

Benchmarking Performance for Migrating a Relational Application to a

Parallel Implementation

A thesis submitted to the

Division of Graduate Studies and Research
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in the Department of Electrical Engineering and Computing Systems
of the College of Engineering and Applied Science

May 30, 2014

by

Krishna Karthik Gadiraju

BTech, Jawaharlal Nehru Technological University, Hyderabad, India, 2011

Thesis Advisor and Committee Chair: Dr. Karen C. Davis

ii

Abstract

Many organizations rely on relational database platforms for OLAP-style querying (aggregation

and filtering) for small to medium size applications. We investigate the impact of scaling up the

data sizes for such queries. We intend to illustrate what kind of performance results an

organization could expect should they migrate current applications to big data environments. This

thesis benchmarks the performance of Hive [TSJS09], a parallel data warehouse platform that is

a part of the Hadoop software stack. We set up a 4-node Hadoop cluster using Hortonworks HDP

1.3.2 [HHDP]. We use the data generator provided by the TPC-DS benchmark [TPCDS] to

generate data of different scales. We use a representative query provided in the TPC-DS query

set and run the SQL and Hive Query Language (HiveQL) versions of the same query on a

relational database installation (MySQL) and on the Hive cluster. An analysis of the results shows

that for all the dataset sizes used, Hive is faster than MySQL when executing the query. Hive

loads the large datasets faster than MySQL, while it is marginally slower than MySQL when

loading the smaller datasets.

iii

iv

Table of Contents

List of Figures ... v

List of Tables ... vi

Chapter 1: Introduction .. 1

1.1 General Research Objective .. 1

1.2 Specific Research Objective .. 1

1.3 Research Methodology .. 2

1.4 Contributions of the Research ... 2

1.5 Overview ... 3

Chapter 2: An Overview of Hadoop and Big Data Benchmarking .. 4

2.1 Hadoop .. 4

2.2 Big Data Benchmarking ... 16

Chapter 3: Hardware and Software Settings ... 18

3.1 Hardware Configuration ... 19

3.2 Software Configuration .. 20

3.3 CSHadoop Architecture ... 20

3.4 TPC-DS Schema and Features of Query 7 .. 22

Chapter 4: Experimental Setup and Results .. 26

4.1 Experimental Procedure .. 26

4.2 Results .. 31

4.3 Observations ... 32

4.4 Discussion ... 34

4.5 Conclusion ... 40

Chapter 5: Contributions and Future Work .. 41

5.1 Contributions ... 41

5.2 Future Work ... 42

References ... 45

Appendix A: Instructions for Generating Data Using TPC-DS ... 48

Appendix B: Additional Results ... 51

v

List of Figures

Figure 2.1 Hadoop system architecture ... 5

Figure 2.2 Execution of a program written in MapReduce ... 8

Figure 2.3 Hive architecture .. 11

Figure 2.4 Order of execution of the Hive compiler ... 12

Figure 2.5 Query execution plan of an example Hive query .. 14

Figure 3.1 CSHadoop architecture .. 21

Figure 3.2 An excerpt of TPC-DS snowflake schema .. 23

Figure 4.1 Original version of Query 7 ... 28

Figure 4.2 Modified SQL version of Query 7 ... 29

Figure 4.3 Differences between original and HiveQL versions of Query 7 29

Figure 4.4 HiveQL version of modified SQL query from Figure 4.2.. 29

Figure 4.5 A comparison of data load times for promotion dataset between MySQL and Hive .. 36

Figure 4.6 A comparison of data load times for item dataset between MySQL and Hive 36

Figure 4.7 A comparison of data load times for store_sales dataset between MySQL and Hive

 ... 37

Figure 4.8 A comparison of query execution time for Query between MySQL and Hive 37

Figure 4.9 Scalability comparison between MySQL and Hive for executing Query 7 38

vi

List of Tables

Table 2.1: A comparison of features between Hive, HBase and Pig .. 9

Table 2.2 Differences between Hive and a traditional relational database 15

Table 3.1 CSHadoop and MySQL machine hardware configuration .. 19

Table 3.2 Cloudgate hardware configuration ... 19

Table 3.3 Network configuration for CSHadoop and MySQL machine 19

Table 3.4 Hadoop software versions installed in CSHadoop ... 20

Table 3.5 CSHadoop cluster configuration .. 21

Table 3.6 Features of Query 7 .. 22

Table 3.7 Schema of different tables used in Query 7 ... 23

Table 4.1 item table definition in SQL and HiveQL .. 27

Table 4.2 SQL and HiveQL commands to load the data for store_sales table into MySQL and

Hive respectively ... 28

Table 4.3.1 Total size and number of records in datasets used for the query–Dataset 1 31

Table 4.3.2 Table definition, data loading and query execution times–Dataset 1 31

Table 4.4.1 Total size and number of records in datasets used for the query–Dataset 2 31

Table 4.4.2 Table definition, data loading and query execution times–Dataset 2 31

Table 4.5.1 Total size and number of records in datasets used for the query–Dataset 3 32

Table 4.5.2 Table definition, data loading and query execution times–Dataset 3 32

Table 4.6 Comparison of current study with related studies .. 39

Table 4.7.1 Total size and number of records in datasets used for the query–Dataset 4 51

Table 4.7.2 Table definition, data loading and query execution times-Dataset 4 51

Table 4.8.1 Total size and number of records in datasets used for the query–Dataset 5 51

Table 4.8.2 Table definition, data loading and query execution times-Dataset 5 52

Table 4.9.1 Total size and number of records in datasets used for the query–Dataset 6 52

Table 4.9.2 Table definition, data loading and query execution times-Dataset 6 52

Table 4.10.1 Total size and number of records in datasets used for the query–Dataset 7 53

Table 4.10.2 Table definition, data loading and query execution times-Dataset 7 53

Table 4.11.1 Total size and number of records in datasets used for the query–Dataset 8 53

Table 4.11.2 Table definition, data loading and query execution times-Dataset 8 54

1

Chapter 1: Introduction

As a result of the ever increasing reach of the internet, small and medium size businesses are

now able to cater to a larger client base. Many of these organizations use relational database

systems to run OLAP-style queries (aggregation and filtering) for analyzing their data. In this

thesis, we investigate the impact of scaling up the data size for the aforementioned OLAP-style

queries. Baru et al. [BBNP13] indicate that enterprise data is estimated to grow from 0.5 ZB in

2008 to 35 ZB in 2020. This large scale data, which comprises of both structured and unstructured

components, is referred to as Big Data. The aim of this thesis is to select a parallel data

management system and compare its OLAP-style query performance for large scale relational

data against a relational database management system.

A parallel data management system uses distributed methods to store, manage and analyze the

data. The datasets are broken down into smaller blocks and are distributed across several nodes.

A query written on such a system would then run in parallel on all the smaller blocks and display

the aggregated results to the user.

1.1 General Research Objective

The general research objective is to compare the performance of a massively parallel

implementation to that of a traditional relational database using a standard benchmark.

1.2 Specific Research Objectives

To identify and evaluate a technology that is capable of performing petabyte scale

analysis, we define the following specific research objectives:

A. Identify and set up a parallel computing platform for a parallel database system.

B. Identify parallel data management systems that run on the platform and investigate

their strengths and features and select one to use for our study.

C. Select a relational database management system.

2

D. Select a dataset and define a set of queries to run both on the parallel and the relational

data management systems.

E. Compare the performance of the two data management systems for both loading data

and executing a representative query.

1.3 Research Methodology

In order to achieve the objectives outlined in the previous section, the following activities

are conducted.

A. Survey the literature for a parallel computing platform. Investigate the features of

Hadoop and the Map Reduce programming platform [DG08] it runs on.

B. Survey the literature for parallel data management systems that run on Hadoop. We

investigate the features of Apache Hive [TSJS09] and Apache HBase [W12]. We

compare the features of both technologies and select one technology to compare

against a relational database.

C. Identify a benchmarking standard that supports large scale relational data and defines

queries of varying complexity.

D. Run the queries on both the relational and parallel data management systems while

varying parameters such as the number of records and number of parallel nodes.

E. Analyze the performance of both of the data management systems using the results

obtained from loading data and running the queries.

1.4 Contributions of the Research

Successful completion of the aforementioned tasks is expected to contribute the following:

A. An overview of features of the Hadoop platform and the advantages it has for parallel

computing.

B. A survey of different data management systems available on Hadoop and a

comparison of their features.

3

C. An analysis of the performance of the parallel and relational data management

systems based on a common set of queries and data.

1.5 Overview

In Chapter 2, we describe the features of different software packages that fall under the

umbrella of the Hadoop project. We give an overview of MapReduce, a parallel computing

platform and Hive, a distributed data warehouse that runs on top of MapReduce. In

Chapter 3, we describe the procedure followed to set up the Hadoop cluster used in this

thesis. We also describe the features of the TPC-DS benchmark which was used for

generating the data and queries necessary for the experimental procedure described in

Chapter 4. In Chapter 4, we also show the results obtained from the experimental

procedure followed and analyze the results. In Chapter 5, we summarize the contributions

to research made by this thesis and suggest future work.

4

Chapter 2: An Overview of Hadoop and Big Data Benchmarking

2.1 Hadoop

Hadoop is a term used for a family of related software projects that fall under the umbrella of

infrastructure for distributed computing and parallel processing [W12]. A Hadoop ecosystem may

have the following technologies in it:

- HDFS, a distributed file system for Hadoop.

- MapReduce, a parallel programming model.

- Apache Hive, a data warehouse built on top of the MapReduce programming framework.

