerably outperformed the other immediate mode
scheduling heuristics). This is because the immediate mode
scheduling heuristics’ task mapping policies (MaxET, MaxCT,
MinET, and MinCT) only take into consideration available Cloud
resources for assigning a given task, i.e., tasks are mapped
to Cloud resources that are available at the moment that the
tasks are about to be sent for execution. However, usually only
one Cloud resource was available at a time, given that Cloud
resources had heterogeneous computing capacities and tasks with
heterogeneous sizes were executed in an unordered manner.
This caused completely different task completion times, and thus
completely different availability times of the Cloud resources.
Then, after the first round of task allocations (when all the Cloud
resources were available), all the immediate mode scheduling
heuristics scheduled tasks similarly, including FCFS.

As shown in Figs. 6–9, the performance of the ({U} ×

{MaxET,MaxCT,MinET,MinCT}) scheduling heuristics was close
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to the performance achieved by the batch mode scheduling
heuristics, for instance, the overall makespan (i.e., the sum of all
the BoTs’ makespans) achieved by (U, MaxET) is only 6.33% higher
than the overall makespan achieved by Max–min.

Despite the fact that in the immediate mode scheduling
heuristics, only in the first round of task allocations, the task
mapping policies are fully utilized, scheduling BoTs using the
immediate mode scheduling heuristics can attain makespans
close (only 6.33% higher) to those achieved by the batch mode
scheduling heuristics. This is because the Cloud resources were
continuously executing tasks, given that remaining unexecuted
BoT tasks were promptly assigned (by the agents) to the Cloud
resources as soon as the outputs of previously assigned tasks were
received.

Observation 4. Due to the NP-complete nature of the scheduling
problem [2], there was not dominant scheduling heuristics for
all the BoT types (uniformly, normally, right-half-normally, and
left-half-normally distributed BoTs), neither the proposed Cloud
scheduling heuristics based on the remaining allocation time of
Cloud resources nor the benchmark scheduling heuristics.

Analysis. As shown in Figs. 6–9, no heuristic dominated
the others when scheduling randomly generated BoTs based
on different probability distributions. This is because randomly
generated BoTs using different probability distributions for
determining the size of their tasks may generate advantageous
scenarios for some heuristics (see the (StoL, MaxET) and Min–min
heuristics in Figs. 6 and 7, respectively) and disadvantageous
scenarios for other heuristics (see the Min–min and (StoL, MaxET)
heuristics in Figs. 6 and 7, respectively). In addition, in some
cases, the performance of the heuristics varied with respect to the
other heuristics when executing BoTs of different sizes (see Fig. 6,
100-task and 200-task BoTs series for the StoL-based heuristics).
This is because the performance of a given scheduling heuristic
also depended on the particular characteristics of the randomly
generated BoTs.

For certain cases, e.g., when scheduling right-half-normally
distributed BoTs containing many small tasks and few big
tasks (see Fig. 6), some of the proposed scheduling heuristics
outperformed the benchmark scheduling heuristics. However, for
certain cases (see Fig. 9) some benchmark scheduling heuristics,
namely, Max–min and Min–min, scheduled left-half-normally
distributed BoTs containing many big tasks and few small tasks
outperforming the proposed scheduling heuristics. This is because
the proposed scheduling heuristics could not balance the high
load unbalanced caused by the big tasks (for left-half-normally
distributedBoTs)with the taskmappingpolicies (R,MaxET,MaxCT,
MinET, MinCT) that decide what Cloud resource is selected to
assign a task based on the available Cloud resources at a given
moment (see line 6 of Fig. 5). In contrast, Max–min and Min–min
computed the completion time for all the BoT tasks in all the Cloud
resources and selected the tasks with themaximum andminimum
completion time, respectively, before starting the BoT execution,
preventingwork load unbalances and attaining shortermakespans
than the proposed scheduling heuristics for some cases (see Fig. 9).

Then, the selection of the most appropriate heuristic highly
depends on the information available of tasks, Cloud resources, and
the structure of BoTs. Nonetheless, the support provided by the
remaining allocation time of Cloud resources provides additional
qualitative advantages, e.g., dynamic inclusion of Cloud resources
during BoT execution without rescheduling.

Observation 5. In general, the overall makespan attained for
normally, right-half-normally, and left-half-normally distributed
BoTs using batch mode scheduling heuristics supported by the
remaining allocation time of Cloud resources ({LtoS, StoL} ×

{MaxET,MaxCT,MinET,MinCT}) did not have high variations
(e.g., variations higher than 10% of the average makespan for each
BoT type).

