
Accepted Manuscript

Simulation of SLA-based VM-scaling algorithms for cloud-distributed
applications

Alexandru-Florian Antonescu, Torsten Braun

PII: S0167-739X(15)00032-1
DOI: http://dx.doi.org/10.1016/j.future.2015.01.015
Reference: FUTURE 2705

To appear in: Future Generation Computer Systems

Received date: 3 October 2014
Revised date: 22 January 2015
Accepted date: 24 January 2015

Please cite this article as: A.-F. Antonescu, T. Braun, Simulation of SLA-based VM-scaling
algorithms for cloud-distributed applications, Future Generation Computer Systems (2015),
http://dx.doi.org/10.1016/j.future.2015.01.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2015.01.015

Simulation of SLA-Based VM-Scaling Algorithms for

Cloud-Distributed Applications

Alexandru-Florian Antonescua,b,∗, Torsten Braunb

aSAP Switzerland, Products & Innovation, Research, Regensdorf, Switzerland
bUniversity of Bern, Communication and Distributed Systems, Bern, Switzerland

Abstract

Cloud Computing has evolved to become an enabler for delivering access to
large scale distributed applications running on managed network-connected
computing systems. This makes possible hosting Distributed Enterprise In-
formation Systems (dEISs) in cloud environments, while enforcing strict per-
formance and quality of service requirements, defined using Service Level
Agreements (SLAs). SLAs define the performance boundaries of distributed
applications, and are enforced by a cloud management system (CMS) dynam-
ically allocating the available computing resources to the cloud services. We
present two novel VM-scaling algorithms focused on dEIS systems, which op-
timally detect most appropriate scaling conditions using performance-models
of distributed applications derived from constant-workload benchmarks, to-
gether with SLA-specified performance constraints. We simulate the VM-
scaling algorithms in a cloud simulator and compare against trace-based
performance models of dEISs. We compare a total of three SLA-based VM-
scaling algorithms (one using prediction mechanisms) based on a real-world
application scenario involving a large variable number of users. Our results
show that it is beneficial to use autoregressive predictive SLA-driven scaling
algorithms in cloud management systems for guaranteeing performance in-
variants of distributed cloud applications, as opposed to using only reactive
SLA-based VM-scaling algorithms.

Keywords: Cloud Computing, Service Level Agreements, Horizontal
Scaling, Prediction, Simulation

∗Corresponding author
Email addresses: alexandru-florian.antonescu@sap.com (Alexandru-Florian

Antonescu), braun@iam.unibe.ch (Torsten Braun)

Preprint submitted to Future Generation Computer Systems January 30, 2015

1. Introduction

Cloud Computing [1] has evolved to become an enabler for delivering
access to large-scale distributed applications[2] running inside managed en-
vironments composed of network-connected computing systems. This made
possible hosting of Distributed Enterprise Information Systems (dEISs) in
cloud environments, while enforcing strict performance and quality of ser-
vice requirements, defined using Service Level Agreements (SLA).

SLAs are contracts defining the performance and quality of service (QoS)
boundaries of distributed applications. A cloud management system (CMS)
enforces SLAs by dynamically allocating available computing resources to
cloud services. A CMS monitors both the software cloud resources as well as
the underlying physical network and computing resources. It uses this infor-
mation for deciding the actions to be taken, such as increasing the number of
VMs (scaling-out), decreasing (scaling-in), or migrating software components
in order to maintain the conditions defined in the SLAs and for maximising
provider-specific metrics (e.g. energy efficiency).

It is often the case that cloud applications exhibit predictable and re-
peatable patterns in their resource utilisation levels, caused by the execution
of repeatable workloads (e.g. with hourly, daily, weekly patterns). A CMS
can benefit from detecting such repeatable patterns by combining this in-
formation with prediction mechanisms in order to estimate the near-term
utilisation level of both software and physical resources, and then to opti-
mise the allocation of resources based on the SLAs.

Also, the specific way of packing cloud applications in Virtual Machines
(VMs) allows a CMS to scale cloud-distributed applications by means of
”horizontal”-scaling, where the number of VMs allocated to application-
services is increased of decreased according to variations in the external
workload. Therefore, using SLAs for specifying the performance of cloud
applications could enable the CMS to better perform VM-scaling by corre-
lating the SLA guarantees with the actual number of VMs allocated to cloud
applications, their QoS metrics and the size of the distributed workload.

We define the research question as: ”How can a CMS dynamically scale
the number of VMs allocated to cloud services, so that the SLA-defined per-
formance constraints are maintained under variable workload conditions such
as fluctuating number of users?”.

2

We present an approach for designing and testing SLA scaling algorithms
for dEIS systems by using performance-models of cloud-distributed applica-
tions (built with the help of constant-workload benchmarks) and then sim-
ulating the scaling algorithms in a cloud simulator against the performance
models. We extend the work in [3] and [4] by presenting and evaluating two
new SLA-based VM-scaling algorithms. In total, we compare three SLA-
based VM-scaling algorithms (one using prediction mechanisms) based on
(1) a real-world application scenario involving a large variable number of
users, and (2) pre-recorded monitoring traces of an actual distributed enter-
prise application.

Our results show that it is valuable to use a predictive SLA-driven VM-
scaling algorithm in a cloud management system for guaranteeing perfor-
mance SLA invariants of distributed cloud applications.

Our main contributions can be summarised as follows. We present an ap-
proach for analysing the performance boundaries of a distributed application
using batches of benchmarks. We then show how Little’s Law can be com-
bined with the benchmark’s results and SLA-defined performance conditions
in order to identify optimal scaling conditions for the distributed applica-
tion. We also show how multi-step linear regression can be used to efficiently
predict application workloads, and then we integrate the prediction mech-
anism into a SLA-based VM-scaling algorithm. In total, we analyse three
SLA-based VM-scaling algorithms.

The rest of our paper is organised as follows. Section 2 presents the re-
lated work in the field of distributed enterprise applications, cloud computing
simulators, prediction models, and SLA-based scaling of cloud services. Sec-
tion 3 introduces the problem of predicting time series. Section 4 introduces
an algorithm for doing multi-step prediction using linear regression models.
Section 5 presents a benchmarking methodology based on Little’s Law for
exploring the relations between system’s workload, occupancy (concurrency)
and the average execution time. We then use these relations for finding the
maximum processing capacity of the corresponding VM-instances based on
SLA-defined performance conditions. Section 6 introduces two SLA-based
VM-scaling algorithms that use the mechanisms presented in Sections 4 and
5. Section 7 discusses the results of evaluating the SLA-based VM-scaling
algorithms using a simulation of a real-world multi-user workload in a cloud
simulator. Finally, Section 8 draws conclusions.

3

2. Related Work

We split the related work section into four subsections, as follows: (1)
distributed enterprise information systems, (2) cloud computing simulator,
(3) time series prediction mechanisms, and (4) SLA-based scaling of cloud
services.

2.1. Distributed Enterprise Information Systems

Distributed (Cloud) Enterprise Applications [2] are component-based,
distributed, scalable, and complex business applications, usually mission-
critical. Commonly, they are multi-user applications handling large datasets
in a parallel and/or distributed manner, and their purpose is to solve specific
business problems in a robust way. Often these applications are running in
managed computing environments, such as datacenters [5]. Enterprise Re-
source Planning (ERP)[6] applications are a type of distributed enterprise
applications, which provide an integrated view of core business processes,
using multiple database systems.

According to Marston et al. [7] SLAs play an important role in the enter-
prise environment especially for mitigating risks associated with variability
in availability of cloud resources. They often contain a model of guarantees
and penalties, which can be used by infrastructure management systems for
allocating and optimising the use of datacenter resources.

Antonescu et al. [3] describe a model of concurrent workload processing
in distributed enterprise information systems, by analysing the effect of con-
current processing of distributed transactions on the physical resources. We
extend this model by using linear regression and log-normal distributions to
simulate higher levels of concurrency.

2.2. CloudSim Cloud Simulator

CloudSim [8] positions itself as a generic cloud simulator for both applica-
tions and cloud infrastructures, as it allows modelling of hardware and soft-
ware cloud resources. It allows representing physical host entities, network
links and datacenters. The modelled software entities are virtual machines
(VMs), brokers (services) and cloudlets (tasks). The mentioned entities are
manipulated using a Java API. The simulator is implemented using discrete
event communication. CloudSim provides a wide selection of resource alloca-
tion policies for VM-to-host and task-to-VM mapping. It is worth noting that

4

network links are only modelled through their bandwidth and fixed trans-
mission delay values. NetworkCloudSim improves these network-modelling
aspects by introducing additional simulation entities, such as routers and
network packets. However, for the purpose of this work, CloudSim’s network-
modelling capabilities were enough.