- Pig, a platform for analyzing large datasets, using Pig Latin, a high level programming

language.

- Sqoop, a tool built for transferring data between Hadoop and other data sources such as

relational databases.

- HBase, a NoSQL based distributed column store.

In our work, we use the Apache Hive data warehouse. In the following sections, we describe the

architecture of a Hadoop ecosystem and elaborate on the features of those tools that are relevant

to this thesis.

2.1.1 Hadoop Architecture

Figure 2.1 shows a simple representation of the architecture of the Hadoop ecosystem. Some of

the popular components of Hadoop are explained in detail in this section.

a. HDFS

HDFS (Hadoop Distributed File System) is a distributed file system for Hadoop. Files are stored

in the form of blocks in HDFS. Each block is by default 64MB in size. HDFS has a namenode and

several datanodes. The namenode is responsible for maintenance and management of the entire

distributed file system. It stores the information regarding all the directories and files stored in the

system. It also stores the information regarding the datanodes on which the different blocks of a

file are stored [W12]. A datanode is the secondary node in which the actual data blocks are stored.

5

Figure 2.1 Hadoop system architecture

b. MapReduce

MapReduce is a parallel programming model and its implementation is used for processing and

generating large datasets [DG08]. MapReduce was developed by Google in 2004 [DG08]. A

MapReduce program typically involves users specifying a map function that takes (key, value)

pairs as input, processes them and generates intermediate (key, value) pairs. A reduce function

then groups together all the intermediate (key, value) pairs with the same key. The user can

specify how these related (key, value) pairs can then be processed.

Figure 2.2 gives a schematic diagram of the order of execution of a MapReduce program [DG08].

When the user executes the MapReduce program, multiple copies of the program are created.

One copy is assigned as the master and the rest as workers. The input data is split up into multiple

chunks and these chunks are passed to the workers which run the map function, which converts

the initial (key, value) pairs into intermediate (key, value) pairs. These intermediate (key, value)

pairs are periodically written onto a local disk for retrieval by the workers running the reduce

function. The workers running the reduce function then collect all the intermediate data from the

local disks and group them together based on key value. All the pairs with the same key are

6

assigned to the same reducer which then performs the processing on these pairs as defined by

the user. The outputs of each of the reducers are then written to the output files, as shown in

Figure 2.2. The functioning of each individual map and reduce functions is explained below in a

word count example [DG08].

Consider a MapReduce program to count the frequency of each word present in a set of

documents. The program primarily contains two functions. The pseudocode for each of the

functions is as shown below [DG08].

map function [DG08]:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

The map function takes the file and its text as an input and emits each word in the file as a key

and the value 1 for every occurrence of the word in the file. This (key, value) pairs are the

intermediate values mentioned in Figure 2.2. In other words, the map function emits a new

intermediate (key, value) pair for every word in the documents.

The MapReduce programming paradigm then collects all the intermediate (key, value) pairs. All

the intermediate pairs with the same key are then grouped together and sent to a reducer. In other

words, the MapReduce programming paradigm generates a reduce function for each group of

intermediate (key, value) pairs. The pseudocode for the reducer function is as shown below

[DG08]:

7

reduce function [DG08]:

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

 result += ParseInt(v);

Emit(AsString(result));

The reducer function receives all the intermediate (key, value) pairs with the same key and

increments a counter for every occurrence of the intermediate key (in this example, the word).

Once all the mappers and reducers have finished their processing, the results are then output

onto the screen.

Stonebraker and Dewitt criticize MapReduce as a major step backward in building a programming

paradigm for large scale data intensive applications [SD08]. They argue that MapReduce is not

novel, is brute-force, does not define a schema, and does not support databases [SD08].

Jorgensen [J08] rejects their view by explaining that Stonebraker and Dewitt compared

MapReduce to a database, while in reality, MapReduce was never designed to be a database,

but more as a platform that forms a part of the databases [J08]. Since then, several data

management systems/data warehouses such as Hive, Pig, and HBase have been developed;

they incorporate MapReduce into their systems and answer some of the issues mentioned by

Stonebraker and Dewitt such as the ability to define a schema, and a high level language to store

and manage data.

8

Figure 2.2 Execution of a program written in MapReduce [DG08]

c. Data Management Systems on Hadoop

Some of the data management systems present on top of the Hadoop environment are Apache

Hive, HBase, and Pig. Table 2.1 shows a comparison of the features of the three data

management systems. Table 2.1 describes some of the main differences between Hive, HBase

and Pig such as the type of language used by the three systems, their support to relational and

non-relational data and their data models. While Pig supports relational and non-relational data,

HBase is built to support non-relational data and Hive supports relational data. All the three data

management systems use different types of languages, as described in Table 2.1. While Hive

uses HiveQL (Hive Query Language), a language that is similar to SQL, Pig uses PigLatin and

HBase is accessed programmatically by Java, THRIFT APIs or by using JRuby scripts. Because

9

of its support of relational data and HiveQL, we use Apache Hive as the big data management

system in this thesis.

Table 2.1: A comparison of features between Hive, HBase and Pig

Feature Hive HBase Pig

Type Data warehouse Distributed column store Data flow based platform

Language HiveQL, a language
similar to SQL

HBase can be
programmatically accessed
through the Java, REST or
THRIFT APIs. We can use
JRuby to write scripts.

Pig Latin, a data flow
based programming
language

Type of
language

HiveQL is a
declarative language

Uses different languages to
access non-relational data

Pig Latin is a data flow
language that is used to
describe step-by-step
processing of the data.

Support to
relational/
non-relational
data

Provides support to
relational data

Does not support relational
data

Supports both relational
and non-relational data

Data model Data is organized in
the form of tables,
partitions and buckets

Data is organized in the form of
rows and columns. Rows and
columns can be grouped
together to form column
families.

Data doesn’t need to be in
the form of tables. Pig is
capable of taking data in
any format. Doesn’t
require a pre-defined
schema.

Type of
queries
suitable for

Suitable for large scale
data analysis based
queries. Unsuitable for
OLTP based queries.

Suitable for analysis of large
scale non-relational data.
Suitable for tasks that require
handling fast, random access
of unstructured data.

Suitable for large scale
data analysis based
queries. Unsuitable for
OLTP based queries.

d. Apache Hive

Apache Hive [TSJS09] is an open-source data warehousing solution built on top of the

MapReduce programming framework and is a part of the Hadoop software stack. Queries in Hive

can be written in HiveQL which has syntax similar to SQL. The SQL-like syntax of Hive and also

the support it provides to both relational and non-relational databases has made Hive a potential

alternative to relational database systems.

Figure 2.3 shows a schematic diagram of the Hive architecture [TSJS09]. The main components

of Hive [TSJS09] are listed below:

10

- External Interfaces, such as the Command Line Interface (CLI), web User Interface (UI)

and Application Programming Interfaces (APIs) such as JDBC and ODBC.

- Hive Thrift Server, a simple API to execute HiveQL statements and interact with the Hive

services.

- Hive Metastore, which acts as the system catalog.

- Driver, which is responsible for the life cycle management of a HiveQL statement during

compilation, optimization and execution phases.

- Compiler, which when invoked by the driver converts the HiveQL query into a directed

acyclic graph (DAG) of MapReduce jobs.

- Execution Engine, which executes the aforementioned MapReduce jobs in topological

order. Hive currently uses Hadoop as its execution engine.

Hive Metastore is the system catalog for Hive [TSJS09], where it stores all the metadata related

to the tables stored in Hive. The Metastore contains schemas and statistics that are useful for

data analysis and exploration [TSJS09]. The Metastore is the reason Hive is categorized as a

data warehouse solution when compared to the other data processing solutions such as Pig

[PIG14]. A Metastore is stored in either a relational database such as MySQL or a file system

such as NFS (Network File System) but not HDFS, since HDFS is optimized for sequential scans

and not randomized scans [TSJS09].

The Metastore is made up of the following objects [TSJS09]:

 Database: a namespace for tables. If the user does not specify a database name, a

default is used.

 Table: stores the metadata of the list of columns, their types, owner and storage

information and also the serialization/deserialization information.

 Partition: stores the metadata regarding the columns, serialization/deserialization

information and storage information for the partitions of the tables.

11

Figure 2.3 Hive architecture [TSJS09]

Figure 2.4 gives a schematic diagram of the order in which the compiler converts a HiveQL query

into a DAG (Directed Acyclic Graph) of MapReduce tasks [TSJS09]. The driver invokes the

compiler once the user executes the query. As shown in Figure 2.4, different components of the

Hive compiler process the query and in the end generate a DAG of MapReduce jobs.

12

Figure 2.4 Order of execution of the Hive compiler [TSJS09]

In order to illustrate how Hive translates a query into a DAG of MapReduce jobs, consider the

following multi-table insert query [TSJS09] that performs a join over the tables status_updates

and profiles and then stores the data regarding the counts of daily status updates per school into

13

the table school_summary and count of daily status updates per gender into the table

gender_summary.

Query [TSJS09]:

FROM (SELECT a.status, b.school, b.gender

FROM status_updates a JOIN profiles b

ON (a.userid = b.userid AND

a.ds=’2009-03-20’)) subq1

INSERT OVERWRITE TABLE gender_summary

PARTITION(ds=’2009-03-20’)

SELECT subq1.gender, COUNT(1)

GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary

PARTITION(ds=’2009-03-20’)

SELECT subq1.school, COUNT(1)

GROUP BY subq1.school

The query plan with three MapReduce jobs is as shown in Figure 2.5. The initial MapReduce job

scans the two tables, profiles and status_updates. The map function filters the table

status_updates based on the partition specified. The specified columns are then passed over to

a reduce function, where a JoinOperator performs a join operation using the specified column

(userid). The reduce function then runs the groupby aggregation specified in the two select sub-

queries and passes the results of each of the select statements to a separate MapReduce job,

each of which perform the similar actions to the one specified above and finally display the results.