Analysis. In general, as shown in Figs. 6, 8 and 9, the makespans
attained for normally, right-half-normally, and left-half-normally
distributed BoTs scheduled using LtoS-based and StoL-based
scheduling heuristics (i.e., batch mode scheduling heuristics) were
similar. This is because the Cloud resources allocated for executing
the BoTs had no idle time, i.e., the Cloud resources were executing
BoT tasks at every moment (except for the almost negligible
overhead time derived from agents preparing and scheduling
BoT tasks, see Section 5.2, Observation 3), since the BAs (BoT
schedulers) sent the tasks for execution as soon as the Cloud
resources were available (see the general heuristic algorithm for
agent-based Cloud scheduling in Fig. 5). In addition, since the
Cloud resources had heterogeneous computing capacities and
the tasks executed had heterogeneous sizes, very different task
completion times were obtained, causing completely different
availability times of the Cloud resources. Hence, usually only
one Cloud resource was available at a time for executing a
task, causing that the task mapping policies (R, MaxET, MaxCT,
MinET, MinCT) behaved similarly, and thus similar makespans
were obtained. Therefore, the small makespan differences across
the batch mode scheduling heuristics (LtoS-based and StoL-based
scheduling heuristics) were caused by the very last tasks executed
in the Cloud resources.

It should be noted that, as shown in Fig. 7, the makespans
attained for uniformly distributed BoTs scheduled using LtoS-
based scheduling heuristics were not similar to the makespans
attained using StoL-based scheduling heuristics. In fact, LtoS-based
scheduling heuristics attained better performances (in terms of
makespan) than StoL-based scheduling heuristics (see Fig. 7).
This is because the BAs that scheduled the uniformly distributed
BoTs using StoL-based scheduling heuristics sent for execution
at the very end the biggest tasks, causing longer makespans
when assigned to weak Cloud resources. In contrast, the BAs
that scheduled the uniformly distributed BoTs using LtoS-based
scheduling heuristics sent for execution at the very beginning
the biggest tasks and then the remaining unexecuted tasks in
decreasing size, progressively balancing the load of the Cloud
resources, and thus attaining better performances, as explained in
Observation 2 in Section 5.1.

The influence (i.e., the capacity to have an effect on BoT
scheduling) that the task mapping policies (R, MaxET, MaxCT,
MinET, MinCT) has for scheduling different types of BoTs (either
uniformly, normally, right-half-normally, and left-half-normally
distributed) is higher when there are several available Cloud
resources to assign tasks (e.g., at the beginning of the BoT
scheduling). However, as the number of available Cloud resources
is reduced, the influence of a given task mapping policy in the BoT
scheduling process is also reduced.

5.2. Evaluating the agent-based Cloud BoT concurrent scheduling

(a) Objective. A series of experiments was designed to evaluate
the effectiveness of the agent-based Cloud BoT concurrent
scheduling and execution approach.

(b) Experimental settings. The testbed has three different sets of
input parameters: (1) Cloud environment’s input data (Table 3),
(2) BoT-related input data (Table 7), and (3) Agent-based testbed
parameters (Table 8). Cloud environment’s input data consists
of nonfunctional types of Cloud resources described by their
computing capacities and hourly cost rates. BoT-related input data
consists of number of tasks per BoT, number of instructions per
task, probability distribution used for creating randomly generated
BoTs, and a functional Cloud resource type (e.g., a rendering
service). Agent-based testbed parameters consist of number of
agents involved in the simulation grouped by agent type, number
of agents involved per CNP execution, a Cloud scheduling heuristic,
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Table 7
BoT-related input data source for Experiment 5.2.

Input data Possible values

BoT size (No. of tasks per BoT) {50, 100, 150, 200, 250, 300} tasks
Task size (No. of instructions per task) {400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000} million of instructions
Probability distribution used for creating randomly
generated BoTs

Uniform distribution. An equitable number of tasks of each task size category were contained in the BoTs

Functional Cloud resource type Homogeneous: {s1}

Table 8
Agent-based testbed parameters for Experiment 5.2.

Input data Possible values

Agent types CAs BAs SPAs RAs
No. of agents {10, 20, 30} 5 5 2500
Agents involved per CNP 1 manager and 3 contractors
Cloud scheduling heuristic (StoL, MinET)
Cloud resources to be composed by BAs {1 standard–small, 1 standard–large, 1 standard–extra large, 1 micro, 1

high-memory–extra large, 1 high-memory–double extra large, 1 high-CPU–medium}
all of them allocated for 10 h

BoT execution request rate (requests per second) Low High
1 100

Simulation time rate 60 s in simulation is equal to 1 h

a set of Cloud resources to be composed by BAs where BoTs were
executed, BoT execution request rates, and a simulation time rate.

The number of tasks per BoT (Table 7) was set from 50 to
300 tasks in 50-task increments to evaluate the performance of
the agent-based concurrent scheduling with respect to different
BoT size categories. Uniformly distributed BoTs were arbitrarily
selected, given that how BoTs were generated is irrelevant to
the evaluation of the agent-based concurrent BoT scheduling and
execution approach.

In addition, all the randomly generated BoTs of a given BoT size
category were the same, e.g., every time that an agent was dealing
with a randomly generated 150-task BoT, the BoT contained the
same tasks with the same number of instructions. In doing so,
the agents were provided with scenarios where identical BoTs
(submitted practically at the same, e.g., at a rate of 100 BoT
submissions per second, see Table 8) were scheduled on identical
sets of Cloud resources practically at the same time in a parallel
manner. Then, by using the same scheduling heuristic, e.g., (StoL,
MinET) heuristic, BAs, SPAs, and RAs were forced to carry out
any interaction (resulted from the scheduling and execution of
the BoTs) practically at the same time due to the fact that task
completion times were the same for every BoT.

