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Abstract

Scheduling large-scale applications in heterogeneous distributed computing sys-
tems is a fundamental NP-complete problem that is critical to obtaining good
performance and execution cost. In this paper, we address the scheduling
problem of an important class of large-scale Grid applications inspired from
real-world, characterized by a huge number of homogeneous, concurrent, and
computationally-intensive tasks that are the main sources of performance, cost,
and storage bottlenecks. We propose a new formulation of this problem based
on a cooperative distributed game theory-based method applied using three al-
gorithms with low time complexity for optimizing three important metrics in
scientific computing: execution time, economic cost, and storage requirements.
We present comprehensive experiments using simulation and real-world appli-
cations that demonstrate the effectiveness of our approach in terms of time and
fairness compared to other related algorithms.
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1. Introduction

Over the last decade, distributed computing systems including grids and
clouds have evolved towards a worldwide infrastructure providing scientific ap-
plications with dependable, consistent, pervasive, and inexpensive access to
geographically-distributed high-end computational capabilities. To program
such a large and scalable infrastructure, loosely coupled-based coordination
models of legacy software components such as workflows [1] have emerged as
one of the most successful programming paradigms in the scientific community.
One of the most challenging NP-complete problems that researchers try to solve
is how to schedule large-scale scientific applications to distributed and hetero-
geneous resources such that certain objective functions such as total execution
time (called from hereon makespan) in academic Grids or economic cost (in short



cost from hereon) in business or market-oriented Clouds are optimized, and cer-
tain execution constraints such as storage requirements are fulfilled. From the
end-users’ perspective, both minimizing cost or execution time are preferred
functionalities, whereas from the system’s perspective fairness can be consid-
ered as a good motivation. Currently, only a few schemes can deal with both
perspectives, such as optimizing one user objective (e.g. makespan, cost) while
providing a good fairness to all users. On the other hand, many applications
can generate huge data sets in a relatively short time, such as the Large Hadron
Collider [2] expected to produce 5−6 petabytes of data per year, which must be
accommodated and handled through appropriate scheduling storage constraints.

Traditionally, this scheduling problem has been addressed in the form of a
centralized meta-scheduling service [3] that tries to map activities (or tasks) of
single or multiple applications to individual processors [4, 5]. This approach has
two drawbacks. First, there can be no single meta-scheduler in a distributed
environment like the Grid where individual applications are controlled and man-
aged by different actors with potentially different goals and interests. Second,
access to a remote computational resource is usually mediated by a resource
manager or job queuing system [6] that prohibits direct access to processors.
Moreover, in a business Cloud the total number of processors available at a site
may not even be public information. Since there are many applications which
are competitors for the use of available resources, several issues arise such as the
efficient resource allocation for different applications taking into account their
individual performance, cost, storage, and other constraint requirements, the
ability to implement allocation schemes in a distributed manner with no cen-
tralized decision point, and the fair use of resources from system perspective.

In this paper, we address these issues by proposing three scheduling schemes
for an important class of large-scale applications characterized by large sets of
independent and identical activities interconnected through simple control flow
and data flow dependencies:

• Makespan scheduling (see Section 3) minimizes the expected execution
time of applications (known to be an NP-complete problem [7]) based on
a decentralized cooperative game theory algorithm. We compare the per-
formance of our approach with six related heuristics and show that, for
our special class of applications, the game theoretic algorithm is superior
in complexity, quality of result, and fairness. Our proposed algorithm may
not be suited for highly heterogeneous applications for which the schedul-
ing problem cannot be properly formulated as a typical and solvable game,
consisting of phases which can be specifically defined so that game players
can bargain with no dependencies between each other.

• Cost scheduling (see Section 4) minimizes the cost of execution while guar-
anteeing a user deadline. We present a solution to this problem consisting
of three steps: deadline assignment, partitioning, and cost optimization.

• Storage-aware scheduling (see Section 5) minimizes the makespan and cost
of all applications while taking into account the space constraints they
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require for storing the produced data.

The rest of the paper is structured as follows. Motivated by real-world ap-
plications and real Grid testbeds, we introduce in Section 2 the application and
the System models, followed by the problem definition targeted by this paper.
Section 3, Section 4, and Section 5 describe in detail the performance, cost,
and storage-aware algorithms validated and compared against related methods
through simulated experiments, as well as real-world applications in the Aus-
trian Grid environment [8]. Section 6 reviews the most relevant related work
and Section 7 concludes the paper.

2. Model

We describe in this section the abstract application and computational re-
source models used in this paper, motivated by real-world applications and real
Austrian Grid testbeds.

2.1. Application model

We focus on large-scale applications characterized by a high number (thou-
sands to millions) of homogeneous parallel (independent) activities that dom-
inate their performance, interconnected through simple control and data flow
dependency constructs. The next section will give a few real-world examples.

Definition 1. Let AP = (CS,DD) denote a large-scale application modeled

as a directed acyclic graph, where CS =
⋃A
k=1ACk is the set of A activities

classes and DD =
(
ACs <

d ACd | {ACs ,ACd,} ⊂ CS
)

is the set of data flow de-
pendencies. We call ACs the predecessor of ACd and write: ACs = pred (ACd).
We define an activity class ACk as a set of parallel independent activities

ACk =
⋃Ak
j=1 a

(k)
j , k ∈ [1..A] that have the same activity type and can be con-

currently executed, where Ak is the cardinality of the activity class. The term
activity type refers to an abstract functional description of activities. We call
atomic or sequential activity an activity class of cardinality one.

Examples of activity types are matrix multiplication, Fast Fourier Transform,
or poten, pgroups, lapw1, and lapw2 for our real-world pilot applications.

We further assume the availability of an expected time to compute (ETC) [9]

matrix which delivers the expected execution time p
(k)
i of activities in each class

k ∈ [1..A] on each resource si, i ∈ [1..M ], including staging of the required
input data. We obtain the ETC matrix using an own performance prediction
service [10, 11] based on machine learning and similarity methods in that we
proved in previous research to deliver accurate results for our targeted applica-
tion classes.
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Figure 1: Real-world large-scale application examples.

2.2. Example of real-world applications

Our formal application model is motivated by several real-world applica-
tions from the astronomy, graphics rendering, hydrology, meteorology, theoret-
ical chemistry domains that we encountered in our previous interdisciplinary
research (see [12, 13, 14, 15]). In the following, we present two case studies that
we use in this paper as as pilots to validate our generic methods: WIEN2k from
theoretical chemistry and ASTRO from astronomy domains.

ASTRO [16] is an astronomical application that solves numerical simulations
of the movements and interactions of galaxy clusters using an N-Body system.
The computation starts with the state of the universe at some time in the past
and is done until the current time. Galaxy potentials are computed for each
time step. Finally, the hydrodynamic behavior and processes are calculated.

WIEN2k [17] is a program package for performing electronic structure cal-
culations of solids using density functional theory based on the full-potential
(linearized) augmented plane-wave ((L)APW) and local orbital method. We
have ported this application onto distributed resources by splitting the mono-
lithic code into several course-grain activities coordinated in a simple workflow
illustrated in Figure 1. The lapw1 and lapw2 activity classes can be solved
in parallel by a fixed number of homogeneous activities called k-points. A fi-
nal activity named converged applied on several output files tests whether the
problem convergence criterion is fulfilled.

The sources of performance bottlenecks in these applications are large sets
of homogeneous activities such as lapw1 and lapw2 in WIEN2k, or poten and
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Figure 2: Computational resource model overview.

pgroups in ASTRO. The number of grid cells (i.e. number of pgroups and
poten activities) of a real simulation in ASTRO is 1283, while the number of
lapw1 and lapw2 parallel activities in WIEN2k may be of tens of thousand for a
good density of states. Currently, most related work only considers applications
with tens or hundreds of activities, which are an order of magnitude lower than
the size of our applications. Sequential activities are relatively trivial in large-
scale applications and can be served and scheduled on-demand on the fastest or
cheapest available processor.

