Accepted Manuscript -

FiBICIS!
pipsCloud: High performance cloud computing for remote sensing big '
data management and processing
Lizhe Wang, Yan Ma, Jining Yan, Victor Chang, Albert Y. Zomaya :.::_;
PIL: S0167-739X(16)30192-3 SRS

DOI: http://dx.doi.org/10.1016/j.future.2016.06.009
Reference: FUTURE 3075

To appear in: Future Generation Computer Systems

Received date: 29 February 2016
Revised date: 25 May 2016
Accepted date: 12 June 2016

Please cite this article as: L. Wang, Y. Ma, J. Yan, V. Chang, A.Y. Zomaya, pipsCloud: High
performance cloud computing for remote sensing big data management and processing, Future
Generation Computer Systems (2016), http://dx.doi.org/10.1016/j.future.2016.06.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.06.009

pipsCloud: High Performance Cloud Computing for Remote Sensing Big Data
Management and Processing

Lizhe Wang'2, Yan Ma>, Jining Yan? and Victor Chang® and Albert Y. Zomaya *

1 School of Computer Science, China University of Geoscience, Wuhan 430074, P. R. China
2 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, P. R. China
3 School of Computing, Creative Technologies and Engineering, Leeds Beckett University, United Kingdom
4 School of Information Technologies, University of Sydney, Australia
T corresponding author: mayan@radi.ac.cn

Abstract

With the increasing requirement of accurate and up-to-date resource & environmental information for regional and global moni-
toring, large-region covered multi-temporal, multi-spectral massive remote sensing (RS) datasets are exploited for processing. The
remote sensing data processing generally follows a complex multi-stage processing chain, which consists of several independent
processing steps subject to types of RS applications. In general the RS data processing for regional environmental and disaster
monitoring are recognized as typical both compute-intensive and data-intensive applications.

To solve the aforementioned issues efficiently, we propose pipsCloud which combine recent Cloud computing and HPC tech-
niques to enable large-scale RS data processing system as on-demand real-time services. Benefiting from the ubiquity, elasticity
and high-level of transparency of Cloud computing model, the massive RS data managing and data processing for dynamic envi-
ronmental monitoring are all encapsulate as Cloud with Web interfaces. Where, a Hilbert-R* based data indexing mechanism is
employed for optimal query and access of RS imageries, RS data products as well as interim data. In the core platform beneath the
Cloud services, we provide a parallel file system for massive high-dimensional RS data and offers interfaces for intensive irregular
RS data accessing so as to provide improved data locality and optimized I/O performance. Moreover, we adopt an adaptive RS data
analysis workflow manage system for on-demand workflow construction and collaborative execution of distributed complex chain
of RS data processing, such as forest fire detection, mineral resources and coastline monitoring. Through the experimental analysis

we have show the efficiency of the pipsCloud platform.

Keywords: High Performance Computing, Cloud computing, data-intensive computing, Big Data, Remote Sensing

1. Introduction

With the remarkable advances in high-resolution Earth Ob-
servation (EO), we are witnessing an explosive growth in the
volume and also velocity of Remote Sensing (RS) data ([1]).
The latest-generation space-borne sensors are capable of gener-
ating continuous streams of observation data at a growing rate
of several gigabytes per second ([2]) almost every hour, every
day, every year. The global archived observation data are prob-
ably exceed one Exabyte according to the statistics of OGC re-
port ([3]). The volume of RS data acquired by a regular satellite
data center is dramatically increasing by several terabytes per
day, especially for the high-resolution missions ([4]). While,
the high-resolution satellites, namely indicates higher spatial,
higher spectral and higher temporal resolution of data, which
would inevitably give rise to the higher dimensionality nature
of pixels. Coupled with the diversity in the present and up-
coming sensors, RS data are commonly regarded as “Big RS
Data”or “Big Earth Observation Data” ,not merely in the data
volume, but also in terms of the complexity of data.