Buyya et al. [9] presented an approach for simulating large scale cloud
environments using CloudSim, describing the steps required for simulating a
large number of hosts and network connections. However, they did not focus
on how to model applications using CloudSim. Our work extends [4] and
it enables simulating large-scale cloud-distributed applications with dynamic
VM-scaling capabilities.

Garg et al. [10] describe an extension of CloudSim, which allows simulat-
ing complex tasks composed of multiple computational and communication-
intensive subtasks. They also allow better modelling of network topologies,
by introducing the concepts of switches and data flows. While their work
is more focussed on message-passing interface (MPI) applications, our work
emphasises the concurrent execution of CPU-intensive tasks in enterprise
systems.

Antonescu et al. [4] present SLA-driven simulation of multi-tenant scal-
able cloud-distributed enterprise applications. The authors describe a SLA-
based VM-scaling algorithm for distributed systems, and its implementation
in CloudSim. We extend the presented reactive VM-scaling algorithm with
two additional VM-scaling algorithms, which we implement and validate us-
ing CloudSim.

2.3. Time Series Prediction

Visan et al. [11] describe a bio-inspired prediction algorithm based on
a Cascade-Correlation neural network, which uses a genetic algorithm for
initialising the network’s weights. The authors use their algorithm for per-
forming both one-step and multi-step predictions of a large-scale distributed
experiment, with good results.

Islam et al. [12] present an approach for predicting the aggregated per-
centage of CPU utilisation of VMs running a distributed web benchmark,
using both error correction neural networks (ECNN) and linear regression
(LR). Their results suggest that although using ECNN yields better predic-
tion results than, the need to retrain the neural network might be a disad-
vantage compared to the use of LR. We focus our work on using LR in the
context of SLA-driven scaling of cloud services, showing how prediction can

5

be used for mitigating the disadvantages caused by the delay in instantiating
VMs.

Roy et al. [13] present a VM-allocation algorithm, which uses a second
order autoregressive moving average prediction method for optimising the
utility of the application over a prediction horizon. We also use the prediction
of the arrival rate of users for sizing the distributed system. We directly use
SLAs for solving the VM-scaling problem.

Antonescu et al. [14] present an algorithm for allocating VMs to hosts
using a genetic algorithm, which simultaneously tries to optimise multiple
utility functions and uses prediction mechanisms (triple exponential smooth-
ing) for forecasting the resource utilisation. We take a similar approach in
this paper. We focus on the scaling requirements of the cloud services, in-
stead of the VMs.

2.4. SLA-Based Scaling of Cloud Services

Garca et al. [15] describe Cloudcompaas, a SLA-aware Platform-as-
aService (PaaS) Cloud platform for managing resource lifecycle, using WS-
Agreement as a basis for the SLA specification, as well as representation of
cloud resources. They present multiple experiments in which the virtual in-
frastructure is scaled based on the number of incoming requests and defined
SLAs.

Garg et al. [16] propose an admission control mechanism that maximises
the resource utilisation and profit, while it also ensures that the SLA-specified
QoS requirements are met. The authors used a forecasting model based on a
multi-layer feed-forward neural network for predicting the utilisation of server
resources. We focus our work on predicting the incoming rate of requests to
the cloud services, and we use this as input to the algorithms responsible for
scaling the virtual infrastructure.

Antonescu et al. [17] describe a resource allocation and VM-scaling algo-
rithm based on SLA constraints, combined with dynamically discovered cor-
relations between the service monitoring metrics and prediction of optimal
instantiation time for VMs based on detected patterns in resource utilisation
levels. In the current paper we describe a benchmark-driven approach for
discovering the maximum processing capacity of the cloud-VMs using Lit-
tle’s Law. We combine this mechanism with autoregression-based prediction
and novel control algorithms for optimal VM-scaling.

6

3. Time Series Prediction

We define the SLA Cloud Management Optimization (SLA-CMO) prob-
lem [14] [18] [19] [20] as: improving the efficiency of allocating datacenter’s
computing resources by dynamically changing the number of VMs allocated
to cloud services, so that SLA-defined performance requirements are met
under variable workload conditions.

Solving the SLA-CMO problem depends directly on having a reliable
source of monitoring information reflecting the state (e.g. number of allo-
cated VMs, system’s throughput, requests arrival rate, response time) of the
managed distributed systems. The management system will then take cor-
rective actions for ensuring that the SLA contracts guaranteeing the system’s
performance are not violated. However, the actions’ effects on the underlying
system might be delayed, creating a time window during which the system
might be in an undesirable state (e.g. under-performing). Such SLA viola-
tions can be avoided [17] if the SLA management system can timely predict
the trend and variation of the critical monitoring system’s parameters, al-
lowing it to actuate (e.g. scale-out) at such a time moment that the newly
added virtual resources (e.g. VMs) become active just as the workload would
surpass the previous capacity of the cloud system.

The prediction problem can be defined as finding the next n values of
a dependent system’s parameter P , using p previous values of one or more
predictors as shown in Equation 1

(Pt+1, Pt+2, ..., Pt+n) = f(Xt, Xt−1, ..., Xt−p) (1)

where t is the current time moment, Xt is the value of the predicting
vector at time t, and f is a function.

The above definition is true for parameters whose values are depending
on other system parameters, for example, the average execution time of a dis-
tributed application depends on the number of VM instances allocated to the
service, the workload’s arrival rate and the application’s average occupancy
(as defined by Little’s law [21]).

Another class of parameters are the independent ones, whose values are
not determined by other parameters. An example of such system parameter
is the workload arrival rate, which is determined only by factors external to
the system. Such independent parameters can also be predicted, by observ-
ing certain patterns in the distribution of data and then recognising when

7

the data flow will start following a certain learned pattern. This can be for-
mulated as a dependency of the current and future values of the parameter
on the previous own values, as shown in Equation 2, where the mathematical
terms are the same as the ones from Equation 1.

(Pt+1, Pt+2, ..., Pt+n) = f(Pt, Pt−1, ..., Pt−p) (2)

Figure 1 shows a snapshot of such an independent parameter - the request
arrival rate of a transaction processing application.

0

200

400

600

0 200 400 600 800
Time (seconds)

R
eq

ue
st

s
pe

r
M

in
ut

e

Figure 1: Requests Arrival Rate

When identifying repeatable patterns in temporal data series, it is impor-
tant to pay attention to the statistical parameters of the data series, such as
variance, mean, trend, etc. For example, a large variance in the data could
hide a repeating pattern. Filtering the data series by applying a moving av-
erage or kernel smoothing [22] could expose the underlying trend of the data.
By analysing the trend of the temporal data series, two types of variations
could be observed: linear and non-linear. We shortly discuss the mathemat-
ical fundaments for linear regression in Appendix A, error calculation in
Appendix B and non-linear regression in Appendix C.

4. Multi-Step Prediction using Linear Autoregression

We investigate autoregression for predicting multiple future values of an
independent variable. As underlying example we will use the time series
shown in Figure 1 containing a window of data representing the arrival rate
of requests of an ERP system. As we want to use the data for predicting the

8

future values, this means that it will be processed in a streaming fashion, as
it becomes available.

ALGORITHM 1: Streaming Linear Prediction using Autoregression

1 model← NULL;
2 previous.data← empty;
3 previous.time← empty;
4 win.len← p seconds;
5 prediction.length← n seconds;
6 while Data Stream is Open do
7 win.data← buffer(win.len);
8 win.time← time(win.data) ;
9 if model is not NULL then

10 prediction.current← predict(model, win.time);
11 err.mape←MAPE(win.data, prediction.current);
12 if err.mape < ε then
13 t← current time;
14 prediction.time← (t+ 1, ..., t+ prediction.length);
15 win.predicted← predict(model, prediction.time);
16 use win.predicted;

17 else
18 model← NULL;
19 previous.data← empty;
20 previous.time← empty;

21 end

22 end
23 append win.data to previous.data;
24 append win.time to previous.time;
25 model← linear regression(previous.data, previous.time);
26 model.accuracy ← accuracy(model);

27 end

Two important properties of the prediction algorithm are the following:
(1) immunity to small variations (non-uniformity) in the data sampling pe-
riod, and (2) auto-alignment of the regression with the actual signal’s trend.
The first property ensures that the prediction produced by the algorithm will
always be sampled with the same period, allowing a deterministic use of the
predicted data, independent of the actual sampling period of the predicted

9

signal. The second property ensures that the algorithm will auto-adjust to
changes in the signal’s trend (e.g. slope) by monitoring the prediction er-
ror and adapting the length of the window of data used for calculating the
”learning” model.

