
Web-centred end-user component modelling

David Lizcanoa, , Fernando Alonsob, Javier Sorianob, Genoveva López
a Universidad de Distancia de Madrid (UDIMA), Spain
b Universidad Politécnica de Madrid, Spain

A B S T R A C T

This paper formally defines a web component model enabling end-user programmers to bui ld component-based r ich internet applications
(RIAs) that are tailored to meet their particular needs. I t is the product of a series of previously published papers. The formal definit ion in description
logic verifies that the model is consistent and subsumes currently existing models. We demonstrate experimentally that i t is more effective than the
others.

Current tools propose very disparate web component models, which are based on the appropriate invocation of service backends, overlooking
user needs in order to exploit these services and resources in a friendly manner. We have proposed a web model based on a detailed study of existing
tools, their pros and cons, l imitations and key success factors that have enabled other web end-user development (WEUD) solutions to help end-user
programmers to bui ld software to support their needs. In this paper we have verified that the proposed model subsumes and is instantiated by the
models of the other existing tools that we analysed, coming a step closer to the standardization of end-user centred RIAs and development
environments. We have implemented a development tool , called EzWeb, to produce RIAs that implement the proposed model. This tool enables users to
develop their application fol lowing the model’s component structure based on end-user programming success factors. We report a statistical
experiment i n which users develop increasingly complex web software using the EzWeb tool generating RIAs that conform to the proposed
component model, and other WEUD tools generating RIAs that conform to other models. This experiment confirms the applicability of the
proposed model and demonstrates that more end-user programmers (EUPs) (users concerned w i t h programming primari ly for personal rather
public use) successfully develop web solutions for complex problems using the EzWeb tool that implements the model, which is more efficient
than existing tools that implement other models.

1 . Introduction

Interest and investment in web end-user development (WEUD)

are mounting all the t ime, and its impact [1] has even outstripped

forecasts made byChristopher Scaffidi, Brad Myers and Mary Shaw

Corresponding author.
E-mail address: david.lizcano@udima.es (D. Lizcano).

back in 2005 [2] . There are many web-based mashup development

environments that enable mill ions of users to personally develop

software solutions to solve their own problems.

Many software suppliers including Microsoft, Apple, IBM, Ya­

hoo!, Oracle, etc., have developed tools providing support for end-

user programmers (EUPs) (programmers who wish to achieve the

result of a program primarily for personal rather public use) [1]

to develop web applications, particularly rich internet applica­

tions (RIAs), offering do-it-yourself (DIY) [3] guidance on how to

mailto:david.lizcano@udima.es

evolve end-user developments to meet end-user demands and re-
quirements. Such applications include Chrome Web Store (Chrome
WS) and its Developer Tools [4] , Yahoo! Pipes and Dapper [5,6],
Microsoft Popfly [7] (currently closed and offered as part of M i ­
crosoft WebMatrix), Kapow Platform [8], JackBe Presto [9] , AMICO
Sketchify [10], Marmite [11] or EzWeb [12].

These solutions enable EUPs to develop their own software so­
lutions. These solutions help EUPs create a graphical user interface
(GUI) by visually connecting components w i th different levels of
abstraction in order to access and exploit different types of ser­
vices and resources and solve their particular problem. Each
solution has pros and cons [3,1] and offers distinctive WEUD func-
tionalities for creating end-user solutions. The major weakness is
that each tool defines a web application development model for
building solutions to problems of a particular type and complex-
ity. These models are of no use for EUPs to develop more com-
plex general-purpose RIAs [13,14]. For example, Yahoo! Pipes is
confined to building mashups of data from RSS or HTML sources,
whereas Kapow Platform specializes in building web portals us-
ing screen scraping techniques, and so on. The important thing,
though, is that these WEUD solutions are promoting a new web
component model [15] that has not yet, however, been either fully
structured or formalized. The component models used in these
tools, their strengths and generated products have not yet been
studied in detail in order to define a comprehensive component
model for the web. The race to compete in an increasingly glob-
alized WEUD solutions ecosystem has forced developers (Google,
Yahoo!, Microsoft, Amazon, Apple, Sun, IBM, etc.) to develop and
optimize their own tools in their application environments w i th -
out formalizing a common underlying component model. There-
fore, a common component model needs to be built i n order to
promote interoperability between building blocks supplied by
different manufacturers [16] and raise acceptance among EUPs
by guaranteeing that users can successfully build more complex
general-purpose RIAs than they can now [17].

The challenge, then, is to come up w i th an emerging web
end-user component model [18] that covers the functionalities of
a wel l-known set of existing tools, exploits their strengths and,
whenever possible, reduces their weaknesses, encouraging EUPs
to create and/or customize their own software [19]. This paper
studies a representative set of existing tools, which were selected
as being the most commonly used and successful tools in recent
years, analyses the component models underlying the RIAs created
using each tool and defines and formalizes in description logic
a component model that subsumes the RIA models by merging
their functionalities and strengths and incorporating EUD (end-
user development) success factors. A WEUD tool that instantiates
this model has been tested on real EUPs and found to more
effectively scale up to increasingly complex problems than today’s
EUD tools. We designed this tool, called EzWeb [20], along w i th
other partners under the auspices of a Networked European
Software and Service Initiative (NESSI) strategic research project.
EzWeb is now being used in two European Union 7th Framework
Programme projects in which we are participating: 4CaaSt [21]
(building the future Platform as a Service) as part of its mashup-as-
a-service solution and FI-WARE [22] (building the Future Internet
core platform) as part of its applications and services ecosystem
and delivery framework’s generic enablers for EUPs to build
application mashups.

The remainder of the paper is structured as follows. Section 2
presents related work and analyses the principal WEUD tools
and the component models governing the end-user solutions that
they can each build. Section 3 presents a set of target features
for an end-user oriented component model and presents our
WEUD component model that combines the strengths of the other
models w i th EUD success factors that we have analysed during

our research. This model has been mathematically formalized in
Section 4 using formal logic to demonstrate that i t is consistent
and is instantiated by the models produced by the analysed WEUD
tools. Section 5 describes the use of an automatic reasoning tool
to check whether the component model generated by each tool
described in Section 2 is a valid instance of the global model
reported in Section 3. Section 6 presents the results of a study
that we conducted to test whether EzWeb, which generates RIAs
that conform to the proposed component model, achieves better
results than other WEUD tools, which generate RIAs that conform
to other models. Section 7 addresses the EUD dilemma of whether
i t is better to define generic or domain-specific EUD tools. Finally,
Section8concludes this paper and presentsabrief outlineof future
work.

2. Related work: existing solutions for end-user development

Software suppliers are in the process of converting their
products into web services (an approach termed Software as
a Service, SaaS), and all sorts of software solutions are readily
available in the shape of services scattered over the Internet [23].
These approaches target end users that are generally unfamiliar
w i th the details of the technology used to implement services.
Users should now be just as able to use these services to their
own advantage as they used to be able to use commercial software
products in the past [24]. There are compilations of available
services, together w i th examples, guidelines and success stories
in service use, including the Programmable Web repository [25].
Programming knowledge, knowledge of SOAP, WSDL, BPEL, etc., is
required to use these resources [26]. This breach between the high
availability of web resources and the low prospects of their use by
EUPs has led many large software enterprises to create mashup
development environments targeting EUPs like Chrome WS and
its Developer Tools, Yahoo! Pipes and Dapper, Microsoft Popfly,
Kapow Platform, JackBe, AMICO, Marmite or EzWeb. They all share
the goal of enabling EUPs to develop a composite web application
that solves their particular problem.

The major problem w i th these tools is that EUPs are often
unable to translate their particular requirements into a specific
software product [1,17], because each tool focuses on achieving a
particular solution type that does not necessarily meet user needs.
For example, Yahoo! Pipes creates a correctly filtered data list feed,
Kapow Platform creates an execution f low based on pre-existing
interlinked web portals, and so on. Users who require a more
complex RIA or need to solve a problem type other than for which
the tool was designed w i l l be disappointed.

Our working hypothesis is that the component models control-
l ing the different WEUD tool solutions are not general enough to be
able to create more complex general-purpose RIAs. Additionally,
the tools do not match the way in which EUPs conceive their solu-
t ion ; nor do they offer a natural development process for end-user
characteristics and needs. This hypothesis is based on the study of
many related papers focusing on the EUD field and applicable to
WEUD, which are described below.

End-user development or EUD is a term first proposed by
European researchers ten years ago at an international symposium
held in Bonn, Germany. It has attracted a lot of scientific interest
since the first biannual International Symposium on End-User
Development (IS-EUD) focusing on this domain was held in 2007.
Four top-level meetings have been organized since then. The main
topic of these conferences is how to empower EUPs to develop and
adapt systems themselves.

These symposiums, together w i th other international con-
gresses, have promoted several lines of EUD-related investigation
akin to the research reported in this paper: (1) attempts at s im­
ple programming languages or environments focused on a partic­
ular domain, such as EnglishMash (an end user-oriented language

M2
UML2
Model

M1
UML

Diagram

MO
Reality

Attribute

«< insta ncpOI»»

Class

-
•^inslanoeOf»

''
/ Class

-+Attribute = type

* jt
Instance

4
'Kin^l^íceOf?1? /

A

:a Class

Attribute = "abc..."

«fnodfeted"

Real Wortrl

Component model that
subsumesall the possible UML
diagrams of RIAs created with

an EUDtoo l

UML diagram modell ing a RÍA,
created b y a programmer

RÍA developed by an end user
[HTML, Java, JavaScript code)

Fig. 1. OMG modelling levéis.

wi th massive natural language use and proactive aids such as auto-
completing code) designedbyAghaee and Pautasso[27],orResEval
(an EUD environment for mixing R&D domain data sources using a
XML-based visual language, which requires knowledge of mark-up
languages) created by Muhammad et al. [28] ; (2) demonstration of
the potential of wizard-supported services integration in the EUD
field [29,30]; (3) research into human–computer interaction and
its particularities in the EUD field, such as [31] stressing how i m -
portant i t is to have user-oriented building blocks in order to focus
on solution design rather than the interaction w i th programming
components, or Grudin [32] reporting a study suggesting that HCI
consistency is not relevant in the EUD field and can be counterpro-
ductive because i t hems in user creativity.

Al l these papers point to the potential of a visual environment
based on correctly catalogued building blocks described simply in
natural language, which are easy to use, interoperable and useful
for building component-based end-user software applications.
Such an environment would be able to take advantage of the major
benefits of component-based software, although the problems
troubling this type of approaches also need to be addressed. These
problems are described by Garlan et al. [33], Stiemerling [34] and
Wulf et al. [35], highlighting the need for component types w i th
a good trade-off between ease of use and usage, and between
generality and specificity. These researchers draw attention to the
conflict w i th in end-user off-the-shelf software: if the products and
components are generic enough to be used by most users, then
they w i l l never be perfectly tailorable to their particular needs and
vice versa. Our research addresses this problem directly wi th in the
EUD field.

Several researchers have already addressed EUD conceived
on the basis of off-the-shelf parts, including Mørch [36] who
came up w i th the idea of using basic architectural patterns in
order to implement end-user software using Lego brick-like user-
oriented building blocks. Although Mørch’s paper did not focus
on the web components world, i t was the first to deal w i th
building blocks as they are used in the most successful WEUD tools
today. Mørch et al. [37] later identified the need to create RIAs
to support routine work by EUPs, although they included other
roles in the development process, such as, for example, advanced
programmers to assemble and configure the parts used. This is a
job that EUPs could do themselves if they had access to the right
mechanisms and simple, general-purpose but at the same time
fully functional, component models, as illustrated by the success
of some of today’s WEUD tools [17,38].

These tools can be used to build mashup web applications,
which have proven to be very useful i n the business field as
a services integration alternative to rigid SOA architectures, as
illustrated by papers like [39,29,30]. There is to date, however, no
comparative study analysing the component models implemented
by each WEUD tool or proposing a general component model

subsuming their functionalities. Such a model would enable EUPs
to address problems of increasing complexity that can only be
solved w i th a wider variety of component types and relationships
to interrelate components. This is a wel l-known weakness in this
web f ield: all WEUD component models are missing a gentle
slope of complexity [40], that is, when the complexity of the RIA
to be built increases, the performance of the development tool
plummets. WEUD w i l l not thrive unless end users are provided
w i th models for complex component-based development.

Our working hypothesis is foundedonconsidering thata broad-
spectrum component model designed for non-programmers and
implemented by a web tool w i l l enable EUPs to build complex
and general-purpose RIAs more successfully than the models
implemented by today’s EUD tools that do not enable users to
develop really complex RIAs. To do this, we have studied the
component models driving EUD in the RIAs generated by these
tools in order to analyse their features, strengths and weaknesses.
Alongside other EUD success factors that we have analysed during
our research, they have been used to define a general model that
adopts all of these strengths.

According to Object Management Group principles, there are
three modelling levels in the software engineering wor ld. They are
illustrated in Fig. 1 .

WEUD tools are useful for building a RIA application that uses
source code in more than one programming language to perform
a function. This final application is equivalent to the M0 modelling
level: reality. ThatM0isthe RIA createdbyaEUPfor her own needs,
w i th specific information inputs and outputs.

The M 1 level includes the UML (Unified Modeling Language)
diagrams that represent the component model to which a RIA
built by the end user conforms. M 1 is the diagram modelling a
RIA, that is, a specific WEUD platform considering all different
widgets, operators, etc., that this platform provides. In the example
of Yahoo! Pipes, M 1 w i l l include all the sources, like ‘‘Fetch CSV’’,
and user inputs, like ‘‘URL input’’, etc. The M2 level defines the
UML2 diagrams that represent the general component model
implemented in any product generated by a particular WEUD tool.
Section2presents theseM2diagramsinordertoexplore what type
of solutions each tool is capable of building in theory.

We propose a bigger model subsuming the other M2 models
of other WEUD platforms. It uses UML2 and MOF (Meta-Object
Facility) to propose component models that subsume the M2
models. Our M2 model is the underlying component model for
different WEUD platforms, defining the associations between all
different objects including the ‘‘workspace’’, ‘‘widget’’, ‘‘input’’,
‘‘output’’, etc. So, instances of ‘‘object’’ l ike ‘‘workspace’’ and
instances of ‘‘association’’ including all those UML associations in
the component models can be defined at the M2 level. This M2
model is presented in Section 3 as a general EUD model subsuming
the existing models. The EzWeb tool presented in Section 6 is now

being used to develop composite applications that conform to this
model. This confirms the strengths of a tool that outputs RIAs that
are instances of this model.

We now describe the existing WEUD tools and rate the pros
and cons, uncovered by an in-depth analysis at all levels: M2
component model, development tool UI, repository, services,
composition techniques, etc.

