
dragon: Multidimensional Range Queries on
Distributed Aggregation Trees

Emanuele Carlinib, Alessandro Lullia,b, Laura Riccia,b

aDepartment of Computer Science, University of Pisa
bInformation Science and Technologies Institute, ISTI-CNR, Pisa

Abstract

Distributed query processing is of paramount importance in next-generation distribution services, such as Internet of
Things (IoT) and cyber-physical systems. Even if several multi-attribute range queries supports have been proposed for
peer-to-peer systems, these solutions must be rethought to fully meet the requirements of new computational paradigms
for IoT, like fog computing. This paper proposes dragon, an efficient support for distributed multi-dimensional range
query processing targeting efficient query resolution on highly dynamic data. In dragon nodes at the edges of the
network collect and publish multi-dimensional data. The nodes collectively manage an aggregation tree storing data
digests which are then exploited, when resolving queries, to prune the sub-trees containing few or no relevant matches.
Multi-attribute queries are managed by linearising the attribute space through space filling curves. We extensively
analysed different aggregation and query resolution strategies in a wide spectrum of experimental set-ups. We show that
dragon manages efficiently fast changing data values. Further, we show that dragon resolves queries by contacting a
lower number of nodes when compared to a similar approach in the state of the art.

1. Introduction

An efficient, scalable and adaptable discovery service
is essential for widely distributed services and infrastruc-
tures, such as cyber-physical networks, smart-cities plat-
forms and peer-to-peer networks. These services can be
grouped under the broader definition of the Internet of
Things (IoT) [1], which requires the organization of large-
scale infrastructures of smart-”things”, such as smartphones
and RFID tags. In this context, an important building
block for IoT infrastructures is the ability to sustain widely
distributed, dynamic, and autonomic services [2].

Fog computing [3], has been recently proposed by Cisco
both as computational and architectural paradigm for IoT.
Fog computing requires to run services throughout the
network, including in specialized routers and in dedicated
computing nodes. The result is that intelligence is not lo-
calized on centralized cloud computing nodes, but spread
throughout in the network. Real time low-latency services
may be performed at the edges of the network close to
users, while latency-tolerant tasks can be efficiently per-
formed on powerful resources in the core of the network.
This new computational paradigm is naturally supported
by a hierarchical multi-tier architecture which exploits in-
creasing levels of data aggregation when moving from the
edges to the core of the network.

Email addresses: emanuele.carlini@isti.cnr.it (Emanuele
Carlini), lulli@di.unipi.it (Alessandro Lulli),
ricci@di.unipi.it (Laura Ricci)

Several services previously developed for highly dis-
tributed platforms like peer-to-peer networks are also re-
quired in the fog. A support for the resolution of multi-
attribute range queries is mandatory to support several
higher level services. Consider, for instance, the scenario
described in [4] where information is collected from sen-
sors and mobile devices with the goal of detecting traffic
jams or crashes on roads. The huge amount of information
gathered at the edges of the network is aggregated by con-
sidering the spatial location of the sensing nodes. Users
can submit spatio-temporal multi-attribute range queries
to select data related to relevant events recently occurred
within a space range around them.

Even if several multi-attribute range queries supports
have been proposed for peer-to-peer networks, these solu-
tions cannot be applied directly to Fog Computing plat-
forms since they do not meet all the distinguishing traits
of this paradigm, such as the strong requirement of data
aggregation, the real-time nature of several services, the
high dynamicity of data collected at the edges.

Let us consider the popular solution of implementing a
P2P discovery service on Distributed Hash Tables (DHTs).
These approaches usually rely on data delegation, i.e. the
data published by a peer is generally stored on another
peer chosen according to a mapping strategy guaranteeing
efficient routing. Even if this solution offers several bene-
fits, such as logarithmic bounds for routing and the possi-
bility of employing uniform hashing to guarantee load bal-
ancing, delegation might be undesirable in a very dynamic
environment. Indeed, due to the high rate of informa-

Preprint submitted to Elsevier June 26, 2015

tion staleness the data must be updated frequently, caus-
ing large overhead to the entities handling the delegated
copies [5, 6]. Furthermore, since hash functions destroy
the ordering in the key value space, these structures can
only support exact and one-dimensional queries in their
original formulation. Numerous works extended DHTs to
support the more general case of multi-dimensional range
queries [2, 7, 8, 9, 10], but, in general, these solutions drops
the main benefit of this approach that is the uniform dis-
tribution of data which guarantees load balancing.

Other approaches studied in the literature [11, 12, 13]
directly exploit a multidimensional graph, like a Delaunay
graph, with additional long range links for fast search-
ing to support query resolution. According to these ap-
proaches, the position of a peer in the multidimensional
space is defined by the attributes of the object it publishes
and the object is stored on the peer itself. Even if this
approach overcomes the delegation issue, the high cost of
joining/leaving cannot be tolerated in a highly dynamic
environment. Furthermore, aggregation strategies are not
easily supported.

A further class of solutions is that of distributed tree-
based overlays [14, 15, 16, 17, 10, 2] which naturally adhere
to the hierarchical structure of the fog architectures. How-
ever, most of these solutions [14, 15, 17, 2] suffer the same
problems of DHT-based approaches since they partition
the domain of values among the peers and delegate the
management of data to the node paired with the range
including the data value. Furthermore, multi attributes
queries are not always supported.

In this paper we present dragon (Distributed Range
AGgregatiON), a tree-based overlay targeting the Fog Com-
puting paradigm which integrates hierarchical data aggre-
gation and multi-attribute range queries resolution. In
dragon, each node publishes a set of multi-dimensional
objects which have to be retrieved by queries. For the
sake of simplicity, in the paper we suppose that each peer
publishes a single object. Each object may represent, for
instance, a remote sensing performed by a sensor or by a
mobile phone. Data is collected and stored by the edge
peers so that no data delegation is introduced. Peers col-
laboratively manage a distributed aggregation tree, where
the internal nodes of the tree store a digest of the objects
published at the edges. An initial data aggregation may
be performed at the edge peers which in any case maintain
the original data in their storage to solve queries. The aim
of the aggregation is to: (i) provide an approximated view
of data stored in the tree during query resolution, and (ii)
limit the overhead when data is updated.

In dragon, the query resolution process exploites the
information stored in the aggregation tree to prune the
sub-trees containing few or no relevant data when resolv-
ing queries, and manages efficiently fast changing data val-
ues. The flexible architecture of dragon enables to plug-
in different approximation functions into the nodes of the
aggregation tree, so to tune the trade-offs among the com-
plexity of the aggregation function, the frequency of data

updates, and the precision in the query resolution process.
Multidimensional data is managed by exploiting space

filling curves, which pair a single one-dimensional derived
key to each data. This approach reduces both the band-
width required for transmitting data on the overlay and
the complexity of the aggregation functions.

A preliminary version of dragon supporting only single-
attributes range queries has been presented in presented
in [18]. This paper largely extends and improves from that
initial result, and the main contributions can be summa-
rized as follows:

• we propose a solution for multi-attribute range que-
ries based on the integration of aggregation tech-
niques and Space Filling Curves (SFCs, Section 4).
We show that the choice of the Z-space filling curve
allows to optimize the query resolution process by
avoiding useless intersection between the query and
the aggregate information stored in the digest (Sec-
tion 4.3);

• we propose a failure detection mechanism to cope
with network churn based on a retry mechanism (Sec-
tion 4.4);

• we provide an extensive experimental analysis, by
considering a realistic scenario for IoT. The experi-
mental part includes an evaluation of the load, the
ability to answer query, an evaluation of the impact
of data dynamicity on digest updates as well as a
comparison with MatchTree [10], a similar state of
the art proposal (Section 5). From the experimental
analysis we found evidence that aggregation strate-
gies have an impact on the trade off between the
number of nodes contacted during query resolution
and the cost of dynamic updates of the digest. Fur-
ther, we found that the optimizations helps when
resolving hard queries, allowing to cut a 50% of com-
putational overhead per node. Finally, we show that
dragon outperforms MatchTree in term of node
contacted when resolving a query.

While most approaches presented in the literature are
based on computationally expensive algorithms to keep the
distributed data structure consistent in presence of data
updates, our proposal limits the impact of data dynamicity
by design. Furthermore, to the best of our knowledge, our
approach is the first one which fully integrates aggregation
techniques and space filling curves to provide a flexible
support for range queries.

The description of the distributed data structure and of
how the distributed tree is built is given in Section 3, while
we provide a detailed overview of the query-resolution pro-
cess in Section 4 where we show how SFCs and aggregation
techniques can be integrated in order to support multi-
attribute range queries. In this section we also provide
several optimizations to the basic query resolution pro-
cess. An extensive experimental analysis is presented in
Section 5.

2

name multi attribute tree structure data delegation
dragon yes yes no

Baton [14] yes yes yes
Q-tree [15] yes yes yes
PHT [17] no yes yes

P-Grid [16] no yes yes
Saturn [19] no no yes
MAAN [7] yes no yes
LORM [8] yes no yes
Squid [9] yes yes, implicit yes

MatchTree [10] yes yes, on demand no
IoT Discovery Service[2] yes yes yes

Table 1: Comparison of several range queries approaches

2. Related Work

In this section we contextualize Dragon in the area of
Fog and IoT, then we present several proposals of multi-
attribute-range queries developed in the area of peer-to-
peer networks and a recent proposal designed specifically
for IoT scenarios.