The Hive Data Model organizes data into tables, partitions, and buckets [TSJS09]. A table in Hive

is similar to a table in a relational database. Each table is stored as a separate directory in the

HDFS. Data stored in the table is serialized and stored as files within the directory corresponding

to the table [TSJS09]. Users can specify their own serialization/deserialization formats or use the

built-in formats defined in Hive [HSERDE]. The serialization format, along with the metadata about

the table is stored in the Hive Metastore.

14

Figure 2.5 Query execution plan of an example Hive query [TSJS09]

A table can have one or more than one partitions. Each new partition of a table is created as a

new sub-directory within the table directory. The data corresponding to the partitions is also stored

in the sub-directories accordingly. The data stored in each partition can be sub-divided into

15

buckets, based on the hash of a column in the table [TSJS09]. Each bucket is stored as a separate

file in the directory corresponding to its partition.

Table 2.2 Differences between Hive and a traditional relational database [W12]

Feature Hive/HiveQL relational database/SQL

Schema enforcement Schema on read: data is not
verified at the time of loading.
Data is verified when a query is
executed on the table [W12]

Schema on write: if data being
loaded into the table does not
conform to the schema, it is
rejected [W12]

Updates Hive does not support updates
or deletes. A table cannot be
modified once it is created and
new data can be added to it by
using INSERT INTO or by
creating a new partition.

Updates, delete, and insert are
supported

Indexing Supports indexing Supports Indexing

Latency Comparatively more latency Very low latency

Multi-table inserts Supported Not supported

Data types Integral, floating point, Boolean,
string, binary, timestamp, array,
map, struct

Integral, floating point, Boolean,
string, temporal

Supported paradigms Large scale analysis (Large
scale OLAP)

OLTP

While Hive supports relational schema and HiveQL follows a syntax similar to SQL, there are

some differences between Hive and relational databases. Table 2.2 shows some differences

between Hive/HiveQL and a relational database system/SQL such as, the difference in terms of

reading data, the differences in their respective languages such as data types supported, types

of updates supported by both the systems and their supported paradigms. Table 2.2 shows that

Hive verifies the data only while a query is being executed on the data and does not verify the

data while it is being loaded into the tables- a procedure followed by relational databases. Unlike

relational databases, which support update, delete and insert operations on tables, Hive only

allows data to be updated into a table by creating a new partition within or overwriting an existing

table. Since Hive uses the MapReduce programming paradigm, which is a batch process, running

a HiveQL query involves more latency than a SQL query. Because of its lack of support to update

and delete operations and the latency involved with MapReduce, Hive is more suitable for large

16

scale OLAP type operations, while relational databases with their support to quick update and

delete operations support OLTP operations.

Note: One limitation of HiveQL is that it currently only supports equi-joins [CWR12].

e. Sqoop

Sqoop is a data transfer tool that is designed to transfer data between Hadoop and other

structured data management systems such as relational databases [SQOOP]. By using Sqoop,

bulk data can be transferred efficiently between Hadoop and other data management systems.

Figure 2.1 shows how Sqoop acts as an interface between Hadoop and outside relational data

management systems.

2.2 Big Data Benchmarking

Benchmarking is the process of comparing the performance of a system against a standard

reference. Several standard benchmarks such as TPC-C [TPCC], TPC-H [TPCH], and TPC-DS

[TPCDS] have been developed. As the number of big data management systems is increasing

every day, there is a need to compare and evaluate the performance and price of these systems.

Currently, organizations are working toward an industry standard benchmark to compare and

evaluate the performance of different big data management systems.

An industry standard big data benchmark should be an end-to-end benchmark, covering all the

features of a big data: volume, variety and velocity [GRHR13]. Volume refers to the terabyte scale

data that is typically managed by a big data management system. Variety refers to different types

of data such as structured and non-structured data that is stored in a big data management

system. Velocity refers to the higher data arrival rates such as click streams.

While there have been several benchmarking standards defined for evaluating the performance

of the Hadoop ecosystem, such as Sorting programs (Hadoop Sort Program [HSORT], TeraSort

[TSORT]), GridMix [GMIX] and HiBench Benchmarking Suite [HHDX10]), none of them have well-

defined queries or schemas necessary for evaluating the run time performance of a big data

management system such as Hive. In order to effectively benchmark the performance of the big

17

data systems, we identified benchmarks such as BigBench [GRHR13] and Hive Performance

Benchmark [HPB]. Both BigBench and Hive Performance Benchmark provide a schema, queries,

and data generator and also support structured and unstructured data. BigBench adopts the

structural part of its schema from the TPC-DS benchmark [NP06]. Ahmad et al. improved the

TPC-DS schema by adding semi-structured and unstructured components. At the time of writing

this thesis, Ahmad et al. are still finalizing the implementations of their data and query generators

[GRHR13].

Since TPC-DS is designed for relational data, it does not answer the variety requirement of an

industry standard end-to-end big data benchmark. However, since TPC-DS is designed to scale

to several hundred petabytes, and has a refresh process defined, it satisfies the volume and

velocity requirements. Since the motive of this thesis is to observe how a big data management

system such as Hive performs with large scale relational data, i.e., volume, we will use the TPC-

DS benchmark to analyze the performance of Hive. In the following section, we provide a brief

overview of the schema used by the TPC-DS benchmarking standard. Appendix A gives the

procedure to use the dbgen data generator of TPC-DS. The schema and queries used by TPC-

DS are described in Chapter 3.

In Chapter 2, we describe the general features of the Hadoop software stack, the MapReduce

programming model and the Hive data warehouse platform. In Chapter 3, we describe the

practical aspects such as the steps followed in setting up the hardware. We also describe the

architecture of the Hadoop cluster used in this thesis and the hardware and software settings of

the machines used to set up the Hadoop cluster used in this thesis.

18

Chapter 3: Hardware and Software Settings

The Hadoop cluster that was set up for the purpose of this thesis was named the CSHadoop

cluster. CSHadoop is a 4 node cluster. For setting up the CSHadoop cluster, we approached Dr.

Paul Talaga, Assistant Professor-Educator at the University of Cincinnati. Dr. Talaga and his team

have been managing an OpenStack Cloud Cluster at University of Cincinnati called the CSCloud.

Under Dr. Talaga’s guidance, we set up the CSHadoop cluster with four nodes, and a MySQL

machine with the hardware configuration mentioned in Table 3.1. We equipped each of the four

machines in the cluster with an additional 3.0 TB SATA hard drive in addition to the 80 GB hard

drive already present in the machines to facilitate enough space for the data on the Hadoop

Distributed File System (HDFS). Dr. Talaga helped us in setting up the networking between all

the machines. We selected the Hortonworks HDP 1.3.2 platform [HINST] to set up a Hadoop

cluster since it has a well-documented approach to setup a cluster. Hortonworks HDP 1.3.2 uses

Apache Ambari [AAMB], which provides an interface that facilitates automated setup, deployment

and maintenance of a Hadoop cluster. Based on the software requirements for installing the

Hortonworks HDP 1.3.2 [HINST], we installed the CentOS 6.4 minimal operating system. After

following the pre-deployment procedure specified in the Hortonworks HDP 1.3.2 manual [HINST],

we deployed the CSHadoop cluster. We describe the architecture of the CSHadoop cluster, and

how different modules of the Hadoop software stack are assigned to different machines in the

cluster in section 3.3. The hardware and software configurations of all the machines used in this

thesis have been explained in further detail in sections 3.1 and 3.2. We also describe the

specifications of the switch used to connect all the machines together in the cluster in section 3.1.

In section 3.4, we describe the features of Query 7 of TPC-DS benchmark, which we selected as

a representative OLAP-style query. We also describe the schema of different tables used in Query

7 in section 3.4.

19

3.1 Hardware Configuration

3.1.1 Machines used

a. CSHadoop cluster and MySQL machine:

Table 3.1 CSHadoop and MySQL machine hardware configuration

Number of Machines 5

Machine DELL-POWEREDGE-C6100-XS23-TY3

Processor Intel Xeon CPU 8-x-2-26GHz-L5520

Total RAM 48GB RAM each

Hard drive CSHadoop - 3.08TB-SATA
MySQL machine - 2.05TB- SATA

b. Cloudgate

Table 3.2 Cloudgate hardware configuration

Number of Machines 1

Machine vendor HP

Processor Dual Core AMD Opteron Processor 280

Total RAM 8GB

Hard drive 250GB

3.1.2 Network Information

 All 6 machines used in this experiment are connected together using a Cisco switch as

shown below in Table 3.3.

Table 3.3 Network configuration for CSHadoop and MySQL machine

Switch Cisco SG 200-26 26-Port Gigabit Smart Switch

20

3.2 Software Configuration

The CSHadoop cluster was configured using Hortonworks HDP 1.3.2 [HHDP], an open-source

Hadoop distribution. The version of MySQL used on the MySQL machine is 5.1.71. The versions

of different software used in the cluster are listed in Table 3.4.