2.1. From iGoogle to Chrome Web Store: independent resource
mashup platforms

One of the first mashup development and execution platforms
targeting EUPs was iGoogle. iGoogle enabled users to create a
personalized Internet home page composed of a mashup of off-
the-shelf items (originally called widgets and later apps) organized
by tabs or workspaces. This project was retired, but its premises
and principles were kept alive by the Chrome Platform and by the
iGoogle Portal1 site.

The Chrome Platform is a browser-based environment which
provides, via the Chrome Web Store [4] , applications, extensions
and web components for browser-based execution. Users have
access to a comprehensive catalogue of visual elements, including
applications, data sources or extensions. These components can
be placed on a blank page where these apps are launched using
representative icons. Working in Chrome Browser Developer
Mode, users can use Chrome DevTools to inspect and adapt
components, and even modify their operation and appearance.
Developer mode requires knowledge of HTML and JavaScript.
Code Labs is designed to simplify these steps, offering tutorial-
like textual guidance. Even so users have need of basic web
programming knowledge and have to use a programmer-targeted
IDE called Dev Editor. On this ground, the iGoogle Portal was
launched to cater for EUPs. The iGoogle Portal maintains the
original iGoogle framework. The iGoogle Portal is independent of
Google Chrome and the Google project.

As iGoogle sparked an explosion of WEUD solutions, such as
Yahoo! Pipes and Dapper, Kapow Platform, AMICO, etc., that set
out to emulate iGoogle’s simplicity and success, we present the
approach here. Widgets are independent interface elements w i th
atomic and defined functionality. Mult iple suppliers have used tra-
ditional web programming (based primarily on JavaScript) to cre-
ate a great many widgets implementing all sorts of functionality:
e-mail boxes, to-do lists, calendars, clocks, weather forecasts,
multi-language translation, games, notebooks, multimedia play-
ers, etc. All these widgets generally implement their functionalities
by invoking remote web services, although EUPs are completely
unaware of this, as the widget is l ike a black box for users who
are unfamiliar w i th its internal implementation. Fig. 2 illustrates
the iGoogle component model [3] , which is maintained by iGoogle
Portal.

The model underlying the Chrome Web Store and apps
deployment and adaptation targeting end users w i th HTML and
JavaScript knowledge also conforms to the above model, as i t
includes the components of the general model specified in this
paper. The approach is designed to build a web execution platform
composed of user-selected apps. The platform may have one or
more workspaces, each of which is composed of several user-
selected apps (which can be tailored, although this requires
knowledge of HTML and JavaScript). These apps are the main
element underlying the Chrome approach, and they are composed
of an interface (wi th a Manifesto or XML meta-information and a
visual interface) and backend resources (including a background

iGoogle Portal, http://www.igoogleportal.com.

Fig. 2. iGoogle (and iGoogle Portal) component model.

script) that users indirectly manage through the widget (for
example, to invoke weather forecast web services, email server
access, map visualization, etc.).

iGoogle (iGoogle Portal) and Chrome Web Store have serious
weaknesses w i th respect to WEUD, as their approach is rather
simplistic and l imi ted:

– The final solution should be a blank page in the browser listing
apps and its development is subject to numerous constraints.

– The widgets published in the catalogues are l imited, and EUPs
cannot develop new visual elements because this calls for some
programming knowledge. Therefore, developers havetostick to
available off-the-shelf apps adapted to their needs.

– Apps are independent functional elements and are not at
all interoperable or intercommunicable. EUPs may want to
develop apps that cooperate w i th each other (for example, to
import and directly translate a news source using the translator
widget or use a map widget to visualize a location received in
a message read by an e-mail widget, etc.). The WEUD solutions
that can be created using iGoogle Portal or Chrome Web Store
are l imited in this respect. EUPs that want their solutions to
have such functionalities w i l l havetouse another type ofWEUD
environment.

The major strength of the approach based on iGoogle is the
idea of using apps: visual parameterizable elements designed to
perform a function in the global RIA. This is an easy idea for
EUPs to understand and which they can use to do things as
far apart as invoking web services to displaying heterogeneous
data homogeneously. According to previous studies, this idea
enjoys widespread acceptance among EUPs [17], and is, therefore,
adopted as a key element of our model for use by EUPs to generate
their RIA. But being isolated elements, widgets do not serve
our purpose, as this l imits the complexity and generality of the
solutions built enormously.

2.2. Yahoo! Pipes and Dapper: heterogeneous data source mashup
platforms

Many users’ Internet experience is based on gathering and
reading portal contents, information, news and opinion. In this
respect, many web sites publish all sorts of contents, news and
information as RSS feeds (enriched web site summary) that users
can receive easily. This technology was so successful that EUPs
often needed tailored solutions to filter, sort or prioritize the
syndicated information that they received from the web. Yahoo!
Pipes [6] and Yahoo! Dapper [5] emerged in response to the end-
user need for this type of solution. These tools enable EUPs to filter,

http://www.igoogleportal.com

Fig. 3. Yahoo! Pipes and/or Yahoo! Dapper component model.

mix, organize, label and, in short, manage web data sources. Fig. 3
shows the Yahoo! Pipes and Dapper component model.

EUPs use the Yahoo! platform to develop a RIA composed of
one or more pipe mashups. Each mashup w i l l be composed of the
concatenation of one or more pipes that perform specific functions
(filter contents based on defined criteria, mix data sources, sort
results according to a specific criterion, etc.) and implement a
dataflow. Each pipeiscomposed ofoneormore modules.Amodule
is an atomic component performing a specific function like a black
box. The tool contains different types of catalogued modules (data
sources, data operators, data filters, etc.) which users can link
to generate a new pipe. The modules are fully generic at design
t ime, and users convert them into special-purpose tools through
instantiation. Each module has a graphical interface called layout
(optional) and several backend resources which are accessed
unbeknown to users (resource invocation is not always necessary).
I t is these backend resources that implement the RIA business
logic, transparently created for EUPs. The business logic can be
implemented by data operators (functional or list operations) or
by invoking remote data sources. Feed invocation is composed of
the source URL and the data transiting from the remote web source
to the importing module.

Yahoo! WEUD tools enable EUPs to manage diverse Internet
data sources, but do not solve the problems of how to enable
EUPs to generate final solutions w i th complex functionalities.
Using these tools users can manage and adapt data sources to
their needs, but they cannot easily manage heterogeneous services
scattered across the Internet in a user-centred manner, as the tools
are unable to invoke general web services. This is their major
shortcoming.

However, the idea of creating a dataflow among operators and
components l inking typed inputs and outputs proved to be very
popular among EUPs in a previous study that we conducted [3] .
Input and output types are useful for providing users w i th
recommendations and feedback about what connections can be
created among the components that they are using. Our model
applies this idea of dataflow among components and operators.

2.3. Kapow Platform: mashing up visual interfaces and service
frontends

There is a whole series of WEUD solutions focusing on the
integration of visual web elements w i th very similar purposes and

Fig. 4. Kapow Platform software component model.

characteristics: Kapow Platform, JackBe Presto, AMICO Sketchify,
Marmite, etc. They are all designed to enable EUPs to develop
their own RIA based on one or more mashups of visual elements
organized in tabs or workspaces: a very similar approach to the
iGoogle Portal homepage. In this case, however, they provide for
cooperation and communication and data import/export between
visual elements.

In the following, we discuss the architectural schema under-
lying the RIAs created w i th Kapow Platform only, as component
models generated by EUPs using the above solutions are all equiv-
alent. Fig.4illustrates the component modelofthe Kapow Platform
tool.

RIAs built w i th Kapow Platform have one or more mashups of
virtual elements of different types. For a better understanding of
this tool, Fig. 5 shows the framework architecture.

Each mashup is composed of one or more dashboards that
play the role of offering different runtime workspaces, called
Kapow KappZones, for users by way of sets of separate widgets,
created w i th a tool called Design Studio. There are several off-
the-shelf dashboards published in a catalogue called Kapplets
Library. Each dashboard is composed of one or more interlinkable
widgets, although the widgets of different dashboards are not
interconnectable. Widgets are the basic visual element that w i l l
make up the final solutions created using Kapow Platform, and no
knowledge of web technologies is required for their use because
they use APIs set up to act as middleware w i th business services.
Each widget is implemented by one or more robots (also known as
roboservers) cooperating w i th each other, and the management,
use and configuration of these robots requires some knowledge
of web programming using the management console. A robot is a
functional part that performs a specific computational task. It is
composed of an interface (hidden and not displayed at run time)
and backend resources that execute workflowsof the final solution
without EUPs being able to perceive all its implementation details.
These resources can run operations on data (arithmetic, functional
or list operations) or invoke remote web services through a
dedicated API using the Kapow integration engine. For a robot to

Fig. 5. Kapow Platform layers and tools [8].

invoke a service, the off-the-shelf service must be built in such a
manner that details how to manage the service API (syntax and
technology), and sent and received data must be specified in its
implementation. Therefore EUPs can never modify the robot to
manage any other web services.

These solutions contribute three concepts that have been
adopted in our model:

– Relationships of composition among different elements: a RIA
is composed of one or more mashups, made up in turn of more
detailed components and so on. This component hierarchy
organized by level of abstraction enables users to create (or
adapt)acomponent not includedinthe tool from its constituent
parts.

– Spatial and temporal grouping components: these tools include
elements for spatially combining diverse interrelated compo-
nents, leading to the concept of workspace or dashboard, which
is a great facility for creating complex applications. They also i n -
clude elements for creating widgets (used atomically by other
tools), such as the sequential execution of parts called robots as
a temporal f low.

– Use of UI design elements in order to compose each widget.
This way, users can form new widgets by combining interface
elements (forms, buttons, etc.), data operators and backend
services that ultimately wrap the invocation of a remote
service or resource so that users do not have to bother w i th a
request–response protocol.

As regards the weaknesses of these tools, several studies,
including Rode et al. [13], Rosson et al. [14], Ko et al. [1] , or Lizcano
et al. [3,17], suggest that a much earlier version of Kapow Platform
(wi th similar applicability but worse usability) and a long list of
similar existing solutions signified a major step forward towards
the goals set out by the WEUD community but do not have all the
features required in order to enable EUPs to develop their own
general-purpose web applications at leisure:

– EUPs sti l l have l imited use of web services available on the
Internet. They w i l l only be able to use services for which there
are predesigned robots (or equivalent design elements) that
offer a suitable frontend for EUPs to manage this service in a
shared repository. EUPs w i l l not have access to the other (most)
services.

– When there are no off-the-shelf components that meet user
needs, the design detail level has to be increased to the point
where users are required to manage robots, something that,
as already mentioned, calls for web programming knowledge.
This means that EUPs w i l l not f ind a guided design and
implementation process partitioned into stages adapted toend-
user experience or that has a level of abstraction tailored to

end-user knowledge and their way of understanding software
development [41].

– They appear to account for widget interconnection, but this
requires some knowledge of data structures and typing, and
again EUPs can f ind i t hard to use this development solution.

These weaknesses can be mitigated by offering users visual
techniques and components that they can use to create new robots
(or robot-level components) that they can l ink using the dataflow
and component interconnection ideas proper to other tools like
Yahoo!

2.4. Other non-web EUD approaches

Studies conducted by Rode et al. [13] and Ko et al. [1] reveal
that no web EUD tool has yet managed to repeat the success
stories reported in other EUD fields like spreadsheets, despite the
enormous functional potential of the Internet as an ecosystem of
web services that can be exploited, orchestrated and syndicated to
generate really powerful composite web applications. They report
that most EUPs are unable to use existing WEUD tools to create
a RIA that satisfies a straightforward requirements specification
stated by such users. The validation reported in this paper also
shows up these deficiencies.

As regards the explanation of this failure, studies carried out by
Davis et al. [42], W u et al. [41], and other authors [38] disclose that
the problems w i th EUD support web tools can be traced back to
the component models, environments and techniques of the tools
used to build solutions on the grounds explained above. The above
component models control the development process, its stages and
activities [16]. Therefore, these models should be tailored to end-
user needs and take into account that EUPs may want tobu i ld more
general-purpose RIAs than they can do using each one separately.
Component models shouldbeconsistent, preventerrors and assure
quality. And no EUD tool supplier has yet made such an effort to
define and formalize a general-purpose model valid for creating
rather diverse or complex RIAs.

In [38] we studied spreadsheet-based EUD tool strengths. Based
on these strengths and the weaknesses of existing EUD and WEUD
tools, together w i th other investigated EUD success factors, we
propose a new generic component model for RIAs created by EUPs.
This model takes into account correct component abstraction,
parameterization, component interaction, etc. This model should:
– Be a consistent component model, like the models of the

analysed WEUD tools.
– Subsume existing models so that any existing WEUD tool can

be tailored to the proposed model and tool components can be
exploited generically by a tool that conforms to the proposed
model.

– Perform better i n experiments conducted w i th EUPs than exist-
ing tools.

3. EUD component model for the web

There are several studies [41,42] on the factors determining
whether or not a particular EUD w i l l be successful w i th EUPs.
However, almost all focus on spreadsheet-based EUD tools. Very
few studies to date have focused on web-centred EUD tools
for building RIAs, the most prominent being [15,16,13,14]. They
propose improvements to existing EUD component models, some
focusing on HCI improvements, such as tool user perception, error
proneness, viscosity to change or correct component abstraction,
and yet others on component improvement to cater for the trade-
offs between component specificity and generality for use in
different domains. Based on the presented research works, we
describe a set of premises (success factors) that we consider a good
WEUD model should have, which were partially reported in [38,
43] :

1 . Any component of an end-user solution should be a black box
that performs a specific and precise function (that is, call a
service, invoke a resource, etc.) that makes problem-solving
sense to the user. At the same t ime, a rich and expressive
visual interface should make such components manageable,
simple and understandable and be clearly described in natural
language. In fact, users should be able to understand the
components that they use and grasp what they do without
having to bother about how they do it.

2. The runtime component w i l l usually process some input data
to produce outputs. Users should be able to communicate
the dataflow between the components underlying the task
to be performed. Non-programmers need to have access to
abstractions tailored to their mental pattern in order to model
this dataflow. Simple data together w i th a visual representation
of the semantic compatibility among these data constitute the
right level of abstraction. These data can be considered as
pre- and postconditions that drive the execution of a state
machine [3] . This saves users from having to deal w i th the
syntax of the backend resources. Users should also have the
option of specifying the meaning of such data. This would be
helpful for people using the elements in the future.

3. Users should have access to mechanisms for both spatially and
temporally managing the dataflow. Users should be able to
formulate changes to the interfaces/visualizations depending
on particular data, management processes, etc.