2.3. System model

We define an abstract system model based on the characteristics of the Aus-
trian Grid [8] which is the infrastructure in which we carry out our research.
Computational resources consist of a set of sites connected to Internet, where
each site is a homogeneous parallel computer. Access to each site is performed
through a local job management (or queuing) system [6] administered using
local policies. Activities or jobs arriving at each site may belong to multiple
applications. The execution of each application is controlled by one application
manager which competes with the other application managers for resources (see
Figure 2). Most other scheduling approaches in the related work assume direct
mapping of user jobs or activities to individual processors which we consider
inappropriate for distributed computing where sites are exclusively managed by
locally administered queuing systems. To support this more realistic model,
the application manager maintains locally one queue for each site in order to
schedule and limit the number of job submissions based on the site’s activity
processing rate. From the local queue, the jobs are submitted by the application
managers to the gatekeepers of the remote computational resources such as the
Grid Resource Allocation Manager (GRAM) of Globus toolkit [18].
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Notation Semantics

N Total number of activities in the application
A Number of activity classes
M Number of computational reosurce sites

δ
(k)
i Number of activities of activity class ACk scheduled on site si

δ(k) Number of activities in the activity class ACk
(
δ(k) =

∑M
i=1 δ

(k)
i

)
p
(k)
i Expected execution time of activity class ACk on site si
mi Total number of available processors on site si

β
(k)
i Job processing rate of activity class ACk on site si

(
β
(k)
i =

θ
(k)
i

p
(k)
i

)
θ
(k)
i Number of available processors for activity class ACk on site si

β(k) Job processing rate of activity class ACk
(
β(k) =

∑M
i=1 β

(k)
i

)
t
(k)
i Remaining execution time of activity class ACk on site si

(
t
(k)
i =

δ
(k)
i

β
(k)
i

)
t(k) Remaining execution time of activity class ACk

(
t(k) = max

{
t
(k)
1 , t

(k)
2 , . . . , t

(k)
M

})
ck Cost of executing activity class ACk
sli Storage limit on site si

sr(k) Storage requirement of activity class ACk
ϕi Price per time unit of site si

Table 1: Notation summary.

2.4. Problem statement

Our goal is to design new algorithms for scheduling a set of large-scale ap-
plications defined according to Definition 1 and consisting of a huge number
of activities (for which existing algorithms do not scale) in a computational
environment modeled in Section 2.3. Our algorithms aim to optimize two ob-
jective functions: aggregated makespan (see Section 3) and aggregated cost (see
Section 4), and optionally fulfill storage constraints (see Section 5).

To facilitate the read, Table 1 summarizes the most important notations
defined in the remainder of this paper.

3. Makespan scheduling

In this section we first formally formulate the makespan scheduling problem
for the special class of large-scale applications introduced in Section 2.1 (see
Definition 1) and then propose and experimentally validate a game theory-based
algorithm to efficiently solve it.

Definition 2. Suppose we have a set of n large-scale applications consisting
of activities that can be categorized into A different activity classes, and a dis-
tributed computing environment consisting of M sites. The makespan Ci of an
application Ai, i ∈ [1..n] is the maximum completion time of its activity classes.
The objective of the makespan scheduling problem is to find a solution that as-
signs all activities to the computational resource sites such that the maximum
makespan of all applications max

i∈[1..n]
{Ci} is minimized.

Makespan scheduling can be formulated as a cooperative game among the
application managers which can theoretically generate the optimal solution,
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although this is hard to achieve due to the problem’s high complexity. We
therefore observe that the problem can be further formulated and solved as a
sequential cooperative game that we present in the following.

3.1. Formulation

The specification of a game in game theory requires the proper definition of
three important parameters: the players, the strategies, and the payoff.

We consider a A-player cooperative game in which each of the A application
managers (or players) attempts at a certain time instance to minimize the exe-
cution time t(k) of one activity class ACk based on its total number of activities

δ(k) and its processing rate β
(k)
i on each site si. For clarity, we assume that each

application manager handles the execution of one activity class. The objective
of each manager is to minimize the execution time of its activity class which
can be expressed as:

fk(∆) = t(k)(∆) =
δ(k)

β(k)
=

δ(k)∑M
i=1

θ
(k)
i

p
(k)
i

, k ∈ [1..A], (1)

where ∆ is an activity distribution matrix
(
δ

(k)
i

)
A×M

representing strategies

and θ
(k)
i is the number of processors that are allocated to activity class ACk on

site si, which is the embodiment of payoff in the cooperative game. The term

θ
(k)
i represents the resource allocation of activity class k on site si defined as

the product between the number of processors mi on si and the ratio between
the weighted aggregated execution times of activity class ACk on si and the
aggregated execution time of all activity classes on si:

θ
(k)
i = mi ·

δ
(k)
i · p

(k)
i · w

(k)
i∑A

x=1 δ
(x)
i · p(x)

i · w
(x)
i

, (2)

where w
(k)
i is the weight of site si for activity class ACk:

w
(k)
i =

min
x∈[1..S]

{p(k)x }
p
(k)
i∑M

y=1

min
x∈[1..S]

{
p
(k)
x

}
p
(k)
y

=

1

p
(k)
i∑M

y=1
1

p
(k)
y

. (3)

We use the weight w
(k)
i to enhance the fairness of allocation because one site

may have different suitability for different activities for various reasons such as
the locality of data, the size of memory, the CPU frequency, or the I/O speed.

Intuitively, if the execution time t
(k)
i on site si for activity class ACk is much

shorter than on other sites, we set a higher priority for this activity class on this
site and allocate more resources to it. The specific utilization of this weight will
be explained when we introduce the notion of sequential game.
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When the ideal load balance of activity class ACk is achieved (the remaining
execution time on each site is equal) the objective function can be defined as:

fk(∆) = t(k)(∆) =


p
(k)
i ·δ

(k)
i

θ
(k)
i

, θ
(k)
i ≥ 1;

0, θ
(k)
i < 1.

(4)

Based on the allocation of resources and the ratio of processing rate on
site si to the total processing rate of the activity class, we define the activity
distribution as the product between the number of activities in ACk and the
ratio between the processing rate of ACk on site si with respect to the total
processing rate of ACk:

δ
(k)
i = δ(k) · β

(k)
i

β(k)
= δ(k) ·

θ
(k)
i

p
(k)
i∑M

i=1
θ
(k)
i

p
(k)
i

. (5)

Accordingly, we have the following definition.

Definition 3. A makespan optimization cooperative game consists of (see Ta-
ble 1 for notations):

• Managers of A activity classes as players;

• A set of strategies ∆ defined by the following set of constraints: (1) δ
(k)
i ≥

0, (2) θ
(k)
i ≤ δ

(k)
i , (3) δ

(k)
i = 0, if θ

(k)
i < 1, (4)

∑A
k=1 θ

(k)
i = mi, and (5)∑M

i=1 δ
(k)
i = δ(k);

• For each player k ∈ [1..A], the objective function fk(∆). The goal is to
minimize simultaneously all fk(∆);

• For each player k ∈ [1..A], the initial value of the objective function

fk
(
∆0
)
, where ∆0 =

(
δ

(k)
i

)0

A×M
is a A × M matrix filled with initial

distribution of activities. ∆∗ denotes the optimal solution of the game.

For our class of large-scale applications, the maximum makespan is almost equal
to the aggregated makespan divided by the number of processors, therefore, the
goal of our cooperative optimization game can be approximated to minimizing the

aggregated makespan: min
{∑A

k=1 fk(∆)
}

, subject to the constraints (1)–(5).

Unfortunately, the exact solution to this problem which is also optimal is in
general difficult to obtain. Because the problem has high complexity and A ·M
variables, the solution depends on the distribution of activities in the same
class on different sites, and the distribution of activities in different classes on
the same site. In other words, the change of one variable impacts the values
of all other variables. To circumvent this difficulty, we approximate solution
by further formulating this problem as a sequential game [19] in which players
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Figure 3: Sequential game theory-based allocation data flow.

select a strategy following a certain predefined order and observe the moves of
the players who preceded them. Although the optimal solution is not directly
achievable, we derive intermediate solutions in a set of game stages, based on
the following inequality sequence:

A∑
k=1

f
ST(1)
k

(
∆ST(0)

)
≥

A∑
k=1

f
ST(2)
k

(
∆ST(1)

)
≥ . . . ≥

A∑
k=1

f
ST(l)
k

(
∆ST(l−1)

)
≥

A∑
k=1

fk (∆∗) ,

(6)

where ST denotes the stage of the sequential game, and ST (l) the lth game
stage. At each stage, the players (managers of activity classes) provide a set
of strategies (activity distributions) based on the allocation of resources in the
last stage, and generate the new allocations by using Equation 2.

The first step in the sequential game is to initialize the distribution of ac-
tivities ∆ST(0). Every activity class is allocated a set of processors based on
the processing rate on each site. At the initial stage ST (0), every activity class
assumes that all processors are available to it:

δ
(k)
i = δ(k) · β

(k)
i

β(k)
= δ(k) ·

mi
p
(k)
i∑M

y=1
my

p
(k)
y

. (7)

From Equation 7, we have the initial activity distribution ∆ST(0).