Table 3.4 Hadoop software versions installed in CSHadoop [HHDP]

Operating System Centos 6.4 Minimal

Hortonworks version 1.3.2

Hadoop version 1.2

Hive version 0.11

MySQL version 5.1.71

3.3 CSHadoop Architecture

A typical Hadoop cluster is made up of the following types of nodes [TNHDP]:

 Primary nodes (HDFS namenode, secondary namenode, MapReduce job tracker)

 Secondary nodes (HDFS datanodes, MapReduce task trackers)

The CSHadoop cluster has two primary nodes and four secondary nodes, with the primary nodes

also acting as secondary nodes. The organization of the cluster and the different processes

running on the cluster are shown in Figure 3.1. The four nodes are named Hadoop1, Hadoop2,

Hadoop3, and Hadoop4. The list of different processes running on the different nodes is as shown

in Table 3.5.

Hadoop1 acts as the namenode and stores all the details of the distributed file system (HDFS)

including locations of the datanodes and locations of different files and directories stored on

different datanodes. Hadoop1 also acts as the job tracker and is responsible for running and

managing the MapReduce jobs across the different task tracker nodes. The Hive Metastore,

21

which acts as a system catalog for different tables stored on Hive runs on Hadoop1. Hive sever2,

which acts as a thrift server and allows different client interfaces to connect to Hive also runs on

Hadoop1. Hadoop2 acts as a secondary namenode, a back-up service that contains the same

details as the namenode, and is used to manage HDFS if the namenode fails.

Table 3.5 CSHadoop cluster configuration

Node Primary/Secondary Process

Hadoop1 primary, secondary namenode, job tracker, datanode, task tracker, Hive
Metastore, Hive server2

Hadoop2 primary, secondary Secondary namenode, datanode, task tracker

Hadoop3 secondary datanode, task tracker

Hadoop4 secondary datanode, task tracker

Figure 3.1: CSHadoop architecture

CSHadoop cluster

Hadoop1

namenode, job

tracker, Hive

metastore, Hive

Server2, task tracker,

Hadoop4

 task tracker,

datanode

Hadoop3

task tracker,

datanode

Hadoop2

secondary

namenode, task

tracker, datanode

cloudgate.ceas.uc.edu

Gateway/ DNS
ver

External

Client

22

The four machines act as secondary nodes in the form of datanodes for data storage, and as task

trackers for running the MapReduce processes. As shown in Figure 3.1, an external client

accesses the CSHadoop cluster by setting up a secure connection (ssh connection) with

Cloudgate (cloudgate.ceas.uc.edu). Cloudgate acts as the gateway for all incoming and outgoing

traffic. Cloudgate also acts as the DNS server for all the nodes in CSHadoop.

3.4 TPC-DS Schema and Features of Query 7

The TPC-DS schema is a decision support system that models a retail product supplier [NP06].

TPC-DS follows a snowflake schema [NP06]. Our focus is on identifying how Hive performs with

respect to aggregate queries. The features of Query 7 [TPCDS], selected for this thesis, are

mentioned in table 3.6. Query 7 is a five table join query with four aggregation operations, one

group by operation and one order by operation.

Table 3.6 Features of Query 7 [TPCDS]

Feature Value

Number of tables 5

Number of joins 5

Number of aggregate operations 4

Number of group by operations 1

Number of order by operations 1

The schemas of the five tables (store_sales, customer_demographics, item, promotion and

date_dim) used in Query 7 are given in Table 3.7. Table 3.7 also describes the difference in data

types between the SQL version of the schema definition and the HQL version of the same. Figure

3.2 shows a part of the schema of TPC-DS [NP06]. The snowflake schema shown in Figure 3.2

depicts how the fact table (store_sales) and some of the dimension tables

(customer_demographics, item, promotion) that are a part of Query 7 are related to each other.

23

Figure 3.2 An excerpt of TPC-DS snowflake schema [NP06]

Table 3.7 Schema of different tables used in Query 7 [TPCDS]

Table name Column Name SQL data

type

definition

HiveQL

data type

definition

customer_demographics cd_demo_sk integer int

cd_gender char(1) string

cd_marital_status char(1) String

cd_education_status char(20) string

cd_purchase_estimate integer int

cd_credit_rating char(10) string

cd_dep_count integer int

cd_dep_employed_count integer int

cd_dep_college_count integer int

Item i_item_sk integer int

i_item_id char(16) string

i_rec_start_timestamp date timestamp

i_rec_end_timestamp date timestamp

i_item_desc varchar(200) string

i_current_price decimal(7,2) decimal

i_wholesale_cost decimal(7,2) decimal

i_brand_id integer int

i_brand char(50) string

i_class_id integer int

i_class char(50) string

24

i_category_id integer int

i_category char(50) string

i_manufact_id integer int

i_manufact char(50) string

i_size char(20) string

i_formulation char(20) string

i_color char(20) string

i_units char(10) string

i_container char(10) string

i_manager_id integer int

i_product_name char(50) string

Promotion p_promo_sk integer int

p_promo_id char(16) string

p_start_date_sk integer int

p_end_date_sk integer int

p_item_sk integer int

p_cost decimal(15,2) decimal

p_response_target integer int

p_promo_name char(50) string

p_channel_dmail char(1) string

p_channel_email char(1) string

p_channel_catalog char(1) string

p_channel_tv char(1) string

p_channel_radio char(1) string

p_channel_press char(1) string

p_channel_event char(1) string

p_channel_demo char(1) string

p_channel_details varchar(100) string

p_purpose char(15) string

p_discount_active char(1) string

store_sales ss_sold_date_sk integer int

ss_sold_time_sk integer int

ss_item_sk integer int

ss_customer_sk integer int

ss_cdemo_sk integer int

ss_hdemo_sk integer int

ss_addr_sk integer int

ss_store_sk integer int

ss_promo_sk integer int

ss_ticket_number integer int

ss_quantity integer int

ss_wholesale_cost decimal(7,2) decimal

ss_list_price decimal(7,2) decimal

ss_sales_price decimal(7,2) decimal

ss_ext_discount_amt decimal(7,2) decimal

ss_ext_sales_price decimal(7,2) decimal

ss_ext_wholesale_cost decimal(7,2) decimal

ss_ext_list_price decimal(7,2) decimal

ss_ext_tax decimal(7,2) decimal

ss_coupon_amt decimal(7,2) decimal

25

ss_net_paid decimal(7,2) decimal

ss_net_paid_inc_tax decimal(7,2) decimal

ss_net_profit decimal(7,2) decimal

date_dim d_date_sk integer int

d_date_id char(16) string

d_date date timestamp

d_month_seq integer int

d_week_seq integer int

d_quarter_seq integer int

d_year integer int

d_dow integer int

d_moy integer int

d_dom integer int

d_qoy integer int

d_fy_year integer int

d_fy_quarter_seq integer int

d_fy_week_seq integer int

d_day_name char(9) string

d_quarter_name char(6) string

d_holiday char(1) string

d_weekend char(1) string

d_following_holiday char(1) string

d_first_dom integer int

d_last_dom integer int

d_same_day_ly integer int

d_same_day_lq integer int

d_current_day char(1) string

d_current_week char(1) string

d_current_month char(1) string

d_current_quarter char(1) string

d_current_year char(1) string

The experimental procedure, results, analysis, and conclusions are described in Chapter 4.

26

Chapter 4: Experimental Setup and Results

In Chapter 2, we describe the features of the Hadoop software stack, MapReduce parallel

programming framework, and Hive, the parallel data warehouse that runs on top of the

MapReduce framework. We also identify and describe the features of the TPC-DS benchmark.

Chapter 3 describes the architecture of the Hadoop cluster set up for the purpose of this thesis

and the features of Query 7 used in the experimental procedure described in Chapter 4. In order

to compare the performance of Hive with a relational database, we use a MySQL database

described in Chapter 3. In this chapter, we describe the experimental procedure for the thesis and

the results obtained from the experiments. We analyze the results obtained and define some

conclusions. We also describe the issues we encountered while using the cluster.

4.1 Experimental Procedure

The main goal of this experimental procedure is to analyze how Hive performs in comparison to

a relational database in terms of table definition, data loading, and query execution. We chose

Query 7 of TPC-DS, which is an OLAP-style representative query. In order to compare both the

systems, we generate datasets of eight different sizes, ranging between 7.5 GB to 390 GB and

analyze the results obtained by running Query 7 on all these datasets. The following steps

describe the experimental procedure.

Step 1 Generating data and queries

Appendix A describes the procedure to download and run the necessary tools to generate the

queries and data required for the experiment. Since Query 7 uses only a subset of the entire TPC-

DS dataset, we use the procedure described in Appendix A to generate the entire dataset, and

use only the subset necessary for Query 7.

27

Step 2 Defining the tables specified in Query 7

The SQL code for defining the table item [TPCDS] and its corresponding HiveQL implementation

is shown in Table 4.1. Table 4.1 depicts the difference in the data types used in the SQL

implementation of the table definition and the Hive version of the same. Besides the fundamental

difference in naming the data types such as integer (integer in MySQL and int in Hive), other

differences such as defining a date type data type can also be seen. While MySQL has a date

data type defined, Hive does not support a date data type in the version used in this thesis (0.11).

All data that is to be represented in the form of a date is specified as a TIMESTAMP in Hive. In

Hive 0.11, all character data is represented as a string while they can be separated as char and

varchar in SQL. Tables 4.5.2-4.12.2 show the amount of time taken for defining the schema for

the datasets in both MySQL and Hive.