The number of CAs was set to 10, 20, and 30 to evaluate
the agent-based scheduling approach using different levels of
concurrent loads. Furthermore, the numbers of BAs and SPAs were
both fixed to 5 to provide CAs and BAs with a sufficient set of
BAs and heterogeneous SPAs to simulate the CNP and distributed
BoT execution but handling multiple concurrent scheduling and
execution of BoTs per BA and SPA.

Two levels of BoT execution request rates (i.e., number of BoT
execution requests per second) were defined: low (1 request per
second) and high (100 requests per second). The low request
rate was based on the maximum number of requests per second
accepted by some commercial web services [19] to evaluate the
agent-based scheduling approach using real world settings. The
high request ratewas set to 100 requests per second to evaluate the
agent-based scheduling approach in situations where the agent-
based BoT execution system may be overloaded due to a high
request rate of concurrent and parallel BoT executions.

The remaining experimental parameters (e.g., Cloud environ-
ment’s input data, number of instructions per tasks, selection of
the functional Cloud resource type, number of agents involved per
CNP, simulation time rate, etc.) have the same justification pre-
sented in Section 5.1.

For each configuration of the agent-based testbed (Table 8)
provided with the BoT-related input data (Table 7), 36 experiment
runs were carried out, for an overall of 720 concurrently scheduled
and executed BoTs.

(c) Performance measures. The performance measures are: BoT
success rate, average BoT scheduling overhead time (amount of
additional time, without counting task execution times, required
by agents to prepare and schedule BoTs as well as time consumed
by agents’ reactions to messages and message latencies), and
average number ofmessages exchanged for executing BoTs. All the
performance measures were grouped by both BoT size category
and BoT execution request rate. See Table 9 for details.

(d) Results. Experimental results are shown in Figs. 10 and 11.
From these results, three observations were drawn.

Observation 1. Agents in the testbed were capable of success-
fully executing and scheduling BoTs concurrently with a 100% suc-
cess rate for randomly generated BoTs of a wide variety of sizes in
randomly generatedCloud environments evenwithhigh execution
request rates and handling multiple BoTs at the same time.

Analysis. The agents successfully executed BoTs because: (i)
CAs were capable of finding BAs to submit BoTs for execution by
adopting the CNP with BAs as participants. (ii) BAs successfully
composed Cloud resources from a heterogeneous and distributed
pool of SPAs by adopting the CNP in a parallel manner. (iii) BAs
(using service contracts as a guide) requested the execution of
tasks to the appropriate SPAs (i.e., SPAs previously contracted that
contained the Cloud resource needed to execute a given task). (iv)
BAs were capable of sorting BoT tasks and mapping them to the
previously allocated Cloud resources based on the (StoL, MinET)
scheduling heuristic. (v) SPAs effectively handled concurrent BAs’
requests for task execution by forwarding the requests to their RAs
in a parallel manner. (vi) RAs successfully executed all the tasks
assigned, and reported their outputs to the SPAs, which forwarded
them to the BAs.

Agents in the testbed achieved a 100% success rate in executing
randomly generated BoTs concurrently and in a parallel manner
even in the presence of high BoT execution request rates because
through dynamic and flexible interaction, BAs, SPAs, and RAs
effectively coordinated themselves to schedule and execute the
BoTs.

Observation 2. Agents in the testbed efficiently scheduled and
executed BoTs by sending only a linearly increasing number of
messages among CAs, BAs, SPAs and RAs that depends only in the
number of tasks contained in BoTs.
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Table 9
Performance measures for Experiment 5.2.

Performance measure Description

BoT success rate NSUC/NATT
Av. BoT scheduling overhead time Σ(T )/NATT
Av. no. of messages exchanged for executing BoTs Σ(Msg)/NATT

Performance measures’ variables Description

NSUC No. of successfully executed BoTs
Msg Messages exchanged for executing a BoT
T Overhead time for scheduling and executing a BoT

Performance measures’ constant Possible values

NATT: No. of attempts for BoT executions {50, 100, 150, 200, 250, 300}

Fig. 10. Av. no. of messages exchanged for scheduling and executing BoTs concurrently.

Analysis. As shown in Fig. 10, on average, the number of
messages exchanged among agents in the testbed increased
linearly with the number of tasks to be executed. Agents sent
messages for submitting BoTs for execution, composing the sets of
Cloud resources, and coordinating the distributed and concurrent
execution of BoTs, i.e., to submit tasks for execution and to forward
tasks’ outputs among BAs, SPAs, and RAs. However, most of the
messages exchanged resulted from coordinating the execution of
BoT tasks. Thus, more messages were exchanged when there were
more tasks contained in the BoTs regardless of the BoT execution
request rates and the number of BoTs executed concurrently. In
addition, the number of messages increased linearly because for
every message that a BA sent to an SPA for executing a task, the
SPA also sent only one message to an RA for assigning the task,
afterward, the RA also sent only one message to deliver the output
to the SPA, which forwarded it to the BA.