The resource allocation of the lth stage ΘST(l), where Θ =
(
θ

(k)
i

)
A×M

is

the resource allocation matrix, is calculated based on the activity distribution
of the last stage ∆ST(l−1). Accordingly, the activity distribution of the lth stage
∆ST(l) is calculated based on the resource allocation of lth stage ΘST(l). These
steps fully embody the idea of a sequential cooperative game. From Equation 2
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Figure 4: Game-quick makespan scheduling example.

and Equation 5, we can derive as also shown in Figure 3:

ΘST(l) = Θ
(

∆ST(l−1)
)

; (8)

∆ST(l) = ∆
(

ΘST(l)
)
. (9)

3.2. Game-quick algorithm

In this section we present an algorithm called Game-quick which implements
the game theoretical makespan scheduling method formalized in the previous
section. We accompany our presentation by a small example depicted in Fig-
ure 4a. The first ETC matrix presents the expected execution times of four
activities {a0, a1, a2, a3} on four sites {s0, s1, s2, s3}. For the sake of clarity, we
restrict in this example the size of each site to one processor only.

The Game-quick algorithm depicted in pseudocode in Algorithm 1 receives
as input a set of applications AS consisting of a workflow of activity classes
conforming to our model introduced in Section 2.1. The algorithm has an out-
ermost sequential loop (lines 2–19) that iteratively applies the cooperative game
theoretic algorithm to the activity classes ready to be executed in three phases.

Phase 1. After adding the activity classes ready to be executed to the set of
players GP (lines 3–5), we generate an initial distribution of activities ∆0 and
a weight matrix (see lines 3–11), as shown in Figure 4a. In this case, the two
matrices are identical because we only have one processor on each cluster and
one activity in each class. In this phase, users are also allowed to set perfor-
mance constraints or to filter undesired sites by simply setting the weights of
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Algorithm 1 Game-quick makespan scheduling algorithm.
Require: AS: set of applications; A: number of activity classes; M = number of sites; mi: number

of processors on site si(i ∈ [1..m]);
(
p
(k)
i

)
A×M

: ETC matrix; δ(k): number of activities of class

k(k ∈ [1..A]); ε: optimization threshold;

Require: sli: storage limit of site si(i ∈ [1..M ]); sr(k): storage requirements of activity class
ACk(k ∈ [1..A]); // Optional parameters for the Game-storage algorithm (see Algorithm 3)

Ensure: ∆ST(l): activity distribution matrix; ΘST(l): resource allocation matrix
1: GP ← ∅ // initialize the set of game players
2: repeat
3: for all AP ∈ AS do // Phase 1: Initialize ∆0 and the weight of activity classes; optionally

apply constraints
4: for all ACk ∈ AP ∧ ACk not yet scheduled ∧ (pred (ACk) = ∅ ∨ (ACj is completed,
∀ ACj ∈ pred (ACk))) do // Take the next not scheduled activity class

5: GP ← GP ∪ ACk// Add ACk to the set of game players
6: for all i ∈ [1..M ] do // For every site si

7: Calculate w
(k)
i by applying Equation 3

8: Calculate δ
(k)
i by applying Equation 5 to build ∆0

9: end for
10: end for
11: end for
12: repeat // Phase 2: search the final distribution of activities and allocation of resources

13: Calculate ΘST(l) =
(
θ
(k)
i

)
|GP|×M

by applying Equation 8

14: Θ ← Game-storage(Θ,∆,m, sr , sl, p) // Optionally apply storage constraints by call-
ing Algorithm 3

15: Calculate ∆ST(l) =
(
δ
(k)
i

)
|GP|×M

by applying Equation 9

16: until
∑|GP|
k=1

(
t(k)

(
∆ST(l−1)

)
− t(k)

(
∆ST(l)

))
≤ ε

17: wait for an activity class to complete
18: GP ← GP−AC, ∀AC ∈ GP∧AC completed // Phase 3: remove completed activity classes

and repeat Phases 1-2
19: until ∀ AP ∈ AS completed

the applications for these sites to zero which prevents mapping of any activities
to those sites. To assure that all constraints are satisfied, they can be verified
again in the third phase.

Phase 2. Every iteration of the repeat loop (lines 12–16) is one game stage,
where every stage consists of M sub-games (i.e. one per site). In each sub-game,
all activity classes compete for resource allocation and those with relatively
large weights win the sub-game on one site and obtain more resources in the
next stage. These activity classes, however, cannot win everywhere due to the
weight definition (i.e. the weight sum of one activity class is 1), therefore,
winners of the sub-game on one site must be losers on other sites and vice-
versa. This process repeats until no more performance can be gained. The
further processing of the algorithm depends on the evaluation result at line 16:∑A
k=1

(
t(k)

(
∆ST(n−1)

)
− t(k)

(
∆ST(n)

))
> ε, where ε can be used to control the

number of stages and the degree of optimization. The input and output data
flow of each game stage has been shown in Figure 3. More specifically, we apply
Equation 8 at line 13 to generate the first resource allocation matrix ΘST(1) (see
also Figure 4a). Based on ΘST(1), we use Equation 9 at line 15 to generate the
first activity distribution ∆ST(1). Thereafter, we repeat the iteration until we
reach the upper limit of optimization. In addition, we can use ε to control the
number of stages.
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Figure 5: Game-quick convergence.

Phase 3. Finally, the earliest completed activity classes are eliminated. To
utilize the released resources by the completed activity classes, we repeat the
first two phases to recompute the distribution of the remaining classes until all
applications are completed.

3.3. Convergence

The Game-quick convergence is very fast, as shown in Figure 5. For this
experiment, we randomly generated five examples that assign 102 × 104 activ-
ities to 102 × 102 processors. Within 30 − 40 stages, more than 90% of them
complete the optimization process (of 600 stages in total). The reason for the
fast convergence is that, to some extent, every activity class is a winner on
certain sites and can achieve a performance improvement. At the beginning
of a game, every activity class moves its workload to the sites that are more
efficient for them and bargain for resources. If they cannot successfully bargain
and get more resources, they move the workloads to less powerful sites. Fi-
nally, all activity classes reach a balance when no further improvement can be
achieved. The difference in the makespan is explained by the different problem
sizes generated.

3.4. Comparison with related algorithms

Figure 4a presents a small example in which Game-quick outperforms six
well-known list scheduling heuristics designed for makespan minimization of N
activities onto n processors (see Figure 4b), categorized in two classes:

O(n · N) complexity algorithms. [20, 21] iterate once over the list of activities
and schedules them as follows: Minimum Execution Time (MET) assigns each
activity to the machine that delivers its minimum execution time; Minimum
Completion Time (MCT) assigns each activity to the machine that delivers its
minimum completion time; Opportunistic Load Balancing (OLB) minimizes the
global load imbalance without considering the activity execution time.

12



CPUs
Inconsistent Consistent

AC1 AC2 Game- Min- Max- AC1 AC2 Game- Min- Max-
quick min min quick min min

S1 : P1 15 8 8, 9 8, 15 15, 8 15 9 9, 9 9, 15 15, 9
S1 : P2 15 8 8, 9 8, 15 15, 8 15 9 9, 9 9, 15 15, 9
S1 : P3 15 8 8, 15 8, 15 15, 8 10 8 10, 10 8, 10 10, 8
S1 : P1 10 9 10, 10 9, 10 10, 9 10 8 10, 10 8, 10 10, 8
S1 : P2 10 9 10, 10 9, 10 10, 9 10 8 10, 9 8, 10 10, 8

Makespan 20 23 23 19 24 24

Table 2: Game-quick, Min-min, and Max-min comparison for small-sized ETC matrices.

O(n · N2) complexity algorithms. [22, 23] iterate over all activities before se-
lecting one for scheduling according to the following criteria: Min-min selects
the activity with the shortest minimum completion time; Max-min selects the
activity with the largest minimum completion time; Sufferage selects the activ-
ity with the largest difference between the fastest and second fastest minimum
completion times. The selected activity is assigned to the machine that delivers
its earliest completion time.

For our example in Figure 4b, Game-quick gives a makespan of 18 which
is also optimal, Min-min gives a makespan of 20, Max-min and Sufferage give
a makespan of 19, and MCT performs the worst and gives a makespan of 25.
MET assigns all tasks to s3 and gives the worse makespan of 49, hence, we do
not show its mapping. Figure 4a presents the intermediate data generated by
Game-quick for this scenario. The algorithm completes at stage 29 if ε = 0.1
and at stage 731 if ε = 0. For the experiments in this study, we set ε to zero.