The proliferation of “RS Big Data” is revolutionizing the
way RS data are processed, analyzed and interpreted as knowl-

Preprint submitted to Elsevier

edge ([5]). In large-scale RS applications,regional or even
global covered multi-spectral and multi-temporal RS datasets
are exploited for processing, so as to meet the arising demands
for more accurate and up-to-date information. A continent-
scale forest mapping normally involves processing terabytes
of multi-dimensional RS datasets for available forest informa-
tion ([6]). Moreover, large-scale applications are also exploit-
ing multi-source RS datasets for processing so as to compen-
sate for the limitation of a single sensor. Accordingly, not only
the significant data volume, but the increasing complexity of
data has also become the vital issue. Particularly, many time-
critical RS applications even demand real-time or near real-
time processing capacities ([7][8]). Some relevant examples
are large debris flow investigation ([9], flood hazard manage-
ment ([10]) and large ocean oil spills surveillance ([11][12]).
Generally, these large-scale data processing problems in RS
applications ([4][13][14]) with high QoS requirement are typ-
ically regarded as both compute-intensive and data-intensive.
Likewise, the innovative analyses and high QoS (Quality of
Service) requirements are driving the renewal of traditional RS
data processing systems. The timely processing of tremen-
dous multi-dimensional RS data has introduced unprecedented

August 20, 2016

computational requirements, which is far beyond the capability
that conventional instruments could satisfy. Employing cluster-
based HPC (High-Performance Computing) paradigm in RS
applications turn out to be the most widespread yet effective ap-
proach ([15][16][17][18][19]). Both NASA’s NEX system ([5]
for global processing and InforTerra’s “Pixel Factory” ([20]) for
massive imagery auto-processing adopt cluster-based platforms
for QoS optimization.

However, despite the enormous computational capacities,
cluster platforms that not data-intensive optimized are still chal-
lenged with huge data analysis and intensive data I/O. The
mainstream multi-core clusters are characterized with multi-
level hierarchy and increasing scale. These HPC systems are
almost out of reach for non-experts of HPC, since the easy pro-
gramming on MPI-enabled (Message Massing Interface) HPC
platforms is anythings but easy. Moreover, the prevalent on-line
processing needs are seldom met. In that, there lacks easy-to-
use way to serve end users the massive RS data processing capa-
bilities in large-scale HPC environment ubiquitously. Whereas,
diverse RS data processing typically follows a multi-stage on-
the-flow processing. The on-demand processing also means the
ability to customize and serve dynamic processing workflows,
instead of the predefined static ones. While, on-demand pro-
vision of resources will result in unpredictable and volatile re-
quirements of large-scale computing resources. A substantial
investment for sustaining system upgrade and scale-out would
be essential. In addition, the build and maintenance of such
platforms is remarkably complicated and expensive.

Cloud computing ([21];) provides scientists with a revolu-
tionary paradigm of utilizing computing infrastructure and ap-
plications. By virtue of virtualization, the computing resources
and various algorithms could be accommodated and delivered
as ubiquitous services on-demand according to the application
requirements. Cloud paradigm has also been widely adopt in
large-scale RS applications, such as Matsu project ([22]) for
cloud-based flood assessment. Currently, Clouds are rapidly
joining HPC systems like clusters as variable scientific plat-
forms ([23]). Scientists could easily customize their HPC en-
vironment and access huge computing infrastructures in Cloud.
However, compared to conventional HPC systems or even su-
percomputers, the Clouds are not QoS-optimized large-scale
platforms. Moreover, differs from traditional Cloud, these Dat-
acenter Clouds deployed with data-intensive RS applications
should facilitate massive RS data processing and intensive data
I/0.

To efficiently address the aforementioned issues, we propose
pipsCloud a cloud-enabled High-Performance RS data process-
ing system for large-scale RS applications. The main contri-
bution of it is that, it incorporates Cloud computing paradigm
with cluster-based HPC systems in the attempting to address
the issues from a system architecture point of view. Firstly,
by adopting application-aware data layout optimized data man-
agement and Hilbert R* tree based data indexing, the RS big
data including imageries, interim data and products could be
efficiently managed and accessed by users. By means of vir-
tualization and bare-metal (BM) provisioning ([24]), not only
virtual machines, but also bare-metal machines with less perfor-

mance penalty are deployed on-demand for easy scale up and
out. Moreover, the generic parallel programing skeletons are
also employed for easy programming of efficient MPI-enabled
RS applications. Following this way, the cloud-enabled virtual
HPC environment for RS big data processing are also dynam-
ically encapsulated and delivered as on-line services. Mean-
while, benefiting from dynamic scientific workflow technique,
pipsCloud offers the ability to easily customize collaborative
processing workflows for large-scale RS applications.