The prediction algorithm works as follows. In the first iteration, a regres-
sion model is calculated (e.g. using R’s lm function of the stats package [23])
using the current window of data in line 25. In the second iteration the pre-
viously calculated linear model will be used for predicting the current data
window by applying the same regression model to the time moments corre-
sponding to he sampled data (win.time), producing the prediction.current
data vector in line 10. Next, the mean average percentage error (err.mape)
is calculated from the current data window (win.data) and the model’s pre-
diction (prediction.current). This accuracy measure is effectively the out-
of-sample error measure of the regression model, as the error was calculated
with data coming from outside the time window known by the regression
model. If the error is lower than a predefined threshold ε (e.g. 1.5%) then
(1) the model is considered valid and it is used in line 15 for predicting the
next n seconds of signal’s values at times t+ 1, ..., t+ n, and (2) the current
data window and its sampling time moments is added to the previous data
window, respectively to the previous sampling time window. If the error is
larger than the specified threshold, than the model is dropped, together with
the accumulated data.

By calculating the signal’s prediction at times t+1, ..., t+n, the immunity
to variations in the signal’s sampling period is guaranteed, which allows the
subsequent components to use the produced data forecast at any arbitrary
time horizon smaller than n. Also, by accumulating the signal’s data samples
and calculating the regression model with an increasing length of the data
window this ensures that the regression model’s slope will be aligned with
the signal’s slope with an error of at most ε. As soon as the out-of-sample
MAPE error of the regression’s model exceeds ε, the model and accumulated
data will be dropped, and a new model will be calculated, thus satisfying the
second property of the prediction algorithm.

The linear regression model’s accuracy represented by the RMSE and
MAPE errors are displayed in Figure 2, when applying linear regression to
the data from Figure 1 (average arrival rates), with a regression window
win.len of 10 seconds. As expected the graphs show two peaks because of
the two changes in the underlying data’s trend at time 20 and 600.

Figure 3 shows the evolution of both RMSE and MAPE errors for the

10

0.5

1.0

1.5

2.0

200 400 600 800

R
M

S
E

0.25

0.50

0.75

1.00

200 400 600 800
Time (seconds)

M
A

P
E

Figure 2: Regression Errors. Top: Root Mean Standard Error. Bottom: Mean Absolute
Percentage Error

out-of-sample accuracy. As expected, there are two regions where the errors
have large values, in the beginning, around time moment 0, and around
time moment 600. This is because in the beginning of the time series the
data experienced a slight instability when transitioning from 0 to 60 requests
per minute. Also, at time moment 600 the trend of the data changed from
increasing to decreasing, leading to the an decrease of the accuracy of the
previous regression model valid only until the time moment 600.

For calculating the signal’s prediction of the next n seconds (equal to
40 in our example), first a data window prediction.time is created (line 14)
containing the time values between the current time t + 1 and t + n. The
regression model is then used in line 15 for calculating the data prediction
win.prediction corresponding to time interval prediction.time.

The predicted data win.prediction is finally used in line 16. An example
of using the predicted data is given in Section 6, where the predicted arrival
rate of requests is used as input to a SLA-based VM-Scaling algorithm.

The predicted data obtained by running the algorithm is displayed along
the initial data in Figure 4. The very good accuracy of the prediction algo-

11

0

25

50

75

100

0 200 400 600 800

R
M

S
E

0

30

60

90

0 200 400 600 800
Time (seconds)

M
A

P
E

Figure 3: Forecast Errors. Top: Root Mean Standard Error. Bottom: Mean Absolute
Percentage Error

rithm can be observed, as the predicted data closely follows the input data.
Also, it can be noticed that the predicted data starts at around time moment
70, after the data’s trend stabilises itself.

5. Performance Profiling of Cloud-Distributed Applications

In this section we present a performance profiling analysis of a cloud-
distributed Enterprise Information System (dEIS) ([3] [4] [24] [17] [14] [19])
based on Little’s law [21]. The purpose of this analysis is to determine the
dependencies between the average arrival rate of requests to a distributed
system, the system’s average throughput, the average number of concurrent
requests executed by the system and the average execution time.

Once these relations are known, we will use them to create an improved
SLA-based service scaling policy, extending the algorithm presented in [4].
We describe the enhanced scaling algorithms in Section 6, and we show the
simulation of these SLA policies in Section 7.

12

0

200

400

600

0 200 400 600 800
Time (seconds)

R
eq

ue
st

s
P

er
 M

in
ut

e

variable

actual

predicted

Figure 4: Forecast vs. Actual Data

5.1. Little’s Law in the Context of Distributed Computing Systems

Little’s Law [21] applies to users-processing systems, and it is a result from
the queueing theory stating that the long term average number of users (L)
in a system is equal to the product of the rate (λ) at which users arrive, and
the average waiting time (W) that a user spends in the system, as expressed
algebraically in Equation 3.

L = λW (3)

Another form of Little’s Law applies to the relation between the average
system’s throughput (Th), mean number of users in the system (L), and the
average execution time (W), as expressed by Equation 4.

W =
L

Th
(4)

It is important to note that Equation 3 uses the arrival rate, while Equa-
tion 4 uses the system’s throughput. The two equations are equivalent under
conservation of flow conditions, when the average arrival rate (λ) is equal to
the average departure rate (or throughput Th). Also, all the jobs entering
the system must exit the system at a given point, so the system must report
also the exceptional cases when a job fails, as long as that job was considered
in the calculation of the arrival rate. Finally, the system needs to be stable
[21], by occasionally having L = 0 (empty system).

We will use Equation 4 in Section 5.3 when we will be presenting a
methodology for benchmarking a distributed system in order to find out the

13

dependencies between the average arrival rate, the system’s average through-
put, the average number of concurrent requests executed by the system and
the average execution time.

5.2. Distributed Enterprise Information System under Test

We apply the management scaling problem to a Distributed Enterprise
Information System (dEIS) composed of multiple scalable tiers, as described
in this section.

Datacenter
Network

Worker

OSGi Registry CXF
Message Bus

Storage

OSGi Registry CXF
Message Bus

Consumer
Load Generator

OSGi Registry
CXF Message Bus

Load Balancer

OSGi Registry
CXF Message Bus

Figure 5: Relations between dEIS Services

Fig. 5 provides an overview of the overall EIS topology. We shortly
present the structure of the EIS system used, with more details found in [19],
[17]. This class of systems is representative for core enterprise management
systems, such as ERP [6].

As representative dEIS cloud-distributed application we used the one de-
scribed in ([3], [17], [14], [19], [20]). The targeted dEIS system is composed
of four core services: one (or more) Thin Clients (CS), a Load Balancer
(LB), one or more Worker services (WK), and one or more Database Storage
services (ST). Each service runs in its own VM and communicates asyn-
chronously with the other services using a distributed service messaging bus
(CXF [25]). The communication between the services located in different
VMs is handled by a Distributed OSGi (d-OSGi)[26] registry. The ST ser-
vice contains a TPC-H [27] generated database.

The CS service contains the graphical user interface, as well as logic for
initiating data sessions and issuing requests. The LB service provides load
balancing logic, while also maintaining session information about connected
clients. The LB’s VM also hosts the d-OSGi service registry. The WK
services implement data queries, analysis, transactional and arithmetic logic
for the application. The ST service contains interfaces and mechanisms for

14

0

2

4

6

1 10 100
CS: Execution Time (seconds)

de
ns

ity

(a)

0.00

0.25

0.50

0.75

1.00

1 10 100
CS: Execution Time (seconds)

E
C

D
F

10
20
30
40
50

concurrency

(b)

Figure 6: CS Service Execution Time vs. Concurrency. a) Density Plot. b) ECDF Plot

creating, reading, updating and deleting store data. A detailed presentation
of the performance model of dEIS can be found in [3].

5.3. Little’s Law-Based Application Performance Benchmarking

In order to build a performance profile of the dEIS application we will use
the results of applying Little’s Law to stable instances of the dEIS system.
Intuitively, as long as the arrival rate (λ) of dEIS requests remains below the
maximum processing capacity of the system, we expect the average execution
time (W) to increase linearly. After a certain value of λ will be exceeded, W
will begin increasing exponentially due to accumulation of jobs in the system,
leading to a drop in the value of system’s throughput (Th).

Mainly, we want to identify the dependency between the average execu-
tion time and the system’s throughput at constant concurrency (occupancy).
For this we will run 50 batches of benchmark tests, where the overall system’s
concurrency is kept constant for 10 minutes at a value λ ∈ (1...50), before
dropping back to 0. This ensures that we will get an accurate picture on
(1) the distribution of execution times at all the dEIS services, and (2) the
average achievable throughput corresponding to λ.

Figure 6 plots (on a logarithmic scale) the execution time (W) in seconds
against the concurrency (L) measured at the CS service. Figure 6a shows the
density distribution function of the execution time, while Figure 6b shows its
empiric cumulative distribution function (ECDF). It is easy to notice on the
ECDF plot that for concurrency values above 30 all the execution times (W)
are above 10 seconds. Above this concurrency level (L), any small increase
in L will produce a very large increase in W .