Table 4.1 item table definition in SQL and HiveQL [TPCDS]

SQL implementation HiveQL implementation

create table item
(
i_item_sk integer not null,
i_item_id char(16) not null,
i_rec_start_date date,
i_rec_end_date date,
i_item_desc varchar(200),
i_current_price decimal(7,2) ,
i_wholesale_cost decimal(7,2),
i_brand_id integer,
i_brand char(50),
i_class_id integer,
i_class char(50),
i_category_id integer,
i_category char(50),
i_manufact_id integer,
i_manufact char(50),
i_size char(20),
i_formulation char(20),
i_color char(20),
i_units char(10),
i_container char(10),
i_manager_id integer,
i_product_name char(50),
primary key (i_item_sk)
);

create table item
(
 i_item_sk int,
 i_item_id string,
 i_rec_start_timestamp timestamp,
 i_rec_end_timestamp timestamp,
 i_item_desc string,
i_current_price decimal,
i_wholesale_cost decimal,
i_brand_id int,
i_brand string,
i_class_id int,
i_class string,
i_category_id int,
i_category string,
i_manufact_id int,
i_manufact string,
i_size string,
i_formulation string,
i_color string,
i_units string,
i_container string,
i_manager_id int,
i_product_name string
)
row format delimited fields terminated by '|'
lines terminated by '\n';

28

Step 3 Loading the data into MySQL and Hive

The next step is to load the data that was previously generated in Step 1 into the tables defined

in Step 2. Table 4.2 describes the SQL and HiveQL commands to load the data for the store_sales

table into MySQL and Hive respectively. Table 4.2 shows that the SQL and HiveQL commands

have a similar syntax to load the data into their respective systems.

Table 4.2 SQL and HiveQL commands to load the data for store_sales table into MySQL and
Hive respectively

SQL implementation HiveQL implementation

load data infile

'/karthikTemp/datasets/100gb/store_sales.dat'

replace into table store_sales

fields terminated by '|' lines terminated by '\n';

load data local inpath

‘/data/datasets/dsgen/tools/100gb/store_sales.dat’

overwrite into table store_sales;

Step 4 Execute the query

Once the data is loaded into the system, the next step is to execute the query in both the systems

and collect the results. The original SQL version of the query is shown in Figure 4.1.

Figure 4.1 Original SQL version of Query 7 [TPCDS]

select top 100 i_item_id,

 avg(ss_quantity) agg1,

 avg(ss_list_price) agg2,

 avg(ss_coupon_amt) agg3,

 avg(ss_sales_price) agg4

from store_sales, customer_demographics, date_dim, item, promotion

where ss_sold_date_sk = d_date_sk and

 ss_item_sk = i_item_sk and

 ss_cdemo_sk = cd_demo_sk and

 ss_promo_sk = p_promo_sk and

 cd_gender = 'F' and

 cd_marital_status = 'D' and

 cd_education_status = 'College' and

 (p_channel_email = 'N' or p_channel_event = 'N') and

 d_year = 2001

group by i_item_id

order by i_item_id;

The query was modified slightly by omitting the ‘top 100’ statement from select to get the query

shown in Figure 4.2.

29

Figure 4.2 Modified SQL version of Query 7

select i_item_id,
 avg(ss_quantity) agg1,
 avg(ss_list_price) agg2,
 avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
 from store_sales, customer_demographics, date_dim, item, promotion
 where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'F' and
 cd_marital_status = 'D' and
 cd_education_status = 'College' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id;

Since HiveQL uses joins rather than listing tables using the ‘,’ operator in the FROM clause, the

following changes were made:

Figure 4.3 Differences between original and HiveQL versions of Query 7

Original:

 from store_sales, customer_demographics, date_dim, item, promotion

HiveQL modification:

 from store_sales ss join date_dim d on (ss.ss_sold_date_sk = d.d_date_sk)
 join item i on (ss.ss_item_sk = i.i_item_sk)
 join promotion p on (ss.ss_promo_sk = p.p_promo_sk)
 join customer_demographics cd on (ss.ss_cdemo_sk = cd.cd_demo_sk)

Figure 4.3 shows that each join is specified with a conditional statement that was specified in the

where clause in the original query. The HiveQL version of the modified SQL query is as shown in

Figure 4.4.

Figure 4.4 HiveQL version of modified SQL query from Figure 4.2

select i_item_id,
 avg(ss_quantity) agg1,
 avg(ss_list_price) agg2,
 avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
 from store_sales ss join date_dim d on (ss.ss_sold_date_sk = d.d_date_sk)
 join item i on (ss.ss_item_sk = i.i_item_sk)
 join promotion p on (ss.ss_promo_sk = p.p_promo_sk)

30

 join customer_demographics cd on (ss.ss_cdemo_sk = cd.cd_demo_sk)
 where
 cd_gender = 'F' and
 cd_marital_status = 'D' and
 cd_education_status = 'College' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id;

The SQL and HiveQL queries mentioned in Figure 4.2 and Figure 4.4 were executed on MySQL

and Hive respectively for datasets of different sizes.

Step 5 Repeat Steps 1-4 for different dataset sizes

Generate datasets of different sizes ranging between 20 GB to 1TB using the procedure specified

in Step1. Since the datasets used in Query 7 form a subset of the entire dataset generated, the

respective sizes of the datasets used during different iterations ranges between 7.5 GB to 390

GB. Follow the procedure defined in Steps 2, 3, and 4 to define the tables, load data and run

queries. Collect and analyze the execution times for each of the steps for all the dataset sizes.

Note: Since the dataset for the TPC-DS benchmark scales in terms of discrete scale factors

[NP06] such as 100 GB, 300 GB, 1000 GB, 3000 GB, and TPC-DS benchmark specifies that

datasets of other scale are considered invalid [NP06], we specify the results of the three

recommended dataset sizes in the next section, while we specify the results obtained by running

Query 7 on the datasets of all the other sizes in Appendix B.

The following section contains tables which display the amount of time taken to execute the

previous steps on a 39 GB, a 117 GB, and a 390 GB dataset. In the following sections, Tables

4.3.1, 4.4.1, and 4.5.1 contain the total size and number of records contained in each dataset.

Tables 4.3.2, 4.4.2, and 4.5.2 contain the amount of time to execute the queries specified in this

section.

31

4.2 Results

In this section, we describe the results of the experimental procedure specified in previous

section. We specify the amount of time taken to define the tables, load data into tables, and

execute Query 7.

1. Dataset 1: Total data set size: 100 GB

Total data set size for the query: 39 GB

Table 4.3.1 Total size and number of records in datasets used for the query–Dataset 1

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 56 MB 204,000

Promotion 123 KB 1,000

store_sales 39 GB 287,997,024

date_dim 9.9 MB 73,049

Table 4.3.2 Table definition, data loading and query execution times–Dataset 1

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.25s 1.439s 5.78s 2.764s

8m49.18s

4m12.816s Item 0.11s 0.188s 1.73s 2.045s

Promotion 0.10s 0.16s <0.01s 0.41s

store_sales 0.10s 0.204s 14h25m47.22s 21m43.907s

date_dim 0.10s 0.175s 0.5s 0.6s

2. Dataset 2: Total data set size: 300 GB

Total data set size for the query: 117 GB

Table 4.4.1 Total size and number of records in datasets used for the query–Dataset 2
Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 72 MB 264,000

Promotion 159 KB 1,300

store_sales 116 GB 864,001,869

date_dim 10 MB 73,049

Table 4.4.2 Table definition, data loading and query execution times–Dataset 2

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.14s 0.366s 5.82s 2.507s

31m59.77s

11m57.084s Item 0.11s 0.132s 2.24s 2.271s

Promotion 0.12s 0.143s 0.03s 0.407s

32

store_sales 0.11s 0.168s 1d19h42m48.84s 1h2m36.776s

date_dim 0.11s 0.127s 0.37s 0.718s

3. Dataset 3: Total data set size: 1 TB

Total data set size for the query: 390 GB

Table 4.5.1 Total size and number of records in datasets used for the query–Dataset 3

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 82 MB 300,000

Promotion 184 KB 1,500

store_sales 390 GB 2,879,987,999

date_dim 10 MB 73,049

Table 4.5.2 Table definition, data loading and query execution times–Dataset 3

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.12s 0.516s 5.74s 3.28s

1h35m46.23s

38m0.41s Item 0.11s 0.593s 2.53s 2.168s

Promotion 0.09s 0.176s 0.02s 0.458s

store_sales 0.10s 0.184s 6d 3h17m20.76s 2h58m8.888s

date_dim 0.10s 0.385s 0.36s 0.686s

4.3 Observations

a. Table definition

i. From Tables 4.3.2, 4.4.2, and 4.5.2, it can be observed that the maximum amount of time

taken for defining a schema is 0.25s for MySQL and 1.439s for Hive. The minimum time

taken is 0.176s for MySQL and 0.132s for Hive.

ii. The schema for the tables was defined in the following order: customer_demographics,

item, promotion, store_sales, date_dim. It can be observed that in all the three iterations

specified above, the first table that is defined (customer_demographics) takes longer in

Hive than the other tables.

b. Data load

We compare the amount of time taken to load datasets of different sizes. Consider the

amount of time taken to load the promotion, item and store_sales datasets from Tables

33

4.3.2, 4.4.2, and 4.5.2. While the promotion dataset is a very small dataset, with its size

ranging between 123 KB-184 KB, the item dataset is much larger, ranging between 56

MB-82 MB. The store_sales dataset is the largest dataset used in the query, ranging

between 39 GB–390 GB.

i. promotion dataset: Tables 4.3.2, 4.4.2 and 4.5.2 show that while MySQL takes around

0.01–0.03s to load the datasets, Hive does the same in 0.41–0.458s.

ii. item dataset: Tables 4.3.2, 4.4.2 and 4.5.2 show that while MySQL takes between 1.73–

2.53s to load the different item datasets, Hive takes between 2.045–2.168s to do the

same.