2.1. dragon in the Context of IoT
Bonomi et al. [3] discuss a number of characteristics

that make the Fog as a system for the management of
IoT, a non-trivial extension of Grid and Cloud systems.
The most important of them are location awareness, low
latency, high dynamicity and the huge number of con-
nected nodes. Furthermore, the heterogeneity of nodes
which range from very simple devices with reduced com-
putational capacity to more powerful nodes calls for a hi-
erarchical multi-tier architecture. Even if resource discov-
ery has been a fundamental component of grid systems,
and has been a highly active research area, most of the
presented proposals cannot be easily adapted to the Fog.
Navimipour et al. [20] classifies the grid resource discov-
ery systems in centralized and hierarchical system, P2P or
agent based. Centralized solutions are not adequate for the
Fog whose main goal is to store information at the edge of
the network, close to the users. P2P-based resource discov-
ery systems for grids generally exploit the DHT technology
and are therefore based on the principle that data are not
stored locally where they are generated, but storage is del-
egated to other nodes. Such delegation introduces extra
overhead, which is especially heavy when data is highly
dynamic. Typical nodes of the Fog have limited resources
and finite energy and are not able to support this extra
overhead. Finally, grid agent-based solutions inject in the
network code fragments which are locally executed at each
node, where they perform resource discovery. This solu-
tion is not suitable for Fog because some limited resources
nodes may not support agent execution and because of
general security issues.

Starting from these issues, we have conceived dragon
with the goal of satisfying at least a subset of the require-
ments defined in [3]. The DHT in dragon is used only

to assign identifiers to nodes, and not to delegate storage.
This is a relevant point, as it allows data to always be
stored at the edge of the network and to avoid the ex-
tra overhead due to delegation. Indeed, in dragon data
modifications imply the update of the digests, but data
delegation is never required. Finally, location awareness
may be supported by assigning node identifiers to preserve
physical proximity as it happens in [21].

2.2. Distributed Range Query Support

Among the numerous approaches supporting range que-
ries, we discuss here those more closely related to our work.
In particular, we compare the proposals with respect to the
following aspects: (i) support to multi attribute queries,
(ii) use of a tree structure, (iii) data delegation. In par-
ticular the problem of building a distributed tree has been
studied in [17][16][22][10]. A summary of the analysed ap-
proaches is shown in Table 1.

Baton [14], BAlanced Tree Overlay Network, is based
on a binary balanced tree structure in which each node
of the tree is maintained by a peer. Each node, both leaf
and internal, is paired with a range of values and data
published is stored on the peer managing the correspond-
ing interval of values, hence data delegation is exploited.
These ranges are dynamically adjusted at each node so to
guarantee load balancing, with overloaded nodes transfer-
ring part of their contents to other nodes.

Q-tree [15] provides a multi-attribute based query so-
lution for hierarchically clustered environments like tele-
immersive interactive systems. Each node is assigned a
range interval that specifies which items it stores and also
knows the entire range of the subtree rooted at it. Data
delegation is exploited to store data in the tree.

PHT [17] is similar to our work because it builds a
static tree to route the query resolution, however it sup-
ports only single attribute range queries. Specifically, it
builds a trie on top of a DHT by exploiting the high-level
operations lookup, put and delete of the underlying DHT.
The management of a key K is delegated to a leaf node
whose label is a prefix of K. In order to resolve queries and
perform updates, PHT requires to find the leaf of the trie,

3

which in turn requires a variable number of DHT lookup
depending on the number of unique prefixes in the trie.

P-Grid [16] builds a static trie to route the query reso-
lution and it does not require an underlying DHT. However
it resolves only single attribute range queries. In P-Grid
each peer is associated with a leaf of the binary tree and
for each level of the tree it maintains a reference to some
other peer that does not pertain to the peer’s subtree at
that level. P-Grid needs a sample of data to build a bal-
anced trie and exploits data delegation mechanism to store
the data in the peers.

An instance of Saturn [19] consists of an order pre-
serving DHT ring and a number of virtual rings where
resources are distributed using a defined Multiring Hash
Function. Range queries are solved by randomly select-
ing one of the virtual rings, exploring the nodes from the
lower until the upper bound of the queries. As PHT, also
Saturn does not provide support for multi-attribute range
queries.

MAAN [7] maps objects on separate address spaces
(one for each dimension), which are then commonly col-
lapsed in a single DHT. Multi-attributes range queries are
resolved considering the attribute that minimize the ad-
dress space to explore, and by filtering out the results for
the rest of attributes. MAAN can lead to high network
overhead when values change rapidly, since it requires an
update for the whole resource for each attribute. MAAN
can also creates hot-spots since bulk of information can
end up managed by few nodes.

LORM [8] organizes peers in a set of clusters distributed
in a DHT ring, such that each cluster is responsible for the
management of one attribute. Range queries are solved
routing one sub-query for every attribute to the cluster
responsible of the attribute and then aggregating the re-
sults. The downsides of this approach are the following:
(i) nodes can be responsible of a large amount of informa-
tion, causing large overhead in case of churn (due to data
delegation); (ii) resources information must be refreshed
periodically, increasing the network load.

Similarly to dragon, Squid [9] solves multi attribute
range queries using a locality preserving indexing scheme
based on the Hilbert SFC. The SFC index space is chosen
to be the same as the node identifier space, and each peer
is responsible for the data in its segment. Squid’s query
resolution approach can be viewed as constructing a tree
and visiting it top-down, increasing the prefix by one at
every level of the tree and checking if the cluster of the
SFC-based index space matches the range query. However,
this approach can overload the root of the trees because the
peer handling the shortest prefixes of the identifier space
are contacted frequently to start the query processing. In
addition Squid requires a load balancing mechanism as
the uniformly distribution of node identifiers leads to data
unbalancing.

MatchTree [10] is a self-organizing recursive-partitioning
multi-cast tree where the tree structure is built according
to the query. Queries are propagated into the tree accord-

ing to the goodness of the values, and results are returned
aggregated and sorted by rank. MatchTree employs a set
of heuristics to increase query performance and a redun-
dant topology to support failure. Similarly to dragon,
MatchTree provides the resolution of multi attribute range
queries on top of a tree. Even if it adds interesting func-
tionalities like ranking results, MatchTree suffers of net-
work bandwidth consumption because a different tree must
be created for every request.

Finally, [2] proposed a Discovery Service specifically
designed for Internet of Things scenarios which supports
multi-attribute range-queries and adopts a peer-to-peer
approach for guaranteeing scalability, robustness, and main-
tainability of the overall system. The Discovery Service
linearises multi-attributes through space filling curves and
exploits an indexing PHT structure (previously presented)
built on top of the Kademlia DHT overlay network.

3. The Aggregation Tree

dragon is a distributed searchable data structured or-
ganized as a binary aggregation tree. Every peer manages
exactly a leaf node of the tree, which contains the data
published by the peer, and may in addition manage other
internal nodes of the tree.

Hereinafter we use the term peer to refer to a machine
able to perform computation and connect to the network,
whereas we use the term node to refer the nodes of the
dragon tree.

3.1. Tree Construction

When a new peer joins dragon: (i) it gets a DHT
identifier, (ii) exploits the routing mechanism of the DHT
for finding a peer already belonging to dragon, and (iii)
triggers the aggregation process. The DHT address space
is used to build a trie over the alphabet Σ = {0, 1}. Note
that the DHT identifier of a peer is different from the key
paired with the object it publishes and is exploited only for
building the tree. Any classical DHT may be exploited to
obtain a uniform distribution of the peers and, as a conse-
quence, a balanced tree. On the other way, a locality sen-
sitive hashing DHT may be exploited when the platform
requires aggregation of spatially close data. In any case, it
worth noticing that the DHT is only exploited during the
bootstrap phase and not during the query resolution.

Figure 1 shows a dragon tree before and after the
arrival of the peer P4. The full join procedure goes as
the following. P4 first receives the DHT identifier 101 and
afterwards, using the key-based routing of the DHT, it
searches for a peer sharing the longest common prefix of
the identifier (which is P1 with id 100). Considering P1,
P4 finds 10 as their least common ancestor (LCA). Once
found the LCA, P4 determines the nodes to manage. In
fact, the management of node 10 is contended between P4

and P1. To resolve the dispute, the node is assigned to
the peer managing the data item with the highest value,

4

00

001000 011010 101100 111110

01 10 11

0 1

root

P2 [14] P1 [7] P3 [4]

P1

P2

P3

P2’s RT

2 - -

-1 -

0 P1-
P3’s RT

-2 -

1 -P1

00

001000 011010 101100 111110

01 10 11

0 1

root

P2 [14] P1 [7] P3 [4]P4 [9]

P2

P4

P1’s RT
2 -P4

P2’s RT

2 - -

-1 -

0 P4-
P3’s RT

-2 -

1 -P4
P4’s RT

- P12

- P31

0 -P2
P1’s RT

- -2

- P31

0 -P2

P4 joins
P3

P1

leaf node

internal node

Figure 1: On the left, a dragon tree with 3 peers {P1, P2, P3} and h = 3. On the right the same tree after P4 joined with identifier
101. Grey areas highlight the mapping of nodes to peers, nodes with dotted stroke are not mapped. Squared brackets contain the
data value, RT stands for Routing Table.

in this case P4 (the value of P1 is 7 and the value of P4

is 9). This strategy has been chosen according to [23], in
which a similar tree is built for the resolution of exact one-
dimensional queries. In addition, we performed tests that
confirmed than the strategy used to resolve disputes has
a marginal impact on dragon performances. Then P4

climbs the tree until loosing a dispute at the root managed
by P2 (which has value 14).