15

0.00

0.25

0.50

0.75

1.00

1 10 100
WK: Execution Time (seconds)

E
C

D
F

(a)

0.00

0.25

0.50

0.75

1.00

1 10 100
ST: Execution Time (seconds)

E
C

D
F

1
10
20
30
40
50

concurrency

(b)

Figure 7: ECDF Plot of Service Execution Time vs. Concurrency. a) WK service. b) ST
service.

Figure 7a further explains the rapid increase in the mean of the system’s
execution time after concurrency level 30, by plotting the ECDF distribution
of the W for each L level, for the WK service. Similarly, Figure 7b shows
the EDCF plot per concurrency level of W for the ST service. The plots
also suggest that a management system should not allow the dEIS system
to slide into a region with concurrency (L) above 20, as the execution time
will increase very fast with only slight increases in L. This corresponds to
the dense green ECDF curves on the WK plot, respectively to the dense blue
ECDF curves on the ST plot.

WK ST
L W λ Th L W λ Th

0.85 106.25 118.0 133.40 0.64 44.1 118.0 133.37
1.49 135.89 236.0 263.61 1.47 59.5 236.0 260.45
1.97 236.68 333.3 366.39 1.91 78.5 333.3 363.10
2.47 296.38 355.5 392.94 2.23 99.7 355.5 395.65
3.01 461.58 315.7 362.82 2.77 129.5 315.7 381.52
3.60 532.35 358.8 406.07 2.95 152.4 358.8 418.43
4.39 615.45 377.8 419.50 3.05 175.7 433.7 433.72
5.11 619.07 414.8 462.41 3.12 201.7 476.1 476.12
5.83 666.97 435.4 483.38 3.30 229.4 435.4 497.15
6.63 733.06 442.2 491.27 3.55 262.0 442.2 510.37

Table 1: Dependency between average concurrency (L), average execution time in mil-
liseconds (W), average arrival rate (λ), and average throughput (Th) for WK and ST
services

16

0.1

1

10

100

0 10 20 30 40 50
Concurrency

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

service
CS
WK
ST

(a)

200

400

600

0 10 20 30 40 50
Concurrency

T
hr

ou
gh

pu
t (

re
q.

 p
er

 m
in

ut
e)

service
CS
WK
ST

(b)

Figure 8: Per Service a) Average Concurrency vs. Average Execution Time. b) Average
Concurrency vs. Average Throughput

After executing the benchmark described in this section, we produce a
lookup table for the WK and ST dEIS services, linking the average system’s
occupancy (L), average execution time (W), the average arrival rate λ, and
the average throughput (Th). Later, in Section 6 we will present an algorithm
using this lookup table as input for ensuring that the dEIS system is properly
scaled so that it can handle the volume of workload directed at it.

Ten of out fifty entries in the lookup table are shown in Table 1. The
entries in the table approximately obey the Little’s Law, which is due to how
the average values of the W , λ, Th, and L metrics were calculated, especially
the system’s occupancy. In the actual VM deployment, the metrics were
averaged over a sliding time window of one minute. This, combined with the
fact that the arrival rate was not constant due to the constraint of having the
CS-occupancy (almost) constant, produced slight variations in the averaged
values, which are not influencing the SLA-based scaled algorithms as only
the values for W and Th are used as inputs.

However, it is worth observing that indeed, the execution time increases
with the increase in system’s occupancy. Figure 8a shows the relation be-
tween W and L for CS, WK and LB dEIS services, on a logarithmic scale
for W . This points to the fact that W starts increasing fast after L equal to
15 measured at CS service. This rapid increase of W is explained by Figure
8b, which shows that the service’s throughput starts dropping after a cer-
tain value of the service’s occupancy (L). The change in Th’s trend happens
around L = 15 for CS and WK services, and around L = 8 for ST service.

17

This delay between the occupancy’s levels at ST and WK services is due to
the fact that a job is processed twice [3] by the WK service, but only once
by the ST service, causing the occupancy at the ST service be lower than
the occupancy at the WK service. This difference is not noticeable between
CS and WK service because of the smaller processing time in the second
computing round [3] at CS service.

6. SLA-Based VM-Scaling Algorithms for CMS

As we have seen in the previous section, the processing capacity of dEIS
applications can be easily saturated if the system’s occupancy (L) approaches
a critical region. Once the system enters into this hazardous region, the
average execution time (W) will quickly increase from below one second to
tens of seconds, lowering the quality of experience as a result of large delays
in the processing of dEIS-requests.

In order for the CMS to prevent this behaviour where the quality of
experience drops below acceptable limits we take the following actions: (1)
we define a SLA specifying the maximum average execution time for the
dEIS service, and (2) we enable the CMS to use a SLA-based VM-Scaling
policy for ensuring that the application’s distributed processing capacity is
appropriately sized for handling the incoming flow of requests.

In [4] we have presented a reactive SLA-based VM-scaling algorithm that
monitors the average execution time (W) of a service and compares it with a
SLA-defined maximum value Wmax. As soon as W exceeds 80% of Wmax, the
algorithm will trigger creating one additional VM for processing the extra
workload.

The problem with this scaling approach is that when the incoming work-
load leads to an increase of the average system’s occupancy (L), placing L
in the critical region where W will start increasing very fast. Additionally,
the latency associated with starting a new VM might cause a very large ac-
cumulation of workload, as the newly arrived requests could use the entire
system’s processing capacity. This, in turn, will result in a very large value
for the system’s occupancy, leading to even higher average execution times.
When the newly created VM will begin processing jobs, all the new requests
will be directed at it (as the load balancer will select it as it will have the
lowest value of allocated workload), quickly saturating it and creating the
conditions for a new VM scale-out. This process will repeat itself as long as
the flow of incoming requests will continue to be greater than zero. If there

18

will be no more requests coming for a period long enough for the accumulated
requests to finish their execution, then the system might recover.

In order to prevent this degradation in system’s performance, we designed
a new SLA-based VM-Scaling algorithm using the results of applying Little’s
Law. This new scaling algorithm uses relations between the average execution
time (W), system’s average occupancy (L), and system’s average throughput
(Th) for ensuring that the processing capacity dEIS system remains in a safe
region, where the incoming workload is being processed without leading to
an unsafe increase in system’s occupancy.

Additionally, we enhanced the throughput-based VM-Scaling algorithm
by adding prediction capabilities to it. Next, we will describe both SLA-based
VM-Scaling algorithms.

6.1. λ-Based VM-Scaling Algorithm

Algorithm 2 describes the steps taken for sizing the number of VMs based
on the current average arrival rate of requests, the current average system’s
throughput (Th), the maximum value for the average execution time defined
by SLA, and the benchmark-obtained value of the Th.

The algorithm receives as input the SLA containing the maximum execu-
tion time (Wmax) across all the VM instances of the considered service. As
part of the initialisation sequence, the algorithm will first search in the tuples
(λ,W,L) displayed in Fig. 8 for the benchmark entry (e) with the average
execution time (e.W) closest, but lower, than the SLA threshold (Wmax).
The maximum value for the throughput will be stored in Thmax, and if no
such value exists, then the program’s execution will be terminated in line 8.

The scaling algorithm will be executed every N seconds. In line 11, the
average arrival rate (λ) during the last minute will be compared to 80% of
the maximum throughput (Thmax) multiplied with the current number of
VMs (vm). If λ > 0.8 vm Thmax then in line 12 the number of VMs (vm∗)
necessary for processing this workload will be calculated as the upper part of
the division of λ by 0.8Thmax. If vm∗ is greater than the current number of
VMs (vm) plus the current number of VMs being instantiated (vm+), then
the current scale-out scaling step (out) is calculated as the difference between
the planned number of VMs (vm∗) and the total number of VMs, including
the ones being instantiated (vm+ vm+).

19

ALGORITHM 2: λ-Based VM-Scaling Algorithm

Data: SLA and benchmark table containing (L,W, Th, λ) tuples
1 Wmax ← W defined in SLA and Thmax ← 0;
2 for e ∈ benchmark do
3 if e.W < Wmax AND e.Th > Thmax then
4 Thmax ← e.Th;
5 end

6 end
7 if Thmax = 0 then
8 terminate execution
9 end

10 repeat every N seconds
11 if λ > 0.8 vm Thmax then

12 vm∗ ←
⌈

λ
0.8Thmax

⌉
;

13 if vm∗ > vm+ vm+ then
14 out← vm∗ − vm− vm+;
15 end

16 else if λ < 0.3 vm Thmax AND time(last scaling) < cool-down then

17 vm∗ ←
⌈

λ
0.8Thmax

⌉
;

18 if vm∗ < vm− vm− then
19 in← vm∗ − vm− vm−;
20 end

21 end
22 if Th > 0.8 vm Thmax then

23 vm∗ ←
⌈

Th
0.8Thmax

⌉
;

24 if vm∗ > vm+ vm+ + out then
25 out← vm∗ − vm− vm+ AND in← 0;
26 end

27 end
28 perform scaling

29 end

Similarly, the conditions for scale-in are checked in line 16. If λ is lower
than 30% of the maximum throughput of all VMs then the optimal number
of VMs (vm∗) is calculated in line 17 as upper part of the division of λ by

20

0.8Thmax. If vm∗ is lower than the current number of VMs (vm), minus the
number of VMs currently being decommissioned (vm−), than the VM scale-
in step is calculated as vm∗− vm− vm−. The scale-in operation is executed
only if there was no scale-out or scale-in in the last cool-down seconds (e.g.
30).