4. Finally, a very important EUD success factor (and one of the se-
crets behind the spreadsheet sensation) is the abstraction gra-
dient. Not all users have the same knowledge of compositional
aspects, technical expertise or experience in EUD fields. Instead
of programming a RIA or component, which they are not quali-
fied to do, users should parameterize off-the-shelf components
to meet their needs, or put together finer-grained parts to v i -
sually compose more abstract, original and useful components.
A catalogue of off-the-shelf components for composing new
components should offeraful l-blown hierarchyof components,
ranging from comprehensive, complex and problem domain-
specific RIAs to simple services, data and/or resources wrapped
by software providers for use by less expert users. We propose
a component hierarchy formed by final solutions (ful l-blown
RIAs), mashups, workspaces, widgets, visual items, data oper-
ators and finally backend resource wrappings. Throughout our
research, this hierarchy has proved to be good enough to meet
the abstraction needs of most EUPs.

Apart from premises concerning the component model, our re­
search work revealed other assumptions that would be advanta-
geous for EUD that we intend to address as future lines of research,
such as:

1 . The development tool should include some sort of visual aid,
such as a user interface w i th help based on colour coding
or highlighted items to suggest data flows among elements
depending on the data types that they manage for users at
design time. This would help EUPs to solve their problem and
reduce process viscosity.

The feedback that we get after reviewing studies on this
topic [41,42,15] is that EUD success factors are related to HCI
factors and the specialization–functionality relationship.

2. EUD components should be published in a collaborative and
federated solution component marketplace. The development
environment should have access to this marketplace to
download and publish components. Software providers, which
opted for SaaS years ago, can use this marketplace to
publish business resources duly packaged according to end-
user requirements. This principle would encourage new users
to publish their solutions and reuse earlier components and
elements built byother users. It would also reduce the difficulty
curve for new developments [44] and produce an exponential
benefit, known in economics as network externality.

None of the premises are recognized requirements; they are
a set of good practices and desirable elements uncovered by our
research in this field over the last ten years. The only way to
empirically check the adequacy of each of these premises is to
test whether a tool that generates RIAs implementing a model that
accounts for these premises is successful or fails.

Wi th these premises, we created a web component model that
was more successful among EUPs because i t adopted the above
factors [45] and a tool that enabled users to create RIAs according
to this model [46].

The main contribution of this paper is to model the proposed
EUD web component model [45] i n description logic. Description
logic was used to check model consistency and confirm that the
analysed WEUD models are an instance of the proposed model
that subsumes the models generated by existing tools that we
have studied and which is more efficient than the other models
at addressing complex problems in the WEUD field. We state
two aims to be achieved separately. The first aim is to adapt
elements of the other tools to the more general model that we
propose, thereby increasing their usefulness and existing EUD
software reuse. The second aim is to demonstrate that a EUD tool
producing RIAs that conform to the proposed model behaves more
efficiently in response to problems of increasing complexity than
the analysed existing tools which produce RIAs conforming to
other models. The model presented below was designed to comply
w i th the above premises and is capable of providing support for
the development environments that set out to use joint catalogues
and end-user recommendation techniques. Fig. 6 illustrates the
proposed M2 component model using UML2 [43,45], which needs
to be correctly specified and validated. For this purpose, i t has been
described in formal logic. This formal logic description, which is
the groundwork of the contribution of this paper, demonstrates
the consistency and validity of the component model and that i t
subsumes and instantiates the other analysed models.

We employ a UML2 class diagram that conforms to the UML2
superstructure specification defined in ISO/IEC DIS 19505-2. We
use Meta Object Facility (MOF) Core Specification to create our
M2 diagram [47]. MOF is a facility defined and used in ISO/IEC
19502:2005. The international standard describes its importance
and applicability in model-driven engineering, enabling the
creation of a bigger M2-level schema and offering the possibility
of running or checking schema instances or subsumptions in UML
notation [48].

As the model shows, the design element is the basic component
of the component model. This element is composed of a user-
centred visual interface for accessing a wrapped resource. Any

Fig. 6. Proposed WEUD component model.

component w i l l be linked w i th other components in the final
solution through pre- and postconditions based on facts that guide
the dataflow, where a fact is an information i tem composed of
a datum and its associated lightweight semantics. As already
mentioned, visual aids (such as coloured or highlighted elements)
suggest valid data flows to users at design t ime thanks to a
reasoning model based on component ontologies, lightweight
labels created by other users and/or suppliers and the data types
and elements already used previously in the actual design.

Ideally in the future all the end-user components should be
published in a business marketplace-style collaborative and feder­
ated catalogue. This obviously requires massive user participation
where a critical mass of users download, reuse and update compo-
nents. This is not immediately applicable in the course of research
into WEUD models. In any case, any user w i l l be able to search
the catalogue for new components and compose solutions sourced
from other user recommendations about the data managed by the
partially designed solution, etc.

Finally, the components should cater for the needs of as many
EUPs as possible and be adapted to the levels of abstraction that
we can expect to f ind depending on user problem knowledge
and previous experience at developing RIAs. For this reason, there
is a full-scale hierarchy of design elements devised to f i t the
level of abstraction required by users for different development
process workflows. These levels of abstraction include anything
from ful l solutions to backend resources (simple data operators,
like filters, concatenators, etc., or wrapped services). Each element
in this hierarchy is adapted to a different level of abstraction.
This way, users can f ind and focus on the detail level that they
expect to f ind and w i th which they are confident: the ful l solution
(or RIA) is equivalent to the system that the user envisages to
address the problem; this solution is composed of a mashup of
several design elements, and has several workspaces. Workspaces
are visual spaces all displayed at the same t ime by a composite
interface that aimstotackle part ofthe problem. These workspaces

include several interconnected widgets, where a widget is a visual
element that manages user interaction w i th a particular remote
resource. This widget may present a single view or a screen f low
(such as a survey composed of several forms) for the user to
interact w i th the remote resource or resources associated w i th the
widget. Each of these visual interaction items is termed resource
representation. A resource representation is composed of the view
and the backend resource. The backend resource is composed of
operators and service wrappings.

To illustrate the component model components, suppose that
a user wants to run an Amazon product search and list the results
on screen (see Fig. 7). To do this, the search f low or screen f low
w i l l be composed of several successive widgets leading the user to
access the Amazon backend. The user w i l l enter the product that
he or she wants to search in the first widget. The second widget
w i l l list all the products found. If the user selects a product, a th i rd
widget w i l l display the product details. The first widget w i l l be a
form where the user enters the search data. These data w i l l f low
to the second widget, where they w i l l access the Amazon product
search backend resource. Operators are available to order, filter,
etc., the results. Finally, the facts suggest and implement data flows
among components, enabling an i tem list form to receive all the
products offered by Amazon for the established search criterion.
Fig. 7 shows for example a solution created w i th EzWeb for the
described problem.

This component model is useful for establishing a dataflow
among visual elements where a new data i tem in one component
leads all the collaborative interfaces to take a computational step.
This approach bears some resemblance to data flows among cells
in spreadsheets, save that each element displays a richer visual
interface and invokes particular remote services, resources or
distributed data as wrapped services.

Service wrappings are the atomic design elements of our
component model; they are the smallest pieces that EUPs can
handle and understand. These elements, composed of an API

s*irdi • • Product Suggesiicns

NBA Sirca Series Vol 5

NBA2K9

NBA Shooling Arm Sksw Red

Taifing Shots TaiiTglgs. Bizarra Baúles and the
Incredible Trutb About the MBA

60lh Annivei&aty Edilion Greatesl Mcmants ¡n NBA
Hisiorv

».

Í1998 ÍVD

«59 99 Viseo Gimes l i f l W I

$16 35 Apparal

%2í 95 Boak

119.98 DVD

H
El t

Seareh Lfcl ^ ^ ^ H Sug-aesiions

l J

Quant¡ty:|i J

k

SpalttíngNBAQffKialGameBalIBasteitiall

ProdiíetType: Sports

Prlce: 1100.00

Product Site: Amazon

PmdiictDetails

• Model" T4-233T
* Labe!: Spalding
• Bindíng Sports
• Reléase Dale 2TOSJW1
• Fealures rhe QIÍUJIIE]! MBA ollklal

gama hall rarurna as The <".lass¡;.
Hade fifim lint fliieel iull (jiain lealher

V «n nnHjiHB s v H n J i n n i l laal inr i l iw*4i

a /

Fig. 7. Example of visual components with linked data.

Fig. 8. Yahoo! search service wrapping in UML which instantiates part of the
proposed model.

and some inputs and outputs, are especially abundant on the
Internet thanks to web service ecosystems, as such web services
are really easy to transform into wrapped service components.
There follows an example of a web service using the Yahoo! search
engine, transformed into a user-centred component. This example
illustrates how such a web service can be wrapped. Fig. 8 is a
simplif icationofthe wrapped service describedinUML asaspecific
instance of our component modelling language.

The wrapped Yahoo! Search service includes the Yahoo! Query
Language (YQL) API adaptation, a data input, which, i n this case,
is a web search query, and the output, which is a result set. This
resource w i l l be associated w i th a visual interface, which w i l l
dependonthe WEUD too lonwh ich i t i s run , andanatural language
description. Fig. 9 illustrates the XML wrapping necessary to define
the web service input and output as the pre- and postconditions of
the end-user component.

Additionally, when the component precondition is satisfied, the
web service has to be sure to be invoked and the results returned
by the service should satisfy postconditions that are meaningful
i n the WEUD field. This means developing a small service adapter
according to a traditional development process using a language
such as JavaScript, for example (see Fig. 10).

Using the component model RIAs can be created by composing
visual building blocks. This abstracts users from the invocation
of resources and services that constitute the RIA backend, an
approach already explored by Obrenovic and Gasevic [16].

The proposed model has been formalized to check that i t
achieves the research aims, that is, the high-level components have
a consistent architecture composed of bottom-level component
aggregations, and the created components instantiate the compo-
nent models of the above EUD web tools. Additionally, we have
conducted a statistical study to check whether the model is ad-
equate and demonstrate that, implemented as a WEUD tool that
produces RIAs that are instances of the model, i t is more successful
than the component models implemented by the above tools used
by EUPs. The following sections address these topics.

4. Mathematical formalization of the WEUD metamodel by
means of description logic

Description logic-based inference tools, like RacerPro [49], are
a good option for checking model consistency and confirming that
the analysed WEUD models (located at level M2) are an instance
of the proposed model. This is not a straightforward comparison
even though the proposed model takes into account the strengths
and weaknesses of the analysed tools. To do this, the proposed
component model is formalized by means of ad hoc description
logic used to reason about whether the model is consistent and
whether other consistent models analysed and translated to the
same description logic are an instance of the proposed model.

RACER software, used in conjunction wi th eMOFLON [50], is
able to valídate UML2 models (M2), inspect their consistency
based on reference models, and check whether a UML model
(MI or M2) is an instance of another more general model [51].
To compare UML models, these models have to be formalized
by means of a description logic-based mathematical description
so that instance verification operations can be performed on the
model [52]. By mapping UML2 to description logic (similarly to the
work reported by Wang andj in [53]), it is possible to use the above
automatic reasoning systems to check that the proposed WEUD
model achieves the research aims, that is, it is consistent and
the existing WEUD tools models are an instance of the proposed
model. Table 1 sets out the concept and role constructors used
to develop the proposed mapping in order to set up a sufficiently
expressive type of description logic. Additionally, it indicates the
computational complexity associated wi th the two fundamental
operations targeted by the mathematical reasoning: subsumption
(|= C c D) and instance checking (|= C(i)).

Table 1 shows that, according to the naming scheme defined by
Baader et al. [52], we use ALCsNOQ^ description logic [54,55].
The naming scheme consists of assigning a letter or symbol to each
expressive extensión of elementary attributive language (AL) logic.
These elements can appear in different forms:

- A letter after AL to add a concept constructor
- A superindex to add a role constructor
- A subindex to add a constraint on role interpretation.

The following explanations are useful for understanding the de­
scription logic analysis. Four basic concept constructors are added
to traditional description logic: qualified existential (s), negation
(C), cardinality (N) and enumeration (O). The qualified existential
constructor is necessary to infer whether a more abstract com­
ponent contains a finite set of less abstract elements that meet
a particular condition. This is useful for modelling components
built from other components. The negation constructor is useful for
negating particular model assertions, placing constraints on com­
ponent models (for example, that a low-level component cannot

Table 1
Constructors of concepts and roles used in the proposed mapping.

Constructor Syntax Semantics Logic type Compl.
|= C c D

Compl.
N c(í)

Atomic concept
Domain
Empty
Conjunction
Universal
Existential
Atomic negation

Qualified existential
Negation

Enumeration
Disjunction

Cardinality

A
T
_L
CnD
VR.C
3R.T
¬ A

3R.C

¬c
a-¡...a„
C U D
>nR
< nR
= nR

fifi c A$
A%

0

QÍ no*
{x|Vy : R*(x,y) —> C*(y)}
{x\3y:Ri(x,y)}
Ai \AÍ

{x|3y : R*(x,y) A C*(y)}
/\$ \ cQ

a\... a*
QÍ U D *

{ x | # { y | R * (x , y) } > n }
{ x | # { y | R * (x , y) } < n }
{x\#{y\RHx,y)} = n}

Qualified cardinality nR.C

nR.C

{x|#{y|R*(x,y) AC*(y)} > n]

{x|#{y|R*(x,y) AC*(y)} < n]

{x|#{y|R*(x,y) AC*(y)} = n]

FL o

SrX

A L

E
G
O
U

P
P

NP
PSPACE

PSPACE

P
P

PSPACE
PSPACE

PSPACE

Selection
Transit. roles

Inverse roles
Role composit ion

nR.C

f '• c
R+
n—

RoS

{x s Dom(/*)|C*(/*(x))}

„ i (K *) "
{(y, x) s / \ * x / \ * |R * (a , b)}
Ri oS* = {(x, z)|3y s / \ * • R*(x,y) AS * (y , z)}

Ry

()+

()JJ—

()R°

EXP EXP

<?xml version="1.0" encoding="UTF-8"?>
<resource-adapter endpoint-url="http://search.yahooapis.com" endpoint-service
name="AVebSearchServiceWl/">

<method name=" webSearch" precondition name-'keyword" type="text" label-'ServiceHired"
friendcode="service">
<parameter name-'query" type="xsd:string" type-qualifier="xsi:type">
<%=query_to search%>
</parameter>
<resultupdate- postcondition ="search-suggestion" type="text" label-'deviceld" friendcode="deviceId"/>
</method>

</resource-adapter>

Fig. 9. XML resource adapter that defines the mapping of WEUD pre-/postconditions to the Yahoo web search service parameters.

function setKeyword(string){

}
var keyword to search = EzWebAPI.createPreconditioríFact("text", keyword);

document.getElementById('keyword').data=keyword to search.getO;
var suggestion = EzWebAPI.PostFact ("keyword");

suggestion.set("example text");

var currentSuggest = suggestion.get():

Fig. 10. JavaScript service adapter. The variables declared in the adaptation have
to be previously declared in code, casting types and programming the remote
invocation.

be composed of high-level elements).The cardinality constructor is
useful for creating conceptual relationships with cardinality, pro-
viding an option for an element to particípate in an association
with one or more other elements. This is essential for modelling a
high-level component that can be composed of 0 . . . n elements of
the next level of abstraction. The enumeration constructor is useful
for enumerating valid elements for a particular component, such
as, for example, facets of a basic data type or visual taxonomies of
valid elements for a component.