In general, more complex criteria to resolve disputes
can be defined to enhance certain properties. In particular,
one could try to balance the number of nodes associated
to peers, or reduce the number of messages exchanged by
peers in particular cases (e.g. according to the distribu-
tion of the queries). These aspects, although interesting,
deviate from the main scope of this work (i.e. the query
resolution process) and therefore are not covered in the
following.

During the join, along with nodes assignment, a peer
builds its routing table, causing an update on the routing
tables of the peers encountered during the climbing of the
tree. Each peer maintains a row r in the routing table for
every level of the tree, containing two values: 1) the peer
handling the node at level r, and 2) the sibling of the peer
at level r+1. For example since P4 manages the node with
prefix 10, P1 sets its parent entry at level 2 equals to P4,
while P4 sets P1 as sibling entry at level 2.

3.2. Aggregation Techniques

In dragon each peer publishes an object characterized
by a set of attributes. This set of attributes is linearised by
exploiting space-filling curves (as described in the following
section) and the derived key is stored in a leaf of the tree.
Each internal node of the tree stores a digest summarizing
the data contained in the relative sub-tree. The purpose
of the digest is to drive range queries to node that contain
useful data.

Digests are updated when the derived key of a peer
changes, this may happen when the value of an attribute

is modified or if the number of attributes or their range
of values changes. The update of digests starts from
the leaf node and can potentially arrive up to the root
of the tree. Note that this also applies to the join, as the
entrance and update as a new value is managed in the same
way. Given a tree like in Figure 1, suppose P1 updates the
value of its data. It sends the update to P4 which first
updates the digest of its assigned nodes, i.e. 10 and 1 in
this order, then it forwards the update up to the tree. In
the example, if the digest on 1 required an update, then
the propagation would go up to the root to P2. In this
design, the definition of the digest represents a trade-off
between the level of approximation provided (less detailed
information during query resolution) and the number of
updates required when data is modified. dragon exploits
two different digest strategies, Bitvector and q digest,
briefly discussed below.

Note that if one of the two parameters characterizing
the SFC, i.e. the number of attributes or the attribute
value range is modified, all the derived keys are modified.
In these scenarios, a full data rearrangement is unavoid-
able. However, the cost of this operation in our system
is lower compared those systems based on the mapping of
the SFC derived keys onto a DHT. In this case, an up-
date of the parameters characterizing the SFC requires, in
the worst case, a new mapping of all the data items onto
the DHT nodes. Instead, in Dragon the underlying DHT
is left unchanged, since the DHT is only exploited for an
uniform distribution of the nodes, but no data is mapped
on it. Furthermore, even if the digest stored in the internal
nodes of the tree have to be modified, the structure of the
Dragon tree is unchanged. The digests are updated by a
bottom-up visit of the Dragon tree, starting at the leaves
and modifying the digest on the path to the root. The
number of digests to be updated depends on the specific
digest strategy: if the digest returns a coarse approxima-
tion, the probability that the update stops at low level of
the tree is higher. In this way, by choosing a proper digest

5

strategy, it is possible to tune the trade-off between the
cost of the updates and the precision of the information
driving the search.

3.2.1. Bitvectors

Bivectors have been originally exploited to implement
routing indexes for unstructured networks [24]. A bitvec-
tor is defined by partitioning the space into k intervals,
and a vector B is defined as B = (b0, b1, . . . , bk) such that
bi = 1 if and only if exists a data belonging to the interval
[Pi, Pi+1). Practically, in the implementation only the bits
with value equal to 1 are stored.

The main advantage of bitvectors is the straightforward
implementation of merging two bitvectors, which can be
computed by considering their bitwise disjunction. On the
other hand, the approximation introduced by bitvectors
may result too coarse to effectively support the resolution
of a range query. A bitvector shows if at least a piece of
data belongs to one of the intervals, but does not provide
any information about the amount of data in the intervals.

3.2.2. Q Digest

The Quantile Digest (q digest) approach [25] has been
originally used as an aggregation technique in sensor net-
works. The main idea of q digest is to provide an approx-
imation of the distribution of the data by using variable
size buckets. A single q digest contains a set of buckets
of variable size defined over a space [1, γ]. A bucket b has
associated an interval [lb, ub] and a counter c(b) that in-
dicates the number of data values in the bucket. All the
possible buckets of a digest are represented by a tree built
on top of the space [1, γ], in which a node corresponds to
a bucket whose interval is the union of the intervals of the
two siblings. Among all possible buckets, only a subset
of them is kept in the digest, according to a compression
parameter c. Given c, a bucket b is in the q digest if and
only if these properties hold [25]: (1) count(b) ≤ bn/cc,
and (2) count(b) + count(bp) + count(bs) > bn/cc; where
bp and bs are respectively the parent and the sibling of b,
and n is the total number of data values.

Compared to bitvectors, which provide only the pres-
ence of data in a given interval, q digest gives an es-
timation of the amount of data in an interval. Further,
q digest comes with some interesting properties, includ-
ing the support for a custom level of compression, useful
to balance the tradeoff between precision and size.

4. Multidimensional Range Query

In dragon each peer publishes a multidimensional ob-
ject which is characterized by a set S of attributes whose
values define a point of the Rn space. A multi attribute
range query is a pair (C,K) where C is a set of n con-
straints lowi ≤ ai ≤ highi, one for each attribute i ∈ S,
and K is the number of objects satisfying the constraints
required by the query.

A query originates in a leaf and climbs up the tree
until enough results are found. Whenever a peer receives
a query, it executes the following actions:

• checks if its local data value satisfies the range query;

• for each sibling check its digest to understand whether
it contains useful data values;

• according to the amount of data values retrieved, it
decides whether to terminate the query or to send it
to the upper node of the tree.

This process is detailed by the TreeSearch algorithm,
which is explained in the following section. In addition, we
provide a detailed description of the SiblingSearch proce-
dure, which is devoted to check whether a digest contains
useful data values.

4.1. TreeSearch

The TreeSearch (whose pseudo-code is presented in Al-
gorithm 1) begins at a leaf of the tree, i.e. from the peer
submitting the query, and node by node continues as a
bottom-up visit of the tree.

The design choices for the TreeSearch are the following:
(i) to avoid reaching the upper levels of the tree, as they
can easily become bottlenecks, and (ii) to explore the parts
of the tree that contain data values relevant to the query
with higher probability, while ignoring those not contain-
ing useful data values. Consequently, dragon exploits
digest information to forward queries to a promising sub-
tree, and only once a sub-tree is visited, the query climbs
to the upper levels of the tree.

During a TreeSearch, a peer can play the role of a mas-
ter or slave. A slave explores a subtrees by forwarding the
query to the siblings and waits for the results from them.
Once it receives the results, it forwards the query up to the
parent, until it reaches a master node. A master node can
decide whether to forward the query to the upper level of
the tree. Note that a master node always lies on the path
from the leaf originating the query to the root, and that
there is only a master node active per query at any given
time.

More in detail, let us consider a generic node P execut-
ing the TreeSearch. P first checks if the local data value
matches the query, by exploiting the LocalMatch function
and in this case it updates the result (line 2 in Algorithm
1).

Afterwards, P considers the siblings whose digest ex-
pose useful data values by calling the SiblingSearch (line
4). Then, until there are useful siblings and the less than
K items have been found, P forwards the query to a sub-
set of the siblings such that their digest exposes enough
information to solve the query (lines 6-11). For example,
if the query requests 3 data values, and the digests of two
sibling nodes expose 4 data values each, only one of the
sub-tree is contacted. This process continues recursively
on every node of the sub-tree. Note that the siblings in

6

Algorithm 1: TreeSearch(Query, Mode)
Input: Query, includes the results found so far
Input: Mode, can be master or slave

1 if localMatch(query) then
2 query.updateResult(localNode)
3 end
4 C ← SiblingSearch()
5 while C.hasMore() ∧ !query.isFinished do
6 C’ ← removeEnough(C, query)
7 forall the sibling ∈ C’ do
8 sibling.TreeSearch(query, slave)
9 end

10 waitAll()
11 query.updateResult(getAllResult())

12 end
13 if Mode is slave then
14 send(query,parent)
15 else
16 if query.isFinished then
17 send(query,queryNode)
18 else
19 parent.TreeSearch(query, master)
20 end

21 end

this phase are contacted in parallel, and P waits for the
response and merges the updates once the visit process is
completed. In the last part of the algorithm, P behaves
differently if master or slave. If P is a slave then it returns
data to its parent, i.e. the node that forwarded the query
to it (line 14). Rather, if it is a master then it checks if all
K objects have been found and possibly sends the result to
the originating peer. In case the number of found objects
is less than K, it forwards the query to the upper level of
the tree (lines 15-20).