Finally, in line 22, the average throughput (Th) during the last minute
is compared to 80% of the maximum throughput across all VMs, and if it
is larger, then the planned number of VMs (vm∗) is calculated as the upper
part of the division of Th by 0.8Thmax. If vm∗ is larger than the current
number of VMs (vm), plus the number of VMs being instantiated (vm+)
and the planned scale-out, then the new scale-out step is vm∗ − vm− vm+.
This prevents that the current processing capacity of all VMs is exceeded by
a rapidly increasing incoming workload.

Next, the VM manager will be informed about either scaling-out or
scaling-in the number of VMs. In case of dEIS, the scale-in operation is
coordinated with the LB service, so that no further workload is directed at
the VMs selected for decommission.

6.2. Predictive λ-Based VM-Scaling Algorithm

In case of ”reactive” scaling, the monitoring algorithm detects the scale-
out or scale-in conditions and then it informs the VM manager for performing
the scaling. However, as the creation of new VMs is not performed instantly,
there will be a time window during which the system will be in a state in
which the SLA-defined conditions might be violated.

Given the delay in instantiating VMs, it is beneficial to predict the con-
ditions for scale-out and and to initiate the scale-out operation in advance
so that the VMs are already operational at the time they will be needed.

In order to test our assumptions, we modified the Algorithm 2 to include
the prediction of the arrival rate, and to trigger scaling-out the VMs before
the actual workload reaches the scale-out condition. Algorithm 3 lists the
details of the predictive scaling algorithm. As multi-step prediction method
we use the one presented in Section 4.

We initialise the algorithm by first determining the value for the maximum
throughput (Thmax) given (1) the maximum execution time (Wmax) defined
in the SLA, and (2) the benchmark-obtained value for the Th. Also, the
regression model (RM) is set to null, and the number of predicted VMs
(Pred) is initialised with an empty set.

21

ALGORITHM 3: Predictive λ-Based VM-Scaling Algorithm

Data: SLA contract with the maximum execution time
1 RM ← NULL;
2 Pred← empty;
3 determine Thmax;
4 repeat every N seconds
5 Λ← {λ(i)|i < t−M};
6 T ← sampling(Λ);
7 if RM is not NULL then
8 MAPE = accuracy(RM,T,Λ);
9 if MAPE < εmax then

10 T ∗ ← (t+ 1, t+ 2, · · · , t+N +D);
11 Λ∗ ← predict(RM,T ∗);

12 Pred[T ∗]←
⌈

Λ
0.8Thmax

⌉
;

13 else
14 Pred← empty;
15 drop RM ;

16 end

17 end
18 RM ← regression(Λ, T);
19 if Pred[t+D] exists then
20 out← max(0, P red[t+D]− vm− vm+);

21 end
22 if out = 0 AND vm+ = 0 then
23 calculate scale-in step using another algorithm;
24 end

25 end

Next, the management loop starts, by repeating the following operations
every N seconds. Let t be the current time in seconds. In line 5, the values
for λ in the time window (t, t−M) are retrieved and stored in Λ. T is then
set to the sampling time of the values in Λ.

If RM has already been calculated (is not NULL), then it will be used
for predicting the arrival rates corresponding to the time moments in T , and
then the out-of-sample accuracy (MAPE) will be calculated using the actual
values from Λ. If MAPE is below a threshold (εmax), then a prediction (Λ∗)
of the next N +D seconds will be calculated, where D is the time necessary

22

for a VM to be instantiated and to become operational. Next, in line 12 the
number of VMs at time (t + 1, t + 2, · · · , t + N + D) is calculated using the
method described in Section 6.1, Algorithm 2. If the prediction accuracy is
higher than εmax, then the predicted number of VMs is dropped, ensuring
that no scaling decision is taken based on unreliable information.

Next, in line 18, the regression model RM is calculated using Λ and T ,
by applying the method described in Algorithm 1, where the current values
for Λ and T are appended to the previous ones, as long as their trend is
maintained, as explained in Section 4.

Next, in line 19 a check is made for determining if a prediction exists
for time t + D. By looking at the necessary number of VMs D seconds in
advance, we ensure that any VM needed in the near future will actually be
ready at that time. If the prediction exists, then a scale-out step is calculated
as the difference between the predicted number of VMs (Pred[t+D]) at time
t+D and the total number of VMs (vm), including the ones currently being
instantiated (vm+).

If the algorithm determines that no scale-out is needed and there are no
VMs currently being instantiated, then in line 23 the scale-in step will be
calculated using the Algorithm 2.

7. Evaluation Results

In order to evaluate the two new SLA-based VM-Scaling algorithms pre-
viously presented in Sections 6.1 and 6.2 we implemented them in CloudSim
[28], which allowed us to run multiple simulations against the dEIS dis-
tributed application.

Next, we describe some implementation details about the integration of
the new scaling algorithms in CloudSim, and the implementation of the pre-
diction mechanisms. We continue with comparing the λ-based and predic-
tive λ-based VM-Scaling algorithms using a synthetic workload. Finally, we
describe a real-world scenario where the incoming workload received by a
system grew with four orders of magnitude, and then we use this workload-
description to simulate and compare the three scaling algorithms described:
reactive, λ-based and predictive λ-based.

7.1. Implementation of Simulations

For building a system able to compare the SLA-based VM-Scaling poli-
cies, we extended our dEIS CloudSim-based simulator presented in [3] and

23

[4]. We added two new CloudSim scaling policies for the algorithms described
in Sections 6.1 and 6.2, supported by two new additional monitoring metrics
(arrival rate and throughput) at the CloudSim datacenter-broker level.

For integrating the multi-step prediction mechanism described in Section
4 we wrote a series of analytic scripts in R [23] (for calculating the linear
regression model, prediction from the regression model, and prediction’s ac-
curacy), which were invoked by our CloudSim extended datacenter broker
using the TCP/IP Rserve [29] library. Given that Rserve does not allow
transferring of arbitrary complex R objects, we had to cache the regression’s
results in R, by allocating unique model identifiers to each pair of cloud
tenant and service. In this way, CloudSim would transmit the model iden-
tifier when a regression model was calculated, and then the same identifier
would be used when CloudSim required calculating a prediction based on the
regression model.

7.2. Evaluation of the Predictive VM-Scaling Algorithm

In order to evaluate the predictive VM-scaling algorithm, we created a
CloudSim simulation with 500 available servers in which the workload was
increased linearly from 60 requests per minute to 1000 requests per minute
during 1200 seconds, and then it was linearly decreased back to 60 requests
per minute during 400 seconds. We ran the simulation first with the λ VM-
Scaling algorithm, and then with the predictive-λ VM-Scaling algorithm.
The prediction algorithm used a forecasting window of 50 seconds. The
simulated time for instantiating a VM was 18 seconds for the WK VM,
respectively 23 seconds for the ST VM. The maximum error value (εmax) for
considering a prediction as valid was set to 1.5%. The VM-Scaling algorithm
was executed every 5 seconds.

Figure 9 shows the distribution of workload across simulation’s duration,
measured at the WK service. The prediction horizon refers to the time
distance from the time moment when the prediction is calculated to the time
when the workload is forecasted. The black line represents the actual value
of the workload calculated over a moving window of one minute. As it can
be seen, the prediction closely follows the actual values of the workload.
At simulated time 1200, when the workload’s trend changes from increasing
to decreasing, it can be observed that the prediction continues to increase,
however, it quickly realigns itself with the new direction. This confirms
that the prediction mechanism used was appropriate for predicting this type

24

●●●
●●

●●●
●●
●●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0

250

500

750

1000

0 500 1000 1500
Time (seconds)

R
eq

ue
st

s
P

er
 M

in
ut

e

10
20
30
40
50

Prediction Hozizon (sec)

Figure 9: Actual Arrival Rate (black) vs. Predicted Arrival Rate

of workload, and that incorrect predictions do not affect the algorithm’s
correctness as the predictions are only used for scale-out and not for scale-in.