On top of these basic elements, there is a complex constructor,
qualified cardinality (Q), with the restriction of having role
hierarchies read from left to right (~H), the capability for reflexive
relationships (R

+) and annotated by means of nomináis (°). This

element is necessary because of the type of inference to be
made using this description logic. The inference engine will créate
hierarchical instance rules weighted by the number of matches
between the two input models: a UML and a UML2 model.
The roles will be dual - instance-of and subsumption-of - and
may be reflexive. Nomináis have to be used in order to use
enumerated classes of object valué restrictions, such as owhoneOf,
owhhasValue, which are able to model the web ontologies used in
WEUD tools.

The choice of this description logic is a trade-off between
the expressiveness of the language used to construct the ter-
minological information and the complexity associated with the
reasoning processes on both terminological and assertive model
information [51]. In this respect, the trade-off for using other types
of logic, such as the family of description logics derived from DLR
logic that remove the binary role constraint and introduce n-ary
role constructors, which would have enabled a more straightfor-
ward mapping than proposed in this paper, would be a much
greater computational cost. Note that tools like RACERPro have
been unable to classify a UML2 model expressed in DLRreg, that is,
the DLR logic extensión with unión, composition and transitive clo-
sure of binary role constructors as a projection of n-ary roles on two
of its components.

Apart from the traditional conceptual subsumption (C c D)
and equivalence (C = D) axioms, constrained in the sense that
only D can be an expression of concept (and therefore C must be

p p

N

c¿

http://search.yahooapis.com

an atomic concept), the subsumption axiom has also been used in
order to créate role hierarchies in relations, henee subindex H. The
aim of the construction- and axiom-level ALGsNOQ^ ° mapping
is to specify how this description logic captures the semantics of
mapped design elements.

The formal semantics of the UML2 model mapped to
ALCsNOQ^ ° is based on a model theory where / = (D, •') is an
interpretation, and:

- D ,é 0 represents a domain or universe of discourse such that
D = £ U T wi th Y = (J"=1 YDi, YDi n TDj = 0 and £ í l T = 0,
and I is the domain of managed components and YDi is the
set of valúes associated wi th each basic data type D¡ supported
by UML2 (highlighting the free type any, although other types,
such as integer, string, etc. can be specified)

- •' is the projected interpretation function:
- D'¡ = TDJ

-Cfc.il
- A1 ¡ c I x Y
- R.f c I x • • • x I = In

To ¡Ilústrate the proposed mapping, we give an incremental
description of the UML2 component model translation to the
proposed description logic.

4.1. Model class mapping

A class described in UML2 (such as, for example, the class that
describes a type of WEUD component) denotes a set of objeets wi th
common characteristics in terms of properties and associations
and is therefore represented as a concept C in ALCSNOQHR
description logic.

4.2. Ceneralization hierarchy mapping

A generalization or inheritance relationship among two classes
described in UML2 specifies that each instance of the child class
is also an instance of the parent class. The instances of the
child class inherit the parent class properties (and satisfy other
additional properties) and can particípate in their associations. The
UML2 generalization relationship is expressed as an inheritance
among ALCSNOQHR concepts taking advantage of the fact that
the semantics of inclusión statements (Q c C¡) are based on
set inclusión and respect the concept of replacement. The UML2
generalization relationship accounts for four types of situations:

- Partial and non-disjoint: The meaning of this constraint is C\ c
C', i = 1 , . . . , n, which can be translated into first order logic
as

Vx • C¡(x) -> C(x), i = 1 , . . . , n.

— +° This constraint can be expressed in ALCSNOQHR description
logic as C¡ c C, i = 1 , . . . , n.
Partial and disjoint: The meaning of this constraint is

C¡ c c ' , i = 1 , . . . , n

C¡ n C' = 0, i = 1 , . . . , n

which can be translated into first order logic as

n

Vx • C¡(x) -> C(x) — A Cj(x), i = 1 , . . . , n.

j=i+i

+o This constraint can be expressed in ALCSNOQHR description
logic as

Q C C , i = 1 , . . . , n

Q E¡ Cj, foral l i ^ j.

- Total and non-disjoint: The meaning of this constraint is

C¡ c C1, i = 1 , . . . , n

n

c1 c Me',
i=l

which can be translated to first order logic as

Vx • Q(x) -> C(x), i = 1 , . . . , n

n

Vx • C(x) -> \J Q(x).
i=l

This constraint can be expressed in ALCSNOQHR description
logic as

C¡ c C, i = 1 , . . . , n
n

CC U Q.
i=l

- Total and disjoint: This is the most commonly used type,
because the end-user component taxonomy is intrinsic and this
type enriches the semantics of the developed WEUD model. The
meaning of this constraint is:

Cj c c ' , i = 1 , . . . , n

C\ n CÍ = 0, for all i ,é j

n

c1 c Me',
i=l

which can be translated to first order logic as

n

Vx • Q (x) —• \J Cj (x)
i=l

n

Vx • Q(x) -+ C(x) — A ¬Cj(x).
j=i+i

This constraint can be expressed in ALCsNOQ^ description
logic as

Q C C , i = 1 , . . . , n

Q c ¬ Q , foral l i ^ j
n

CC U Cj.
i=l

This formalization also captures the generalization relationship
among UML2 associations (classes).

The following is an example of the formalization of a total
and disjoint generalization relationship among the concepts of
backend resource, operator and wrapped service. The UML2
model is able to formally express the described generalization
relationship types by means of a very similar graphical notation
to what is used in UML

BackendResource c Class n (Operator u WrappedService)
Operator c Class n BackendResource n WrappedService
WrappedService c Class n BackendResource n Operator

4.3. Class attribute mapping

The constraint imposed by assigning an attribute A w i th data
type D to a class C is

C' c {x G I\#(A' n ({x}xTD)) > 1},

which can be translated into first order logic as

Vx • C(x) —• 3y • A(x, y) — D(y).

http://-Cfc.il

This constraint can be expressed ín ALCsNOQ^ descnption logic
as

Cc(= 1A) n 3A.D for single-valued attributes,

Cc(> \A) n WA.D for type A[] attributes, and

Cc(> mA) n << n¡A) n WA.D

for attributes wi th cardinality (n ¡ . . . nj),

where C is a concept, A is a binary role and D is a data type. The
UML2 mapping to description logic developed in this paper is also
able to express the semantics of simple key attributes, which is not
strictly necessary at the descriptive level required by programming
paradigm metaphors, but would use the following scheme:

Cc(= \A) n EL4.D n (< \A~).

The semantics of a compound key would be defined by a
relationship R : C -> {A\ x A2 x • • • x A„) such that R is injective
and R~ is functional. On this ground, it would have to be possible
to consider the relationship {A\ x A2 x • • • x A„) as a concept such
that its instances could constitute the range of relationship R.

Note that hardly any of the components of the developed
WEUD model have parameters because UML2 is such a high-level
modelling language. The properties emerge in the UML model
that describes the instances of components in each development
environment. The following is the mapping of the any type design
element class attribute (any is a non-constrained type commonly
used in UML2. This mapping serves the purpose of indicating
that a conceptual level parameter is required in the model’s UML
instantiations).

DesignElement c Class n Description.any n (< 1Description).

4.4. Associations and class dependency mapping

The constraint imposed by the interrelation of n classes C\ • • • C„
by means of an association R is

Rl Q C[x • • • x C'n,

which can be translated into first order logic as

V x i , . . . , xn • R(x\,... ,xn) -> C\(x) — • • • — C„(x).

This constraint can be expressed in description logic by means
of an n-ary role or by transforming the association R into a concept
A and n roles r\,..., r„. This option is useful for representing
properties and qualifiers associated wi th this association by means
of new roles such as are described in Section 4.3. Additionally, this
option conforms to UML2 semantics determining that associations
should not be managed as inverse relations wi th references
associated wi th each participant class but as a different object that
is associated wi th references to participant classes:

A c 3n • C\ n • • • n 3rn • Cn n (< \r\) n • • • n (< l r „) .

As an UML2 association is (as demonstrated by the MOFLON
tool) a specialization of a UML2 class, there may be, apart from
properties whose domain is an association, generalization rela­
tions among associations. These are treated as inheritance relations
among concepts. Unlike an association, a UML2 dependency can
only be binary and has no roles. A dependency can be expressed by
means of a binary role.

4.5. Associations and class dependency mapping

UML2 demands the association of cardinalities to association
roles. This is another constraint per role that can be expressed

as:

C¡ Q lx G £ |m ¡ < #(R' n (Sx{x}xS)) > n¡} i= 1,... ,n,m
being the lower bound on the cardinality of association R, and n
the upper bound. This expression can be translated into first order
logic as:

Vx¡ • C(x¡) -> 3 - p X i , . . . , x ¡ _ i , X j + i , . . . ,xn • R(x\,...,xn)

- 3-pxu ..., x¡_!, xi+u ..., xn • R(xu ...,xn)

wi th

3-nx • R(x,y)

= V x i , . . . ,xn,xn+i • R(x\,y) — • • • — R(xn,y) — R(xn+\,y)

—• (X\ = X2) V • • • V (X\ = Xn) V (X\ = X n + i)

v(x2 = X3) V • • • v (x2 = xn) v (x2 = Xn + i)

V • • • v (x„ = Xn + i)

and

3-nx • R(x,y)

= 3 x i , . . . , xn • R(x\,y) — • • • — R(xn,y)

— ¬(Xi = x2) — • • • — ¬(Xi = xn)

- (x 2 =x3) - (x 2 =xn)

(X„_! = Xn).

Therefore, an n-ary association wi th cardinalities (k ¡ . . . /¡) can
be expressed in description logic as

A Q 3ri • C\ n • • • n 3r„ • C„ n (< \r\) n • • • n (< lr„>

Q Q Vrr - A n (> fc¡rr) n (< /¡rr>, i = 1 , . . . , n.

Note that generally cardinalities can only be defined for non-
transitive roles that do not have any transitive subroles. This is a
constraint that is intrinsic not to the description logic used but to
the associated deductive reasoning system.

4.6. Association navigability expression mapping

In the case of a binary association, a new role Ar is introduced to
restrict the cardinality to the concept that acts as the domain and
specify the navigability of the association:

Ar = r^ o r2

C\ c WAr • C2 n (> m¡j4r) n << m¡AT)

C2 c WA~ • C2 n (> miA~) n (< m¡A~)

A c 3ri • C\ n 3r2 • C2 n (< \r{) n (< lr2>

C\ c Vr¡~ • An {> m^) n (< m¡r^)

C2 Q Vr^ • An {> n^) n << nfo).

The role Ar is also able to specify the transitivity of an associa­
tion (note that r\ and r2 are not transitive roles). The mapping of
the composition aggregation is shown below. It illustrates the part
of the description logic that translates this aggregation only. The
example also shows the roleComposition role to specify the navi­
gability of the composition association. UML2 and its support tools
(like RACERPro) specify this same semantics formallyby means of a
naming rule for references of the respective association class. The
model does not include a binary association for which reason no
example is given.
DesignElement c Class n V roleComposition.DesignElementn

V group_Composition~ .DesignElementn
V part_Composition~ .DesignElementn

Composition c Aggregationn
3 composition_DesignElement.Groupn
3 composition_DesignElementPartn
(< lcomposition_Group> n (< lcomposition_Part>

roleComposition = composition_Group_ o composition_Part.

Table 2
Summary of tneUIvILZtoALCεNOQjjK mapping.

UML2 element New concepts and roles New DL axioms

Class C
Attribute a of C with type T
Attribute a of C acting as keyword
Attribute a of C with type T[]

Concept C
Binary role a
Binary role a
Binary role a

Attribute a with associated card. (ni . . . nj) Binary role a

Dependency A Binary role A
Roles R1 and R2

Cc(= la) n 3a.T
Cc(= \A) n 3A.D n << 1A~)
Cc(> la) n Va.T
Cc(> n¡a) n << rija) n Va.T
T C VA.C2 n VA^.Ci
C] c VA.C2 n [> n¡A] n [< n¡A\
C2 c VA^.C] n [> m¡A~] n [< m¡A~

n-ary association with
multiplicity

Binary association with
multiplicity

Non-disjoint partial inheritance relation

Disjoint partial inheritance relation

Non-disjoint total inheritance relation

Disjoint total inheritance relation

Concept A
Roles Ar , R1 . . . R n

Concept A
Roles Ar , R1 . . . R n

A c 3R].C] n • • • n 3R„.C„n
<< lR ,)_n- - -n<< lR „)
Q E VR¡~./1 n <> n¡R¡~) n << njR¡~)
i = 1 , . . . , n

A c 3R].Ci n 3R2.C2

n<< l R i) n (< \R2)
d c VR^.A n <> m¡R7) n << m/R^)
C2 c VR^.A n <> n¡R¿") n << rijR^)
Ar = R^ o R2

C] c VÁr.C2 n <> m¡Ar) n << m¡Ar)
C2 c VA^.C2 n <> m¡A¡r) n << nijA)

f j C C , ¡ = 1 n
Q C C , ¡ = 1 11
Q c ¬C, for all i 5¿ j

Q C C , i = l 11
C E U¡=, Q

Q C C , i = l 11
Q c ¬C, for all i 5¿ j

4.7. L/ML2 keyword/qualifier mapping

UML2 modelling may include stereotypes or keywords between
brackets before a class to characterize that class. The methodolog-
ical criterion for mapping UML2 qualifiers is: a new concept is
created if the differentiation between the two concepts has spe-
cific implications for their relations to other concepts or places
constraints on other properties in other concepts. Otherwise, it is
preferable to use a property to express this differentiation.

The proposed WEUD model does have qualifiers and they must
be stated in description logic. The only qualifiers that require the
creation of new concepts are aggregation and aggregate. The others
can be expressed by means of properties associated with concepts
covered by the qualifier.