In summary, agents endowed with distributed problem solv-
ing techniques through interaction can schedule and execute ran-
domly generated BoTs in randomly generated Cloud environments

Fig. 11. Av. BoT scheduling overhead time of concurrently scheduled and executed
BoTs.

both efficiently (in terms of messages exchanged) and effectively
(see Section 5.2, Observation 1) in a concurrent manner.
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Observation 3. For most of the cases, agents in the testbed effi-
ciently scheduled and executed BoTs in a concurrent and parallel
manner with relatively negligible BoT scheduling overhead times,
i.e., overhead times that do not interferewith the effectiveness (see
Section 5.2, Observation 1) of the scheduling and execution of BoTs.
In addition, the overhead timeswere negligible evenwith high BoT
execution request rates, concurrently scheduling, and executing
from 10 to 30 randomly generated BoTs of a wide variety of sizes
in distributed and randomly generated Cloud environments. In ad-
dition, in general, the BoT scheduling overhead time was higher
with higher request rates, larger BoTs, and larger numbers of BoTs
executed concurrently.

Analysis. As show in Fig. 11, for the majority of the cases, the
BoT scheduling overhead time was (relatively) short for both low
and high BoT execution request rates and the different levels of
concurrency (10, 20, and 30 concurrently executed BoTs). This is
because, for most of the cases, agents in the testbed were capable
of handling the load resulted from concurrent execution of BoTs
by distributing the load on different BAs and SPAs as a result of
adopting the CNP for selecting among multiple agents, either BAs
or SPAs to execute BoTs and allocate Cloud resources, respectively.
In doing so, agents in the testbedwere capable of promptly reacting
to BoT task completions and sharply coordinating the distributed
execution of BoTs, avoiding idle time of previously allocated Cloud
resources.

As shown in Fig. 11, as more and larger BoTs were concurrently
introduced into the system with higher request rates, the BoT
scheduling overhead time was (in most of the cases) slightly
increased due to the additional time consumed by: ordering
tasks, adopting concurrent and parallel CNPs to allocate Cloud
resources, distributing and assigning tasks to previously allocated
Cloud resources, and exchanging messages to establish agent
coordination and thus accumulating message latencies.

A special case was presented when agents in the testbed
executed 300-task BoTs from 30 CAs concurrently with a high
request rate (see Fig. 11), which had a considerably high (69.5 s)
overhead time. This was due to the overloading of the Cloud
directory (provided by a JADE system agent), which created a
bottleneck when CAs and BAs were looking for BAs and SPAs
to execute BoTs and compose Cloud resources, respectively. In
addition, another cause for such overhead time was the saturation
of the internal message queues of agents, given that CAs submitted
identical 300-task BoTs that forced BAs, SPAs, and RAs to carry out
the interaction resulted from the scheduling and execution of the
30 BoTs practically at the same time and thus saturating agents’
message queues. Nonetheless, agents in the testbed executing 300-
task BoTs from 30 CAs concurrently with a low request rate (see
Fig. 11) had a much shorter overhead time: 6.1 s due to lesser
exposure to the saturation of agents’ message queues and the
bottleneck of the Cloud directory.

In summary, agents’ distributed and cooperative problem
solving techniques are efficient enough to support concurrent
scheduling and execution of multiple BoTs with extremely high
execution request rates and stringent constraints (fewer BAs and
SPAs, and concentrating agent interaction in short periods of time
by scheduling and executing identical BoTs) and yet, in most of the
cases, getting negligible BoT scheduling overhead times.Moreover,
even in theworst cases (e.g., 69.5 s of overhead time), the overhead
time was relatively negligible compared to the execution time
required by BoTs executed in Cloud environments.

5.3. Evaluating the agent-based BoT scheduling endowed with I-
ElasticAM

(a) Objective. A series of experiments was designed to evaluate
the efficiency of the agent-based Cloud BoT concurrent scheduling
approach endowed with I-ElasticAM.

(b) Benchmark Cloud resource allocation mechanisms. Two Cloud
resource allocation mechanisms were used for benchmarking the
proposed I-ElasticAM:

• Fixed Cloud resource allocation mechanism (FixedAM) consisting
of allocating in advance all the Cloud resources for a fixed
number of hours to execute a given BoT. This resource allocation
mechanism requires a fixed number of hours to execute BoTs
and lacks elasticity.

• Generalized elastic Cloud resource allocation mechanism (Gener-
alizedAM) consisting of allocating all the Cloud resources des-
ignated to execute a given BoT in an hourly basis until the BoT is
completely executed, i.e., the status of the BoT execution is ver-
ified every hour, if it is not completely executed, all the Cloud
resources are reallocated for the next hour. A similar allocation
mechanism can be found in [6].

Section 5.3 includes a quantitative comparison between
the benchmark Cloud resource allocation mechanisms and the
proposed I-ElasticAM, see Section 6 for a qualitative comparison.