To further compare the quality of the Game-quick solutions against the
absolute optimum, we consider a small-sized problem consisting of two sites with
three respectively two homogeneous processors each, and two activity classes
containing five activities each. We use in our simulation both consistent matrices
and inconsistent matrices, outlined in Table 2. The solution delivered by Game-
quick is optimal in both cases, while Min-min and min-max deliver equal results
for inconsistent matrices and worse results for the consistent cases. However,
as we will demonstrate in the following sections, Min-min and Max-min require
significantly longer scheduling times, especially in the case of large problems.

3.5. Complexity

The time complexity of Game-quick is O(l ·A ·M) corresponding to the three
algorithm nested loops (lines 2, 3, and 6 in the first phase of Algorithm 1),
where l is the number of stages of the sequential game, A is the number of
activity classes, and M is the number of sites, respectively (the work performed
within each stage is constant). The second phase does not have an impact on
the complexity, since the work performed in each stage is constant and depends
linearly on the number of sites and on a small number of game players only. Most
importantly, the complexity is independent of the total number of activities,
which is a huge advantage against other related approaches.

For empirical evidence, Table 3a displays the number of stages and the exe-
cution time of Game-quick for different computational resource and application

13



Sites × Classes × No. Game-quick Min-Min
No. proc.Activities/classStages [millisec.] [millisec.]
10× 10 10× 10 310 2 15
10× 10 10× 100 334 2 22
10× 102 102 × 103 476 23 3.109
10× 102 102 × 104 484 25 29.512
102 × 102 102 × 103 597 362 485.597
102 × 102 102 × 104 593 362 > 1 hour
102 × 102 103 × 103 632 11.065 > 1 hour
102 × 102 103 × 104 627 11.856 > 1 hour

(a) Game-quick stages and execution times.

Algorithm Time Exec. time
complexity [seconds]

Game-quick O(l · A ·M) < 0.4
MET O(m+N) < 1

OLB, MCT O(m ·N) 2− 3
Min-min (et al.)O

(
m ·N2

)
200− 300

GA-based poor � 200− 300
A∗ exponential� 200− 300

(b) 105 activities and 103 processors.

Table 3: Algorithm complexity and execution time analysis.

sizes on a Dual Core Opteron 880 2.4 gigahertz processors and 16 gigabytes of
memory. We can observe that Game-quick scales well with the computational
resource size, since the number of game stages does not increase as fast as the
number of processors and activities. Even for 106 activities and 104 processors,
the algorithm only needs 593 stages and 0.36 seconds to complete the opti-
mization, in contrast to the algorithms from the Min-min family which need
more than one hour. Based on this empirical analysis, we use for Game-quick a
maximum number of 1000 iterations that proves to be sufficient for convergence.

Table 3b shows more empirical results comparing Game-quick with MET,
MCT, OLB, Min-min, Max-min, and Sufferage for scheduling 105 activities to
103 processors. The execution time of Game-quick is less than 0.3 seconds, while
other algorithms might need several hours to generate comparable solutions.
The exception is MET which has asymptotic complexity of O(m + N), where
m is the number of processors and N is the number of activities (N � A), and
executes for less than one second. However, the results of MET have serious
problems because it serializes most activities on the fastest site. OLB and MCT
have asymptotic complexity of O(m ·N), but their results are much worse than
of Game-quick. Min-min, Max-min, and Sufferage have asymptotic complexity
of O

(
m ·N2

)
and execute for an average of 200− 300 seconds.

Other algorithms such as the Heterogeneous Earliest Finish Time (HEFT) [24]
algorithm degrade to Min-min for large-scale and simple-dependency applica-
tions. Genetic algorithm (GA)-based [9, 25] or A* [26] solutions scale poorly
as the number of activities and processors increases, and their execution times
are significantly higher than other algorithms (although they can decrease the
makespans of Min-min by 5% to 10%, according to related work [9]). Other
algorithms are similar to the ones discussed above or are not applicable to our
problem, for example the Work Queue [27] suited for homogeneous clusters.

3.6. Experiments

In this section we evaluate through simulation the performance of Game-
quick against related algorithms for different ETC matrices generated according
to different degrees of machine and activity heterogeneity parameters selected
from a uniform distribution in the specified ranges. Table 4 presents the de-
tails of the simulated environment. High machine heterogeneity in the range of
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Config. No. No. No. Activity Activity Machine
Procs. Clusters Activ. Classes Heterog. Heterog.

HiHi 900 10 157118 10 [1, 1000] [1, 100]
HiLo 989 10 147871 10 [1, 1000] [1, 10]
LoHi 900 10 149731 10 [1, 10] [1, 100]
LoLo 1048 10 168208 10 [1, 10] [1, 10]

(a) Consistent environment.

Config. No. No. No. Activity Activity Machine
Procs. Clusters Activ. Classes Heterog. Heterog.

HiHi 982 10 131298 10 [1, 1000] [1, 100]
HiLo 955 10 153395 10 [1, 1000] [1, 10]
LoHi 955 10 173418 10 [1, 10] [1, 100]
LoLo 1007 10 150156 10 [1, 10] [1, 10]

(b) Inconsistent environment.

Table 4: Makespan scheduling simulation environment.

[1..100] causes a significant difference in activity execution times across sites,
while high activity heterogeneity in the range of [1..1000] indicates that the
expected execution times of different activities vary largely. We assume that
the number of activities is randomly generated based on a uniform distribution
in the range of [10000..20000], and that the number of processors on each site
varies in the range of [64..128]. The activity classes are organized in workflows
by having 10% dependence probability between each pair or activity classes and
excluding cycles. We choose not to simulate larger application and computa-
tional resource sizes because of two reasons: (1) the complexity of the algorithms
from the Min-min family that need several hours to complete making our entire
simulation difficult; and (2) enlarging the simulation size will only increase the
advantage of our game theoretic algorithm over the related heuristics.

We use two ETC simulation models: (1) consistent represents that, if a
site A executes an activity faster than site B, then A executes all activities
faster than B; and (2) inconsistent when the site A might be faster than B
for some activities and slower for some others [9]. We evaluate our algorithm
in four scenarios: high activity and high resource heterogeneity (HiHi), high
activity and low resource heterogeneity (HiLo), low activity and high resource
heterogeneity (LoHi), and low activity and low resource heterogeneity (LoLo).

Figure 6a shows the execution times of the algorithms which do not vary
for consistent and inconsistent matrices, ranked from the fastest to the slowest
as follows: Game-quick, MET, OLB, MCT, Min-min, Max-min, and Sufferage.
In the next subsections we discuss the performance of all algorithms from the
worst to the best in the consistent and inconsistent scenarios. To quantify the
fairness of the algorithms, we use the Jain’s fairness index [28]:(∑|AS|

i=1 Ti

)2

|AS| ·
∑|AS|
i=1 T 2

i

, (10)

where |AS| is the number of applications and Ti is the execution time of appli-
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Figure 6: Game-quick scheduling results for consistent scenarios, 105 activities and 103 pro-
cessors.

cation APi. The fairness ranges from zero indicating the worst fairness, to one
indicating the best fairness.

3.6.1. Consistent heterogeneity

Table 4a presents the input of four consistent heterogeneous scenarios and
Figures 6b and 6c the corresponding simulation results considering the makespan
and the fairness objectives. MET always gives the worst results because it maps
all activities to the fastest machine. OLB usually performs the second worst be-
cause it selects resources without considering the activity execution time. Max-
min gives poor results because it only fits the situation when a small number
of activities are much larger than the others, which is never encountered in our
simulated environment generated using uniform distributions. In addition, Max-
min offers no fairness to smaller activities, hence, it performs worse than most
algorithms. MCT performs quite well for high machine heterogeneity scenarios
because it has a higher likelihood for selecting the fastest machine, especially
for large activities, and poorly for low machine heterogeneity scenarios because
it only considers the completion time and ignores the activity execution time.
Sufferage performs quite similar to MCT for high machine heterogeneity and
5%−10% better for low machine heterogeneity scenarios because it makes more
intelligent decisions by considering the activity execution time. Min-min gives
the second best results in each case due to the uniform distribution of activity
execution times, but looses fairness because of handling the smallest activities
first. Game-quick provides the best performance in all scenarios because it takes
the best global decisions. It performs about 10% better than Min-min for the
LoHi scenario, and 5% better for the other three. We can see that when fairness
is ensured, the efficiency is also improved. We can further observe in Figure 6c
that Game-quick always achieved almost perfect fairness of 0.99 in average.