Table 2 summanzes the entire UML2-ALCεN0QHR mapping.
Appendix A shows the WEUD model originally created in UML2
and translated to ALCεNOQ^ ° according to the reported transla-
tion process.

5. Validation of model completeness with respect to the
studied solutions

The presented UML2-ALCεN0QHR mapping is a semantic
formalization of the UML2 conceptualizations for the performance
of automatic reasoning services, such as checking that a model is an
instance of another model, if both have been previously expressed
in description logic. The knowledge base semantics is equivalent to
a set of first-order predícate logic axioms.Therefore, like any other
set of axioms, it contains implicit knowledge that can be specified
through logical inference. The fundamental inference service is the
verificatión of consistency for assertive knowledge bases (ABox) in
terms of which the other models can be expressed.

The proposed UML2 model mapping is the terminological
knowledge base (TBox), that is, entails the construction of a
terminology T. Both ABox and TBox are concepts explained at
length in [52,51]. To valídate the proposed UML2 model, we have
to discover whether each class and/or relation makes sense or,
otherwise, whether it contradicts the remainder of the model,
in which case it will never be able to be instantiated. From the
logical viewpoint, a new concept C makes sense if there is at least
one interpretation / that satisfies the axioms of T and for which
the concept denotes a non-empty set. This interpretation is called
model and is written T \= C. This property C with respect to T is
called satisfiability. We have used the reasoning services offered
by the RACERPro as a DL subsystem to verify that all the classes,
relations, cardinalities and characteristics of the proposed WEUD
model satisfy the studied WEUD component models and that they
satisfy the expected generalization/specialization relations. The
first step was to use description logic to codify the proposed WEUD
model in the ABox and TBox and then check whether the model is
consistent and if all the WEUD models of the studied tools are a
valid instance of our general model.

All the reasoning services are based on the following prototype
services:

- Satisfiability: A concept C is satisfiable with respect to a
terminology T if there exists a model / of T such that C' ^ 0. It
is written T \= C. The satisfiability of T is expressed as T \=.

- Subsumption: A concept C is subsumed by a concept D with
respect to T if C' c D1 for any model / of T. It is written T \=
C c D. Subsumption can be expressed in terms of satisfiability
as i | = C C D < £ > r ^ C n ¬D. Similarly, satisfiability can be
expressed in terms of subsumption as r ^C<£>r |=CC_L .

- Equivalence: A concept C is equivalent to a concept D with
respect to T if C' = D1 for any model / of T. It is written T \= C
equiv D. Equivalence can be expressed in terms of satisfiability

Fig. 11. Process and results of checking whether Yahoo!Pipes and Dapper is an instance of the proposed model using MOFLON.

asT | = C = D<£>T^Cn D and T ¥ C n D and in terms of
subsumption asT\=C = D ¬ ^ T \ = C ¬ D and T \= D c C.

- Disjunction: Two concepts C and D are disjoint w i th respect
to T if CI n DI = 0 for any model I of T. Disjunction can be
expressed in terms of satisfiability as T ¥ C n D and in terms of
subsumption as T \= C n D c _L.

As a result, the RACERPro inference showed that the proposed
model and the analysed models of WEUD tools are consistent, the
proposed model is unambiguous, there are transformations that
can be used to check whether other UML2 models are equivalent
to our reference model, and these transformations are computable
in finite time. Consequently, we wi l l be able to computationally
check whether the other analysed WEUD models are an instance
of the general model described in this paper. The RACERPro tool
[49] can be executed using the mapping described in Appendix A
to confirm these claims.

To find out whether the different tool-specific WEUD M2
models are instances of our general M2 model, we use the MOFLON
visual tool and the description logic mapping. First, we store
the proposed model in the reference TBox and then we use the
same description logic to describe the particular WEUD model to
be checked. The result of the inference is an ABox establishing
the necessary transformation rules to convert, whenever possible,
the specific model into the reference model. The MOFLON tool
visually illustrates equivalences and describes whether or not
the particular model is an instance of the reference model and
any identified discrepancies. Fig. 11 illustrates (using the Fujaba
plugin ratherthan the more recent Eclipse, which is not altogether
compatible wi th the RacerPro TBox) what checks were run to
examine whether the Yahoo! Pipes and Dapper M2 component
model, for example, is an instance of the proposed general WEUD
model. The inputs for this MOFLON-based checking process are

two models codified in UML using the eMOFLON tool. The process
outputs a Boolean deciding whether or not one model is an
instance or subsumption of the other. If i t is, eMOFLON also plots a
graph of the transformations needed to assure the subsumption.

As illustrated in Fig. 1 1 , the process is completed successfully,
stating that the Yahoo! Pipes and Dapper model is a particular
instance of the proposed WEUD model and specifying a set of
constraints:

– ‘‘Mash-up’’ is composed of only one ‘‘Workspace’’ in Yahoo!,
so there is no possibility of the user creating more than one
visually independent interrelated workspace.

– ‘‘Operation’’ is l imited in Yahoo! to list and functional
operations, and basic arithmetic operations are not permitted.

– ‘‘Wrapped Service’’ is restricted to ‘‘Invoke Feed’’ i n Yahoo!, so
that i t is only possible to fetch RSS sources, and SOAP- or REST-
based web services cannot be invoked in this environment.
The output constraints are also useful indicators of the short-

comings of each analysed WEUD tool w i th respect to what charac-
teristics RIAs should have.

After checking all analysed WEUD models (Yahoo!, Kapow Plat-
form, JackBe, PopFly, Netvibes, AMICO, Marmite, etc.), we found
thatal l the modelsofthese tools are subsumedbythe WEUDmodel
proposedin this paper, but they all have constraints w i th respect to
the model. These shortcomings imply that specific models do not
include all the functionalities of our model (in fact, their qualita-
tive study suggests that they do not have the target features that
we propose in this paper). The proposed model has been designed
based on the premises described as key points to be taken into ac­
count, subsumes all the analysed models and is potentially more
comprehensive than they are.

All this formalization work is very relevant for two reasons:
(a)itisnecessarytocover the main models and toolsinuse today in

Fig. 12. WEUD model compliant EzWeb platform.

order to assure backward compatibility, standing on the shoulders
of giants such as Google, Microsoft or Yahoo!, and (b) i t appears to
be feasible to create a unique homogeneous tool that could be fed
by the components and modelsof all existing tools, exploiting their
ecosystems of services and resources. Having completed these
proofs, i t remains to empirically check that a tool based on this
model achieves better results than the other analysed WEUD tools.

6. Controlled experimental study of the proposed model using
the EzWeb tool

The WEUD component model is an abstract element that
cannot be statistically studied without a RIA development tool that
implements this model in the real wor ld (level M0). The only other
way of validating the model would be to have a panel of experts
in the WEUD field analyse its features. This would unquestionably
result in a rather artificial qualitative validation removed from end-
user concerns. Therefore, we studied the model as follows: we
built an end-user tool called EzWeb as part of a NESSI strategic
R&D project [20] targeting the construction of composite web
applications. Fig. 12 shows a screenshot of this tool. This tool
was designed and implemented from scratch to assure that the
products built by using this environment conform to the described
model [20]. We described two experiments to demonstrate that
EzWeb was suitable for users without programming skills and
helped them to build web solutions to a particular problem that
they were set elsewhere [43,45,46]. In this study, we report an
experiment addressing a broader set of problems of increasing
complexity in order to address the goodness of the model. We
also analysed all the applications built using EzWeb to check that
these results really are an instantiation of the proposed model.
Although i t would be necessary to test a larger number of end-
user applications built using EzWeb to fully validate the tool, we
believe that this experimental study is sufficient for the purpose of
this paper. EzWeb is described in greater length in [3,17,38].

The procedure was as follows. We recruited a sample that
was large enough to characterize the target users of WEUD tools.
Targets are non-programmers who are very wel l acquainted w i th
the problem domain and have all the resources that they need to
solve the problem except tools to automate the problem-solving

process. The sample of 210 EUPs was divided into seven groups.
Each group used one WEUD tool (Yahoo! Pipes and Dapper, Kapow
Platform (OpenKapow version 9.3.0), PopFly, JackBe, AMICO,
Marmite or EzWeb) to solve a set of seven problems of increasing
complexity, which were carefully selected to assure that they
could be solved by all the tools using the component catalogues
made available during the experiment. The results were analysed
to f ind out which component models each tool is able to create
and confirm that the RIAs output by each tool conform to their
component model described above. This meant that we were able
to validate the models described for each tool (including EzWeb)
throughout this paper. We also studied three factors: number of
EUPs that manage to successfully develop a RIA based on the
component model used by each tool under study, the development
t ime taken using each tool under study and the number of errors
in solutions built using each component model under study. This
paper sets out to study these factors in response to the following
research questions:

– RQ1: Does the EzWeb tool based on the proposed WEUD model
enable many more EUPs tosuccessfully develop RIAs than other
WEUD tools?

– RQ2: Do the RIA designs built conform to the component model
described for each tool throughout this paper and are they
instances of the WEUD metamodel?

The total sample of 210 EUPs was selected so as not to be biased
by age, gender, education or employment. The sample was chosen
in a selection process, capturing interested users through training
programs promoted from several NESSI project web portals. Users
were captured and invited to two macro events organized by
NESSI and by its associated 7th programme projects at Madrid and
Brussels, respectively. Sixty people (divided into two groups of 30
users) attended the Madrid event and 150 (another five groups)
attended the Brussels meeting. The sample was specially selected
to ensure that, like the tool target population, none of the users
had programming knowledge or were familiar w i th the analysed
WEUD tools. Also users forming an unbiased sample were invited
(see Table 3).

The size of each group is statistically representative, and
normality tests can be run. The first major step of this study is to
statistically check that there is no bias. After group formation, we

Table 3
Sample characterization.

Characterization Sample Group characterization (7
(210) 30-member groups/)

Gender

Male
Female

Age

<20years
20-34 years
35-49 years
50-64 years
>65 years

Educational attainment

Secondary school
Vocational training
Bachelor’s degree
Master’s degree

Employment

Student
Researcher
Employee

Experience and previous knowledge

Mashup platforms
Web services (SOAP, ESB, BPEL, etc.)
HTML, CSS
Java, J2EE
JavaScript, AJAX
Php, ASP
00 programming
C, C++, c#
Scripting, Perl
Haskell, Prolog

112
98

35
49
49
42
35

49
56
49
56

70
70
70

7
0
7
0
0
0
0
0
0
0

16
14

5
7
7
6
5

7
8
7
8

10
10
10

1
0
1
0
0
0
0
0
0
0

ran an analysis of covariance (ANCOVA), using the group to which
each end user was allocated as the study variable and the user
characteristics as the explanatory variables in order to validate
the division of users into different groups. This study builds a
regression model to explain the study variable w i th respect to the
other qualitative and quantitative variables. If the ANCOVA study
were to return a well-f i t ted regression model, then the division
would not be valid, as the groups would be biased w i th respect to
the most influential explanatory characteristics in the fitted model.

Table 4shows the results of the ANCOVA study, which suggest that
the model f i t is extremely poor. This validates the selected sample
and its distribution.

Looking at Table 4, we f ind that the coefficient of determination
R2 is very low (0.014). This suggests that there is a high percentage
of variability i n the modelled mean variable so that gender, age,
educational attainment,employment and previous experience (the
quantitative and qualitative variables for each individual) appear
to explain only 1.4% of the division of users into the seven groups.
The other values are due to other unknown variables. The R2

and adjusted R2 values suggest that the group to which each
end user was allocated is largely (98.6%) independent of user
characteristics. The model error values, MSE (mean squared error)
and MAPE (mean absolute percentage error), are very high (well
above the ideal value 0), again suggesting that the model does
not precisely explain the behaviour of the variable under study
in the sample. Additionally, DW (Durbin–Watson statistic) values
are not close to 0. This implies that there is no autocorrelation
among the qualitative variables. If there were, the study would
not be valid. Finally, Cp (Mallows’ Cp statistic) suggests that the
model is able to exactly explain the group to which only one (see
df value in the model) of the 210 individuals was allocated. We
have conducted a Type I and Type III sum of squares analysis. Type
I (sequential) analysis provides an incremental improvement in
the sum of squared errors as each effect is added to the model,
and Type III (orthogonal) analysis is able to reduce the sum of
squared errors by adding the term after all other terms have been
added to the model. Their combined use means that we do not
have to be concerned about the order in which the factors were
added to the regression model. Taken together, the model results
validate the sample, indicating that there is no bias related to the
qualitative and quantitative variables characterizing the users and
their recruitment for the study. Looking at the Pr > F values of the
ANCOVA model, we f ind that the characteristic that is most related
to the allocation of a user to one group or another is education (the
greatest Pr > F in the study, equal to 0.250). We examined user
education and found no statistical evidence of a direct correlation
between education and division into groups.

The validated sample was analysed as follows. In response
to RQ1 and RQ2, all seven groups were asked to solve the
same set of seven problems, each using one of the following

Table 4
ANCOVA statistical analysis of identified errors.

Goodness of fit statistics

Observations Sum of weights

210 210

Source

df

56

df

R? Adjusted R?

0.014 0.023

Sum of squares

MSE

5.024

Mean squares

MAPE

4.451

F

DW

1.143

Cp

2

Pr > F

Analysis of variance

Model
Error
Corrected total

Computed against model = Mean(Y)
Type I sum of squares analysis:

2.- Gender
3.- Age
4.1- Education
4.2-Employment
5.- Experience and previous knowledge
Type III sum of squares analysis:

2.- Gender
3.- Age
4.1- Education
4.2-Employment
5.- Experience and previous knowledge

1
163
164

1
1
3
2

28

1
1
3
2

28

5.803
9.082

15.184

0.035
0.151
0.702
0.138
3.977

0.034
0.154
0.704
0.139
3.965

0.180
0.150

1.180 0.250

0.040
0.143
0.235
0.021
0.177

0.041
0.143
0.233
0.025
0.177

0.212
0.422
0.469
0.770
1.864

0.212
0.422
0.468
0.775
1.864

0.115
0.034
0.128
0.029
0.015

0.110
0.034
0.130
0.031
0.015

Table 5 Summary of experiment statistical results.