Figure 10 shows the actual evolution of the number of VMs belonging to
the WK service. In the simulation shown in Figure 10a we used the λ-based
VM-Scaling algorithm, while in Figure 10b we used the predictive λ-based
VM-Scaling algorithm. It can be seen that in Figure 10b the plot of the
actual number of VMs is perfectly aligned with the calculated number of
VMs (the two lines overlap), while in Figure 10a there is a noticeable gap

0

1

2

3

0 500 1000 1500
time

N
um

be
r

of
 V

M
s

VMs measured calculated

(a)

1.0

1.5

2.0

2.5

3.0

0 500 1000 1500
time

N
um

be
r

of
 V

M
s

VMs measured calculated

(b)

Figure 10: Evolution of the number of VMs of the WK service in case of applying a)
λ-based scaling algorithm b) predictive λ-based scaling algorithm.

25

0

10000

20000

0 2000 4000 6000 8000
Time (seconds)

R
eq

ue
st

s
pe

r
M

in
ut

e

Figure 11: ”Schwingen”-Like dEIS Workload

between the calculated and the actual measured number of VMs at times 500
and 1000, caused by the delay of 18 seconds in instantiating the WK VM.

These two simulations have shown that it is advantageous to use predic-
tion in conjunction with the λ-based VM-Scaling algorithm. The prediction-
enabled VM-Scaling algorithm has the advantage of eliminating the effect of
the delays when scaling-out the VMs, as VMs become operational at exactly
the right moment compared to the increase in the workload responsible for
triggering the scale-out.

7.3. Real-World Application Scenario

For testing the ability of the VM-scaling algorithms to dynamically in-
crease and decrease the number of VMs allocated to distributed services,
while also complying with the SLAs regarding the maximum value of the ex-
ecution times, we have selected a simulation scenario based on a real-world
event [30].

In order to cover a Schwingen (Swiss sport) event and for reporting real-
time on the performance of sportsmen, as well as live-tracking the scores
of the fights, a cloud computing infrastructure was prepared and a set of
mobile applications were developed. The app combined real-time time pro-
cessing and analytics with a mobile platform, while running in the cloud
environment.

However, due to the huge success of the event, the mobile application
was downloaded 70000 times, creating a very large load for the computing
infrastructure and the network. This, combined with sub-optimal scaling
of the computing infrastructure (according to [30]), led to some very poor
performance on the mobile side, with very long waiting times.

26

We attempt to simulate a similar load for the dEIS distributed applica-
tion, by creating a workload of up to 28000 dEIS-users (each user correspond-
ing to a CS-issued request), while at the same time keeping the combined
response time for the WK and ST services below one second. Figure 11 shows
the distribution of workload across time. The workload first increases to 500
concurrent users during 1800 seconds, then to 1000 users in 700 seconds, then
it approximately doubles at every 600 seconds, until it reaches 11000 users
at time moment 4800. From there on the workload increases with roughly
10000 users at every 1600 seconds, reaching 28000 users at time 6300. The
workload will stay at this level for about 600 seconds, after which it begins
decreasing to towards 25 users during approximately 1200 seconds. In total
we simulate 8400 seconds, or 2 hours and 20 minutes.

The goal of the simulation scenario is to test the ability of the VM-scaling
algorithms to maintain the execution time below the one specified in the SLA,
and implicitly, to prevent the dEIS system from becoming overloaded with
requests.

7.4. Comparison of VM-Scaling Algorithms

For comparing the presented VM-Scaling algorithms, we used the work-
load described in Section 7.3 together with a SLA policy defining a maximum
combined response time of 1 second, divided between WK and ST services
with a ratio of 7:3. The resulting SLA specified a maximum execution time
of 700ms for the WK service, respectively 300ms for the ST service.

The workload was simulated against the dEIS model [4] (constructed
using recorded dEIS monitoring traces) [3] in the CloudSim simulator.

We set to compare the reactive SLA-based VM-Scaling algorithm [4] with
the λ-based algorithm described in Section 6.1, and the predictive λ-based
algorithm presented in Section 6.2. For all three algorithms we will analyse
the performance of WK and ST service, by considering the distributions of (1)
execution times, (2) the rate of incoming, processed, and dropped requests,
and (3) the total number of VMs.

7.4.1. Reactive SLA-Based VM-Scaling Algorithm

We first tested the reactive SLA-based VM-Scaling algorithm, by initially
simulating creating one VM for each of the dEIS application’s services (CS,
LB, WK and ST). After all 4 VMs were created, the workload generator was
started at the CS service, which began generating requests according to the
workload pattern shown in Figure 11.

27

0

250

500

750

1000

0 2000 4000 6000 8000
Time (seconds)

E
xe

cu
tio

n
T

im
e

(s
ec

.) service
WK
ST

(a)

0

100

200

300

0 2000 4000 6000 8000
Time (seconds

N
um

be
r

of
 V

M
s

service
WK
ST

(b)

Figure 12: Simulation of the Reactive SLA-Based VM-Scaling Algorithm a) Execution
time corresponding to WK and ST services. b) Number of VMs corresponding to WK
and ST.

Figure 12a shows the average execution time (in seconds) measured at
WK and ST services. At simulation time equal to 2400sec the SLA ratio
parameter, calculated as the ratio between the average execution time (W)
measured during the last 60 seconds and the SLA-defined maximum value
of W , exceeded the scaling threshold of 0.8, triggering creation of a pair of
WK-ST VMs, which were instantiated after 18, respectively 23 seconds, as
it can be seen in Figure 12b.

The system’s behaviour is explained by the fact that once the processing
capacity of the available VMs is exceeded, the incoming workload will only
delay the execution of the requests that are already being executed. This
will lead to an increase for the execution time for all the requests. Combin-
ing this with the fact that the considered dEIS application does not queue
requests (they begin their execution as soon as they are received), and that
the workload never drops to zero during the simulation, helps explain why
the execution time keeps increasing until the simulation’s end.

Figures 13a and 13b show the number of inbound (red line), processed
(blue line) and dropped (green line) requests at WK, respectively at ST
services. Soon after simulation time 2400sec (where the first VM-Scaling for
both WK and ST services was performed) it can be observed that the number
of requests being processed by the dEIS distributed system drops below the
number of inbound requests, creating an imbalance both at the WK and ST
services.

28

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(a)

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(b)

Figure 13: Distribution of the arrival rate (red), processing rate (blue), and dropped
requests during the simulation of the Reactive SLA-Based VM-Scaling Algorithm for dEIS
a) WK service. b) ST service.

The imbalance in processing of requests observed at both WK and ST
services caused the accumulation of requests being processed, increasing the
system’s occupancy and leading to the increase in the average execution time
(W), clearly visible in Figure 12a.

As the W metric continued to increase, the reactive SLA-based VM-
Scaling algorithm continued to observe a SLA ratio value above the scaling
threshold, triggering the continuous creation of VMs at 20 seconds intervals
for the WK service, respectively 25 seconds for the ST service, as the VMs
have a instantiation delay of 18 seconds (WK), respectively 23 seconds (ST),
and the scaling algorithm was executed at every 5 seconds. This explains
the ascending trend of the number of VMs from Figure 12b and the different
slopes of WK and ST horizontal scaling plots.

Regarding the reason of this behaviour, it lies in the fact the dEIS dis-
tributed system was first scaled at a time when the average throughput was
higher than the optimal one, as described in Section 5.3. This, combined with
a constant increasing number of new arrivals, led to the continual accumula-
tion of requests, and an imbalance in the dEIS system’s inbound-outbound
flow of requests.

The processing imbalance remained present throughout the simulation, as
it can be observed in Figures 13a and 13b, which show a difference between
number of incoming and system’s throughput until simulation’s end. This
also explains why the number of VMs in Figure 12b does not drop to 1 at

29

the end of simulation - because there were still requests being processed and
the execution time was over the SLA-defined maximum value.

The defined SLAs were violated during 71% of the simulation’s duration
as the algorithm did not manage to keep the distributed system in a SLA-
compliant state. This shows that the reactive SLA-based VM-Scaling is not
suited for scaling system with fast-increasing workloads, however, we will
show that the λ-based and predictive-λ-based VM-Scaling algorithms are
very suited for such tasks.

7.4.2. λ-Based VM-Scaling Algorithm

The λ-based VM-scaling algorithm was validated with a simulation of the
same workload described in Section 7.3, Figure 11, which has been also used
in the previous subsection as well.

0

100

200

0 2000 4000 6000 8000
Time (seconds)

E
xe

cu
tio

n
T

im
e

(m
s.

)

service
WK
ST

(a)

0

20

40

60

0 2000 4000 6000 8000
Time (seconds

N
um

be
r

of
 V

M
s

service
WK
ST

(b)

Figure 14: Simulation of the λ-Based VM-Scaling Algorithm a) Execution time corre-
sponding to WK and ST services. b) Number of VMs corresponding to WK and ST.

The simulation started with one VM per dEIS-service and the target SLAs
defined a maximum execution time of 700ms for the WK service, respectively
of 300ms for the ST service.