The rest of this paper is organized as follows. The Section
2 reviews some related works, and section 3 discuss the chal-
lenges lie in the building and enabling a high performance cloud
system for data-intensive RS data processing. Section 4 demon-
strates the design and implementation of the pipsCloud from a
point view of system level. Then section 5 discusses the experi-
mental validation and analysis of the pipsCloud.Finally Section
6 concludes this paper.

2. High Performance Computing for RS Big Data: State of
the Art

Each solution has its cons and pros. In this section, we com-
paratively review current dominant system architectures regu-
larly adopted in the context of RS data processing, both cluster-
based HPC platforms and Clouds. Firstly,in section 2.1, we
go deep into the incorporation of multi-core cluster HPC struc-
ture with RS data processing systems and applications. Then,
in section 2.2, we introduce some new attempt to enable large-
scale RS applications by taking advantages of Cloud computing
paradigm.

2.1. Cluster Computing for RS Data Processing

As increasing amount of improved sensor instruments are in-
corporated with satellites for Earth Observation, we have been
encountering an era of “RS Big Data”. Meanwhile, the ur-
gent demands for large-scale remote sensing problems with
boosted computation requirements ([5]) have also fostered the
widespread applying of multi-core clusters. The first shot goes
to the NEX system ([5]) for global RS applications built by
NASA on a cluster platform with 16 computer in the middle of
1990s. “Pixel Factory” system ([20]) of InforTerra have em-
ployed cluster-based HPC platform for massive RS data auto-
processing, especially Ortho-rectification. These HPC plat-
forms are also employed in the acceleration of hyperspcetral
imagery analysis ([25]). It is worth noting that 10,240-CPU
Columbia supercomputer' equipped with InfiniBand network
have been exploited for remote sensing applications by NASA.

Several traditional parallel paradigms are commonly ac-
cepted for these multi-level hierarchy featured cluster sys-
tems. OpenMPparadigm is designed for shared-memory,
MPIis adopt within or across nodes, and MPI+OpenMP hybrid

!Columbia Supercomputer at NASA Ames Research Center,
http://www.nas.nasa.gov/Resources/Systems/columbia.html

paradigm ([26]) is employed for exploiting multilevel of paral-
lelism. Recently, great efforts have been laid on the incorpo-
ration of MPI-enabled paradigm with remote sensing data pro-
cessing in the large scale scenarios. Some related works go with
Plaza et al. presented parallel processing algorithms for hyper-
spectral imageries ([27]), Zhao et al. ([28]) implemented soil
moisture estimation in parallel on PC cluster, as well as MPI-
enabled implementing of image mosaicking ([29], fusion ([30])
and band registration ([31]). Obviously, benefiting from the
efforts and developments conducted in HPC platforms, plenty
of RS applications have enhanced their computational perfor-
mance in a significant way ([5]).

However, in spite of the elegant performance acceleration has
achieved, it is still anything but easy for non-experts to em-
ploy cluster-based HPC paradigm. Firstly, the programming,
deploying as well as implementing of parallel RS algorithms on
an MPI-enabled cluster is rather difficult and error-prone ([32]).
Secondly, HPC systems are not optimized for data-intensive
computing especially. The loading, managing and communi-
cation of massive multi-dimensional RS data on the distributed
multilevel memory hierarchy of HPC system would be rather
challenging. Some emerging PGAS ([33]) typed approaches of-
fer global but partitioned memory address spaces across nodes,
like UPC ([34], Chapel ([35]) and X10 ([36]). The on-going
DASH project? is developing Hierarchical Arrays (HA) for hi-
erarchical locality. Thirdly, the relatively limited resources in
HPC systems could not be easily scaled to meet the on-demand
resource needs of diverse RS applications. For affordable large-
scale computing resources, substantial upfront investment and
sustaining scaling up would be inevitable but also rather ex-
pensive. In addition, cluster-base HPC systems lack easy and
convenient way of utilizing high performance data processing
resources and applications, even not mention the on-demand
customizing of computing resources and processing workflows.