3.6.2. Inconsistent heterogeneity

Table 4b presents the input of the four inconsistent scenarios investigated
and Figure 7 depicts the results. In all four cases, MET gives the worst results
because it maps most activities to the few fastest sites. MET could perform
better than OLB when the fastest sites for different activity classes are evenly
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Figure 7: Game-quick scheduling results for inconsistent matrices.

distributed, however, this special case rarely occurs. OLB, Max-min, MCT,
and Sufferage perform worse for inconsistent than for consistent scenarios due
to their design that cannot effectively handle the high heterogeneity of machines
in inconsistent environments. In contrast, Min-min performs better for incon-
sistent than for consistent scenarios because the fastest machines are allocated
evenly. Thus, Min-min is able to assign more activities to the fastest machines,
though it also does not intentionally handle the change of the environment.
Game-quick still provides the best mapping for the inconsistent cases for the
same reason as for consistent scenarios.

3.7. Real-world experiments

In this section we report on the evaluation of the Game-quick algorithm
for the WIEN2k and ASTRO scientific applications introduced in Section 2.2
and executed in the Austrian Grid. Our experimental testbed depicted in Ta-
ble 5 consists of four parallel machines located at the University of Innsbruck,
Salzburg, and Linz. We first evaluated the performance of Game-quick by com-
paring the makespan and the fairness of the computed scheduling plans against
Min-min, which outperforms the other related heuristics for scheduling these
two particular applications. The scheduling plans are matched by the real exe-
cutions due to the proven accuracy of our prediction service [10, 11]. As shown
in Figure 8a, Min-min gives a makespan of 258 and a fairness of 0.9466 which
were improved by Game-quick by 12.17% and 5.42%, respectively (see Fig-
ure 8b). The fairness of Game-quick is almost perfect (0.9979). Finally, we can
intuitively observe that the activities are highly interleaved in the Gantt chart
produced by Min-min, which makes their completion time hard to predict. Con-
trarily, Game-quick yields an execution plan in which activities belonging to the
same class are grouped in contiguous slots on the same sites which makes their
execution more predictable.
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Site Name Size Architecture CPUs Clock Resource Price Location
[GHz] Manager [units/hour]

S1 karwendel Cluster Operton 880 4(52) 2.4 SGE 4 Innsbruck
S2 hc-ma COW Opteron 4(8) 2.2 SGE 2 Innsbruck
S3 schafberg Cluster Itanium 2 4(16) 1.6 Fork 2 Salzburg
S4 altix1 ccNUMA Itanium 2 4(64) 1.6 PBS 1 Linz

Table 5: The Austrian Grid testbed.
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Figure 8: Makespan scheduling for two real applications.

4. Cost scheduling

In this section, we apply the same cooperative game theoretic principles for
economic cost scheduling, while guaranteeing a deadline.

Definition 4. Suppose we have multiple large-scale applications consisting of
a set of activities which can be categorized into A classes defined according to
Definition 1. Suppose we have a set of M sites where each site has mi homo-
geneous processors and a price per time unit ϕi, i ∈ [1..M ]. The objective of
the cost scheduling problem is to find a schedule that assigns the activities to

sites such that the total cost
∑M
i=1

∑A
k=1 t

(k)
i · ϕi is minimized, where t

(k)
i is the

remaining execution time of activity class ACk on site si and ϕi is the price per
time unit of site si, and the deadline dk of each activity class is guaranteed.

To solve this problem, we introduce a cost scheduling algorithm consisting of
two steps. The first step (see Section 4.1) is to assign deadlines to activity classes
and to partition applications. The second step (see Section 4.3) is to apply a
new cost scheduling algorithm called Game-cost to each partition, based on a
similar idea as Game-quick. Similar as for the makespan scheduling, we assume
the availability of an ETC matrix which delivers the expected execution time

p
(k)
i of activities in each class k ∈ [1..A] on each site si, i ∈ [1..M ].

4.1. Partitioning

Partitioning an application into smaller partitions and assigning them to
different games are the two key steps in the design of our cost scheduling al-
gorithm. Our partitioning method uses a static deadline assignment method
called effective deadline [29, 30] in which the deadline of any activity is the
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Figure 9: Sample partitioning of a cost scheduling game.

overall application deadline minus the total expected execution time of its sub-
sequent activities. Figure 9 presents one deadline assignment and partitioning
example of an application consisting of four activity classes. According to the
specified deadline and work amount of each activity class, four deadlines d1,
d2, d3, and d4 are assigned to the partitions P1, P2, P3, and P4 by using the
effective deadline method. Thereafter, we sort the deadlines and identify game
phases between two adjacent deadlines. In case a partition spawns across mul-
tiple phases such as P3 in Figure 9, we split the work evenly between phases. In
this example, the scheduling process is divided into three game phases, where
phase one ranges between 0 and d1, phase two between d1 and d2, and phase
three between d2 and d3 (where d3 = d4). After partitioning the application,
we apply our cost scheduling algorithm on each game phase independently.

4.2. Formulation

Similar to Game-quick, we model the cost scheduling problem as a A-player
cooperative game in which A application managers as players attempt to min-
imize the costs of their own activity class, which depends on the number of
activities in the class δ(k) and their predicted execution time p(k), while guar-
anteeing a deadline. The objective function for each manager k ∈ [1..A] is:

fk(∆) = ck(∆) =

M∑
i=1

p
(k)
i · δ

(k)
i · ϕi, (11)

where ∆ =
(
δ

(k)
i

)
A×M

is the activity distribution matrix representing the num-

ber of activities from each class k scheduled to each site si, ck(∆) is the cost of
executing the activity class ACk given the distribution ∆, and ϕi is the price per
time unit of site si. The distribution matrix represents the players’ strategies.

When achieving the best price/performance ratio, the following deadline con-

straint for the activity distribution δ
(k)
i and resource allocation θ

(k)
i of activity
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class ACk on site si must hold:

dphase ≥
δ

(k)
i · p

(k)
i

θ
(k)
i

, (12)

where dphase is the deadline of the current phase.
The embodiment of payoff in our cooperative game is the resource alloca-

tion matrix Θ =
(
θ

(k)
i

)
A×M

representing the number of processors on site si

allocated to each activity class ACk according to following equation:

θ
(k)
i (∆) = mi ·

δ
(k)
i · p

(k)
i · cw

(k)
i∑A

x=1 δ
(x)
i · p(x)

i · cw
(x)
i

, (13)

where cw
(k)
i is the importance weight of site si for activity class ACk:

cw
(k)
i =

1

ϕi·p(k)i∑M
y=1

1

ϕy·p(k)y

. (14)

We use this importance weight to improve the fairness of resource allocation
because one site may have preferences over a certain set of activity classes.

Definition 5. The solution of the cost scheduling cooperative game is deter-

mined by solving the following minimization problem: min
{∑A

k=1 (ck(∆))
}

that

satisfies all phase deadline constraints:

max
ACk∈phase

{
t(k)(∆)

}
= max
ACk∈phase

 δ(k)∑M
i=1

θ
(k)
i

p
(k)
i

 ≤ dphase , (15)

where t(k) is ACk’s remaining execution time.

Similar to Game-quick, the direct and exact solution to this optimization
problem is difficult to obtain. We therefore model it as a sequential game based
on following decreasing sequence:

A∑
k=1

c
ST(1)
k

(
∆ST(0)

)
≥

A∑
k=1

c
ST(2)
k

(
∆ST(1)

)
≥ . . . ≥

A∑
k=1

c
ST(l)
k

(
∆ST(l−1)

)
≥

A∑
k=1

ck (∆∗) ,

(16)

with the termination condition specified as follows:

A∑
k=1

c
ST(l+1)
k

(
∆ST(l)

)
≥

A∑
k=1

c
ST(l)
k

(
∆ST(l−1)

)
, (17)

meaning that Game-cost cannot reduce costs any more.
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Algorithm 2 Game-cost scheduling algorithm.
Require: P: set of partitions; A : number of activity classes; M : number of sites; mi: number of

processors on site si(i ∈ [1..m]);
(
p
(k)
i

)
A×M

: ETC matrix; δ(k): number of activities of class

k(k ∈ [1..A]); ϕi: price per time unit of site si(i ∈ [1..M ]); dphase : deadline of current phase;

Require: sli: storage limit of site si(i ∈ [1..M ]); sr(k): storage requirements of activity class
ACk(k ∈ [1..A]); // Optional parameters for the Game-storage algorithm (see Algorithm 3)