Mean number of solutions Mean time
for all 7 problems (N = 30) taken

Std. Dev. time
taken

Q1 time
taken

Q3 time
taken

Mean
bugs

Std. Dev.
bugs

Ql Q3 bugs
bugs

Yahoo ¡Pipes
and
Dapper
Kapow
platform
Popfly
JackBe
AMICO
Marmite
EzWeb

12.00

12.14

8.57
11.43
11.43
7.71

23.00

21.50

25.80

2.01

1.89

18.65

23.44

24.13

28.37

6.33

2.35

0.12

0.09

31.42
20.33
19.60
25.73
15.33

1.55
1.42
0.98
0.99
0.79

29.42
18.63
17.98
24.50
14.75

33.01
22.19
21.08
27.45
17.21

5.69
2.36
9.68
5.41
0.37

0.21
0.18
0.97
0.45
0.02

5
2
9
5
0

6
3

10
6
1

tools: Yahoo! Pipes and Dapper, Kapow Platform, PopFly, JackBe,
AMICO, Marmite and EzWeb. The complexity of the problems
increases in terms of the number of components to be used
(including screens, screen flows, forms, connectors, operators,
back-end services, etc.), and the dataflow connections among
components. The first problem (problem 1) can be solved using
a few components (about six elements), problem 2 using eight,
3 using ten, 4 using from 12 to 14 components (depending on
how each individual user proceeds), 5 using f rom 15 to 17, 6
requires from 18 to 20 components, and i t takes around 22 to
24 components, and about 20 data flows between components
to solve the last problem 7. Thus problem complexity (in terms
of the number and variety of components and interconnections)
increases linearly. The ful l problem statements (together w i th a
description of their complexity) are described at http://apolo.ls.
fi.upm.es/eud/incremental_problems_description.pdf.

Al l the problems were carefully defined to assure that all seven
tools under evaluation have all the components, composition and
dataflow creation techniques necessary to solve each one. Before
we conducted the study, we personally solved the problems using
each tool to check that the task was feasible. Additionally, we also
set up a catalogue of components, resources and operators for each
tool before running the experiment. These catalogues included all
the components and elements necessary to solve all the problems,
as wel l as general-purpose components that were of no use for
the problem at hand. Al l seven catalogues contained around 400
components of different levels of abstraction. Therefore, this is not
a straightforward development. For a ful l and detailed description
of these seven catalogues of components and connectors and
the development processes enacted by the sample of users, see
http://apolo.ls.fi.upm.es/eud/solution_development_process.pdf.

After the tools and equivalent component catalogues for each
group had been set up, the EUPs received basic training via video
tutorials on the tool that they were to use. Each group was
separately given the samenumberoftraining sessions. The training
sessions focused on explaining how to use each tool to solve like
problems, explaining the components to be used provided by each
tool. Accordingly, the design of the sessions was identical for all
tools:

– Fundamentals session (4 h) : Introduction to and contact
w i th development technology and intercommunication for
composite applications, widgets and mashups.

– Practical session (4 h) : Development of solutions using existing
WEUD tools: Yahoo! Pipes and Dapper, Kapow Platform, PopFly,
JackBe, AMICO, Marmite and EzWeb platforms.

Then each group tackled the seven stated problems in separate
sessions. Members of group 1 were asked to develop the RIA
using Yahoo! Pipes and Dapper, group 2 members used Kapow
Platform, group 3 members, PopFly, group 4 members, JackBe,
group 5 members, AMICO, group 6 members, Marmite and, finally,
group 7 members, Ezweb. We supervised each group and counted

Fig. 13. WEUD success for each tool as problem complexity increases.

how many users were successful. We stored the resulting RIAs
in order to later examine their component models (and validate
whether they conform to the model reported for each tool in
this paper), their qualities and functionalities. We also measured
development t ime. Table 5 summarizes the aspects measured
for each too l : mean number of users who managed to build
a solution for the seven stated problems using the respective
tool, mean t ime taken in minutes (provided a solution was
built), standard deviation, first and third quartile of times taken,
mean number of errors/bugs/inconsistencies detected in the RIAs,
standard deviation of number of errors, first and third quartile of
such errors. The illustrated data are mean data, calculated using
the simple meanof the measurements taken for the seven assigned
problems.

Looking at Table 5, we f ind that EzWeb has a much higher
success rate after the experiments conducted on the seven
assigned problems (a mean of 23 of the 30 users in the group
managed to solve all of the problems). However, the results for
the number of users that were successful at tackling each problem
(of increasing complexity) using the different tools (see Fig. 13 and
Table 6) are even more illustrative.

A total of 84 RIAs were generated using Yahoo! tools, 85 using
Kapow Platform, 60 using PopFly, 80 using JackBe, 80 using Amico,
54 using Marmite and 161 RIAs using EzWeb for all seven stated
problems, asshown in Table 6. Note that i f the success rate for each
problem had been 100%, each tool should have built 210 RIAs (30
for each problem).

5 7

2 3

http://apolo.ls
http://apolo.ls.fi.upm.es/eud/solution_development_process.pdf

Table 6
Summary of WEUD solutions reached in each group and problem.

Yahoo! Pipes and Dapper

Problem1 27
Problem2 19
Problem3 14
Problem4 10
Problem5 7
Problem6 4
Problem7 3
Total 84
Valid instances of respective WEUD tool model 100%
Instances subsumed by proposed WEUD metamodel 100%

Looking at Fig. 13 and Table 6, we f ind that almost all the
tools achieve very positive results w i th simpler problems, but, as
of problems whose solution requires eight to 10 components or
more, there is a quadratic decrease in the number of successful
users for all tools, except EzWeb, which has a consistently higher
success rate. Understandably, the more complex the problem
is, the fewer users solve i t satisfactorily. However, the number
of successful EzWeb users decreases linearly, and the min imum
success rate never drops below 60% of the sample, unlike the
number of successful users using the other tools, which plunges
to approximately 14% of the sample at best for the most complex
problem. Incidentally, this problem is a paradigmatic example of
the most complex RIAs that this type of tools should help EUPs to
develop.

6.1. Discussion of RQ1: does the EzWeb tool based on the proposed
WEUD model enable many more EUPs to successfully develop RIAs
than other WEUD tools?

The conducted study showed that all existing tools have
shortcomings w i th respect to the support that they provide for
EUPs. Of the 30 EUPs in each group, most managed to solve the
simplest problem (27 Yahoo! tool users, 29 Kapow Platform users,
28 PopFly users, 30 JackBe users, 29 Amico users, 28 Marmite users
and 30 EzWeb users). All the analysed tools achieve good results
for this type of problems which can be solved using only five or six
components, although i t is true that the problems that EUPs have
to deal w i th on a day-to-day basis are more complex than these.
Looking at the last of the assigned problems (the most complex),
only three Yahoo! Pipes and Dapper users managed to create a RIA
that solved the problem, whereas 90% of the group was unable to
solve the assigned problem using this tool. The results for the other
tools are very similar, one Kapow Platform user, three PopFly users,
two JackBe users, four Amico users and one Marmite user were
successful. Kapow Platform and Marmite fared worst: users had
to interconnect widgets using public APIs documented by these
tools. The tool manufacturers’ claim that these interfaces are easy
to use for target EUPs, but the only users in the sample that were
able to build an operational RIA using Kapow Platform or Marmite
had some previous knowledge of web mashups. Moreover, users
that successfully solved problem 7 using any of the tools had been
working w i th their tool for several sessions and had dealt w i th six
simpler problems beforehand. It is reasonable to assume then that
the success rate would have been lower i f the EUPs hadtodeal w i th
this problem first (which is a possibility considering that end-user
programming is opportunistic, and users want to solve problems
without having to spend a lot of t ime learning the tool, techniques
or components or heuristics required to do so).

EzWeb, however, enabled 18 users to successfully solve the
two most complex problems. Besides, i t is the only tool that
did not suffer a sharp drop in the number of successful users
as the complexity of the problem increased. This demonstrates
that EzWeb successfully generates RIAs that conform to the

Kapow Platform

29
16
16
8
8
7
1
85
100%
100%

PopFly

28
9
6
5
5
4
3
60
100%
100%

JackBe

30
18
10
9
8
3
2
80
100%
100%

AMICO

29
15
14
6
6
6
4
80
100%
100%

Marmite

28
13
5
3
2
2
1
54
100%
100%

EzWeb

30
27
26
22
20
18
18
161
100%
100%

proposed model, although the success of EzWeb cannot definitely
be attributed to this fact. Worthy of note, however, is the fact
that the proposed model is more complete than the models of
the analysed existing tools (which i t subsumes) and, although i t is
substantially morecomplex than the othercomponent models,this
did not, contrary to expectations, compromise the performance of
the tool implementing the model i n the experiments conducted
w i th end users.

A statistical study of the subsamples that were successful using
each tool individually did not return any significant data to suggest
that this success was due to the descriptive variables of the
sample, such as gender, age, education, background knowledge or
profession. These findings reproduce the results of other statistical
studies reported by Rode et al. [13], Ko et al. [1] , and so on.

6.2. Discussion of RQ2: do the RIA designs built conform to the
component model described for each tool throughout this paper and
are they instances of our WEUD model?

We used UML to model the component diagram (models M1)
of each of the generated RIAs (located at level M0). We then used
the MOFLON automated reasoner to check that the M 1 models of
the RIAs created using each WEUD tool are valid instances of each
M2 component model described in this paper as the general model
implemented by each tool. We also checked that all the solutions
are instances of the proposed M2 component model described for
the WEUD tool. We used description logic to check that the 161
RIAs built using EzWeb conform to and are valid partial instances
of the general component model proposed in this paper. As a
result, we can state that the EzWeb tool is more efficient than the
other analysed tools and implements the proposed general model.
Furthermore, all the satisfactorily built RIAs (a total of 604) are
valid instances of the general model proposed in this paper. To
verify this, all 604 RIAs were input into a software modelling tool
(the Altova UModel), which output theirM1models inUML format.
These models were used to check whether they were instances of
the proposed general model.

The component model implemented by EzWeb is the only one
to instantiate the existing models for the WEUD field, because i t
has the right level of abstraction and a high number of component
‘‘types’’ for use. As we found by applying the MOFLON tool at
the end of the experiment, the component models used by the
other analysed WEUD tools are valid instances of the proposed
metamodel. However, the 161 solutions built using EzWeb are
not instances of all the component models implemented in
the other WEUD tools, as these tools do not have enough
available component types (at different levels of abstraction).
As the component models are what distinguish the seven tools
examined in the experiment (they all have the same compositional
techniques, similar visual interfaces, equivalent visual languages,
similar catalogues, similar visual aids, the same technology,
services and resources), i t is the component model implemented
by EzWeb that is most likely to affect its success rate. Noteworthy

is the fact that the other WEUD tools have simpler component
models w i th less diverse levels of abstraction that EUPs can use
to solve their problems. Therefore, these tools work very wel l for
simple problems, but the user success rate plummets as problems
get more complicated. On the other hand, EzWeb implements a
more comprehensive and varied component model, accounting for
all the levels of abstraction stated in the proposed general model.
This helps usersto successfully tackle more complex problems, and
the number of successful users does not fall off sharply.

In view of the widespread failure to develop complex RIAs that
solved the more complex problems using different analysed tools,
users were asked open-ended questions about the problems, ob-
stacles and disadvantages that they had found during tool devel-
opment (see the website [56]). The findings from the examination
of the responses were:

– Regarding Yahoo! tools, 88% of the sample that used this tool
stated that they had trouble interconnecting Yahoo! Dapper
widgets w i th each other, whereas 80% missed the option for
composing widgets based on finer-grained components. Also
82% percent of the sample highlighted that, apart f rom feeds
and screen scraping-based information sources, Yahoo! Pipes
failed to provide useful wrapped services for EUPs.

– Regarding Kapow Platform and Kapplets (an auxiliary tool
supporting Kapow Platform), over 85% of the sample that
used this tool found that Kapow component l inking and
tailoring mechanisms were not handy (required programming
knowledge), whereas 78% found that the component search,
location, parameterization and recommendation mechanisms
were hard to use and understand.

– Regarding PopFly, over 90% of the sample that used this tool
criticized the fact that they were unable to f ind the right
elements in the catalogues and were not able to locate the right
components for a particular problem.

– Regarding JackBe, 92% of the sample that used this tool stated
that the composition visual interface should not be confined
merely to l inking visual elements, as i t is not possible to
parameterize or adapt the components to new situations or
problems. Additionally, 75% of the sample found i t impossible
to establish correct data flows among the different components
and widgets.

– Regarding Marmite, 85% of the sample that used this tool stated
that the available components are too generic and their internal
behaviour is not easily and visually modifiable and requires
programming knowledge.

– Regarding Amico, 90% of the sample that used this tool was un-
able to use the adapters that enable specific SOAP service i n -
vocation f rom a spreadsheet. Note specifically that adapter use
is not possible without knowledge of functional programming
and data typing.

The users that failed to solve the problem wi th EzWeb all came
up against the same obstacle: 95% of the users that failed to solve
the problem did not realize that they had to compose components
f rom finer-grained components located in the resources catalogue.
The other 5% of users stated that the components that they
required were not available and promptly gave up. What really
happened was that they were unabletolocate the components that
were infact there. This discovery is the inspiration foranimportant
future line of research which is to provide a wizard to translate
specific requirements to a list of problem-solving components and
help users to search large catalogues for these components.

We then conducted a survey w i th unstructured and open-
ended questions about the tool used by each particular user.
According to this survey, 83% of the sample that used EzWeb
stated that this tool was very wel l suited to problem solving by
means of compositional development. Because i t was designed to

create increasingly specific components, i t achieved much better
results than any other tool (the success rate for the other tools
was at most 14% for the more complex problems). Proof of this
is that using EzWeb, EUPs were able to build bigger components
based on more specific components and create data flows among
such components. The survey, its results and a statistical study
are published in [56]. These key aspects, which were presented in
Section 2, are the groundwork of the proposed WEUD model that
yielded very good results in the experiment.

Wi th respect to the errors detected in the RIAs, all the tools
generated consistent results w i th some integration errors but no
component errors. Statistical studies of covariance did not show
any signs of the applications built by any of the tools being more
or less error prone. These studies were reported in [56].

7. The domain specificity dilemma

Note that there is a major multifaceted dilemma that only the
development of and empirical results regarding WEUD wi l l be able
to solve: w i l l a multi-purpose and multi-domain web end-user
development environment build better software solutions than
specialized domain tools? Two lines of thought have attracted
similar interest, w i th research and development papers advocating
different courses of action. As some generic EUD applications,
like spreadsheets, have been very successful, many researchers
advocate setting up a web portal that is general enough to be
used to develop solutions for more than one problem domain
[1,29,30]. EzWeb, and the proposed model falls into this category.
However, other researchers, like [27], [28], etc., take the opposite
tack, claiming that, as EUPs are indisputable experts in their
domain, i t is best practice to design domain-specific EUD tools
that w i l l improve the efficiency and ease w i th which EUPs can
build ad hoc solutions to their problems. According to the results
of our research, the ideal thing would be a trade-off between
the two lines of thought: domain-specific EUD tools can be used
to successfully solve simple problems involving components and
elements specific to only one or a very well-defined problem
domain, whereas a component model like we propose, which is
generic and powerful enough to model components for different
problem domains (for example, personal organization elements
such as email and calendars, heterogeneous visual web resources,
RSS data feeds, remote web service invocations, etc.), is useful for
solving more complex and multidisciplinary problems.