Figure 14a shows the average execution time measured over a moving
time window of one minute, which was well below the maximum limit set by
SLA. The reason why this happened in contrast to the simulation presented
in Section 7.4.1 is that this algorithm considered a maximum processing
capacity per VM of 435 requests per minute for the WK service, respectively
of 456 requests per minute for the ST service. These values were calculated

30

based on the defined SLAs and the results of the benchmark described in
Section 5.3.

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(a)

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(b)

Figure 15: Distribution of the arrival rate (red), processing rate (blue), and dropped
requests during the simulation of the λ-Based VM-Scaling Algorithm for dEIS a) WK
service. b) ST service.

Figure 14b shows the evolution of the number of VMs of both WK and
ST throughout the simulation. As it can be seen, the first scale-out was
performed earlier than in the case of the reactive VM scaling algorithm, after
1815 seconds from the simulation’s start, when the average arrival rate, equal
to 388 requests per minute (for WK service), exceeded the algorithm’s scaling
capacity threshold (80% of 435 req. per minute). It is worth observing that
during the time when the VM scaling-out was signalled and the actual time
when the VMs become operational, the number of incoming requests continue
to increase, however it did not exceed the services’ processing capability. In
section 7.4.3 we will show how this risk was also mitigated.

The maximum number of VMs corresponding to WK service was 73, while
for the ST service, the number was 68, given the slightly higher processing
capacity of ST service, according to the previously presented benchmark.

As shown in Figures 15a and 15b, the processing rate (throughput) of
both WK and ST followed closely the arrival rate of requests, validating
the algorithm’s capacity of maintaining the distributed system in fully SLA-
compliant state.

7.4.3. Predictive λ-Based VM-Scaling Algorithm

The predictive-λ-based VM-scaling algorithm was validated with the same
workload used in the previous two simulations, described in Section 7.3.

31

0

100

200

0 2000 4000 6000 8000
Time (seconds)

E
xe

cu
tio

n
T

im
e

(m
s.

)

service
WK
ST

(a)

0

20

40

60

0 2000 4000 6000 8000
Time (seconds

N
um

be
r

of
 V

M
s

service
WK
ST

(b)

Figure 16: Simulation of the Predictive-λ-Based VM-Scaling Algorithm a) Execution time
corresponding to WK and ST services. b) Number of VMs corresponding to WK and ST.

The simulation’s results match closely the ones from the previous simula-
tion described in Section 7.4.2 (Figure 14), given that the scaling algorithm
extended the λ-based VM-scaling algorithm with prediction capabilities. The
SLA compliance was 100% for both algorithms, but in the case of the the
predictive λ algorithm the scaling-out of VMs was scheduled to happen so
that the VMs become operational exactly at the time signalled by the con-
trol algorithm. This increased the system’s protection to sudden increases in
workload and kept the spare processing capacity constant instead of dimin-
ishing it due to the delay in VMs’ instantiation.

Figure 16a shows that the average execution time for both the WK and
ST services stayed below the SLA-defined maximum values of 700ms for the
WK service, respectively 300ms for the ST service. Figure 16b shows the
evolution of the number of VMs for both WK and ST services, which is very
similar to the one presented in Figure 14b, with the difference that in the
case of the predictive-λ-based VM-scaling algorithm the instantiation of VMs
happened exactly at the moment determined by the scaling algorithm due to
predicting the rate of incoming requests.

Figure 17a presents the evolution of processing capacity of the WK ser-
vice, which was perfectly balanced with the incoming workload. Figure 17b
shows the prediction accuracy, which remained below the threshold of 2.5%
(green line) most of the time, enabling using the results of the forecasting as
input for the VM-scaling algorithm.

The algorithm achieved maintaining a SLA compliance rate of 100% per-

32

0

10000

20000

0 2000 4000 6000 8000
Time (seconds

R
eq

ue
st

s
P

er
 M

in
ut

e variable
incoming
throughput
dropped

(a)

1e−01

1e+02

1e+05

1e+08

0 2000 4000 6000 8000
Time (seconds

M
A

P
E

 (
%

)

variable
WK
ST

(b)

Figure 17: a) Distribution of the arrival rate (red), processing rate (blue), and dropped
requests during the simulation of the Predictive-λ-Based VM-Scaling Algorithm for the
dEIS WK service. b) Accuracy of predicting the arrival rate at the WK service.

cent, while also creating a larger margin for the variation of the arrival rate,
as the whole system was scaled faster due to the use of prediction.

8. Conclusions

Cloud Computing has evolved to become an enabler for delivering ac-
cess to large-scale distributed applications running on managed environments
composed of network-connected computing systems. This makes possible
hosting Distributed Enterprise Information Systems (dEIS) in cloud environ-
ments, while allowing Cloud Management Systems (CMS) to enforce strict
performance and quality of service requirements, defined using Service Level
Agreements (SLA).

In this paper we presented two new VM-scaling algorithms focused on
dEIS systems, which can be used by cloud infrastructure management sys-
tems to optimally detect the most appropriate scaling conditions using performance-
models of distributed applications derived from constant-workload bench-
marks. We have shown how to combine benchmark results, with Little’s Law
and SLAs for identifying the optimal processing capacity of cloud services,
and then we used it in a SLA and arrival rate-based VM-scaling algorithm.

We have also extended the arrival rate-based VM scaling algorithm to
consider prediction of the arrival rate, by using linear regression and multi-
step forecasting.

33

We have evaluated a total of three VM-scaling algorithms by simulating
them in a cloud simulator against trace-based performance models of dEIS,
using a real-world application scenario involving a large variable number
of users. Our results show that using predictive SLA-driven scaling algo-
rithms in cloud management systems for guaranteeing performance invari-
ants of distributed cloud applications improves the management efficiency of
infrastructure-cloud management systems, as opposed to using only reactive
SLA-based VM-scaling algorithms.

34

Appendix A. Statistical Linear Models

A linear statistical model (or linear regression model) represents the
mathematical relation between a dependent variable Y and one or more pre-
dictor variables X, as shown in Equation A.1.

y = x0 + βX + ε (A.1)

y is the dependent value, x0 is the intercept (free term), β is a transposed
vector of scalar coefficients, X is a vector of independent variables, and ε is
the error term.

If Y is a scalar variable and X is also a scalar variable, then the regression
is called simple. If X is a vector of independent variables, the regression is
called multiple. If both X and Y are vectors then the statistical model is
called general linear model.

When the modelled variable is independent and it is represented as a time
series, we are dealing with autoregression, as shown in Equation A.2.

Yt = y0 + βYt−1 + ε (A.2)

Yt and Yt−1 are values of variable Y at time t and t − 1 respectively, y0

is the model’s intercept term, ε is the error term, and β is the regression
coefficient.

By assuming that the model’s accuracy is acceptable over a time window
of length p, it is possible to predict the next n values of Y by applying n times
the formula in Equation A.2, starting with Yt. A linear model’s accuracy is
defined in terms of errors, as described in Appendix B. In Section 4 we
show an example of how autoregression can be applied for predicting the
time series shown in Figure 1.

Appendix B. Errors in Statistical Models

The linear model calculates for each value Xt of the independent variable
X a corresponding X̂t value according to equation A.2. The difference be-
tween Xt and X̂t represents the regression error. By applying the regression
over a time series X, a series of error values called residuals are produced.
When the errors are calculated between the predicted values and the actual
values of the independent variable, the errors are then called out of sample
errors. Residuals are important for calculating the accuracy of modelling,

35

while the out of sample errors are important for calculating the prediction’s
accuracy.

We present two metrics for quantifying the regression errors: Root Mean
Standard Deviation (or Error) and Mean Absolute Percentage Error.

The Root Mean Standard Deviation (RMSD) is a scale-dependent mea-
sure (dependent on the variable’s maximum value) of estimation error, equal
to the square root of the mean square error, as shown in Equation B.1.

RMSD =

√∑n
t=1(Ŷt − Yt)2

n
(B.1)

The Mean Absolute Percentage Error (MAPE) is calculated as the mean
of the error’s modulus, as shown in Equation B.2

MAPE =

∑n
t=1 |Ŷt − Yt|

n
(B.2)

and it expresses accuracy as percentage. We will use MAPE error for
calculating the regression’s accuracy and for deciding whether the prediction
can be used for SLA-based scaling in Section 6.

Appendix C. Statistical Non-Linear Models

Non-linear regression is a form of regression in which the mathematical re-
lation describing the dependency between the predictors and the dependent
variable is a non-linear combination of parameters, for example exponen-
tial addition. Exponential smoothing is an example of non-linear modelling,
where a time series is smoothed by approximating its terms with computa-
tions of an exponential function.

While non-linear models are more suitable to represent complex patterns
in time series, they also introduce additional complexity as their output usu-
ally depends on correctly identifying the underlying signal’s period, needed
by some prediction algorithms for decomposing the signal into its seasonal,
trend and noise components. Also, some non-linear prediction algorithms,
such as Holt-Winters [31] require having a time series with a length of at
least two periods.