Ensure: ∆ST(l): activity distribution matrix; ΘST(l): resource allocation matrix
1: Phase 1: sort sites for each activity class by increasing performance/price ratio
2: GP ← ∅
3: for allACk ∈ P do // Phase 2: initialize ∆ST(0) and the weights of activity classes; optionally

apply constraints
4: GP ← GP ∪ ACk // Add ACk to the set of game players
5: for all si ∈ Grid in sorted order do

6: Calculate cw
(k)
i by applying Equation 14

7: δ
(k)
i ←

mi·dphase

p
(k)
i

8:
9: if δ

(k)
i > δ(k) −

∑i−1
j=1 δ

(k)
j then δ

(k)
i ← δ(k) −

∑i−1
j=1 δ

(k)
j

10: end if
11: end for
12: end for
13: repeat// Phase 3: search the final distribution of activities and the allocation of resources

14: Calculate ΘST(l) =
(
θ
(k)
i

)
|GP|×M

by applying Equation 18

15: Θ ← game-storage(Θ,∆,m, sr , sl, p) // Optionally apply storage constraints by applying
Algorithm 3

16: Calculate ∆ST(l) =
(
δ
(k)
i

)
|GP|×M

by applying Equation 19

17: if max
k∈phase

{tk(δ)} > dphase then continue // Deadline is not met

18: end if

19: until
∑A
k=1

(
ck

(
∆ST(l−1)

)
− ck

(
∆ST(l)

))
≤ ε

According to Equations 12 and 13, the resource allocation matrix in the lth

stage denoted as ST (l) is calculated based on the distribution of the last stage
ST (l − 1) and can be further used to produce the new distribution matrix in
the same stage:

ΘST(l) = Θ
(

∆ST(l−1)
)

; (18)

∆ST(l) = ∆
(

ΘST(l)
)

=
dphase · θ(k)

i

p
(k)
i

. (19)

4.3. Game-cost algorithm

The Game-cost algorithm outlined in pseudo-code in Algorithm 2 receives
as input a set of partitions, the expected execution time p(k) and the number
of activities δ(k) in each activity class ACk, the number of processors mi and
the price per time unit ϕi of each site si, as well as the deadline of the current
phase dphase . The algorithm consists of three phases.

Phase 1. The sites are first sorted according to the price/performance ratio for
each activity class. In Figure 10, the ordered set of sites for activity classes AC0

and AC1 is {s1, s0} in both cases.
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Figure 10: Game-cost example.
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Figure 11: Game-cost convergence.

Phase 2. We add each activity class from the current partition to the set of
players and sequentially compute the initial distribution of activities ∆ST(0)

from the fastest to the slowest site in terms of price/performance ratio.

Phase 3. The algorithm searches for the optimal distribution of activities and
allocation of resources. At the beginning, activity classes are competitors on
the site with the highest price/performance ratio. After the competition of one
stage, winners get more processors from one resource and in the next stage losers
compete for resources with the second highest price/performance ratio. This
process repeats until no more costs can be reduced (i.e. 47 stages in Figure 10).
However, in case of some tight deadlines and non-backtracking nature of the
algorithm, it might not be possible to meet the deadlines for all activity classes.
This happened for less than 1% of the involved activities in our study.

4.4. Convergence

The Game-cost convergence process is very fast as shown in Figure 11 with
few numbers of stages due to deadline constraint limits. In this experiment, we
randomly generated five examples by assigning 102× 104 activities to 102× 102

processors. The optimization almost completed after about 20 − 30 stages,
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No. No. No. Activity Activity Machine Price
Procs. Clusters Activities Classes Heterog. Heterog. Heterog.
1023 10 13272 10 [1, 10] [1, 10] [1, 10]

Table 6: Cost scheduling simulation environment.

while the entire processes needed about 50 stages for this problem size. We
can also observe that the Game-cost convergence curves can vary depending
on the competition process and execution environment, exhibit some peaks and
troughs, and the total cost declines. The cost grows fast in the beginning to
meet the deadline, then slows down and flattens until it reaches a peak. The
first peak means the completion of the competition on the site with the highest
price/performance ratio. After the peak, the execution cost starts to decline
very fast because many activities are moved to the site with the second highest
price/performance ratio, and reach a trough. This process repeats until no more
optimization can be achieved and all activity classes can meet their deadline.
The number of peaks and peak sizes in graphs varies for different cases based
on many factors such as prices, deadlines, number of tasks, and initial state of
scheduling. Each peak means that the scheduling algorithm re-initialises the
competition on one computing site due to violation of constraints. For example,
too many tasks are distributed to the computing site due to the competition in
the previous sites.

4.5. Complexity

The Game-cost time complexity is O(l · A ·M) and the space complexity
is O(A ·M), where l is the number of game stages, A the number of activity
classes, and M the number of sites. Based on the empirical convergence analysis
from Section 4.4 we use a maximum of 100 stages for the Game-cost algorithm
which proves to be sufficient for convergence.

4.6. Experiments

In this section we compare the results delivered by the Game-cost algorithm
with the MCT, OLB, Min-min, Max-min, and Sufferage heuristics modified and
extended to incorporate cost and deadline control. Each time an machine is
evaluated for an activity, the feasibility of the deadline is also computed. For
Min-Min algorithm, in case multiple activities have the same shortest minimum
completion time at one iteration, the activity with the highest cost weight is
selected. The same selection mechanism is performed for the Max-Min and
Sufferage algorithms, too. We performed the experiments in a simulated envi-
ronment summarized in Table 6, where the expected execution times of activities
are generated based on activity and machine heterogeneity, which are selected
from a uniform distribution in the specified ranges.

The simulation results displayed in Figure 12 illustrate the following rela-
tive cost order of algorithms from best to worst: Game-cost, MCT, Sufferage,
Min-min, Max-min, and OLB. Game-cost finds mappings whose costs are bet-
ter than MCT by 27%, better than Sufferage by 45%, and better than other
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Figure 12: Cost scheduling results.

algorithms by at least 50%. OLB gives the worst results, because there is no co-
operation between different activity classes, and the resources are selected based
on their availability without considering activity execution time and prices of
sites. Max-min gives poor results because it only fits the situation when some
activities are much larger than the others, which is a very special situation sel-
dom encountered in practice. In contrast to Max-min, Min-min only handles
the smallest activities and ignores lager ones. However, the smallest activities
are not the ones with the best performance/price ratio and, therefore, Min-min
cannot perform well. Sufferage performs quite similar to Min-min due to similar
reasons. MCT performs well, giving the second best results because it uncon-
sciously selects activities with average sizes, and there is a larger likelihood that
those activities statistically have the best performance/price ratio. Moreover,
Game-cost algorithms can be combined with Game-quick to avoid problem when
deadlines cannot be met. First, Game-quick is invoked to schedule the appli-
cations to meet the deadlines, and then the results are used as the input to
Game-cost. This problem frequently occurs when for relatively short deadlines.

4.7. Real-world experiments

Similar as for the Game-quick algorithm, we evaluated Game-cost for the
WIEN2k and AstroGrid scientific applications introduced in Section 2.2 and
executed in the Austrian Grid. Our experimental testbed depicted in Table 5
consists of two clusters located at the University of Innsbruck and the University
of Linz. Figure 13a and 13b present a scenario in which Game-cost outperforms
Min-min (the fastest algorithm among the others for these two applications) in
terms of cost, at the expense of a slightly larger makespan within the requested
deadline. The reason for the higher makespan is the contradicting nature of
the two objectives (makespan and cost), meaning that improving one of them
automatically worsens the other. Intrusting is the fact that Game-cost schedules
no activities on karwendel, which is the fastest and most expensive site in our
environment. In this case, Min-min gives a cost of 7689 and a fairness of 0.9427,
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Figure 13: Cost scheduling for two real applications.

which were improved by Game-cost by 45.35% and 5.82% respectively, while
still keeping the makespan below the 300 second deadline. Once again, the
fairness of Game-cost is almost perfect (0.9976). Similarly to Game-quick, we
can intuitively observe that in case of Min-min the application activities are
highly interleaved in the Gantt chart which makes their completion time hard
to predict. Contrarily, Game-cost yields an execution plan in which activities
belonging to the same class are grouped in contiguous slots on the same sites
which makes their execution more predictable. The few process idling gaps
in the Gantt chart are caused by the join synchronization of activity classes
executions in the application control-flow and data-flow structure.

5. Storage-aware scheduling

In this section, we describe two storage-aware extensions to the performance
and cost scheduling algorithms described in the previous two sections.