In any case, unless EUD addresses general development
methods, as wel l as languages and approaches that are not ad hoc
for a particular domain, i t w i l l conceivably end up facing a crisis
like the one that rocked the software industry in the late 1960s. It
makes sense that EUD should empower users to build increasingly
more general-purpose and complex software following heuristics
and methodologies driven by a wizard or similar to enact efficient
and valid life cycles to develop solutions to their problems.

8. Conclusions

Currently, web software development tools by EUPs work wel l
for small problems, but do not produce valid solutions for more
complex problems. The study that we report shows that the
EzWeb tool, based on the proposed general component model,
yields better results than other tools for problems including
more building blocks and data flows between components. The
biggest shortcoming of the existing tools that we studied is
not the visual languages or actual development techniques, but
the component models that EUPs use to build their RIAs. EUPs,
who generally have no notions of software development, cannot
undertake the entire development process as they are unable to
f ind software abstractions tailored to the problem to be solved

andto use complex techniques that are designed for programmers.
Additionally, each tool has its own particularities. This prevents
a component or set of components built for one tool from
being exploited in another tool, thereby l imit ing the number of
available resources and components. This problem is what has
been repeatedly reported in the WEUD environment as an open
issue [17].

In any case, this paper addresses the concern that the type
of components that current WEUD tools use and the proposed
interactions between component domains tend to restrict their
problem-solving scope, as does the fact that their components
are usually designed for specific application domains. Therefore,
the general user-centred component model exploits the factors
that have led current WEUD tools and other EUD approaches,
such as spreadsheets, to tr iumph, offering a more comprehensive
and powerful component model than other tools that should
enable EUPs to address more complex problems. The general
web component model subsumes the models of the analysed
WEUD tools, taking on board their advantages. It is also able
to overcome the barriers that the other tools face regarding
available components, user interface, component repositories, etc.
We have formalized this model in UML2 and in description logic
in order to verify that the proposed general model is valid, that
i t subsumes the other existing models that we studied, and that
these models are valid instances of the proposed model. Based on
this formalization, semi-automatic mechanisms could be designed
to adapt the components of any tool to the proposed general-
purpose model. Additionally, we have built a tool, called EzWeb,
which produces RIAs instantiating the proposed formalized model.
We prove statistically that EUPs using this tool to solve rather
complex real use cases achieve better results than the users of the
other analysed tools. We cannot conclusively confirm that these
sound results are a direct consequence of the proposed model (the
model would have to be built into different EU tools to build more
applications to check out this point), but the proposed component
modelisfoundtoaddress more general and complex EUP problems
than the component models of the existing tools analysed in this
study.

The component model implemented by this tool has been
used successfully in several 7th framework research projects, and
EzWeb has been used to develop RIAs targeting citizens of several
Spanish public administration Web 2.0 portals [57].

An important future research line in this topic is to use the
proposed reference model as a starting point for standardizing
existing web components for adaptation to end user-centred
development environments so that all the mashup tools and
platforms can exploit, create and parameterize components from
different sources irrespective of the target tool for which the
component was built. This would provide acomponent model w i th
standardized components which would improve the development
of WEU software and further increase the number of available
components for end-user development.

Moreover, WEUD is only part of all the support that EUPs
should receive f rom when they are assigned the problem unt i l
they manage to use a software solution to the problem. We agree
w i th other authors [1,58] that i t is necessary to provide a special-
purpose life cycle and life-cycle support tools to shepherd EUPs
through the stages of requirements specification, analysis, design
and implementation, testing and use. Indeed, we set out elsewhere
a web-based approach to end-user software engineering (EUSE)
that provides such support [45].

Acknowledgements

The authors would like to thank the 240 EUPs of the experiment
for their interest, participation and t ime. This work has been

partially supported bytheEU co-funded IST projects FAST: Fast and
Advanced Storyboard Tools (GA FP7-216048), FI-WARE: Future
Internet Core Platform (GA FP7-285248), and 4CaaSt: Building the
Platform as a Service of the Future (GA FP7-258862).

Appendix A. Proposed EUD model formalized in ALC NOQ-
HR

+o

description logic

See Table A.1.

Appendix B. Descriptionof the seven problems used during the
experiment

Problem 1 : Term translation and definition

Number of components and elements: 6
A user wants to build an application that she can use to

check the translation and definition of a wr i t ten word in a search
dialogue. The application w i l l therefore have a space for the user
to enter the word. The application w i l l look up the word i n :

1 . Wikipedia
2. Collins dictionary
3. The user w i l l be given the choice of German, French or Spanish

translations.

The application interface should contain three separate areas to
display the search results.

Problem 2: Open Office document broadcasting

Number of components and elements: 8
The aim is to build a simple application to open and visualize

any Open Office document from a simple and straightforward
interface. Additionally, the user should be able to send the above
document to the printer according to the standard network printer
configuration at the click of a button. Additionally, the document
w i l l be sent to a set of email recipients listed on a pul l-down list.

Both the configuration and the emailing options should be
resettable every t ime the application is run.

Problem 3: Photo Viewer

Number of components and elements: 10
A user wants to be able to view photographs of a particular

tourist destination. She wants to bui ldan application that takes the
name of the city or place and:

1 . Searches images of the city in the network resources to which
she has access f rom where she is running the application.

2. Search photographs of the place in Flickr and Yahoo! Image
Search.

3. The photo w i l l be magnified to ful l screen size in a new
workspace, when the user clicks on a photo.

The search results (points 1 and 2) w i l l be displayed in a main
workspace, specifying the source of the photograph. On the other
hand, a new ‘‘preview screen’’ workspace should open when the
user clicks on any visual resource.

Problem 4: Alerting

Number of components and elements: 12–14
Part of a user’s routine work is to supervise changes and not i -

fications published by two of his country’s public administration
webpages. This user wants to build an application that is capable
of automatically reviewing these two webpages and emailing and
SMS messaging these specific changes to h im. Therefore he is look-
ing for an application that:

1 . Stores a baseline containing the original status of the two
webpages.

Table A.1

DesignElement c Class n3 Any.Description n<< IDescriptionJn
V RoleComposition.DesignElement n
V group_Composition-.DesignElement n
V part_Composition-.DesignElement n
V publishedin_Part-.publishedin n
V publishedinRole-.Catalogue n
V composedof_Group-.composedof n
3 composedofRole.AbstractGUIDE n
<< lcomposedofRole.AbstractGUIDE)n
3 composedofRole.ResourceWrapper n
<< IcomposedofRole.ResourceWrapperJn
3 composedofRole.Precondition n<= 1composedofRole.Precondition)n
3 composedofRole.Postcondition n<= IcomposedofRole.Postcondition)

composition c Aggregation n3 group_Composition.DesignElement n
3 part_Composition.DesignElement n
<< lgroup_Composition) n << lpart_Composition)

roleComposition = group_Composition-o part_Composition

publishedin c Aggregation n3 publishedin_Group.Catalogue n
<< lpublishedin_Group)n
<< lpublishedin_Part)n
3 publishedin_Part.DesignElement

publishedinRole = publishedin_Group-o publishedin_Part

composedof c Aggregation n3 composedof_Group.DesignElement n
<< IcomposedoLGroup) n << lcomposedof_Part)n
3 composedoLPart.Precondition n<= lcomposedof_Part.Precondition)n
3 composedoLPart.Postcondition n<= lcomposedof_Part.Postcondition)n
3 composedof_Part.AbstractGUIDE n(< lcomposedof_Part.AbstractGUIDE)n
3 composedoLPart.ResourceWrapper n

<< IcomposedoLPart.ResourceWrapper)

composedofRole = composedof_Group-o composedof_Part

Catalogue c Class n3<DesignElementl,DesignElementn)n
V publishedinRole.DesignElement n
V publishedin_Group-.publishedin

AbstractGUIDE c Class n3 Parameters.any n<> OParametersJn
V composedoLPart-.composedof n

V composedofRole-.DesignElement

Image c Class n AbstractGUIDE

Text c Class n AbstractGUIDE

Hypertext c Class n AbstractGUIDE

Precondition c Class n
V composedoLPart-.composedof n
V composedofRole-.DesignElement n
Vpre-memberRole.Fact n
Vpre-member_Group-.pre-member

pre-member c Aggregation n3 pre-member_Group.Precondition n
<< lpre-member_Group)n
<< lpre-member_Part)n
3pre-member_Part.Fact

pre-memberRole = pre-member_Group-o pre-member_Part

Postcondition c Class n
V composedoLPart-.composedof n
V composedofRole-.DesignElement n
V post-memberRole.Fact n
V post-member_Group-.post-member

post-member c Aggregation n3 post-member_Group.Postcondition n
<< lpost-member_Group)n
<< lpost-member_Part)n
3 post-member_Part.Fact

post-memberRole = post-member_Group-o post-member_Part

Fact c Class nV pre-member_Part-.pre-member n
Vpre-memberRole-.Precondition n
V post-member_Part-.post-member n

(continued on next page)

Table A.l (continued)

V post-memberRole-.Postcondition n
V ccomposesfact_Group-.composefact n
3 composesfactRole.Semantics n
<< lcomposesfactRole.Semantics)n
3 composesfactRole.Data n<= IcomposesfactRole.Data)

composesfact c Aggregation n3 composesfact_Group.Fact n
<< lcomposesfact_Group)n
<< lcomposesfact_Part)n
3 composesfact_Part.Data n<= lcomposesfact_Part.Data)n
3 composesfact_Part.Semantics n<< lcomposesfact_Part.Semantics)

composesfactRole = composesfact_Group-o composesfact_Part

Semantics c Class n
V composesfact_Part-.composesfact n
V composesfactRole-.Fact

Data c Class n3 Value.anyn<= IValueJn
V composesfact_Part-.composesfact n
V composesfactRole-.Fact n

ResourceWrapper c Class n
V composedof_Part-.composedof n
V composedofRole-.DesignElement

InvocationofService c Class n ResourceWrapper

DataPreparation c Class n ResourceWrapper

Solution c Class n DesignElement nVcomposessolution_Group-.composessolution n
3 composessolutionRole.Mash-up n<> IcomposessolutionRole.Mash-up)

Mash-up c Class n DesignElement nV composessolution_Part-.composessolution n
V composessolutionRole-.Solution n
Vcomposesmash-up_Group-.composesmash-upn
3 composesmash-upRole.WorkSpace n
<> Icomposesmash-upRole. WorkSpace)

composessolution c Aggregation n3 composessolution_Group.Solution n
<< lcomposessolution_Group)n
<< lcomposessolution_Part)n
3 composessolution_Part.Mash-up n<> lcomposessolution_Part.Mash-up)

composessolutionRole = composessolution_Group-o composessolution_Part

WorkSpace c Class n DesignElement nV composesmashup_Part-.composesmashup n
V composesmashupRole-.Mash-up n
V composesspace_Group-.composesspace n
3 composesspaceRole.Widget n
<> IcomposesspaceRole.Widget)

WorkSpace c Aggregation n3 composesmashup_Group.Mash-up n
<< lcomposesmashup_Group)n
<< lcomposesmashup_Part)n
3 composesmashup_Part.WorkSpace n<> lcomposesmashup_Part.WorkSpace)

composesmashupRole = composesmashup_Group-o composesmashup_Part

Widget c Class n DesignElement nV composesspace_Part-.composesspace n
V composesspaceRole-.WorkSpace n
V composeswidget_Group-.composeswidget n
3 composeswidgetRole.ResourceRepresentation n
<> IcomposeswidgetRole.ResourceRepresentation)

composesspace c Aggregation n3 composesspace_Group.WorkSpace n
<< lcomposesspace_Group)n
<< lcomposesspace_Part)n
3 composesspace_Part.Widget n<> lcomposesspace_Part.Widget)

composesspaceRole = composesspace_Group-o composesspace_Part

ResourceRepresentation c Class n DesignElement nV composeswidget_Part-.composeswidget n
V composeswidgetRole-.Widget n
V composesrepresentation_Group-.composesrepresentation n
V composesrepresentationRole.BackendResource n
3 composesrepresentationRole.View n
<< IcomposesrepresentationRole.View)

(continued on nextpage)

Table A.l (continued)

composeswidget c Aggregation n3 composeswidget_Group.Widget n
<< lcomposeswidget_Group)n
<< lcomposeswidget_Part)n
3 composeswidget_Part.ResourceRepresentation n<> lcomposeswidget_Part.ResourceRepresentation)

composesspaceRole = composesspace_Group-o composesspace_Part

composesrepresentation c Aggregation n3 composesrepresentation_Group.ResourceRepresentation n
<< lcomposesrepresentation_Group)n
<< lcomposesrepresentation_Part)n
3 composesrepresentation_Part.BackendResource n
3 composesrepresentation_Part.View n<< lcomposesrepresentation_Part.View)

composesrepresentationRole = composesrepresentation_Group-o composesrepresentation_Part

View c Class n DesignElement n
V composesrepresentation_Part-.composesrepresentation n
V composesrepresentationRole-.ResourceRepresentation

BackendResource c Class n DesignElement n
V composesrepresentation_Part-.composesrepresentation n

V composesrepresentationRole-.ResourceRepresentation n

Operator c Class n BackendResource

Arithmetic c Class n Operator

List c Class n Operator

Functional c Class n Operator

WrappedService c Class n BackendResource n
V composesservice_Group-.composesservice n
V composesserviceRole.APIn
V composesserviceRole.ServiceData

composesservice c Aggregation n3 composesservice_Group.WrappedService n
<< lcomposesservice_Group)n
<< lcomposesservice_Part)n
3 composesservice_Part.APIn
3 composesservice_Part.ServiceData

composesserviceRole = composesservice_Group-o composesservice_Part

API c Class nV composesservice_Part-.composesservice n
VcomposesserviceRole-.WrappedService

ServiceData c Class nV composesservice_Part-.composesservice n
VcomposesserviceRole-.WrappedService

2. Examines these web pages at a user-configurable t ime interval
and checks whether any changes have been made compared
against the baseline. The webpages do not publish RSS or notify
content changes in any other way.

3. Is able to SMS message or email an outline of any changes made
to the user’s mobile phone and email address. Both data should
obviously be configurable at runtime.