iii. store_sales dataset: Tables 4.3.2, 4.4.2, and 4.5.2 show that MySQL takes over 14 hours

to load a 39 GB dataset, over 1 day 19 hours to load a 116 GB dataset and over 6 days

to load a 390 GB dataset. On the other hand, Hive takes over 21 minutes to load the 39

GB dataset, around 1 hour to load the 116 GB dataset and approximately 3 hours to load

a 390 GB dataset.

c. Query execution:

i. Tables 4.3.2, 4.4.2 and 4.5.2 show that while MySQL executes the Query 7 on a 39 GB

dataset in approximately 8 minutes, Hive does the same in around 4 minutes. When the

same query is executed on a 117 GB dataset, MySQL takes nearly 40 minutes to execute

the query, while Hive was able to perform the same query in nearly 12 minutes. On a 390

GB dataset, while Hive executed the query in 38 minutes, MySQL took nearly 1 hour 36

minutes to execute the query.

ii. Scalability: Tables 4.3.2, 4.4.2 and 4.5.2 also show that as the size of the datasets has

increased from 39 GB to 390 GB, the amount of time taken by MySQL to execute the

query raised from 8 minutes to 1 hour 36 minutes, an increase of nearly 16 times for a

dataset size increase of 10 times. For the same datasets, the amount of time taken by

34

Hive increases from 4 minutes to nearly 40 minutes, which is an increase of nearly 10

times.

d. Issues encountered while working on Hive:

While working on the thesis, we observed that when the MySQL service which was

running as the Metastore for Hive crashed, Hive would no longer run, since it would not

be able to access the metadata regarding its databases and tables.

4.4 Discussion

From the observations made in the previous section, the following conclusions can be drawn:

a. Data definition:

We conclude that MySQL is marginally faster than Hive when defining the schema. However,

this difference is only a fraction of a second.

b. Data load:

From the observations made regarding the amount of time taken to load the data for the

promotion, item, and store_sales datasets, the following conclusions can be drawn:

i. promotion dataset: Figure 4.5 displays a comparison of the amount of time taken to load

the promotion dataset in both MySQL and Hive. Figure 4.5 shows that MySQL is

marginally faster than Hive when loading small datasets.

ii. item dataset: Figure 4.6 displays a comparison of the amount of time taken to load the

item dataset in both MySQL and Hive. Figure 4.6 shows that MySQL is marginally faster

than Hive when the dataset size is small. However, Figure 4.6 also shows that as the size

of the item dataset increases, the difference in time taken to load the dataset between

MySQL and Hive decreases. For the largest dataset size that was used, Hive is faster

than MySQL.

35

iii. store_sales dataset: Figure 4.7 displays a comparison of the amount of time taken to load

the store_sales dataset into both MySQL and Hive. Figure 4.7 shows that Hive is

significantly faster than MySQL when loading gigabyte scale data into the system.

iv. The conclusions drawn above can be explained by the fact that when data is loaded into

Hive from an external file system, Hive copies the file verbatim and does not attempt to

parse the file [W12]. When the table is created, a folder with the table name is stored under

the folder /user/hive/warehouse/ on HDFS or the location specified by the user under the

hive.metastore.warehouse.dir property. When the load command is used together with the

overwrite condition, the original table folder is deleted and a new folder is created and the

files related to the dataset are copied into this folder. On the other hand, MySQL parses

the data while loading it into the system. As a result, as the dataset size increases, MySQL

takes longer to load the data into the system than Hive. For very large datasets, MySQL

takes significantly longer.

c. Query execution:

i. Figure 4.8 shows a comparison of the execution times of both Hive and MySQL for all

the datasets shown in the previous section and in Appendix B. Figure 4.8 shows that for

all the dataset sizes used in this experiment, Hive was faster than MySQL while executing

Query 7.

ii. Scalability: Figure 4.9 shows that Hive scales much better than MySQL. Figure 4.9 also

shows that for all the datasets we have used in this experiment, Hive has linear scalability.

iii. As explained in Chapter 2, whenever a query is executed on Hive, it is split into a series

of MapReduce jobs, each of which act on the data in parallel and then consolidate the

results into a single section. Since the entire computing process is being split across

36

several machines and being executed in parallel, we can observe that Hive is faster than

MySQL while executing the query.

d. Issues encountered while working on Hive:

i. From the observations specified in the previous section, it can be concluded that Hive is

dependent on the Metastore and that the Metastore can be categorized as a single point

of failure.

Figure 4.5 A comparison of data load times for promotion dataset between MySQL
and Hive

Figure 4.6 A comparison of data load times for item dataset between MySQL and Hive

0

0.1

0.2

0.3

0.4

0.5

0.6

43 50 57 71 84 123 159 184

D
at

a
lo

ad
 t

im
e

(s
)

Dataset size (KB)

Data load times for promotion dataset - MySQL vs Hive

Data Load time - MySQL

Data Load time - Hive

0

0.5

1

1.5

2

2.5

3

7.6 11 14 20 26 56 72 82

D
at

a
lo

ad
 t

im
e

(s
)

Dataset size (MB)

Data load times for item dataset - MySQL vs Hive

Data Load Time - MySQL

Data Load Time - Hive

37

Figure 4.7 A comparison of data load times for store_sales dataset between MySQL and Hive

Figure 4.8 A comparison of query execution time for Query 7 between MySQL and Hive

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7.5 12 15 23 31 39 116 390

D
at

a
Lo

ad
 T

im
e

(m
in

)

Dataset Size (GB)

Data load times for store_sales dataset - MySQL vs Hive

Data Load Time - MySQL

Data Load Time - Hive

0

20

40

60

80

100

120

7.5 12 16 23 31 39 117 390

Q
u

er
y

Ex
ec

u
ti

o
n

 T
im

e
(m

in
)

Dataset size(GB)

Query execution time - MySQL vs Hive

Query Execution time - MySQL

Query Execution Time - Hive

38

Figure 4.9 Scalability comparison between MySQL and Hive for executing Query 7

There have been other studies which have benchmarked the performance of Hive since 2009.

The Hortonworks Stinger Initiative [HSTNGR13] is an initiative started by Hortonworks to improve

the performance of Hive used Queries 27 and 95 from the TPC-DS benchmark. Their focus was

on analyzing query performance for different versions of Hive such as Hive 0.11, which is the

version of Hive used for this thesis, Hive 0.12 and Hive 0.13, which are the later version to the

one used in this thesis. The focus of this thesis was on analyzing the behavior of both data load

and query execution times for a small Hadoop cluster. Shi et al. [SMZH10] and the Hive

Performance Benchmark [HPB] both use the data and queries defined by Pavlo et al. [PPRA09]

to benchmark older versions of Hive. However, their dataset sizes are limited to about 110 GB.

Shi et al. benchmark query execution and data load times for Hive 0.6 using simple select, range

and single aggregation queries on a 20-node cluster. They do not focus on complex queries using

large number of aggregations and joins as this thesis does. The Hive Performance Benchmark

defines a join query in addition to the queries used by Shi et al. It benchmarks Hive trunk version

786346, which is older than the version used in this thesis (0.11) and as explained earlier, focuses

on a single dataset which is about 110 GB in size. It also benchmarks only query execution time

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

m
in

)

Dataset size (GB)

Query execution times - MySQL vs Hive - Line graph

MySQL Hive

39

and not data load time. The project conducted by Pansare et al. [PZ10] is focused on identifying

if Hive is suitable for mid-level data analysis. Pansare et al used the TPC-H benchmark to analyze

the performance of Hive on a 4-node cluster in 2010. In addition to data load times, Pansare et

al. focused on analyzing Hive’s performance for different TPC-H queries while varying the number

of nodes in the cluster and analyzing the processor usage by the system. However, their dataset

size is limited to 10 GB, while this thesis analyzes datasets to about 400 GB. All the studies

mentioned above do not compare the performance of Hive and a relational database. Study done

by Jia [RPTCH] uses the TPC-H benchmark queries to benchmark Hive trunk version 799148,

which is an older version of Hive on a single 100 GB dataset and compares its performance to

the IBM DB2 database, while we compare Hive with a MySQL database. Jia’s work does not

focus on data load times. While all the studies mentioned above focus on query execution times

and some such as Pansare et al. and Shi et al. focus on data load times, one additional finding of

this thesis is that the Hive Metastore could become a single point of failure. This thesis also uses

larger datasets and different benchmark standards than the studies mentioned above. Table 4.6

summarizes the aforementioned differences between this thesis and the other studies an.

Table 4.6 Comparison of current study with related studies

Study Benchmark Dataset
size

Hive
version

Number
of nodes

used

Additional
Differences

Hortonworks
Stinger Initiative

[HSTNGR13]

TPC-DS (Query
27, 95)

200GB,
1 TB

0.11, 0.12,
0.13

Not
specified

 Not compared to a
relational database

 Does not consider
data load time

Shi et al.
[SMZH10]

Queries and
datasets provided

by Pavlo et al.
[PPRA09]

110 GB 0.6 20 Not compared to a
relational database

 Uses queries that
are not as complex
as the one used in
this study

Hive
Performance
Benchmark

[HPB]

Queries and
datasets provided

by Pavlo et al.
[PPRA09]

110 GB Trunk
version
786346

11 Not compared to a
relational database

 Uses queries that
are not as complex
as the one used in
this study

40

Jia et al.
[RPTCH]

TPC-H 100 GB Trunk
version
799148

11 Does not consider
data load times

Pansare et al.
[PZ10]

TPC-H 10 GB Not
specified

4 Focuses on mid-
level data analysis
and uses only 10GB
dataset

 Not compared to a
relational database

Current study TPC-DS 390 GB 0.11 4 Compares
performance with a
relational database

 Considers both data
load time and query
execution time

 Focuses on large
scale data analysis

4.5 Conclusion

In summary, we can conclude that for all the large datasets used in this experiment, Hive was

able to load data faster than MySQL. For the smaller datasets, MySQL was marginally faster than

Hive. When executing a five-table join query with four aggregation operations, one group by

operation and one order by operation, for dataset sizes ranging between 7.5 GB to 390 GB, Hive

performed consistently faster than MySQL. We also identified that the Hive Metastore is a

potential single point of failure.