(c) Experimental settings. The testbed has three different sets of
input parameters: (1) Cloud environment’s input data (Table 3),
(2) BoT-related input data (Table 10), (3) Agent-based testbed
parameters (Table 11). Cloud environment’s input data consists
of nonfunctional types of Cloud resources described by their
computing capacities and hourly cost rates. BoT-related input
data consists of number of tasks per BoT, number of instructions
per task, probability distributions used for creating randomly
generated BoTs, and a functional Cloud resource type (e.g., a
rendering service). Agent-based testbed parameters consist of
number of agents involved in the simulation grouped by agent
type, number of agents involved per CNP execution, Cloud
scheduling heuristics, a set of Cloud resources to be composed
by BAs where BoTs were executed, the Cloud resource allocation
time for FixedAM, the reallocation threshold for I-ElasticAM, and a
simulation time rate.

Since 300-task BoTs take longer to be executed, their execution
makes more use of the elastic Cloud resource allocation mecha-
nisms, and thus highlight the performance of the Cloud resource
allocationmechanisms evaluated. In addition, experiment runs us-
ing the different types (uniformly, normally, right-half-normally,
and left-half-normally distributed) of randomly generated BoTs
were carried out given that the execution time of BoTs varies
among them, and thus different levels of elasticity (i.e., allocation
of more or less hours of a given Cloud resource) are required. The
remaining BoT-related input data parameters have the same justi-
fications provided in Section 5.1.

The agent-based testbed parameters were based on the design
of the experiment of Section 5.1. However, in this case, CAs
submitted BoTs in a concurrent manner to show the compatibility
of the elastic Cloud resource allocation mechanisms with the
concurrent handling of the agent-based scheduling approach. All
the proposed Cloud scheduling heuristics (Table 11) were used in
order to test the capability of I-ElasticAM to work even when no
information about task completion times is available. In addition,
three allocation mechanisms were used: I-ElasticAM and the two
benchmark resource allocation mechanisms (GeneralizedAM and
FixedAM). The resource allocation time for FixedAMwas set to 10 h
for its (previously determined) sufficiency for executing the BoTs.
The reallocation threshold (see Section 3) for I-ElasticAM was set
to 1 min to reduce the probability of unnecessary reallocation of
Cloud resourceswhen no information about task completion times
is given, but at the same time provide BAs and SPAs with sufficient
time to reallocate Cloud resources.

For each configuration of the agent-based testbed (Table 11)
provided with the BoT-related input data (Table 10), 168 exper-
iment runs were carried out, for an overall of 840 concurrently
scheduled and executed BoTs.
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Table 10
BoT-related input data source for Experiment 5.3.

Input data Possible values

BoT size (No. of tasks per BoT) 300 tasks
Task size (No. of instructions per task) {400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000} million of

instructions
Probability distribution used for creating randomly generated BoTs {uniform, normal, left-half-normal, right-half-normal}
Functional Cloud resource type Homogeneous: {s1}

Table 11
Agent-based testbed parameters for Experiment 5.3.

Input data Possible values

Agent types CAs BAs SPAs RAs
No. of agents 5 5 5 2500
Agents involved per CNP 1 manager and 3 contractors
Cloud scheduling heuristics {(U, MaxET), (U, MaxCT), (U, MinET), (U, MinCT), (LtoS, R) (LtoS, MaxET), (LtoS, MaxCT), (LtoS, MinET),

(LtoS, MinCT), (StoL, R), (StoL, MaxET), (StoL, MaxCT), (StoL, MinET), (StoL, MinCT)}
Cloud resources to be composed by BAs {1 standard–small, 1 standard–large, 1 standard–extra large, 1 micro, 1 high-memory–extra large, 1

high-memory–double extra large, 1 high-CPU–medium}
Allocation mechanisms (1) {I-ElasticAM, GeneralizedAM, FixedAM}
Allocation time for FixedAM 10 h
Reallocation threshold for I-ElasticAM 1 min
Simulation time rate 60 s in simulation is equal to 1 h

Table 12
Performance measures for Experiment 5.3.

Performance measures Description

Av. BoT makespan Σ(M)/N
Av. no. of messages exchanged Σ(Msg)/N
Av. BoT execution cost Σ(C)/N

Performance measures’ variables Description

M Makespan of a BoT executed using a given scheduling heuristic grouped by BoT type.
Msg Messages exchanged for executing a given BoT grouped by BoT type.
C Cost of executing a BoT in the Cloud grouped by BoT type.
N No. of BoTs executed using a given scheduling heuristic grouped by BoT type.

Performance measures’ constant Possible values

BoT types {uniformly, normally, right-half-normally, and left-half-normally} distributed BoTs.

Fig. 12. Av. BoT execution cost—GeneralizedAM versus I-ElasticAM.

(d) Performance measures. The performance measures are:
average BoT makespan, average number of messages exchanged,
and average BoT execution cost. See Table 12 for details.

(e) Results. Experimental results are shown in Figs. 12–14. From
these results, two observations were drawn.

Observation 1. Agents in the testbed scheduling and executing
BoTs using I-ElasticAM attained lower (or at least the same) BoT
execution costs than agents using GeneralizedAM.

Analysis. As shown in Fig. 12, in 2 out of 4 cases, agents in
the testbed using I-ElasticAM scheduled and executed BoTs with
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Fig. 13. Av. BoT makespan—FixedAM versus I-ElasticAM.