5.1. Storage-aware makespan scheduling

We first introduce a storage-aware makespan scheduling algorithm called
Game-storage as an extension to Game-quick. The main idea of this method is
to accumulate the optimization effects within many game stages until a certain
load and storage supply and demand balance among activity classes is achieved.
If there is enough storage for all activity classes, the storage supply will never
be broken and Game-storage naturally degrades to Game-quick.

Definition 6. The objective of the storage-aware makespan scheduling problem
is to minimize the aggregated makespan of a set of large-scale applications as
expressed by Definition 2, while additionally fulfilling the storage constraints
expressed by the following condition:

A∑
k=1

sr (k) · θ(k)
i < sl i, (20)
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Algorithm 3 Game-storage function.
Require: Θ: resource allocation matrix; ∆: activity distribution matrix, mi: number of processors

of site si; sli: storage limit of site si(i ∈ [1..M ]); sr(k): storage requirements of activity class

ACk(k ∈ [1..A]);
(
p
(k)
i

)
A×M

: ETC matrix

Ensure: Θ: new resource allocation matrix
1: function Game-storage(Θ,∆,m, sr , sl, p)
2: for all ACk ∈ AP do
3: Calculate all sw(k) by applying Equation 21
4: end for
5: for all ACk ∈ AP do
6: for all si ∈ Resources do

7: while
∑A
k=1 sr(k) · θ(k)i > sli do // Storage requirements are not fulfilled

8: Recalculate θ
(k)
i by applying Equation 22

9: end while
10: end for
11: end for
12: end function

where C is the number of activity classes, sr (k) the storage requirements of

activity class ACk, θ
(k)
i the available processors for activity class ACk on site

si, and sl i the storage limit on site si.

In the beginning of the algorithm, Game-storage uses the same weight defini-
tion as Game-quick (see Equation 3) to generate positive impacts on the results
of every game stage and enhance the fairness of allocation, because one site has
different suitability for different activities. When a storage problem is detected,
the algorithm uses the following adapted storage weight as the normalized value
of expected storage requirements to adjust the resource allocation:

sw (k) =
1

sr(k)∑A
x=1

1
sr(x)

, (21)

where sr (k) denotes the storage requirement of activity class ACk. In both
phases, the intermediate variable is the resource allocation matrix Θ represent-
ing the number of processors on each site allocated to each activity class, which
accepts the effects from the weights and transfers the effects to the activity dis-
tribution matrix ∆, representing the activity distribution on each site for each
activity class. At each stage, we recalculate the resource allocation based on
previous results by applying the following equation:

θ
(k)
i = mi ·

δ
(k)
i · p

(k)
i · sw (k)∑A

x=1 δ
(x)
i · p(x)

i · sw (x)
(22)

(see Table 1). Through this phase, Game-storage can achieve the storage supply
and demand balance, and can expand the throughput of the whole computing
system by invoking Algorithm 3 at line 14 of Algorithm 1.

Figure 14 presents a scenario in which Game-storage outperforms other
heuristics such as MCT, Sufferage, Min-min, and Max-min [22, 23]. There
are two important input matrices in this figure: the expected execution time
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Figure 14: Game-storage example.
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Figure 15: Gantt-chart for the example in Figure 14 using different scheduling algorithms.

matrix for two activity classes AC0 = {a0, . . .} and AC1 = {a1, . . .} on two sites
{s0, s1}, and the storage requirement vector expressed in gigabytes. From both
inputs the we can generate the weight matrices.

We modified the Min-Min, Max-min, and Sufferage heuristics to operate
on activity classes with incorporated storage control that does not schedule an
activity on a site with not enough storage resources. For instance, Min-min
cannot schedule two activities of activity class AC0 on site s1 due to its storage
limit and therefore gives a makespan of 42 rather than 40. In this example,
Game-storage gives a makespan of 30 which is optimal, Min-min a makespan of
42, while Max-min, MCT and Sufferage a makespan of 38 (see Figure 15).

The convergence process of Game-storage is fast, as shown in Figure 16.
The number of stages is much lower than for makespan scheduling because the
storage constraints limit the convergence processes. The convergence curves can
vary depending on the competition process and execution environment, exhibit
some fluctuations, and the total makespan declines. The application makespan
decreases fast in the beginning, then slows down and has some fluctuations. The
fluctuations mean that the storage supply and demand balance on a certain site
is broken, and Game-storage needs to find a new balance on this site. After the
fluctuations, it starts to decline because many activities are moved to the site
with available storage resources. This process repeats until no more optimization
can be achieved, and the storage constraints are fulfilled.

The complexity of Game-storage is identical to that of Game-quick.
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Figure 16: Game-storage convergence.

No. No. of No. Activity Activity Machine Storage
Procs. Clusters Activities Classes Heterog. Heterog. Heterog.
1035 10 148690 10 [1, 1000] [1, 100] [1, 1000]

Table 7: Storage-aware scheduling simulation environment.

5.2. Storage-aware cost scheduling

Finally, we extend the cost Game-cost algorithm with storage constrains
based on a similar idea as for the Game-storage algorithm.

Definition 7. The objective of the storage-aware cost scheduling problem is to
minimize the cost of scheduling a set of large-scale applications as defined in
Definition 4, while fulfilling the storage constraints according to Equation 20.

The first algorithm phase is to assign deadlines to activity classes and to par-
tition the applications according to the assigned deadlines. Then, we apply our
cost scheduling algorithm on each partition as presented in Section 4. After ac-
quiring the information about activities and resources, we sort the resources for
every activity class, and generate an initial distribution of activities, cost weight
matrix, and storage weight vector. The difference between Game-cost and the
new Game-storage-cost algorithm is that the former does not consider storage
requirements for activities and storage limitations of sites. Game-storage-cost
degrades to Game-cost when there are enough storage resources. Specifically,
when storage problems are detected, we recalculate the resource allocation using
Algorithm 3 at line 15 of Algorithm 2. The convergence curves of Game-storage-
cost is similar to those of Game-cost. There are some peaks and troughs in the
graph, but is difficult to distinguish between the effects of cost constraints and
those of storage constraints. The time complexity of this Game-storage-cost is
O
(
l ·A2 ·M2

)
and the space complexity is O (A ·M), where l is the number of

game stages, A the number of activity classes, and M the number of sites.
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5.3. Experiments

Table 7 presents the simulated computing environment, where the real values
are randomly generated from a uniform distribution in the specified ranges.
Since consistent matrix and inconsistent matrix generate similar results, we only
present the results for inconsistent matrices that we consider more authentic for
modeling a realistic computing environment. As expected, the execution time
of Game-storage and Game-storage-cost is again significantly less than of the
related algorithms needing only 198 milliseconds to complete (see Figure 17a).
Not only are the time complexities lower, but Game-storage also gives the best
makespan as shown in Figure 17b. The relative order of the algorithms from
the best to worst is: Game-storage, Min-min, Sufferage, MCT, Max-min, OLB,
and MET, for similar reasons as presented in Section 3.6. In terms of fairness,
Game-storage always achieved almost perfect fairness of 0.99 in average, as
shown in Figure 17c. When there are no storage constraints on the sites, Game-
quick performs about 5 − 10% better than Min-min and Game-cost achieves
less costs than other algorithms by at least 28% (see Figure 17b). When there
are storage constraints, Game-storage improves the performance of multiple
workflows by at least 33%, and Game-storage-cost decrease costs by at least
74% (see Fig. 17d). Game-storage provides the best performance because makes
the best global decisions in terms of simultaneous performance and storage
optimization, while other heuristics can only find a compromise between the
two objectives when storage requirements cannot be fulfilled, resulting in a
potential waste of computing power. In terms of cost, Figure 17d illustrates
that all algorithms need approximately twice the cost of Game-storage-cost.

6. Related Work

Scheduling large-scale applications onto distributed computational resources
is one of the most important and difficult research topics in high performance
computing that led to the development of many different approaches and algo-
rithms. In this section we can therefore cover only a part of two important or
relevant areas of related work: large-scale application scheduling (Section 6.1),
fairness (Section 6.2) and game theoretic algorithms (Section 6.3). The work
described in this paper bridges these two categories.

6.1. Scheduling

The Directed Acyclic Graph Manager (DAGMan) [31] developed by the Con-
dor project allows scheduling of large-scale workflow applications using oppor-
tunistic techniques such as matchmaking based on resource offers, resource re-
quests, and cycle stealing with no support for advanced optimization heuristics.