In the next chapter, we describe the contributions this thesis has made to research and describe

different ways by which Hive can be improved in the future. We also describe the direction in

which the work done in this thesis can be extended.

41

Chapter 5: Contributions and Future Work

In this chapter, we give a summary of the contributions made to research and also suggest

possible future work.

5.1 Contributions

In Chapter 2, we provide an overview of the features of the Hadoop software stack and explain

the different parts of the stack that are relevant to this thesis. We survey the literature to identify

the different data management systems available as a part of the Hadoop software stack. We

compare and contrast the features of different data management systems such as Hive, HBase

and Pig. We explain the different features of Hive, the data warehouse system used in this thesis.

We survey the literature to identify different benchmarking standards suitable to benchmark Hive.

We choose the TPC-DS benchmark for our experiments since it has a data generator that is

capable of generating large scale relational data and it defines OLAP-style queries (filtering and

aggregation).

We equip four Dell Poweredge machines with additional storage space necessary for the Hadoop

distributed file system. We select the Hadoop distribution provided by the Hortonworks Distributed

Platform (HDP 1.3.2) for running our experiments since it supports the Ambari-based automated

Hadoop installation procedure. We configure the hardware and software and networking the

machines based on the instruction manual specified by Hortonworks [HINST] with the assistance

of Dr. Paul Talaga. The procedure followed to set up the hardware necessary for this thesis has

been explained in Chapter 3. We select Query 7 from the TPC-DS benchmark to run our

experiments since it supported both filtering and aggregation operations. We describe an

experimental procedure that involved generating data related to Query 7, loading the data into

the tables in both Hive and MySQL, and running Query 7 on both Hive and MySQL. After collecting

the results obtained from running this experiment on datasets of different sizes, we analyze the

42

results obtained and conclude that for all the datasets used in the experiments, Hive executes

Query 7 faster than MySQL and has linear scalability. For all the datasets used in the experiment,

Hive also loads the larger datasets significantly faster than MySQL, while it is marginally slower

when loading the smaller datasets. In other words, we identify the different areas where Hive

performs better than MySQL and also identify areas where the MySQL performed better than

Hive. We also identify some of the potential pitfalls with the Hive system such as the Metastore

being a single point of failure. In the next section, we discuss different ideas for improving Hive

such as adding more variety of data types, optimizing the performance of a Hive query by

including column statistics of reducing the number of MapReduce jobs. We also discuss ideas for

overcoming potential problems such as the Hive metastore being a single point failure.

5.2 Future Work

The research work done in this thesis can be extended further by increasing the size and variety

of data and by using different benchmarking standards that are better suited to big data than TPC-

DS. Benchmarks such as BigBench [BBNP13], which at the time of writing this thesis, are under

development, would be the ideal choice for analyzing the efficiency of Hive. Research can also

be extended by increasing the number of nodes in the cluster.

Chen et al. [CYW13] denormalize the TPC-DS schema to transform its snowflake schema into a

star schema. They then format the data in this star schema into a MOLAP cube format, rather

than a ROLAP format, which is used for relational tables. They compare the performance of their

cube implementation with a Hive implementation, by using Query 7 from TPC-DS and some

additional queries. While the details about the configuration and experiments have not been

specified, Chen et al. indicate a speed up of their approach when compared to Hive for 1GB (14x

speed up), 10 GB (24x speed up), and 100 GB (19x speed up). Since the details about the

configurations and experimental procedures have not been elaborated, it is difficult to draw

43

conclusions with any confidence. However, the results do indicate that future experimentation

with their approach may have significant benefits.

We anticipate that better results can be obtained in the future if research is conducted in these

directions:

a. More variety in data types

In Chapter 4, we discussed the differences in HiveQL and SQL while defining a table. In the later

releases of Hive [HIVE13] (versions 0.12 and 0.13) which were released after the completion of

the experimental work for this thesis, some of these issues have been addressed. More data

types such as VARCHAR and DATE have been defined in versions 0.12 and 0.13.

b. Optimizing performance

The performance of Hive can be optimized in several ways. Some potential areas have been

discussed below:

 Optimizing the queries by storing statistical information in the form of metadata in the

Metastore at column, partition, and table level as suggested by Gruenheid et al. [GOM11].

Grunheid et al. [GOM11] propose that storing more statistical information at the columnar

level in the Metastore would help in improving a query execution plan by being able to

determine several factors such as the order of joins, the number of MapReduce jobs to be

run, and the number of rows that appear in the result.

 Optimizing the queries in order to lower the number of MapReduce jobs being generated.

This has to be done since a MapReduce job is a batch process and as a result involves

latency. As a result, running more MapReduce jobs increases the latency on the system.

 Optimizing the lower levels, such as optimizing the work flow of the MapReduce jobs.

Research can be conducted into identifying means of efficiently placing data in different

44

intermediate stages of a MapReduce process to effectively use the massively parallel

model of MapReduce. Models like StarFish [HLLB11] define a self-tuning system which

adapts to user needs and optimizes the performance of a workflow of MapReduce jobs

and acts as an intermediate between the Hive interface and the MapReduce programming

model are a step in the right direction.

c. Overcoming single point of failure issues with Metastore

The Metastore that is used to store the metadata related to Hive tables is a potential single point

of failure. Different back up or check point based mechanisms to overcome this issue can be

further investigated.

In summary, this thesis achieves its research objectives in identifying a parallel data management

system that is suitable for performing OLAP-type analysis (aggregation and filtering) of large scale

relational data and using a benchmark to compare the performance of the parallel and relational

data management systems for the aforementioned OLAP-type query. However, one limitation

with the current Hive version is that it supports only equi-joins [CWR12].

45

References

[CWR12] Capriolo, Edward, Dean Wampler, and Jason Rutherglen. Programming hive. O'Reilly
Media, Inc., 2012.

[CYW13] Chen, Dan, Xiaojun Ye, and Jianmin Wang. "A multidimensional data model for TPC-
DS benchmarking." In Proceedings of the 5th Asia-Pacific Symposium on Internetware,
p. 21. ACM, 2013.

[SD08] Dewitt and Stonebraker’s “MapReduce: A major step backwards” by Craig Henderson
Available at http://craig-henderson.blogspot.com/2009/11/dewitt-and-stonebrakers-
mapreduce-major.html

[AAMB] Apache Ambari. Available at http://ambari.apache.org/

[PIG14] Apache Pig homepage. Available at http://pig.apache.org/

[SQOOP] Apache Sqoop Home page. Available at http://sqoop.apache.org/

[BBNP13] Baru, Chaitanya, Milind Bhandarkar, Raghunath Nambiar, Meikel Poess, and
Tilmann Rabl. "Setting the direction for big data benchmark standards." In Selected
Topics in Performance Evaluation and Benchmarking, pp. 197-208. Springer Berlin
Heidelberg, 2013.

[DG08] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large
clusters." Communications of the ACM 51, no. 1 (2008): 107-113.

[HIVE13] Different data types on Hive. Available at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

[DSGEN] DSGen v1.1.0, data generation tool for TPC-DS. Available at
http://www.tpc.org/tpcds/

[GTPCDS13] Generating data using TPC-DS. Available at
http://www.innovationbrigade.com/index.php?module=Content&type=user&func=display
&tid=1&pid=3

[GRHR13] Ghazal, Ahmad, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. "BigBench: Towards an Industry Standard
Benchmark for Big Data Analytics." (2013).

[J08] Greg Jorgensen, "Relational Database Experts Jump The MapReduce Shark". Available
at http://typicalprogrammer.com/?p=16

[GMIX] GridMix program. Available in Hadoop source distribution: src/benchmarks/gridmix

[GOM11] Gruenheid, Anja, Edward Omiecinski, and Leo Mark. "Query optimization using
column statistics in hive." In Proceedings of the 15th Symposium on International
Database Engineering & Applications, pp. 97-105. ACM, 2011.

[TSORT] Hadoop TeraSort program. Available in Hadoop source distribution since 0.19 version:
src/examples/org/apache/hadoop/examples/terasort

46

[HLLB11] Herodotou, Herodotos, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma
Bilgen Cetin, and Shivnath Babu. "Starfish: A Self-tuning System for Big Data Analytics."
In CIDR, vol. 11, pp. 261-272. 2011.

[HSERDE] Hive documentation on SerDe. Available at
https://cwiki.apache.org/confluence/display/Hive/SerDe

[HPB] Hive Performance Benchmark. Available at https://issues.apache.org/jira/browse/hive-
396

[HHDP] Hortonworks HDP 1.3.2 configuration. Available
athttp://hortonworks.com/products/hdp/hdp-1-3/#overview

[HINST] Hortonworks HDP 1.3.2 installation manual. Available at

http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-
1.3.2/bk_using_Ambari_book/content/ambari-chap1.html

[HSTNGR13] Hortonworks Stinger Initiative. Available at http://hortonworks.com/labs/stinger/

[HHDX10] Huang, Shengsheng, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. "The
HiBench benchmark suite: Characterization of the MapReduce-based data analysis."
In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on,
pp. 41-51. IEEE, 2010.