Fig. 14. Av. no. of messages exchanged—FixedAM versus I-ElasticAM.

lower execution cost (attaining up to 8.3% and 12.1% execution
cost savings) than agents using GeneralizedAM. This is because
behavior I-ElasticAM_BA (see Section 3) built into BAs monitored
the status of each Cloud resource allocated, and then whenever
BAs detected idle Cloud resources just before exhausting their
allocation time (determined by the reallocation threshold), the
Cloud resources were not reallocated for the next 1-hour time slot
regardless of whether the BoTs had been completely executed. In
doing so, only the Cloud resources that were still executing BoT
tasks were reallocated for the next 1-hour time slot. Conversely,
agents using GeneralizedAM based on the completion of BoTs,
blindly reallocated all the (idle and busy) Cloud resources for the
next 1-hour time slot increasing the BoT execution costs.

As shown in Fig. 12, in 2 out of 4 cases, agents in the testbed
using I-ElasticAM scheduled and executed BoTs with the same
execution cost as agents using GeneralizedAM. This is because
the Cloud resources allocated for the execution of the right-half-
normally distributed BoTs (Fig. 12, 2nd column) and the normally
distributed BoTs (Fig. 12, 4th column) completed the execution

of their corresponding BoT tasks in the same 1-hour time slot, as
shown in Fig. 12 in the 2nd and 4th columns. This indicates that
the Cloud resources allocated for executing the right-half-normally
and normally distributed BoTs completed their execution in less
than 3 (see Fig. 13, 2nd column) and 5 h (see Fig. 13, 4th column)
spending $8.38 USD (see Fig. 12, 2nd column) and 13.97 USD (see
Fig. 12, 4th column), respectively.

By making use of their parallel working capabilities, agents
in the testbed can (at the same time that concurrently schedule
and execute BoTs) monitor individual Cloud resource remaining
allocation times and the individual status (e.g., idle) of Cloud
resources supported by the existence of service level agreements of
Clouds, conforming to I-ElasticAM that autonomously reallocates
Cloud resources as needed by BoTs even without information of
task completion times and Cloud resources’ computing capacities.

Observation 2. Agents adopting I-ElasticAM achieved the
same performance (regarding BoT makespan) as agents adopting
FixedAM. In addition, agents adopting I-ElasticAM exchanged only
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very few additional messages to autonomously and elastically
reallocate Cloud resources to schedule and execute BoTs.

Analysis. As shown in Fig. 13, the average BoT makespan
achieved by agents adopting I-ElasticAM and by agents adopting
FixedAMwas very similar for all the different BoT types and for all
the Cloud scheduling heuristics. This is because I-ElasticAM was
built into agents as a parallel behavior (i.e., agent functionality) for
each Cloud resource allocated, and such parallel agent behaviors
were cyclically activated by a timer determined by a reallocation
threshold (see Section 3) and the length of the allocation slots
(e.g., 1 h). Thus, due to its parallel and event-oriented nature,
I-ElasticAM did not alter the BoT makespans.

As shown in Fig. 14, the number of messages exchanged by
agents adopting I-ElasticAM was slightly larger than the number
ofmessages exchanged by agents adopting FixedAM. As previously
stated in Observation 2 of Section 5.2, the number of messages
exchanged among agents mostly depends on the number of
tasks contained in BoTs (see the number of messages exchanged
by agents adopting FixedAM in Fig. 14). However, by including
I-ElasticAM into the agent-based scheduling BoT approach, BAs
sent one message to SPAs to request the reallocation of a given
Cloud resource for the next time slot, in reply, SPAs sent one
acknowledgment message to BAs. So, the overall number of
messages exchanged mostly depends on the size of BoTs, but also
(although in a much lesser extent) on the BoT makespan, given
that the longer it takes to execute BoTs, the more messages are
exchanged among agents to coordinate the elastic Cloud resource
reallocation.

In summary, agents adopting I-ElasticAM are capable of au-
tonomously and dynamically reallocating Cloud resources to exe-
cute BoTs efficiently (by exchanging just a fewmessages more and
maintaining the same BoTmakespan as agents adopting FixedAM),
in addition to reducing BoT execution costs.

6. Related work comparison

BoT scheduling heuristics are commonly focused onminimizing
makespan [20,11,15,4,8,17] and use information ranging from
computing resources’ ready times [17], to earliest completion
times of tasks [11,4]. In addition, BoT scheduling approaches that
do not require any information about tasks or computing resources
have beendesigned and are commonly based on tasks’ replications.
Replication-based scheduling approaches [20,21,15,8,22] map
tasks onto computing resources in an unordered manner to any
unoccupied computing resource, but whenever all the tasks are
currently in execution and computing resources become available,
unfinished tasks are replicated in the hope that such resources can
complete the tasks before the originally initiated tasks. Moreover,
once replicated tasks are completely executed, all its replicas are
canceled to execute the remaining tasks. In this regard, replication-
based scheduling approaches assume that tasks are preemptive,
i.e., task execution can be interrupted at any moment.

Most of the BoT scheduling heuristics are designed under the
assumption that BoT holders are only charged for task execu-
tion time or not charged at all, e.g., BoT execution in Grid envi-
ronments [20,11,15,8,17,23]. In contrast, in Cloud environments,
BoT holders are charged for complete (1-hour) allocation slots of
computing resources [1,24], disregarding whether tasks are being
executed.