Let us present a simple example. Figure C.18 shows a time series con-
taining a repetitive pattern (closely resembling the more complex patterns
usually found in business-critical enterprise applications), with some added

36

0

200

400

600

800

0 200 400 600
time

va
lu

e

Figure C.18: Sample Time Series with a Periodic Pattern

noise. The first period is coloured red. The data was generated by calculat-
ing the absolute value of function sinus multiplied with a constant factor, as
shown in Equation C.1.

Y = 1 + 720
∣∣∣sin(x

π

180
)
∣∣∣+ ε, x ∈ (1...720) (C.1)

There are multiple ways of extracting the period of a signal, for example
by using the autocorrelation function as in [17], or by calculating the esti-
mated spectral density of the time series using the periodogram [32] and then
converting the frequency with the largest spectral density into the signal’s
period. Naturally, the period of Y is equal to 180 (e.g. seconds), as the
function sinus has a period of 2π and |sin(x)| has a period equal to π.

Figure C.19 shows the prediction output for the time series given above,
by applying the Holt-Winters algorithm, first with the correct period of the
time series (180), and then with an approximative value for the period (145).
This shows the importance of correctly identifying the signal’s period before
attempting to predict it, which can be difficult in practice. The lower image
shows a bad prediction caused by the incorrect detection of the trend of
the time series, caused by the shorter value of the period - the signal being
identified as having 6 periods instead of 5.

The non-linear prediction models are suited for forecasting time series
with seasonal variations, such as hourly, daily or monthly. The predictions
can then be used for optimising processes with longer time horizons [11],
such as the allocation of physical computing resources [14]. For the work
presented in Section 6 we will use a combination of linear models and error

37

0

200

400

600

800

2 4 6

V
al

ue Actual

Fitted

−10000

−5000

0

5000

2 4 6
Period

V
al

ue Actual

Fitted

Figure C.19: Holt-Winters Prediction. Top: Signal’s Period:180. Bottom: Signal’s Period:
145

estimation, as the time horizon of the prediction is usually short, in the range
of tens of seconds.

References

[1] P. Mell, T. Grance, The NIST definition of cloud computing, NIST
special publication.

[2] D. Woods, Enterprise Services: Architecture, O’Reilly Media, Inc., 2003.

[3] A.-F. Antonescu, T. Braun, Modeling and simulation of concurrent
workload processing in cloud-distributed enterprise information systems,
in: ACM SIGCOMM Workshop on Distributed Cloud Computing (DCC
2014), 2014.

[4] A.-F. Antonescu, T. Braun, SLA-driven simulation of multi-tenant scal-
able cloud-distributed enterprise information systems, in: ACM PODC
Workshop on Adaptive Resource Management and Scheduling for Cloud
Computing (ARMS-CC), 2014.

38

[5] J. Bozman, Cloud computing: The need for portability and interoper-
ability, IDC Analyze the Future.

[6] A. Leon, Enterprise resource planning, Tata McGraw-Hill Education,
2008.

[7] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi, Cloud
computing—the business perspective, Decision Support Systems 51 (1)
(2011) 176–189.

[8] G. Lab, Cloud simulator cloudsim, http://code.google.com/p/

cloudsim (2014).

[9] R. Buyya, et al., Modeling and simulation of scalable cloud computing
environments and the cloudsim toolkit: Challenges and opportunities,
in: Int. Conf. on High Performance Computing & Simulation, 2009.
HPCS’09., IEEE, 2009, pp. 1–11.

[10] S. K. Garg, et al., Networkcloudsim: Modelling parallel applications in
cloud simulations, in: Utility and Cloud Computing (UCC), 2011 Fourth
IEEE International Conference on, IEEE, 2011, pp. 105–113.

[11] A. Visan, M. Istin, F. Pop, V. Cristea, Bio-inspired techniques for re-
sources state prediction in large scale distributed systems, International
Journal of Distributed Systems and Technologies (IJDST) 2 (3) (2011)
1–18.

[12] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for
adaptive resource provisioning in the cloud, Future Generation Com-
puter Systems 28 (1) (2012) 155–162.

[13] N. Roy, A. Dubey, A. Gokhale, Efficient autoscaling in the cloud us-
ing predictive models for workload forecasting, in: Cloud Computing
(CLOUD), 2011 IEEE International Conference on, IEEE, 2011, pp.
500–507.

[14] A.-F. Antonescu, P. Robinson, T. Braun, Dynamic SLA management
with forecasting using multi-objective optimizations, in: Proc. 13th
IFIP/IEEE Symposium on Integrated Network Management (IM), 2013.

39

[15] A. Garćıa Garćıa, I. Blanquer Espert, V. Hernández Garćıa, SLA-driven
dynamic cloud resource management, Future Generation Computer Sys-
tems 31 (2014) 1–11.

[16] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, R. Buyya, SLA-based
virtual machine management for heterogeneous workloads in a cloud
datacenter, Journal of Network and Computer Applications.

[17] A.-F. Antonescu, T. Braun, Improving management of distributed ser-
vices using correlations and predictions in SLA-driven cloud computing
systems, in: Proc. IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2014.

[18] H. N. Van, F. Tran, J.-M. Menaud, SLA-aware virtual resource man-
agement for cloud infrastructures, in: Computer and Information Tech-
nology, 2009. CIT ’09. Ninth IEEE International Conference on, Vol. 1,
2009, pp. 357–362. doi:10.1109/CIT.2009.109.

[19] A.-F. Antonescu, P. Robinson, T. Braun, Dynamic topology orches-
tration for distributed cloud-based applications, in: Proc. 2nd IEEE
Symposium on Network Cloud Computing and Applications (NCCA),
2012.

[20] A.-F. Antonescu, A.-M. Oprescu, et al., Dynamic optimization of SLA-
based services scaling rules, in: Proc. 5th IEEE Internetional Conference
on Cloud Computing Technology and Science (CloudCom), 2013.

[21] J. D. Little, S. C. Graves, Little’s law, in: Building Intuition: Insights
From Basic Operations Management Models and Principles, Springer,
2008, pp. 81–100.

[22] F. E. Croxton, et al., Applied general statistics., Prentice-Hall, Inc, 1939.

[23] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria (2013).
URL http://www.R-project.org

[24] F. Pop, M. Potop-Butucaru, Adaptive Resource Management and
Scheduling for Cloud Computing, Vol. 8907 of Lecture Notes in Com-
puter Science (LNCS) / Theoretical Computer Science and General Is-
sues, Springer, 2015.

40

[25] Apache CXF, http://cxf.apache.org/ (2013).

[26] Distributed OSGi, http://cxf.apache.org/distributed-osgi.html
(2013).

[27] T. P. P. Council, TPC-H benchmark specification, Published at http:

//www.tcp.org/hspec.html.

[28] T. Goyal, et al., Cloudsim: simulator for cloud computing infrastructure
and modeling, Procedia Engineering 38 (2012) 3566–3572.

[29] S. Urbanek, Rserve – a fast way to provide r functionality to applications,
in: Proc. of the 3rd International Workshop on Distributed Statistical
Computing (DSC), 2003.

[30] ComputerWorld, SAP-schwing-app ein PR-GAU (engligh transla-
tion: SAP swing app a PR meltdown), Engligh translation: http:

//goo.gl/Zmmjwx Original webpage: http://www.computerworld.

ch/news/software/artikel/sap-schwing-app-ein-pr-gau-64170/

(Sept 2013).

[31] C. C. Holt, Forecasting seasonals and trends by exponentially weighted
moving averages, International Journal of Forecasting 20 (1) (2004) 5–
10.

[32] P. Bloomfield, Fourier analysis of time series: an introduction, John
Wiley & Sons, 2004.

41

Torsten Braun got his Ph.D. degree from University of Karlsruhe (Germany) in 1993. From 1994 to
1995 he has been a guest scientist at INRIA Sophia-Antipolis (France). From 1995 to 1997 he has been
working at the IBM European Networking Centre Heidelberg (Germany) as a project leader and senior
consultant. He has been a full professor of Computer Science at the University of Bern (Switzerland)
and head of the research group "Communication and Distributed Systems" since 1998. He has been
member of the SWITCH (Swiss education and research network) board of trustees since 2001. Since
2011, he has been vice president of the SWITCH foundation.

Torsten Braun

Florian Antonescu is a Research Associate in the department of Products & Innovation at SAP
Switzerland. He is expected to receive his PhD from University of Bern (Switzerland) in 2015.
Previously he obtained his Master in Management of Information Technology, and Diploma in
Computer Science from University “Politehnica” of Bucharest (Romania). His research interests include
distributed computing, scalability of cloud systems, large-scale statistical data analysis, and mobile
computing. For his PhD he investigated the use of Service Level Agreements in cloud environments for
scaling distributed infrastructures.

Florian Antonescu

Torsten Braun
Click here to download high resolution image

Florian Antonescu
Click here to download high resolution image