This algorithm presents a worst case scenario when a
query starting from a leaf require to contact a different
master node for each level of the tree. In addition each
master node contacted at level i can potentially perform a
child search starting at level i + 1 until a leaf of the tree.
Due to the above, if the tree height is n we obtain a number
of hops equal to n ∗ (n + 1)/2. From a qualitative anal-
ysis of the algorithm this scenario is unlike to happen for
the following reasons (in the experimental analysis we run
several experiments that confirmed these observations):

• child pruning: in Algorithm 1 Line 4 every node be-
ing master or slave checks the digests of its children
and avoid the search on child not having relevant
data for the query;

• node knowledge: every node u at level i in the tree
has the knowledge of a node at level i + 1, i + 2...
until a leaf node (see nodes’ routing table in Figure
1). For instance, during query resolution if a sub-
tree relevant for the query is at level i + 3 the node
u can skip level i+ 1 and i+ 2 and contact directly
the node at level i+ 3;

• query stop: when the number of found resources
is greater or equals to the number of requested re-
sources a master node can stop the query resolution
process, see Algorithm 1 Line 15.

14

97

4P4

P2 P4

P2
root

P5

P1 P4

P2 P3
12

search for 2 items
in range [10,12]

slave node

master node

1

2

3

4
5

Figure 2: An example of query resolution

Figure 2 shows an example of a query resolution. P1

starts the query, by executing the search algorithm as mas-
ter. Since it has no siblings it forwards the query to P4

(step 1 in figure), which manages P1’s parent node on the
tree. P4 executes the search as master, by considering, its
node in the upper level of the tree. Since the digest of the
sub-tree rooted at P3 does not expose interesting informa-
tion, P4 forwards the query to P2 that executes the search
as master node (step 2). According to the digest, P2 for-
wards the query to P5 (step 3) that executes the search as
a slave node and returns the result (i.e. the data value 12)
to P2 (step 4). In this case, the query is not completed,
but since P2 is the root, the only action it can take is to
return the query back to P1 (step 5).

4.2. SiblingSearch and Space Filling Curves

The SiblingSearch procedure is executed on the digest
of a node to check whether the digest contains useful data
values. In case of multi-dimensional data values, each
point in the digest represents a linearisation of a value. To
enable this linearisation, dragon exploits the space filling
approach [26, 27] to define a bijective mapping between the
Rn space of the objects and a linear space of derived keys.
A space-filling curve (SFC) passes through every point of
the Rn space once and defines a one-to-one correspondence
between the coordinates of the objects in Rn and the one-
dimensional sequence numbers of the points on the curve.
Each point of the curve is called the derived key of the
corresponding point in the multidimensional space. Since
no total order may fully preserve spatial proximity in the
multidimensional space, SFCs give a probabilistic guaran-
tee that two objects located in proximity in the Rn space
are also close on the curve. In other words, derived keys
close to each other correspond to close point in the n-
dimensional space. The degree of locality depends on the
shape of the space filling curve. It is important to notice
that exploiting a SFC allows us to apply, with the proper
improvements, the digest aggregation algorithms defined
for the 1-dimensional case [18] to the domain of derived
keys. The linearisation of multi-dimensional points makes
easy the resolution of range queries. The interval obtained
by linearising the points delimiting the (hyper) rectangle

7

Figure 3: On the left a Z-curve divided in 5 intervals. On the right
the hyper-rectangle defined by a query and the minimal Z-region
quad envelope of the last interval.

of a range query corresponds to the query in the linear
space. All the data values that lie in such interval match
the range query.

Among several SFCs, we have chosen the Z-order SFC.
The main reason is the possibility of exploiting both a
cheap algorithm to compute the derived key and a straight-
forward method for range queries resolution. Furthermore
the Z-curve exhibits a good level of locality [28]. The Z-
curve visits the quadrants resulting from the recursive def-
inition of the n-dimensional space, according to the order
defined by their identifiers, at any recursion level. In this
way, a bijective mapping between the quadrant identifiers
and the derived keys is defined. This property is impor-
tant, as it allows for the definition of relatively easy al-
gorithms when exploiting this curve. Note that this does
not hold for any SFC, for instance this is not true for the
Hilbert Curve [26].

4.2.1. Generation of the Derived Key

A node of dragon computes its derived key by ex-
ploiting a bit-interleaving algorithm [29] which takes the
binary representation of the values of each attribute and
interleaves bits taken cyclically from these values to con-
struct the single derived key. For example, in Figure 4 the
data value (5, 2) in binary is (0101, 0010). By interleaving
we obtain 00011001 which corresponds to 19 in the derived
key space. The resulting value is then transmitted to the
internal nodes of the tree which compute the bitvector
or q digest aggregated information. Hence, each inter-
nal node stores a set of interval of derived keys values,
whereas the query comes as a set of linear constraints in
the n-dimensional space. An interval [α, β] of derived keys
on the Z-curve, will be referred in the following as Z-region.
Figure 3 (left part) shows 5 Z-regions, each one starting at
a circled point and ending at a squared point.

4.2.2. Exploiting Digests for Query Routing

The SiblingSearch is described by the Algorithm 2 and
is composed by two main operations:

• the computation of the minimal Z-region quad enve-
lope, which is the minimal set of quadrants of the n-

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Q1 Q2

Q3

Quadrants
Q1=(4,0)(5,1)
Q2=(6,0)(7,1)
Q3=(5,2)(5,2)
Q4=(6,2)(7,3)

Q4

Query
(5,2)(6,4)

Data value
(5,2)

0 63

25 52

Q1 16,19

Q4 28,31

Q2 20,23

Q3 25,25

25
BitVector256

Attribute space Derived key space

Figure 4: Data values, query and quadrants in attribute and derived
key space.

dimensional space exactly covering a Z-region. These
intervals are used in line 3 of the algorithm;

• the computation of the intersection between the hyper-
rectangle defined by the range query and any quad-
rant in the minimal Z-region quad envelope (line 6).
A rectangular query (highlighted in blue) and its in-
tersection with the Z-region quad envelope of the
last Z-region of Figure 3 (left part) are presented in
Figure 3 (right part).

Figure 4 show an example of a data value, a query
and a set of quadrants in the attribute and derived key
space. The list of quadrants are obtained according to
Skopal et al. [29], who presented a simple algorithm to
compute the minimal Z-region quad envelope. The algo-
rithm inserts in the minimal Z-region quad envelope all the
quadrants whose identifiers values are between α and β, if
they exists. The properties of the Z-curve guarantee that
all the derived keys in these quadrants are between α and
β. The border quadrants including α and β are recursively
divided in sub-quadrants and the same argument is recur-
sively applied, until a quadrant including only the point
corresponding to α, respectively β is obtained.

Each node computes the minimal Z-region quad enve-
lope for each interval of derived keys in its digest. This
phase is executed once, when a node joins the system, and
must be re-executed each time the information included in
the digest is modified due to peers joining and leaving the
tree. Note that while this information is computed once
and is independent from a specific query, the intersection
between the query and the minimal Z-region quad envelope
must be executed each time a query is received by a peer
to check the existence of a match between the information
stored at the digest and the range query.

The aim of the SiblingSearch operation is then to check
if exists a match between a quadrant belonging to the mini-
mal Z-region quad envelope of the Z-region [αdigest, βdigest]
included in the digest of a sibling and the hyper-rectangle
of the range-query. In the example of Figure 4, among the
four quadrants, only Q3 and Q4 intersect the range-query.
Note that this does not guarantee that the subtree rooted

8

Algorithm 2: SiblingSearch(Query)
Input : Query, includes the results found so far
Input : sibling.envelope, contains quadrants of minimal

Z-region envelope
Output: siblingsMatching, a list of sibling matching Query

1 forall the sibling ∈ routingTable.siblings do
2 intervalValid ← false
3 while sibling.envelope.hasMoreInterval() ∧¬ intervalValid

do
4 interval ← sibling.envelope.nextInterval()
5 if interval.dataEstimation > 0 ∧

preliminaryCheck(interval) then
6 hquadIntersection ← intersect(Query,

interval.zRegionEnvelope)
7 if hquadIntersection = true then
8 intervalValid ← true
9 siblingsMatching.add(sibling)

10 end

11 end

12 end

13 end
14 return siblingsMatching

at the sibling will include a query match, because the di-
gest only approximates the real distribution of data in the
sub-tree.

4.3. SiblingSearch Optimizations

We defined several optimizations for the SiblingSearch
described in the previous section. The first optimization
exploits the basic property of the Z-curve described in Sec-
tion 4.2. Consider the sequence S of derived keys belong-
ing to the hyper-rectangle defined by the range query. The
minimal derived key in S, αquery, corresponds to the vertex
of the hyper-rectangle paired with the smaller value of each
constraint, the same argument is applied to find the largest
derived key value, βquery. This property does not hold for
other Space Filling Curves, like the Hilbert one. By ex-
ploiting this property, we define the Outside optimization
which may avoid the computation of the intersections be-
tween the query and the minimal Z-region quad envelope.
Let us consider an interval I = [αdigest, βdigest] in the di-
gest of a node. If αquery > βdigest ∨ βquery < αdigest, no
value in I satisfies the range query. Algorithm 2 shows the
function SiblingSearch where the optimization previously
described is defined by the function preliminarycheck.

Another optimization, called Sibling, evaluates if the
same interval of derived keys is present in the digests of
more than one sibling, in this case the intersections be-
tween the query and the quadrants of the minimal Z-region
envelope characterizing this interval is executed only once.

4.4. Coping with churn

In dragon nodes can detect and react to churn during
query resolution. Failures of master and slave nodes are
detected by different mechanisms. As shown in Algorithm
1, a master node m is always contacted from another mas-
ter node or from the query node, hereafter called pred(m),
i.e. the predecessor of m. We introduce the two following
messages to let pred(m) detect the failure of m:

• when m forwards the query to the next master node
it also notifies pred(m);

• whenm decides to terminate a query it contacts both
the query node and pred(m).