In the area of elastic Cloud resource allocation mechanisms,
the research effort presented in [6] addressed BoT scheduling
using an immediate mode scheduling heuristic to schedule BoTs
in hybrid environments (i.e., using both Grid and Cloud computing
resources). In [6], Cloud resources are reallocated every hour (as in
GeneralizedAM, see Section 5.3, incise b) based on an estimation
of the system throughput to determine whether a given BoT will

be completely executed in the next time slot. Nonetheless, [6]
assumes that all the Cloud resources are identical and have
constant performances. Other approaches that take advantage of
the elasticity of Clouds are focused on dynamically adding or
removing Cloud resources during the execution of consumers’
applications, such as [25] in Cloud environments and [26] in Grid
environments.

In this work, tasks are assumed to be non-preemptive, i.e.,
once task execution is started, it cannot be interrupted, unlike
replication-based approaches [20,21,8,22]. In addition, given that
Cloud resources’ allocation time is running regardless of whether
tasks are being executed (unlike Grid environments where users
are normally charged for task execution time or not charged at
all [20,11,15,8,17]), maximizing the use of Cloud resources results
in an efficient use of consumers’ budgets.

Unlike previous Cloud-oriented BoT scheduling and execution
approaches [6,22,27,28], this work makes use of the CNP to
dynamically select and compose the best (cheapest) available
Cloud resources from a pool of heterogeneous Cloud providers to
execute BoTs in a distributed manner.

In the area of elastic Cloud resource allocation mechanisms,
I-ElasticAM (in contrast to [6]) only requires a predefined initial
set of Cloud resources, and no estimation of Cloud resources’
throughput or constant performance of Cloud resources is
required. Moreover, I-ElasticAM can work with Cloud resources
allocated at different times due to its individualized monitoring
and reallocation mechanism, so new Cloud resources can be
dynamically added. Furthermore, I-ElasticAM can complement
(rather than replace) approaches that dynamically add computing
resources during the execution of consumers’ applications [29,30,
25,26,31].

In quantitative terms, executing BoTs using (some of) the pro-
posed Cloud scheduling heuristics outperformed (in some cases)
the benchmark scheduling heuristics (Max–min, Min–min [11,4],
FCFS, Greedy-P, Greedy-R [16]). Nevertheless, in some cases, some
benchmark scheduling heuristics (e.g., Max–min) outperformed
the proposed scheduling heuristics. However, the support pro-
vided by the remaining allocation time of Cloud resources allows
dynamic inclusion of Cloud resources during BoT execution with-
out rescheduling (as Min–min, Max–min, Greedy-P, and Greedy-R
would need) because of the decoupling of the task mapping poli-
cies from the task orderings.

It is acknowledged, that this work is a considerably and
significantly extended version of a preliminary work reported
in [24]. The present work has augmented [24] by devising,
implementing, and evaluating an elastic Cloud resource allocation
mechanism: I-ElasticAM (Sections 3 and 5.3). In addition, the
agents were endowedwith parallel working capabilities capable of
scheduling and executing BoTs in a concurrent and parallelmanner
(Sections 2 and 5.2). Moreover, empirical results obtained in [24]
were generalized by means of conducting new experiments in a
major scale using multiple probability distributions to randomly
generate BoTs. In doing so, the efficiency of the 14Cloud scheduling
heuristics was explored in a multitude of situations that resulted
in a clear identification of favorable and unfavorable scenarios
for each Cloud scheduling heuristic (Section 5.1). Additionally,
the time complexity of the entire family of the proposed Cloud
scheduling heuristics was identified (Section 4). Furthermore, two
greedy batch mode scheduling heuristics: Greedy-P and Greedy-R
(Section 5.1), and the GeneralizedAM elastic allocationmechanism
(Section 5.3) were implemented for benchmarking purposes.
Finally, the analysis and scope of the related work were extended
(Section 6).

In addition, it is acknowledged that only the agent-based ap-
proach for composing Cloud resources was based on [32].
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7. Conclusion and future work

The novelty of this work is that, to the best of the authors’
knowledge, it is among the earliest works to adopt an agent-
based approach for concurrent Cloud BoT scheduling using a
family of 14 Cloud scheduling heuristics as well as dealing with
elastic Cloud resource reallocation. Whereas [2] has proven that
the scheduling of independent tasks in a set of heterogeneous
computing resources is an NP-complete problem, the significance
of this work is devising a family of 14 scheduling heuristics, from
which three scheduling heuristics are shown to be in linearithmic
time (R-based scheduling heuristics: {LtoS, StoL} × {R}) and the
rest in polynomial time.

The contributions of this work are detailed as follows:

(1) Providing a family of 14 Cloud scheduling heuristics (Section 4)
adapted to the resource allocation settings (e.g., 1-hour
time slots in Amazon EC2 [1]) of Clouds based on the
remaining allocation time of Cloud resources, which is always
available due to the existence of service level agreements
established between consumers and Cloud providers. By using
the remaining allocation of Cloud resources, the utilization of
Cloud resources that are about to expire is prioritized to use
asmuch as possible the computing resources already allocated
and paid. In addition, the family of Cloud scheduling heuristics
supports the dynamic inclusion of new Cloud resources while
scheduling and executing a given BoT without rescheduling
because of the decoupling of the task mapping policies from
the task orderings.