Problem 5: Planning a route between two points

Number of components and elements: 15–17
An application is to be implemented that plans the best route

between two points taking into account images captured by
cameras monitored by the administration that manages the traffic
i n the user’s city. In Spain, this traffic information is managed by
the Directorate General of Traffic. The application should:

1 . Use Google Maps to search the optimal route between two
points or locations,

2. Access the system clock to establish the exact execution time.
3. Query the traffic cameras of the main highways in the route.
4. Process each image using some graphical recognition mecha-

nisms, such as the neural networks service. If there are many
processing reference points, the image w i l l be assumed to con-
tain a lot of vehicles, and Google w i l l be told to try to avoid that
route.

5. Display the final route to the user, together w i th the images of
the roads associated w i th the route. The other processed routes
do not have to be displayed.

Problem 6: Customer service application management
Number of components and elements: 18–20
A domain expert routinely performs customer service tasks. Her

job is to receive telephone calls and optimally process the reported
fault or problem. The application to be implemented should:

1 . Provide the user w i th a means to enter an address in the system
(location of the fault) and a description.

2. Display the location on a map (Google Maps, Bing Maps, etc.).
3. Email the fault description to an operator who should travel to

the fault location.
4. Display the position of the company’s mobile operators on a

map and recommend the nearest operator to be sent to repair
the fault. The operator positions w i l l be processed through a
GPS built into their mobile phones and w i l l be stored in a
database.

5. If the fault is urgent, offer the user the option of calling the
nearest operator (for example, using Skype). If the operator in
question has a videoconferencing option, a visual connection
w i l l be established via the user’s webcam.

6. When an operator has been allocated, save all the fault
information in a database and print as a customer service

invoice. The database w i l l be very basic (Access, MySQL, etc.).
The virtual invoice w i l l be printed out i n PDF format.

Problem 7:Business trip booking and personal agenda manage­
ment

Number of components and elements: 22–24
As partofaR&D projectinwhichheisparticipating,ahigher ed-

ucation worker has to make numerous national and international
trips. The project has several partners of different types and origins.

The R&D project has a Web-based general agenda shared by all
the project partners. Al l face-to-face meetings are posted in this
agenda, specifying the meeting date and t ime, venue and agenda.
The higher education institution employing the user actively
cooperates w i th two travel agencies, one specialized in high-speed
trains and the other in long-distance flights, and both manage all
the travel and accommodation options at the ful l range of hotels.

1 . The user consults the shared R&D project agenda every day to
check whether there is a new meeting that he should attend.

2. If there is to be meeting, he has to check his personal agenda
to f ind out whether he can attend the meeting and f i l l in the
details of the new meeting, the meeting agenda, etc.

3. The user looks up the meeting venue, and searches for i t on a
map. Then, he accesses the travel agency services and checks
what travel options they offer, as wel l as price. Normally he
compares the two options and chooses one agency or the other
depending on the travel options, length of stay and price.

4. If the tr ip is to last longer than a day, the user searches hotels
near to the meeting venue and checks the prices per room and
night offered by the travel agencies.

5. The department employing the user has a spreadsheet-based
software program that manages the department-run R&D
project budget. I t contains spreadsheets that can be used to
check the travel budget currently available for each project and
manage new expenses. It is the user’s jobto calculate how much
the travel and chosen accommodation w i l l cost, add this up and
check that there is enough money available for the tr ip and
deduct i t f rom the project budget.

6. Then the user makes the bookings one by one.
7. Finally, the user checks the Internet information about his

destination, demographic characteristics, weather prediction,
etc.

The user has many software solutions to tackle this repetitive
task (project agenda, personal agenda, travel agency services,
department cash f low program, etc.) but has to access distributed
information, heterogeneous services, etc., separately. The user is
a non-programmer, meaning that he has never thought of the
possibility ofbuildingasolution that meets his needs and improves
task performance.

References

[1] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrance, H. Lieberman, B. Myers, M.B. Rosson, G. Rothermel, M. Shaw, S.
Wiedenbeck, The state of the art in end-user software engineering, J. ACM
Comput. Surv. 43 (3) (2011) Article 21.

[2] C. Scaffidi, M. Shaw, B. Myers, The ‘‘55M End User Programmers’’ Estimate
Revisited. Technical Report CMU-ISRI-05-100, Carnegie Mellon University,
2005.

[3] D. Lizcano, J. Soriano, M. Reyes, J.J. Hierro, A user-centric approach for
developing and deploying service front-ends in the future Internet of services,
Int. J. Web Grid Serv. 5 (2) (2009) 155–191.

[4] Google, Chrome Web Store for Chrome platform, 2014.
https://chrome.google.com/webstore.

[5] Yahoo! Yahoo! Dapper web platform, 2012. http://open.dapper.net.
[6] Yahoo! Yahoo! Pipes web platform, 2012. http://pipes.yahoo.com/.
[7] Microsoft. Microsoft Popfly web platform, 2012. http://www.popfly.com.
[8] Kapow Software Kapow Platform, Kapplets and Kappzone, 2015.

http://kapowsoftware.com/products/kapow-katalyst/index.php.
[9] JackBe, JackBe Presto Cloud web platform, 2012.

http://prestocloud.jackbe.com/.
[10] AMICO, AMICO web platform, 2012. http://amico.sourceforge.net.
[11] Marmite. Marmite web platform, 2012. http://www.cs.cmu.edu/ jasonh/

projects/marmite/.

[12] EzWeb, EzWeb web platform, 2012. http://ezweb.morfeo-project.org/.
[13] J. Rode, Y. Bhardwaj, M.A. Perez-Quinones, M.B. Rosson, J. Howarth, As easy

as click: End-user web engineering, in : Proceedings of the 2005 International
Conference on Web Engineering, 2005, pp. 478–488.

[14] M.B. Rosson, J. Ballin, J. Rode, Who, what, and how: A survey of informal and
professional web developers. in : Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing, Washington DC, 2005,
pp. 199–206.

[15] H. Lieberman, F. Paterno, V. Wulf, End-User Development, Kluwer/Springer
Academic Publishers, Dordrecht, The Netherlands, 2006.

[16] Z.Obrenovic, D. Gasevic, Mashingup oil and water: Combining heterogeneous
services for diverse users, IEEE Internet Comput. 13 (6) (2009) 56–64.

[17] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, A new end-user composition model
to empower knowledge workers to develop rich Internet applications, J. Web
Eng. 3 (10) (2011) 197–233.

[18] A.P. McAfee, Enterprise 2.0: The dawn of emergent collaboration, MIT Sloan
Manag. Rev. 47 (3) (2006) 21–28.

[19] J.A. Macías, F. Paternò, Customization of web applications through an
intelligent environment exploiting logical interface descriptions, J. Interact.
Comput. 20 (1) (2008) 29–47.

[20] EzWeb, Project, Official demo web site, 2011. http://demo.ezweb.morfeo-
project.org.

[21] 4CaaSt Project, Official web site, 2012. http://4caast.morfeo-project.org.
[22] FI-WARE Project, Official web site, 2012. http://www.fi-ware.eu.
[23] L.M. Clark, R. Desisto, J. Holincheck, A. White, A. Kyte, A. Sarner, Hype cycle for

software as a service. Gartner Research, August, Gartner Inc., USA, 2006.
[24] C. Schroth, O. Christ, Brave new web: Emerging design principles and

technologies as enablers of a global SOA, in : Proceedings of the IEEE
InternationalConferenceonServices Computing, IEEE Computer SocietyPress,
Los Alamitos, CA, USA, 2007, pp. 597–604.

[25] Programmable Web. Programmable Web social portal, 2012.
http://www.programmableweb.com.

[26] G. Alonso, F. Casati, H. Cuno, V. Machiraju, Web Services Concepts,
Architectures and Applications, Springer, Germany, 2004.

[27] S. Aghaee, C. Pautasso, EnglishMash: usability design for a natural mashup
composition environment, in : Proc. of Composable Web 2012, 2012.

[28] I. Muhammad, D. Florian, C. Fabio, M. Maurizio, ResEval Mash: a mashup tool
that speaks the languageofthe user, in: CHI’12 NY, USA, 2012, ACM, New York,
2012, pp. 1949–1954.

[29] N. Mehandjiev,F.Lecue,U.Wajid,A.Namoun, Assisted service composition for
EUPs, in : Proc. of ECOWS 2010, 2010.

[30] N. Mehandjiev, A. Namoune, U. Wajid, L. Macaulay, A. Sutcliffe, End user
service composition: Perceptions and requirements, in : Paper presented atthe
Proceedings of the 2010 Eighth IEEE European Conference on Web Services,
2010.

[31] G. Fischer, A.C. Lemke, Construction kits and design environments: Steps
toward human problem-domain communication, Hum.–Comput. Interact. 3
(3) (1988) 179–222.

[32] J. Grudin, The case against user interface consistency, Commun. ACM 32 (10)
(1989) 1164–1173.

[33] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch or why it’s hard to
build systems out of existing parts, in : Proceedings ICSE 1991, IEEE Computer
Society Press, 1995, pp. 179–185.

[34] O. Stiemerling, Component-based tailorability (Ph.D.), University of Bonn,
Bonn, 2000.

[35] V. Wulf, V. Pipek, M. Won, Component-based tailorability: Enabling highly
flexible software applications, Int. J. Hum.-Comput. Stud. 66 (1) (2008) 1–22.
http://dx.doi.org/10.1016/j.ijhcs.2007.08.007.

[36] A. Mørch, Application units: Basic building blocks of tailorable applications, in :
Proceedings of the 5th Int’l East-West Conf. on HCI, Moscow, 1995, pp. 68–87.

[37] A. Mørch, G. Stevens, M. Won,M. Klann, Y. Dittrich,V. Wulf, Component-based
technologies for end-user development, Commun. ACM 47 (2004) 59–62.

[38] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, End-user development success
factors and their application to composite web development environments,
in : Proceedings of the Sixth International Conference on Systems, ICONS 11,
2011, pp. 99–108.

[39] D. Benslimane, S. Dustdar, A. Sheth, Services mashups: The new generation of
web applications, IEEE Internet Comput. 12 (2008) 13–15.

[40] A. Maclean, K. Carter, L. Lövstrand, T. Moran, User-tailorable systems: pressing
the issues with buttons, in : CHI90 Proceedings, 1990, pp. 175–182. ISBN: 0-
201-50932-6.

[41] J.H. Wu, Y.C. Chen, L.M. Lin, Empirical evaluation of the revised end user
computing acceptance model, Comput. Hum. Behav. 23 (1) (2007) 162–174.

[42] F.D. Davis, R.P. Bagozzi, P.R. Warshaw, Extrinsic and intrinsic motivation to use
computers in the workplaces, J. Appl. Soc. Psychol. 22 (14) (1992) 1111–1132.

[43] D. Lizcano, F. Alonso, J. Soriano, G. López, Supporting end-user development
through a new composition model: An empirical study, J. UCS 18 (2) (2012)
143–176.

[44] H.Kahler, More than words—collaborative tailoring ofaword processor,J.UCS
7 (9) (2001) 826–847.

[45] D. Lizcano, F. Alonso, J. Soriano, G. López, A web-centred approach to end-user
software engineering, ACM Trans. Softw. Eng. Methodol. 22 (4) (2013) 36.

[46] D. Lizcano, F. Alonso, J. Soriano, G. López, A component- and connector-
based approach for end-user composite web applications development,J.Syst.
Softw. 94 (2014) 108–128.

[47] OMG. Meta-Object Facility (MOF) core specification, Version 2.4.1. Object
Management Group, 2006. http://www.omg.org/spec/MOF/2.4.1/PDF/.

[48] R. Sobek, Official MOF Specification from OMG. Technical Report, Object
Management Group, Inc., USA, 2005.

https://chrome.google.com/webstore
http://open.dapper.net
http://pipes.yahoo.com/
http://www.popfly.com
http://kapowsoftware.com/products/kapow-katalyst/index.php
http://prestocloud.jackbe.com/
http://amico.sourceforge.net
http://www.cs.cmu.edu/~jasonh/
http://ezweb.morfeo-project.org/
http://demo.ezweb.morfeoproject.org
http://demo.ezweb.morfeoproject.org
http://4caast.morfeo-project.org
http://www.fi-ware.eu
http://www.programmableweb.com
http://dx.doi.org/10.1016/j.ijhcs.2007.08.007
http://www.omg.org/spec/MOF/2.4.1/PDF/

[49] Racer Project. Racer Pro 2.0 Web Portal, 2013. http://racer-systems.com/.
[50] MOFLON. A standard-compliant metamodeling framework with graph

transformations, in : A. Rensink, J. Warmer (Eds.), Model Driven Architecture—
Foundations and Applications: Second European Conference, Vol. 4066, 2006,
pp. 361–375 by C. Amelunxen, A. Königs, T. Rötschke, A. Schürr.

[51] V. Haarslev, R. Möller, Racer System Description, Springer-Verlag, Germany,
2001, pp. 701–705.

[52] F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, P. Patel-Schneider, The
Description Logic Handbook: Theory, Implementation and Applications,
University Press, Cambridge, UK, 2003.

[53] S. Wang, L.J.C. Jin, Represent software process engineering metamodel in
description logic, in : Proceedings of World Academy of Science, Engineering
and Technology, 2006.

[54] K. Schild, A correspondence theory for terminological logics: preliminary
report, in : John Mylopoulos, Ray Reiter (Eds.), Proceedings of the 12th
International Joint Conference on Artificial Intelligence—Volume 1, (IJCAI’91),
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1991, pp. 466–471.

[55] H.J. Levesque, R.J. Brachman, Expressiveness and tractability in knowl-
edge representation and reasoning, Comput. Intelligence 3 (1987) 78–93.
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x.

[56] D. Lizcano, Statistical survey of the end-user development paradigm, 2013.
Available at: http://apolo.ls.fi.upm.es/eud/.

[57] C. Tejo-Alonso, S. Fernández, D. Berrueta, L. Polo, M.J. Fernández, V.
Morlán, eZaragoza, a tourist promotional mashup, 2011. Available at:
http://idi.fundacionctic.org/eZaragoza/ezaragoza.pdf (Last access: 7.06.12).

[58] B.A. Myers, M. Burnett, M.B. Rosson, A.J. Ko, A. Blackwell, End user software
engineering, in: Proceedings of chi’2008 Special Interest Group Meeting and
in Extended Abstracts on Human Factors in Computing Systems, ACM, New
York, NY, USA, 2008, pp. 2371–2374.

http://racer-systems.com/
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://apolo.ls.fi.upm.es/eud/
http://idi.fundacionctic.org/eZaragoza/ezaragoza.pdf