Given the above pred(m) can detect a failure of m if it
is not receiving one of the two messages in a configurable
amount of time. The node detecting a failure must contact
the query node to communicate the premature end of the
query.

The detection of the failure of a slave node does not
introduce additional messages. A node, either master or
slave, can detect the failure if the slave is not responding
within an amount of time defined by a predefined thresh-
old. The node detecting the failure of a slave node just
skips the node and continues the visit with further nodes.

In order to improve the number of resources found in
case of temporary tree inconsistencies due to churn, a retry
mechanism is executed when a peer failure is detected.
This mechanism is based on the two following considera-
tions:

• since the dragon tree is built on top of a DHT,
the lookup mechanism of the underlying DHT may
be exploited to find a peer at random to restart a
query;

• each peer belonging to the underlying DHT is paired
with a node of the aggregation tree.

When the query node (i.e. the node that starts the
query) receives a notification of the end of query or a fail-
ure is detected but not all the K requested resources have
been found, the query node can choose to continue the
search process by selecting at random an identifier IDrand

in the DHT address space and by using the lookup mecha-
nism of the DHT to find the peer Pretry that is successor of
IDrand, where the query is restarted. We introduce a retry
parameter R defining the maximum number of times the
retry mechanism can be executed. The retry mechanism
is activated only if less than R retries have been executed
and all the K requested resources have not been found
yet.

5. Experimental Evaluation

This section presents a selection of the most relevant
experimental results for dragon. The main goals of the
experiments were the following:

• compare the digest strategies;

• evaluate the optimizations introduced in Section 4.3;

• evaluate the impact of a high number of dimensions
(up to 7);

• evaluate the load during query resolution and the
impact of data updates on the amount of digest in-
formation to be modified;

9

• evaluate the performance in presence of churn;

• compare dragon with MatchTree [10].

All the results were obtained through simulations. We
developed a prototype of dragon using the Overlay Weaver
Toolkit, OW [30], which provides a common high level API
to develop distributed services based on DHTs. All the
simulations were conducted by exploiting the network em-
ulation of OW, in which every node runs in an independent
thread.

5.1. Experimental Environment

To emulate an IoT-like scenario, we built a three di-
mension dataset considering the positions of the postboxes
in the United Kingdom. In this context, we can image
the postboxes as nodes connected to the Internet, having
as attributes their position and the amount of mails con-
tained. By organizing the mail retrieval from postboxes
with dragon, a post office could perform geographical
queries to optimize the retrieval, like: ”gives me K full
mail boxes in this area”.

We scraped the latitude and longitude of around 57
thousands Royal Mail postboxes from [31] and normalized
their latitude and longitude in the range [0 : 214 − 1], so
to obtain enough precision in the location representation.
We then added a third dimension, the weight, representing
the amount of mails contained in a postbox. The weight
follows a Normal distribution with µ = 214/4 and σ2 =
214/8 (we cut the values below 0 and above 214). Figure 5
shows the distribution of normalized locations and weights.
We also generated four synthetic datasets with 10000 items
having respectively 4, 5, 6 and 7 dimensions . All the items
are in the range [0 : 214 − 1] for each dimension.

In order to measure the performance under different
kinds of queries, we characterize multi-attribute range que-
ries by two parameters, the difficulty d and the size K. We
defined the difficulty d ∈ {3, 6, 12, 24, 48} of a query as the
percentage of items in the system matching the query. The

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0 2000 4000 6000 8000 10000

 0

 2000

 4000

 6000

 8000

 10000

 12000

lo
n
g
it
u
d
e

latitude

weight coordinate

Figure 5: Distribution of latitude and longitude and frequency
of weight distribution

size K ∈ {3, 6, 12, 24} indicates the minimum resources to
be found (if available). For example, in a network with
N = 10000, a query with d = 3 and K = 24 requires to
find at least 24 of the 300 items that match the query.

5.2. Comparison of Aggregation Functions

 0

 5

 10

 15

 20

 25

3
%

6
%

1
2
%

2
4
%

4
8
%

N
o
d
e
P

e
rR

e
s
o
u
rc

e

Diff%

BitVector256-K3
BitVector256-K24

QDigest50-K3
QDigest50-K24

Figure 7: Aggregation comparison: NodePerResource with dif-
ferent value of K

This set of experiments compare q digest and BitVec-
tor considering the postboxes dataset. We recall that the
digest plays an important role in the discovery process, as
it gives to dragon the ability of pruning useless branches
of the tree.

We randomly selected N = {2500, 5000, 10000} post-
boxes from the postboxes dataset. Since the size of the
attributes domain of the dataset, and according to Section
4.2, we created a SFC with a domain size ι of 214×3 = 242.
In our test we use a DHT address space of 160 bits resulting
in 2160 possible different identifiers, having a tree structure
with a maximum of 160 levels (note that the DHT space
is not related with the domain size of SFC; the former is
used to assign unique ID to nodes, the latter represents the
internal value of a node). However, given the uniformity
of the SHA1 assignment and that N � 2160, in practice
all the nodes are compacted in the highest 20 levels of the
tree.

We then compared four different types of digest strate-
gies:

• q-: q digest configured with c = 10 (where c is
the compression parameter);

• q-: q digest configured with c = 50;

• bv-: BitVector dividing ι set in 128 equal size
partitions;

• bv-: BitVector dividing ι set in 256 equal size
partitions.

In order to measure the performance, we considered
the following two metrics:

10

 0

 5

 10

 15

 20

 25

 30

3
-3

%

3
-6

%

3
-1

2
%

3
-2

4
%

3
-4

8
%

6
-3

%

6
-6

%

6
-1

2
%

6
-2

4
%

6
-4

8
%

1
2
-3

%

1
2
-6

%

1
2
-1

2
%

1
2
-2

4
%

1
2
-4

8
%

2
4
-3

%

2
4
-6

%

2
4
-1

2
%

2
4
-2

4
%

2
4
-4

8
%

N
o
d
e
P

e
rR

e
s
o
u
rc

e

K-Diff%

BitVector128
BitVector256

QDigest10
QDigest50

(a) Aggregation comparison: NodePerResource with 10000
nodes

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

3
-3

%

3
-6

%

3
-1

2
%

3
-2

4
%

3
-4

8
%

6
-3

%

6
-6

%

6
-1

2
%

6
-2

4
%

6
-4

8
%

1
2
-3

%

1
2
-6

%

1
2
-1

2
%

1
2
-2

4
%

1
2
-4

8
%

2
4
-3

%

2
4
-6

%

2
4
-1

2
%

2
4
-2

4
%

2
4
-4

8
%

R
e
s
o
u
rc

e
s
P

e
rc

e
n
ta

g
e

K-Diff%

BitVector128
BitVector256

QDigest10
QDigest50

(b) Aggregation comparison: Resources percentage

Figure 6: Comparison of the digest strategies

K = 12 Plain Outside Outside + Sibling
d q- bv- q- bv- q- bv-
3 1288.54 1243.66 852.26 849.03 827.79 754.15
6 730.51 661.08 460.4 428.75 448.76 355.89
12 393.49 336.72 283.89 245.33 276.02 196.68
24 216.99 168.2 196.76 151.05 192.85 115.54
48 114.63 85.34 112.2 79.23 110.76 72.03

Table 2: Average number of intervals considered during query resolution

• NodePerResource: quantifies the number of nodes
that must be contacted to retrieve one resource. It is
computed as the number of nodes contacted divided
by K, with lower values corresponding to a better
result (i.e. less nodes contacted to solve the same
query).

• ResourcesPercentage: measures the percentage of
resources found of the K requested. In a sense, this
metrics measures the accuracy, and with values un-
der 100%, dragon was unable to answer the query
successfully.

We conducted the test by running every combination of
d and K from 100 queries, originated at random nodes.
All the results are the average of 30 independent runs (in
total, 3000 queries for each {d,K} pair).

In Figure 6a and 6b the X axis corresponds to the
{d,K} pairs, while the Y axis is the average NodePerRe-
source, respectively, ResourcesPercentage. Figure 6a re-
ports the result for a network of 10000 nodes and shows the
relevant impact of the aggregation function on the number
of visited nodes. q digest outperforms the BitVector, be-
cause the BitVector has a coarser grain precision resulting
in more false positives. q digest exploits always less than
5 nodes to find one resource, and it approaches 2 for easier
queries. This is evident in Figure 7 in which q digest and
BitVector are compared with respect to selected values of

K ∈ {3, 24} and of d. Results suggest that NodePerRe-
source maintains the same ratio when increasing K for
q digest. Instead BitVector decreases performance when
the number of requested resources K increases.

In terms of ResourcesPercentage, all digests find a num-
ber greater than or equal to the requested resources in all
the configurations. However, from Figure 6b, is clear that
BitVector finds more resources than q digest. This con-
firms that BitVector tends to underestimate the presence
of useful data items in a sub-tree, as suggested by the
NodePerResource measurements. Also, BitVector floods
more than necessary during sub-tree traversals, with an
increment of the flooding with larger K.

5.3. Evaluation of optimizations

In this section we evaluate how the Outside and Sib-
ling optimizations introduced in Section 4.3 help to reduce
the computational effort on nodes in the query resolution
process.