2.2. Cloud Computing for Remote Sensing Data Processing

Cloud has emerged as a promising new approach for ad-hoc
parallel processing, in the Big Data era[37]. It is capable of
accommodating variable large-scale platforms for different re-
search disciplines with elastic system scaling. Benefiting from
virtualization, not only computing resources, but also software
could be dynamically provisioned as ubiquitous services best
suited to the needs of the given applications. Compared to the
MPI-enabled cluster systems, cloud paradigm provides com-
puting resources in a more easy-to-use and convenient way — a
service-oriented way.

The advent of Cloud has also empowered remote sensing
and relevant applications. Matsu ([22], the on-going research
project of NASA for on-demand flood prediction and assess-
ment with RS data adopts an Eucalyptus-based[38]) distributed
cloud infrastructure with over 300cores. GENESI-DEC?, a
project of Ground European Network for Earth Science Inter-
operations — Digital Earth Communities. It employs a large and

2DASH project: under DFG programme “Software for Exascale Computing
— SPPEXA”, http://www.dash-project.org
3GENESI-DEC, http://www.genesi-dec.eu

distributed cloud infrastructure to allow worldwide data access,
produce and share services seamlessly. With virtual organiza-
tion approach, the Digital Earth Communities could lay their
joint effort for addressing global challenges, such as biodiver-
sity, climate change and pollution.The ESA (European Space
Agency) G-POD*, a project to offer on-demand processing for
Earth observation data was initially constructed with GRID.
Subsequently, Terraduecloud infrastructure was selected to en-
hance G-POD for resources provisioning ([5]).

Great efforts have been laid on the employing of cloud com-
puting in the context of remote sensing data processing, both in
terms of programming models and resource provisioning.

2.2.1. Programming Models for Big Data

Several optional distributed programming models[37] are
prevalently employed for processing large data sets in the cloud
environment, like MapReduce ([39]) and Dryads. Where,
MapReduce is the most widely accepted model for distributed
computing in Cloud environment. By using “Map” and “Re-
duce” operations, some applications could be easily imple-
mented in parallel without concerning data splitting and any
other system related details. With the growing interest towards
Cloud computing, it has been greatly employed in RS data pro-
cessing scenarios. Lin et al. ([40]) proposed service integration
model for GIS implemented with MapReduce, B. Li et al. ([41])
employed MapReduce for parallel ISODATA clustering. Based
on Hadoop MapReduce framework, Almeer ([42]) built an ex-
perimental 112-core high-performance cloud system at Univer-
sity of Qatar for parallel RS data analysis.

Despite of the simple but elegant programming feature,
MapReduce is not a fits-all model. In the context of large-scale
RS applications, we have data with higher dimensionality, algo-
rithms with higher complexity as well as specific dependences
between computation and data. In these scenarios, the simple
data partition of MapReduce with no idea of actual applications
would not always work for acceleration, even not mention the
applications with numerical computing issues.

2.2.2. Resource Management and Provisioning

Essentially, on-demand resource managing and provision-
ing is foremost in cloud computing environment. Several
choices of open-source cloud solutions are available to accom-
modate computing infrastructure as a service for viable comput-
ing. Among several solutions, such as OpenStack ([43], Open-
Cloud®, Eucalyptus ([38]) and OpenNebula ([44], OpenStack is
the most widely accepted and promising one. Basically, in re-
cent Clouds, on-demand resource allocation and flexible man-
agement are built on the basis of virtualization. Many available
choices of hypervisors for Server virtualization in current open
cloud platforms are Xen hypervisor[45], Kernel-based Virtual
Machine (KVM) ([46]) as well as VMWare ([47]). By manage-
ment of poos of Virtual Machines(VMs), hypervisors could eas-
ily scale up and down to provide large-scale platform with great

4Grid Processing on Demand, https://gpod.eo.esa.int
5Dryad, http://research.microsoft.com/en-us/projects/dryad/
60OpenCloud, https://www.opencloud.com

number of VMs. Likewise, the network virtualization concept
has also emerged. Yi-Man ([48]) proposed Virt-IB for Infini-
Band virtualization on KVM for higher bandwidth and lower
latency.

The virtualization approaches normally deploy multiple VMs
instances on a single physical machine (PM) for better resource
utilization. However, virtualization and hypervisor middleware
would inevitably introduce extra performance penalty. Re-
cently, Varrette et. al. ([49]) has demonstrated the substan-
tial performance impact and even a poor power efficiency when
facing HPC-type applications, especially large-scale RS appli-
cations. As a result, whether the VMs in cloud suit as a desir-
able HPC environment is still unclear.