The Grid Application Development Software (GrADS) project [4] contin-
ued the tradition of the AppLeS effort on developing techniques for scheduling
MPI, iterative, master-slave, and workflow applications. Workflow scheduling is
approached by adapting Max-Min, Min-Min, and Suffrage heuristics originally
developed for throughput scheduling of independent tasks. We proposed in this

29



111940

4192

37807 36227

140078

198
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 OLB  MCT Min-min Max-min Sufferage Game-
storage

Al
go

rit
hm

 e
xe

cu
tio

n 
tim

e 
[m

ill
is
ec
on

ds
]

(a) Algorithm execution time.

  20

  60
  80

  100
  120
  140
  160
  180
  200

OLB MCT Min-min Max-min Sufferage  Game-
storage

M
a
k
e
s
p
a
n
 r

a
ti
o
 t
o

G
a
m

e
-
s
to

r
a
g
e
 [
%

]

  40

Without constraints
 With constraints

(b) Makespan ratio to Game-storage.

F
a
ir

n
e
ss

  0.2

  0.4

  0.6

  0.8

  1

OLB MCT  Min-min  Max-min  Sufferage Game-storage
  0

(c) Game-storage fairness.

C
o
s
t 
r
a
ti
o
 t
o

G
a
m

e
-
s
to

r
a
g
e
-
c
o
s
t 
[%

]

  100

  150

50

  200

  250

  300

  350

  400

  0
OLB MCT Min-min Max-min Sufferage  Game-

storage

(d) Cost ratio to Game-storage-cost.

Figure 17: Storage-aware scheduling results.

paper an approach that proves to be more effective for the class of workflows
consisting of large numbers of homogeneous and independent activities.

The scheduler in Gridbus [32] provides just-in-time mappings using Grid
economy mechanisms. It makes scheduling decisions on where to place jobs on
the Grid depending on the computational resources characteristics and users’
Quality of Service (QoS) requirements. Yu and Buyya introduce in [33] a new
type of genetic algorithm for large-scale heterogeneous environments for which
the existing genetic operation algorithms cannot be directly applied. Due to
their high time complexity, genetic algorithms are not practical for large-scale
applications. The algorithm in [34] introduces economic cost as a part of the
objective function for data and computation scheduling, but does not consider
storage constraints and cannot globally solve the performance and cost opti-
mization problem.

A comparison of eleven heuristics is also presented by Braun et al. [9]. All
these methods, however, provide a centralized meta-scheduling approach in con-
trast to our distributed multi-application cost optimization method.

Casanova et al. [35] developed a task-graph scheduling heuristic for multi-
ple homogeneous clusters that provides performance guarantees. Our work is
different by targeting a heterogeneous Grid environment and an algorithm that
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scales to a huge amount of homogeneous tasks. Furthermore, we do not limit
our validation to simulations, but target real-world applications too.

Divisible loads are another class of applications that received significant
attention in previous works [36], where the main focus was on how to flexibly
partition an application into work chunks for minimizing the makespan (for
example through single round or multi round algorithms [37]), while taking into
consideration input/output communication overhead and connection latencies.
In contrast, the activities that are part of the application class considered in
this paper are atomic indivisible legacy codes.

Ramakrishnan et al. [38] solved the scheduling problem in a two-fold ap-
proach referred as storage-aware OLB in our experiments: (i) minimize the
amount of space an application requires during execution by removing data files
at runtime, and (ii) schedule the applications in a way which assures that the
amount of data required and generated by the applications fit into individual
resources. The algorithm does not consider fairness and cost.

6.2. Fairness

Fairness has been studied extensively and received various definitions for dif-
ferent problems and purposes in particular in the networking field through met-
rics such as TCP fairness, Max-min fairness, fairly shared spectrum efficiency,
or Jain’s fairness index. TCP fairness relates to congestion control mechanisms
and requires that a new protocol receive no larger share of the network than
a comparable TCP. Max-min fairness [39] is achieved by an allocation if and
only if the allocation is feasible and an attempt to increase the allocation of any
flow necessarily results in the decrease in the allocation of some other flow with
an equal or smaller allocation. In packet radio wireless networks, fairly shared
spectrum efficiency (FSSE) can be used as a combined measure of fairness and
system spectrum efficiency, which is the aggregate throughput in the network
divided by the utilized radio bandwidth. The FSSE is the portion of the system
spectral efficiency that is shared equally among all active users.

In parallel and distributed computing, fairness measures if activities or tasks
are receiving a fair share of resources. Different scheduling problems have been
defined and addressed such as online scheduling, workflow scheduling, and pro-
portional fair scheduling for operating system, networking, and real-time sys-
tems. Many online schedulers use queue length or delayed estimations to tune
their solutions which provides only coarse control for single activities. For ex-
ample, Condor includes some policies for matching resources to jobs [40], but
does not consider the fairness for a whole set of activities. The fairness defined
by other related works [41, 42, 43] implies that jobs experience similar slowdown
or have a fair waiting time. Jain’s fairness index used in our work to quantify
fairness relates to the concept of proportional fairness and implies that applica-
tions with more computation should be allocated more resources. Nevertheless,
no fairness definition fits for all cases of scheduling. We cannot say that the
Jane’s fairness index is the best metrics for all scheduling algorithms, however,
to the purpose of our algorithms, Jane’s fairness index tells us if an activity
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class obtains enough resources to complete, as other classes submitted at the
same time complete their execution.

6.3. Game theoretic scheduling

In terms of game theory-based algorithms, other researchers in performance-
oriented distributed computing focused on system-level load balancing [44, 45]
or resource allocation [46, 47], aiming to introduce economic and game theoretic
aspects into computational questions.

Penmatsa et al. [45] formulate the scheduling problem as a cooperative game
where Grid sites try to minimize the expected response time of tasks, while Kwok
et al. [47] investigate the impact of selfish behaviors of individual machine by
taking into account the non-cooperativeness of machines.

Ghosh et al. [48] proposed a strategy that formulates an incomplete informa-
tion, alternating-offers bargaining game on two variables: price per unit resource
and percentage of bandwidth allocated. Compared to Ghoshs work, we use a
more practical pricing model similar to the one used by Cloud resource providers
such as Amazon Elastic Compute Cloud.

The ICENI project [49] solves the scheduling problem using a game theory
algorithm that eliminates strictly dominated strategies where the least opti-
mal solutions are continuously discarded. The feasibility of this algorithm is
questionable due to its high time complexity. Apart from the game theory al-
gorithm, ICENI provides scheduling solutions using random, best of n-random,
and simulated annealing.

6.4. Contribution

The approach presented this paper successfully applies game theoretic con-
cepts for scheduling multiple large-scale applications. Our work differs from the
related work in that we present a more realistic system model and consider a
important class of large-scale applications characterized by a large number of
homogeneous independent activities interconnected through simple control flow
and data flow dependencies. We introduced four algorithms for makespan, cost,
and storage-aware optimization which, compared to other systems, consider
intra- and inter-application cooperation. We formulated the scheduling prob-
lem as a new sequential cooperative game among several application managers
controlling the execution of individual applications and proposed an algorithm
that considers not only deadline, cost, and storage, but also provides fairness to
all applications.

7. Conclusion

With increasing focus on large-scale applications on the distributed compu-
tational resources, it is important for a middleware to efficiently and effectively
schedule and dynamically steer execution of large-scale applications. In this
paper, we analyzed the main bottleneck of a special class of large-scale applica-
tions characterized by a large number of homogeneous activities, and presented
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a scheduling solution based on a sequential cooperative game algorithm for three
important metrics: makespan, cost, and storage. Experimental results based on
simulation, as well as real applications in the Austrian Grid environment demon-
strate that our approach delivers better solutions in terms of cost and fairness
with less algorithm execution times than other existing approaches such as Min-
min, Max-min, or Sufferage. Furthermore, we observed that the larger-scale the
experiments are, the better results we achieve. For example, considering larger
computing infrastructures up to thousands of processors to schedule the appli-
cations will only increase the gap between our game theoretic algorithms and
the other classical heuristics, Min-min needing in this case hours to complete.

Our game theory-based scheduling algorithms possess great potential for im-
provement for large-scale applications in heterogeneous computing infrastruc-
tures. We plan to investigate how our algorithms can adapt to other metrics
such as memory, security, resource availability, network bandwidth, or multiple
virtual organizations. Furthermore, merely a handful of current research efforts
consider the simultaneous optimization of multiple constraints. The pricing
model used by our Game-cost algorithm series algorithms is based on the com-
modity market model, which specifies the service price according to the amount
of usage. However, many other pricing models exist, including a bargaining,
contract-net, or auctioning models and new algorithms incorporating multiple
pricing models need also to be studied.
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