Table 2 shows the number of intervals (where more
intervals means more computation needed) on average to
solve a query. The results were obtained considering bv-
 and q- and K = 12. From the results we deduct the
following considerations:

• the Outside optimization has a positive impact over-
all, in particular for difficult queries in which dragon

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
3
-3

%

3
-6

%

3
-1

2
%

3
-2

4
%

3
-4

8
%

6
-3

%

6
-6

%

6
-1

2
%

6
-2

4
%

6
-4

8
%

1
2
-3

%

1
2
-6

%

1
2
-1

2
%

1
2
-2

4
%

1
2
-4

8
%

2
4
-3

%

2
4
-6

%

2
4
-1

2
%

2
4
-2

4
%

2
4
-4

8
%

Q
u
a
d
ra

n
ts

In
te

rs
e
c
ti
o
n
P

e
rN

o
d
e
C

o
n
ta

c
te

d

K-Diff%

QDigest
QDigestOptimized

BitVector
BitVectorOptimized

(a) Quadrants intersections per node

 0

 1

 2

 3

 4

 5

 6

 7

 8

3-
3%

3-
6%

3-
12

%

3-
24

%

3-
48

%

6-
3%

6-
6%

6-
12

%

6-
24

%

6-
48

%

12
-3

%

12
-6

%

12
-1

2%

12
-2

4%

12
-4

8%

24
-3

%

24
-6

%

24
-1

2%

24
-2

4%

24
-4

8%

T
im

e
M

s

K-Diff%

QDigest
QDigestOptimized

BitVector
BitVectorOptimized

(b) Quadrants intersections time

Figure 8: Evaluation of optimizations

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

3
-3

%

3
-6

%

3
-1

2
%

3
-2

4
%

3
-4

8
%

6
-3

%

6
-6

%

6
-1

2
%

6
-2

4
%

6
-4

8
%

1
2
-3

%

1
2
-6

%

1
2
-1

2
%

1
2
-2

4
%

1
2
-4

8
%

2
4
-3

%

2
4
-6

%

2
4
-1

2
%

2
4
-2

4
%

2
4
-4

8
%

N
o
d
e
P

e
rR

e
s
o
u
rc

e

K-Diff%

3D

4D

5D

6D

7D

(a) NodePerResource metric comparison

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

3
-3

%

3
-6

%

3
-1

2
%

3
-2

4
%

3
-4

8
%

6
-3

%

6
-6

%

6
-1

2
%

6
-2

4
%

6
-4

8
%

1
2
-3

%

1
2
-6

%

1
2
-1

2
%

1
2
-2

4
%

1
2
-4

8
%

2
4
-3

%

2
4
-6

%

2
4
-1

2
%

2
4
-2

4
%

2
4
-4

8
%

Q
u
a
d
ra

n
ts

In
te

rs
e
c
ti
o
n
P

e
rN

o
d
e
C

o
n
ta

c
te

d

K-Diff%

3D

4D

5D

6D

7D

(b) Quadrants intersection per node

Figure 9: Comparison of different multidimensionality

evaluates 30% less intervals for both q digest and
BitVector;

• the Sibling optimization mostly improves BitVector.
This result was expected, because using BitVector
the derived key domain is divided for every node
in the same manner. Using q digest, and having
a finer grain representation, we have a smaller pos-
sibility to find a sibling having the digest sharing
intervals with another sibling;

• BitVector considers always fewer intervals with re-
spect to q digest. This is of particular importance
because q digest contacts a smaller amount of nodes
than BitVector. Due to this, when using q digest
every node must analyse a number of interval con-
siderably greater than with BitVector.

The last consideration is highlighted in Figure 8a. It
presents the average number of intersections between the
queries and the quadrants performed by every node in-
volved in the resolution process. We compared BitVec-

tor and q digest using no optimization and considering
both the Outside and the Sibling optimization. Every
intersection has the cost of two integer summations and
two integer comparison. From the figure is evident that
the number of intersections is significantly greater using
q digest. In addition is remarkable how the two opti-
mizations together can significantly reduce the number of
intersections. For example using BitVector, with K = 12
and d = 3 and without optimizations we counted more
than 400 intersections per node, instead introducing the
two optimizations we counted around 200 intersections per
node. q digest for the same configuration requires near
1400 intersections without optimizations and 700 with op-
timizations. Also note that q digest optimized performs
similarly to BitVector not optimized in terms of intersec-
tions per node.

In Figure 8b we evaluated the average time in mil-
lisecond spent by each node to generate quadrants and
executing the intersections. The generation code was ex-
ecuted sequentially by using a single core of a multi-core

12

machine. The results show a similar trend to the number
of quadrants intersection (see Figure ??), in which to an
increase of K corresponds a decrement of the time spent
for the generation and intersection. It worth noticing that
both q digest and BitVector gain advantage from the op-
timizations, and that in any configuration we obtained an
average computational time less than 8 milliseconds.

5.4. Evaluation of multidimensionality

In this section we evaluate dragon with datasets of
different dimensions, from 3 to 7. How dragon reacts
to high dimensions is relevant, since it is well known that
linearisation techniques may be problematic when man-
aging more than few dimensions [32]. In the context of
dragon, more dimensions can lead to increased compu-
tational effort per node and more nodes contacted during
query resolutions. In this section we explore both these
aspects. All the experiments presented in this section are
performed using the q- digest strategy. We choose this
configuration as the worst case, because, as seen in Section
5.3, it is the one with the higher computational cost.

Figure 9a shows that to an increment of the number
of dimensions corresponds an increment of the number of
nodes contacted to find the same amount of resources.
However, despite this increment, the load on the systems
remains acceptable. Indeed, q digest preserves a good
value for the NodePerResource metric also with 7 dimen-
sions. For example, in the (worst) case of a query with
K = 3, d = 3 in the dataset with 3 dimensions, 4.2 nodes
on average are required to find a resource, while this values
grows to 4.6 for the dataset with 7 dimensions.

More interesting results come from the analysis of quad-
rant intersections per node (shown in Figure 9b). Recall
that the tests were running with all the optimizations en-
abled. As expected, the number of quadrant intersections
to solve a query grows at higher dimensions. This can
be explained by considering the differences in the domain
size. With 3 dimensions the domain size is in the order of
23×14 = 242, whereas with 7 dimensions the domain size
is 27×14 = 298. With a bigger domain size the number of
quadrants to resolve a query increases. Therefore, there
is an increment of the number of intersections needed to
verify if a digest interval matches a query.

Figure 10 depicts the storage demands to handle 1000
and 10000 quadrants. On the X-axis is presented the num-
ber of dimensions, and on the Y-axis the storage space in
KBytes required to store the quadrants. We evaluated the
space required to store the quadrants instrumenting the
JVM 1, and we obtained an implementation-specific ap-
proximation of the amount of storage consumed by the
specified objects. Recall that to store a quadrant we need
to save two integers for each dimension, each integer rep-
resenting the lower and upper bound for that dimension.

1http://docs.oracle.com/javase/7/docs/api/java/lang/

instrument/Instrumentation.html

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 6 7

K
B

yt
es

Dimensionality

1000 Quadrants
10000 Quadrants

Figure 10: Storage demands per node

As expected, the storage demands increase when increas-
ing the quadrants dimension. Specifically to store 10000
3D quadrants are required 150 KBytes, and around 300
KBytes to store 7D quadrants. Also consider that 10000
quadrants is a worst case scenario, in fact with 3 dimen-
sions we obtained on average less than 1000 quadrants
intersections using q digest optimized, which resulted in
around 10 KBytes of storage requirements.

5.5. Evaluation of load

When distributed discovery services are organized as
a tree, it is important to evaluate the load imposed on
the nodes. In our context the load has been measured
considering the number of queries elaborated by a node.
Here we compared the outcomes of the easiest and hardest
query, respectively K = 3 d = 48 and K = 24 d = 3. We
generate 3000 different queries for every combination of d
and K.

Figure 11a shows the load for each level of the dragon
tree. The X-axis corresponds to the tree height, with the
root at x = 0. The Y-axis corresponds to the load. All
the values are expressed in percentage according to the
maximum load measured.

The levels between 0 and 10 are the higher in tree
(closer to the root) and the figure shows that a small
amount of queries reaches those levels. From the figure is
also clear how the ”middle” levels are the most loaded part
of the tree in the query resolution process. Note also the
lower load corresponding to levels greater than 15. This is
due to the fact that those levels have lesser nodes with re-
spect to levels ranging from 10 to 15 because all the nodes
are compacted in the highest 20 levels of the tree due to
the uniformity of the SHA1 assignment.

Also, the figure suggests that the easiest query climbs
the tree less than the hardest one. This can be seen as the
easiest query imposes more load on the lowest level of the
tree.

Figure 11b shows the same outcomes but considering
the average queries received per node at the same level of
the tree. It is interesting to notice that, even if the total

13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

Q
u
e
ry

H
it
N

o
rm

a
liz

e
d

TreeHeight

all query hit
K3-48 query hit
K24-3 query hit

(a) Load per level

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

Q
u
e
ry

H
it
N

o
rm

a
liz

e
d

TreeHeight

all query hit
K3-48 query hit
K24-3 query hit

all query average

(b) Load per node

Figure 11: Evaluation of load

load on the middle levels of the tree is higher then the
other levels (as seen in Figure 11a), the load per node in
the middle levels is lower. This is due to the fact that
the middle levels present the higher number of peers (the
peers are compacted in the higher 20 levels of the tree)
and the load is distributed between all the nodes of the
middle levels.