(2) Devising an elastic Cloud resource allocation mechanism:
I-ElasticAM (Section 3) that autonomously and dynamically
reallocates Cloud resources on demand to BoT executions
even without information of task completion times and Cloud
resource computing capacities. I-ElasticAM along with the
proposed Cloud scheduling heuristics take advantage of the
elasticity of Cloud environments to allocate Cloud resources
only as much as needed to execute a given BoT in a dynamic
and autonomous manner while making an efficient use of
consumers’ budgets.

(3) Implementing an agent-based Cloud BoT scheduling approach
(Section 2) that supports concurrent and parallel scheduling
and execution of BoTs, and concurrent and parallel dynamic se-
lection and composition of Cloud resources (by using the CNP)
from multiple and distributed Cloud providers. By scheduling
and executing simultaneously submitted BoTs in Cloud envi-
ronments in a concurrent and parallel manner, brokers and/or
providers can handle heavy workloads when enough Cloud re-
sources are available. In addition, by adopting the CNP, the
agents are providedwith amechanism for agreeing fees for ex-
ecuting BoTs and allocating Cloud resources, which supports
Cloud participants’ autonomy and self-interestedness.

(4) Providing experimental evidence to demonstrate the efficiency
of the Cloud scheduling heuristics (Section 5.1), the effective-
ness of the agent-based Cloud BoT concurrent scheduling and
execution approach (Section 5.2), and the efficiency of the elas-
tic Cloud resource reallocation mechanism (Section 5.3). From
the empirical results, it can be concluded that the agents can
schedule and execute BoTs in a concurrent manner in dis-
tributed Cloud environments as follows:
• Efficiently executing BoTs by attaining similar (in some

cases shorter) makespans to commonly used benchmark
heuristics such as FCFS, Min–min, Max–min, Greedy-R, and
Greedy-P (Section 5.1).

• Effectively executing BoTs by achieving a 100% success
execution rate (Section 5.2).

• Efficiently using Cloud consumers’ budgets by using I-
ElasticAM to elastically reallocate Cloud resources on
demand as needed by BoT executions (Section 5.3).

In addition, agents in the testbed can efficiently schedule and
execute BoTs by sending only a linearly increasing number of
messages and attaining negligible overhead times even with high
BoT execution request rates and with different numbers of BoTs
executed in a concurrent and parallel manner (Section 5.2).

This work has demonstrated that Cloud scheduling heuristics
based on Cloud resources’ remaining allocation times are efficient
and suitable for executing BoTs in Cloud environments. In addi-
tion, the proposed agent-based approach for concurrent and par-
allel scheduling and execution of BoTs in Cloud environments has
been empirically shown to be effective and efficient. Moreover,
this work has demonstrated that the agents can autonomously and
dynamically reallocate Cloud resources on demand to elastically
execute BoTs in multiple Cloud environments. Furthermore, this
work has demonstrated that the Cloud resources’ remaining allo-
cation time can support individualized elastic resource reallocation
as needed by BoT executions autonomously.

It should be acknowledged that, whereas in this work,
scheduling heuristics that require no information of either Cloud
resources or tasks are proposed (e.g., (U, MaxCT) and (U, MinCT)
heuristics), some of the proposed Cloud scheduling heuristics have
a dependency on knowledge about the computing capacity of
Cloud resources (e.g., MaxET-based and MinET-based heuristics)
and/or dependency on knowledge about task size (e.g., LtoS-
based and StoL-based heuristics). Thus, a mechanism to relax
such assumptions on knowledge about Cloud resources and tasks
should be provided by including an initial task profiling phase, such
as in [22,33]. In addition, the proposed Cloud scheduling heuristics
are focused on compute-intensive BoTs [8], i.e., BoTs that mostly
require computing resources (e.g., powerful processors) to be
executed, and thus overhead times associated to data transfer and
data storage are disregarded. However, when dealing with data-
intensive BoTs [8], i.e., BoTs handling and transferring considerably
large amounts of data, the overhead times associated to data
transfers should be taken into account, such as in [34] to efficiently
schedule and execute data-intensive BoTs.

Future research directions are as follows. Relaxing assumptions
on knowledge about Cloud resources and tasks by implementing
an initial task profiling phase. Designing Cloud scheduling
heuristics for handling data-intensive BoTs. Devising a Cloud
resource estimation method for determining an initial set of Cloud
resources to be allocated for the initial hour to execute BoTs based
on consumers’ budgets and deadlines. Deploying the agent-based
elastic Cloud BoT concurrent scheduling approach in commercial
Clouds (e.g., Amazon EC2). Carrying out experiments in a much
larger scale in commercial Clouds to evaluate the scalability of
the agent-based BoT scheduling approach. Designing agent-based
distributed problem solving techniques to handle BoT scheduling
and execution in unreliable Cloud environments.
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