[J09] Jacobs, Adam. "The pathologies of big data." Communications of the ACM 52, no. 8
(2009): 36-44.

 [NP06] Nambiar, Raghunath Othayoth, and Meikel Poess. "The making of TPC-DS." In
Proceedings of the 32nd international conference on Very large data bases, pp. 1049-
1058. VLDB Endowment, 2006.

[PZ10] Pansare, Niketan, and Zhuhua Cai. "Using Hive to perform medium-scale data analysis."
(2010).

[PPRA09] Pavlo, Andrew, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. "A comparison of approaches to large-scale
data analysis." In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, pp. 165-178. ACM, 2009.

[RTPCH] Running the TPC-H benchmark on Hive. Available at
https://issues.apache.org/jira/secure/attachment/12416257/TPC-H_on_Hive_2009-08-
11.pdf

[HSORT] Sort program. Available in Hadoop source distribution:
src/examples/org/apache/hadoop/examples/sort

[SMZH10] Shi, Yingjie, Xiaofeng Meng, Jing Zhao, Xiangmei Hu, Bingbing Liu, and Haiping
Wang. "Benchmarking cloud-based data management systems." In Proceedings of the
second international workshop on Cloud data management, pp. 47-54. ACM, 2010.

[TSJS09] Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. "Hive: a warehousing

47

solution over a map-reduce framework." Proceedings of the VLDB Endowment 2, no. 2
(2009): 1626-1629.

[TPCC] TPC-C benchmarking standard. Available at http://www.tpc.org/tpcc/

[TPCDS] TPC-DS documentation. Available at http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

[TPCH] TPC-H benchmarking standard. Available at http://www.tpc.org/tpch/

[TNHDP] Types of nodes on HDP. Available at
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.2/bk_getting-started-
guide/content/ch_hdp1_getting_started_chp3.html

[W12] White, Tom. Hadoop: the definitive guide. O'Reilly, 2012.

48

Appendix A: Instructions for Generating Data Using TPC-DS

1. Download the TPC-DS package from the TPC-DS website [DSGEN].

2. Unzip the package and under the folder tools you will find the word document - “HOW

TO GUIDE” which contains the necessary instructions to compile the code and then use

the commands to generate data.

3. Further instructions for different ways data can be generated is located in the word

document – “QGEN” which contains the help manual for different commands and

extensions provided by TPC-DS

4. Generating Data:

a. The HOW TO GUIDE contains the commands that can be used for generating

the data. For example,

$ dbgen2 –scale 50 –dir 50gb –force

Note 1: -scale extension is used to specify the scale factor. In this case, we are

generating 50GB worth data.

Note 2: -dir is used to mention the directory in which the data is to be stored. In

this example, we have a directory named 15 GB where the data is being stored.

Note 3: -force is used to ensure that old files in the –dir folder are overwritten. If

the destination folder (-dir) is not empty, unless -force is used, it will cause an

error.

b. In case you have issues using the “dbgen2” command as shown in the HOW TO

GUIDE, I would recommend using the following procedure[GTPCDS13]:

After using the make command in Step 3 in the HOW TO GUIDE, if you face

problems with the system being unable to recognize the dbgen2 command, you can

use the following command to generate data:

49

$./dsdgen -scale 50 -dir 50gb -force

5. Generating Queries:

a. The HOW TO GUIDE contains the commands to generate the SQL code from

the templates present in the query_templates folder.

$qgen2 –query10.tpl –directory query_templates –dialect oracle –scale 100

Note 1: The .tpl file is the common template file which gets modified by the qgen

command into a sql file.

Note 2: The exact SQL syntax into which the template file (in this example,

query10.tpl) is converted to is determined by the dialect. In this example, the

oracle dialect is used, since it follows a similar syntax to MySQL.

Note 3: The directory in which the template file is located is mentioned using –

directory extension.

Note 4: The –scale option is used to specify the scale of the data to which the

query is being generated. In this example, the scale is 100 which means that

100GB of data has been generated.

Note 5: The output of this command is stored in a file named query_0.sql in the

same folder where this query is being run.

b. In case you have issues with the qgen2 command shown above, copy the

query_templates folder into the tools folder and then use the following command:

$./dsqgen -input query_templates/templates.lst -directory query_templates -scale 100 -

dialect oracle

Note 1: –directory, -scale, and –dialect function the same way as mentioned above. The

–input option allows us to specify what templates we are attempting to convert into sql.

50

The templates.lst file contains the names of all the queries we wish to convert into sql,

with one query name per line.

Note 2: While running the above command, one possible error that might occur is as

shown below:

Substitution'_END' is used before being initialized

 query_templates/query7.tpl

The solution to this error is to add the line shown below at the beginning of the tpl file of

the query.

define _END="";

51

Appendix B: Additional Results

In this Appendix, we display some additional results of experimental procedure specified in

Chapter 4.

1. Dataset 4: Total data set size: 20 GB

Total data set size for the query: 7.5 GB

Table 4.7.1 contains the sizes and the number of rows in each dataset. Table 4.7.2

displays the amount of time taken for defining the schema, loading the data and to execute

the query in both MySQL and Hive.

Table 4.7.1 Total size and number of records in datasets used for the query-Dataset 4

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 7.6 MB 28,000

Promotion 43 KB 355

store_sales 7.5 GB 57,598,932

date_dim 9.9 MB 73,049

Table 4.7.2 Table definition, data loading and query execution times--Dataset 4

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.12s 0.502s 5.9s 2.44s

4m43.64s

1m1.783s Item 0.11s 0.195s 0.26s 1.251s

Promotion 0.13s 0.137s <0.01s 0.527s

store_sales 0.10s 0.171s 2h17m13.3s 3m45.436s

date_dim 0.11s 0.161s 0.4s 0.682s

2. Dataset 5: Total data set size: 30 GB

Total data set size for the query: 12 GB

Table 4.8.1 contains the sizes and the number of rows in each dataset. Table 4.8.2

displays the amount of time taken for defining the schema, loading the data and to execute

the query in both MySQL and Hive.

Table 4.8.1 Total size and number of records in datasets used for the query-Dataset 5

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 11 MB 40,000

52

Promotion 50 KB 411

store_sales 12 GB 86,406,277

date_dim 9.9 MB 73,049

Table 4.8.2 Table definition, data loading and query execution times-Dataset 5

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.10s 0.35s 5.88s 3.019s

7m29.68s

1m20.945s Item 0.10s 0.137s 0.36s 0.775s

Promotion 0.11s 0.168s 0.02s 0.486s

store_sales 0.10s 0.157s 3h50m45.85s 6m34.599s

date_dim 0.12s 0.154s 0.37s 1.016s

3. Dataset 6: Total data set size: 40 GB

Total data set size for the query: 16 GB

Table 4.9.1 contains the sizes and the number of rows in each dataset. Table 4.9.2

displays the amount of time taken for defining the schema, loading the data and to execute

the query in both MySQL and Hive.

Table 4.9.1 Total size and number of records in datasets used for the query-Dataset 6

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 14 MB 52,000

Promotion 57 KB 466

store_sales 15 GB 115,203,420

date_dim 9.9 MB 73,049

Table 4.9.2 Table definition, data loading and query execution times-Dataset 6

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.11s 0.331s 5.92s 2.658s

10m9.68s

1m43.585s Item 0.11s 0.155s 0.46s 1.544s

Promotion 0.10s 0.135s 0.01s 0.488s

store_sales 0.10s 0.172s 6h21m10.38s 8m55.387s

date_dim 0.11s 0.174s 0.47s 0.798s

53

4. Dataset 7: Total data set size: 60 GB

Total data set size for the query: 23 GB

Table 4.10.1 contains the sizes and the number of rows in each dataset. Table 4.10.2

displays the amount of time taken for defining the schema, loading the data and to execute

the query in both MySQL and Hive.

Table 4.10.1 Total size and number of records in datasets used for the query-Dataset 7

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 20 MB 74,000

Promotion 71 KB 577

store_sales 23 GB 172,800,711

date_dim 9.9 MB 73,049

Table 4.10.2 Table definition, data loading and query execution times-Dataset 7

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.11s 0.33s 5.83s 2.817s

5m16.34s

2m23.65s Item 0.09s 0.134s 0.64s 1.955s

Promotion 0.10s 0.174s 0.02s 0.55s

store_sales 0.10s 0.145s 8h26m38.7s 12m28.502s

date_dim 0.11s 0.161s 0.47s 0.765s

5. Dataset 8: Total data set size: 80 GB

Total data set size for the query: 31 GB

Table 4.11.1 contains the sizes and the number of rows in each dataset. Table 4.11.2

displays the amount of time taken for defining the schema, loading the data and to execute

the query in both MySQL and Hive.

Table 4.11.1 Total size and number of records in datasets used for the query-Dataset 8

Table Size Number of rows

customer_demographics 77 MB 1,920,800

Item 26 MB 96,000

Promotion 84 KB 688

store_sales 31 GB 230,394,794

date_dim 9.9 MB 73,049

54

Table 4.11.2 Table definition, data loading and query execution times-Dataset 8

Table Table definition Data Load Query Execution

MySQL Hive MySQL Hive MySQL Hive

customer_demographics 0.16s 0.301s 5.87s 2.63s

10m36.68s

3m10.484s Item 0.11s 0.155s 0.82s 1.395s

Promotion 0.11s 0.154s 0.02s 0.536s

store_sales 0.15s 0.164s 13h55m9.15s 16m35.423s

date_dim 0.14s 0.154s 0.38s 0.7s