As said above, it is important to evaluate the node on
the highest levels of the tree. We can see that the root
level has a small fraction of the load with respect to the
middle levels of the tree, but instead the root node has a
greater load. However, the impact is acceptable not only
for the root but in general for the higher levels of the tree.
For example, with the hardest query the load on the higher
levels is 4x the load on the lower levels, and just 2x the
average load of the system. The differences between levels
flatten for the easiest query, where the difference between
the most and the least loaded level is 1.5x.

5.6. Churn tolerance

To test the efficiency of the fault tolerance mechanism
we performed experiments in scenarios involving churn.
Churn was modelled statically, by removing a given per-
centage of randomly selected nodes from the network be-
fore running a batch of queries. We consider this kind of
churn because, as seen in Section 5.2, dragon can always
find the required resources when all nodes are fully func-
tional in the network. This scenario shows how dragon
can route the query when parts of the tree structure is not
available.

The tests were executed with a query k = 12, d = 12
as we think this is a good representative for the scenar-
ios tested before. The metrics is ResourcePercentage and
each point was generated analyzing 30 different queries,
each query starting from 100 different nodes resulting in
a total of 3000 queries per point. The outcomes of the
experiments, which illustrate various settings for the retry
parameter and churn rates, are shown in Figure 12a and

12b. Figure 12a shows that in presence of churn the Re-
sourcePercentage is not affected by the aggregation strat-
egy used. Indeed, q digest and BitVector have a similar
behaviour, because, even if information is aggregated dif-
ferently, both strategies share an analogous tree structure.
In Figure 12b is clear how employing a strategy based on
retries (see Section 4.4) amortizes the failure on the tree
structure. For example, with a 20% failures, a 1-retry
strategy guarantees a 20% more resources, whereas a 2-
retry strategy yields an additional 20%.

In order to evaluate the cost associated with the retry
strategy in case of churn, Figure 13 shows the number
of nodes contacted during the retries with different retry
strategies. We observed that the number of nodes con-
tacted when using a retry mechanism increases in case
of node failure but only marginally with respect to a no
churn case. The maximum number of node contacted us-
ing 3-retry with a 10% failure probability is 33, whereas
in the no churn case with 0-retry we obtained a value of
30. Note that (see Figure 12b) with a 3-retry strategy,
dragon keeps the number of found resources above the
100% up to a 20% failure probability. Hence, we can con-
clude that it is acceptable to have a system that complete
query requests even in high churn case at the expenses of a
marginal increment of nodes contacted in case of failures.

5.7. Evaluation of data dynamicity

The purpose of this experiment is to analyse the im-
pact of dynamicity due to key updates in dragon. The
update of a key generally requires the propagation of the
new digest information up to the tree. In turn, it trig-
gers the update of the digests paired with a subset of the
dragon nodes (as explained in Section 3.2). This exper-
iment analyses the behaviour of dragon under frequent
updates. Each node in the network submits an update, for
a total of respectively 2500 and 10000 updates in a net-
work with 2500 and 10000 nodes. We counted the number

14

 0

 20

 40

 60

 80

 100

 120

 140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
s
o
u
rc

e
F

o
u
n
d
%

FailureProbability%

2500BitVector
2500QDigest

10000BitVector
10000QDigest

(a) Churn: comparison of aggregations and different net-
work size

 0

 20

 40

 60

 80

 100

 120

 140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
s
o
u
rc

e
F

o
u
n
d
%

FailureProbability%

0-retry
1-retry
2-retry
3-retry

(b) Churn: retry evaluation

Figure 12: Evaluation of churn during query resolution and node contacted during change action.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 3 6 12 24 48

N
o
d
e
P

e
rR

e
s
o
u
rc

e

d%

MatchTree
BitVector128
BitVector256

QDigest10
QDigest50

(a) MatchTree vs dragon: NodePerResource

 115

 120

 125

 130

 135

 140

 145

 150

 3 6 12 24 48

R
e
s
o
u
rc

e
s
F

o
u
n
d
%

d%

MatchTree
BitVector128
BitVector256

QDigest10
QDigest50

(b) MatchTree vs dragon: Resources percentage

Figure 15: MatchTree [10] vs dragon

of nodes involved into the stabilization process. Results
are presented in Figure 14 by showing the CDF of the
nodes involved in the updates. It can be seen that the
80% of updates involve less than 5 nodes with BitVector
and less than 10 nodes with q digest.

It is worth mentioning the trade off between the degree
of approximation introduced by the digests and the be-
haviour of the update operation. The BitVector contacts
on average less than 6 nodes in the 90% of the updates,
instead with the q digest the percentage drops down to
70%. Also, the number of updates required by q digest
is inevitably larger than those required by BitVector be-
cause its accuracy is higher. As a conclusion, we can con-
firm that even if the performance of q digest in terms of
contacted nodes is worse than that of BitVector, q digest
still represents the best compromise when considering the
performance of the search versus the update operations. In
addition, for the q digest the number of contacted nodes
scales when increasing the network size. Indeed, q digest

keeps the 90% of updates below 13 nodes contacted for a
network of 2500 nodes and below 15 for a network of 10000
nodes.

5.8. Comparison with MatchTree

We performed a comparison with MatchTree proposed
by Lee et al [10], using the code provided by the authors on
GitHub2. We choose MatchTree because, similarly to us,
it supports multi attribute range queries requesting a fixed
number of resources. In addition MatchTree builds a tree
on demand over a DHT, therefore sharing with dragon
a similar structure. We select the MatchTree Sub-Region
mode to solve the query because, among the methodolo-
gies presented, it is the one that minimizes the network
overhead.

The experiments compared dragon and MatchTree
considering the two metrics presented in Section 5.2, i.e.

2https://github.com/kyungyonglee/social_overlay_network_

simulator

15

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800
3-

3%

3-
6%

3-
12

%

3-
24

%

3-
48

%

6-
3%

6-
6%

6-
12

%

6-
24

%

6-
48

%

12
-3

%

12
-6

%

12
-1

2%

12
-2

4%

12
-4

8%

24
-3

%

24
-6

%

24
-1

2%

24
-2

4%

24
-4

8%

M
es

sa
ge

 N
um

be
r

K-Diff%

MatchTree
BitVector128
BitVector256

QDigest10
QDigest50

(a) MatchTree vs dragon: Message Number

 2

 4

 6

 8

 10

 12

 14

 16

 18

3-
3%

3-
6%

3-
12

%

3-
24

%

3-
48

%

6-
3%

6-
6%

6-
12

%

6-
24

%

6-
48

%

12
-3

%

12
-6

%

12
-1

2%

12
-2

4%

12
-4

8%

24
-3

%

24
-6

%

24
-1

2%

24
-2

4%

24
-4

8%

R
es

po
ns

e
T

im
e

K-Diff%

MatchTree
BitVector128
BitVector256

QDigest10
QDigest50

(b) MatchTree vs dragon: Response Time

Figure 16: MatchTree [10] vs dragon

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

N
od

eC
on

ta
ct

ed

FailureProbability%

0-retry
1-retry
2-retry
3-retry

Figure 13: Churn: node contacted during retry

NodePerResource and ResourcePercentage. Results are
presented in Figure 15a and 15b. The test is performed
with K = 12 because as seen in previous section these two
metrics are not affected by the variation of K. The net-
work size is fixed to n = 10000. MatchTree is instantiated
with the postboxes dataset presented in Section 5.1. For
each of the values of d, we run 3000 queries, each query
starting from a random node.

Figure 15a presents results for the NodePerResource
metric. The result shows how dragon contacts fewer
nodes than MatchTree to solve queries. This is more ev-
ident when the query difficulties is higher. For example
for queries satisfied by the 6% of the nodes, MatchTree
requires to contact 20 nodes to find a useful resource,
dragon with BitVector digest 10-15 and dragon with
q digest less than 5. Figure 15b shows the ResourcePer-
centage metric. dragon using BitVector is the solution
with the higher average of resources found. In the other
cases, MatchTree and dragon using q digest have sim-
ilar result.

Figure 16a present the comparison related to the mes-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

N
o
d
e
N

u
m

b
e
r

NodeContacted

2500BitVector256
2500QDigest50

10000BitVector256
10000QDigest50

Figure 14: Change key: comparison of aggregations and differ-
ent network size

sage number, intended as the overall number of messages
transmitted in the system to solve a query. We observed
that dragon performs better than MatchTree, especially
in case of hard queries. It also interesting to note how the
two digest strategies perform when increasing K. BitVec-
tor is linear with K (i.e. with double K also the number
of message used by BitVector doubles), while q digest
yields still a few number of messages even with an increas-
ing K.

Figure 16b shows the comparison in terms of the re-
sponse time. The response time is measured as the average
number of hops visited sequentially during the query reso-
lution process. For dragon we sum the number of master
nodes contacted and the longest chain of child nodes con-
tacted from each master node; for MatchTree we consider
the tree height of the dynamically generated tree. We ob-
served that q digest has a lower response time for the
most difficult queries, while MatchTree and q digest are
close for large K and d. Similarly, BitVector has a lower re-
sponse time whenK = 3 orK = 6 and in general higher for

16

K = 24. This can be explained with the fact that BitVec-
tor is less precise, so incurring in less child pruning and
more approximated information in the routing tables. In
order to evaluate if the worst case explained in 4.1 happens
frequently, we also computed the 95% confidence interval
of the mean values for K = 24 and results are presented
in Table 3. The results show some interesting insights: (i)
in all the cases the confidence interval does not increase
for easier queries; (ii) MatchTree is the system having less
variability around the mean; (iii) q digest has not high
confidence values, suggesting that although having larger
variability with respect to MatchTree the worst case sce-
nario is limited and the values are not fluctuating a lot
around the mean values.

As a conclusion, MatchTree demonstrates to be as pre-
cise as dragon, regarding the number of resources re-
turned, when dragon uses q digest. However, the traffic
generated by MatchTree is the 500% of the traffic gener-
ated by dragon using q digest for query having d = 6
and around the 250% for d = 12.

d 3 6 12 24 48
q digest 0.52 0.51 0.54 0.46 0.38
BitVector 0.79 0.67 0.58 0.51 0.4
MatchTree 0.15 0.17 0.16 0.14 1.16

Table 3: Response Time: 95% Confidence Interval for K = 24

6. Conclusion

The issue of distributed range queries has been widely
studied in the past decade from the P2P community. How-
ever, recent systems, like IoT, still demand for an effective
range query support. These fields put the accents on a fast
and light query resolution, in which each node publishes
its own data without delegation. dragon is an effective
solution to support distributed range query processing in
such fields. It combines SFCs and an aggregation tree to
build a support for multi dimensional range queries. The
query resolution algorithm prunes the part of the tree that
contains few or no relevant information, resulting both in
a faster response and in contacting a limited amount of
nodes. Experimental results have shown the effectiveness
of dragon in terms of churn resilience, ability to resolve
hard queries due to the optimizations and a lower number
of nodes contacted when compared with a similar approach
in the state of the art.

We plan to further refine dragon by experiment with
other aggregation strategies, like Minimum Bounding Rect-
angle, Bloom filters or Wavelet. In addition, more complex
query strategies can be studied, including the ability to
define the trade-off between computational load and pre-
cision during query resolution, and the decomposition of
the query in subqueries to allow a parallel resolution of the
queries. Finally, we plan to test dragon in a distributed
environment like PlanetLab, to further validate our results
in a realistic setting.

17

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A sur-
vey, Computer networks 54 (15) (2010) 2787–2805.

[2] F. Paganelli, D. Parlanti, A dht-based discovery service for the
internet of things, Journal of Computer Networks and Commu-
nications 2012.

[3] B. Flavio, A. M. Rodolfo, N. Preethi, J. Zhu, Fog computing:
A platform for internet of things and analytics, in: Big Data
and Internet of Things: A Roadmap for Smart Environments,
2014, pp. 169–186.

[4] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder,
B. Koldehofe, Mobile fog: A programming model for large-scale
applications on the internet of things, in: Proceedings of the
Second ACM SIGCOMM Workshop on Mobile Cloud Comput-
ing, MCC ’13, ACM, New York, NY, USA, 2013, pp. 15–20.

[5] E. Carlini, M. Coppola, L. Ricci, Probabilistic Dropping in Push
and Pull Dissemination over Distributed Hash Tables, in: Proc.
of the 11th Int. Conf. on Computer and Information Technology
(CIT), IEEE, 2011, pp. 47–52.

[6] E. Carlini, M. Coppola, D. Laforenza, L. Ricci, Reducing traf-
fic in dht-based discovery protocols for dynamic resources, in:
Grids, P2P and Services Computing, Springer, 2010, pp. 73–87.

[7] M. Cai, M. Frank, J. Chen, P. Szekely, Maan: A multi-attribute
addressable network for grid information services, Journal of
Grid Computing 2 (1) (2004) 3–14.

[8] H. Shen, C.-Z. Xu, Leveraging a compound graph-based dht for
multi-attribute range queries with performance analysis, IEEE
Transactions on Computers 61 (4) (2012) 433–447.

[9] C. Schmidt, M. Parashar, Squid: Enabling search in DHT-based
systems, Journal of Parallel and Distributed Computing 68 (7)
(2008) 962–975.

[10] K. Lee, T. Choi, P. O. Boykin, R. J. Figueiredo, Matchtree:
Flexible, scalable, and fault-tolerant wide-area resource dis-
covery with distributed matchmaking and aggregation, Future
Generation Computer Systems 29 (6) (2013) 1596–1610.

[11] O. Beaumont, A. Kermarrec, L. Marchal, E. Riviere, Voronet:
A scalable object network based on voronoi tessellations, in:
21th International Parallel and Distributed Processing Sym-
posium (IPDPS 2007), Proceedings, 26-30 March 2007, Long
Beach, California, USA, 2007, pp. 1–10.

[12] R. Baraglia, P. Dazzi, B. Guidi, L. Ricci, Godel: Delaunay over-
lays in P2P networks via gossip, in: 12th IEEE International
Conference on Peer-to-Peer Computing, P2P 2012, Tarragona,
Spain, September 3-5, 2012, 2012, pp. 1–12.

[13] M. Mordacchini, L. Ricci, L. Ferrucci, M. Albano, R. Baraglia,
Hivory: Range queries on hierarchical voronoi overlays, in:
IEEE Tenth International Conference on Peer-to-Peer Com-
puting, P2P 2010, Delft, The Netherlands, 25-27 August 2010,
2010, pp. 1–10.

[14] H. V. Jagadish, B. C. Ooi, Q. H. Vu, BATON: A balanced tree
structure for peer-to-peer networks, in: Proceedings of the 31st
International Conference on Very Large Data Bases, Trondheim,
Norway, August 30 - September 2, 2005, 2005, pp. 661–672.

[15] M. A. Arefin, M. Y. S. Uddin, I. Gupta, K. Nahrstedt, Q-tree:
A multi-attribute based range query solution for tele-immersive
framework, in: 29th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2009), 22-26 June 2009,
Montreal, Québec, Canada, 2009, pp. 299–307.

[16] A. Datta, M. Hauswirth, R. John, R. Schmidt, K. Aberer,
Range queries in trie-structured overlays, in: Peer-to-Peer Com-
puting, 2005. P2P 2005. Fifth IEEE International Conference
on, IEEE, 2005, pp. 57–66.

[17] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, S. Shenker,
Prefix hash tree: An indexing data structure over distributed
hash tables, in: Proc. of the 23rd ACM Symposium on Princi-
ples of Distributed Computing, 2004.

[18] D. Carfi, M. Coppola, D. Laforenza, L. Ricci, DDT: A dis-
tributed data structure for the support of P2P range query, in:
5th Int. Conf. on Collaborative Computing: Networking, Appli-
cations and Worksharing, CollaborateCom 2009., IEEE, 2009,
pp. 1–10.

[19] T. Pitoura, N. Ntarmos, P. Triantafillou, Saturn: range queries,
load balancing and fault tolerance in dht data systems, Knowl-
edge and Data Engineering, IEEE Transactions on 24 (7) (2012)
1313–1327.

[20] N. J. Navimipour, A. M. Rahmani, A. H. Navin, M. Hossein-
zadeh, Resource discovery mechanisms in grid systems: A sur-
vey, Journal of Network and Computer Applications 41 (2014)
389–410.

[21] S. Kaune, T. Lauinger, A. Kovačević, K. Pussep, Embracing
the peer next door: Proximity in kademlia, in: Peer-to-Peer
Computing, 2008. P2P’08. Eighth International Conference on,
IEEE, 2008, pp. 343–350.

[22] P. Costa, D. Frey, Publish-subscribe tree maintenance over a
dht, in: Distributed Computing Systems Workshops, 2005. 25th
IEEE International Conference on, IEEE, 2005, pp. 414–420.

[23] R. Bhagwan, G. Varghese, G. M. Voelker, Cone: Augmenting
DHTs to support distributed resource discovery, Department
of Computer Science and Engineering, University of California,
San Diego, 2003.

[24] M. Marzolla, M. Mordacchini, S. Orlando, Tree vector indexes:
efficient range queries for dynamic content on peer-to-peer net-
works, in: 4th Euromicro Int. Conf. on Parallel, Distributed,and
Network-Based Processing,PDP 2006., IEEE, 2006, pp. 8–pp.

[25] N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians
and beyond: new aggregation techniques for sensor networks,
in: Proc. of the 2nd Int.Conf.on Embedded networked sensor
systems, ACM, 2004, pp. 239–249.

[26] J. Lawder, The application of space-filling curves to the storage
and retrieval of multi-dimensional data, Ph.D. thesis, Citeseer
(2000).

[27] V. Gaede, O. Günther, Multidimensional access methods, ACM
Comput. Surv. 30 (2) (1998) 170–231.

[28] G. M. Morton, A computer oriented geodetic data base and
a new technique in file sequencing, International Business Ma-
chines Company, 1966.

[29] T. Skopal, M. Krátkỳ, J. Pokornỳ, V. Snášel, A new range query
algorithm for universal b-trees, Information Systems 31 (6)
(2006) 489–511.

[30] K. Shudo, Y. Tanaka, S. Sekiguchi, Overlay weaver: An overlay
construction toolkit, Computer Communications 31 (2) (2008)
402–412.

[31] Postbox location, http://dracos.co.uk/made/

locating-postboxes/export.php, [].
[32] S. Berchtold, D. A. Keim, High-dimensional index structures

database support for next decade’s applications (tutorial), in:
ACM SIGMOD Record, Vol. 27, ACM, 1998, p. 501.

18