For performance sake, native hypervisors (compared to
hosted hypervisors) that capable of bare-metal provisioning is
another option to extend current cloud platforms. This kind of
hypervisors implement directly on the hardware of hosts and
take control of them. There are several bare-metal provision-
ing hypervisors, examples are xCAT’, Perceus®). Xie ([24])
has extended OpenStack to support bare-metal provisioning us-
ing xCAT, so as to serve both VMs and bare-metal machines in
cloud platform.

3. Requirements and Challenges: RSCloud for RS Big Data

Cloud computing paradigm has empowered RS data process-
ing and makes it possible than ever ([50]). Unlike conventional
ways of processing that done by standalone server or software,
the cloud-based RS data processing is enabled with revolution-
ary promise of unlimited computing resources.

Despite the advantages we could explore in cloud comput-
ing paradigm, there remains some obstacles to cloud adoption
in remote sensing. As we look into the future needs of large-
scale RS exploration and applications, it is clear that the dis-
tributed “data deluge” and computing scales will continue to
explode and even drive the evolution of processing platforms.
Naturally, the tremendous RS data and RS algorithms may ac-
tually distributed across multiple data centers located in differ-
ent geographic places crossing organizational or even national
boundaries. In this scenario, the efficient storing, managing as
well as sharing and accessing of these distributed RS data at
such an extreme volume and data complexity would be any-
thing but easy. Likewise, large-scale RS applications and en-
vironmental researches might always in demand for collabo-
rative workflow processing across data centers in a distributed
environment by network. To allow pervasive and convenient
service for domain users on-line in such a heterogeneous dis-
tributed environment, one-stop service oriented user interface
could be of vita importance. Moreover, different types of do-
main users as well as varieties of RS applications with different
processing scales would normally give rise to diverse require-
ments of cloud service model. The examples of these service

TxCAT (Extreme Cloud
http://en.wikipedia.org/wiki/XCAT
8perceus, http://www.perceus.org

Administration Toolkit),

models are RS data subscription and virtual data storage ser-
vice, virtual cluster-base HPC platform service or even virtual
processing system service for RS.

To meet the above challenging demands, a could-enabled
HPC framework especially designed for remote sensing era
namely RSCloud is quite critical. Firstly, it should be capa-
ble of managing and sharing massive distributed RS data. Ac-
cording, RS big data across data centers can be easily accessed
and on-demand subscribed as virtualized data catalog or stor-
age for global sharing. Secondly, it should also be able to offer
RS-specific HPC environment with not only elastic computing
and storage capacities as well as RS-oriented programming and
runtime environment so as to meet the on-demand need of ap-
plications. Thirdly, the dynamic workflow processing is also
essential for addressing global RS problems which require the
collaboration of multiple scientists or organizations. In addi-
tion, one-stop service of cloud portal is also important, where
a wide variety of resources, and even on-line RS data process-
ing could be easily accommodated through one-stop accessing.
Last but not least, different service models of multi-tenant en-
vironment, where different types of virtual HPC environment
and RS processing systems can be abstracted and served on-
demand. Loosely speaking, RSCloud is a cloud-assisted plat-
form for RS, which not only facilitate elastic provisioning of
computing and storage resources, but also allow multi-tenant
users to on-demand access, share and collaborative process of
massive distributed RS data in different service models. .

4. pipsCloud: High Performance Remote Sensing Clouds

To properly address the above issues, we propose pipsCloud,
a high-performance RS data processing system for large-scale
RS applications in cloud platform. It provides a more efficient
and easy-to-use approach to serve high-performance RS data
processing capacity on-demand, and also QoS optimization for
the data-intensive issues.

4.1. The System Architecture of pipsCloud

As illustrated in figure 1, pipsCloud adopts a multi-level sys-
tem architecture. From bottom to up is respectively physical
resources, cloud framework, VE-RS, VS-RS, data management
and cloud portal. Wherein, the cloud framework manages phys-
ical resources to offer Iaas (Infrastructure as a Service) by
virtue of OpenStack. Based on cloud framework, the VE-RS
offers virtual HPC cluster environment as a service and VS-RS
provides cloud-enabled virtual RS big data processing system
for on-line large-scale RS data processing. While the manage-
ment, indexing and sharing of RS big data are also served as
Daas (Data as a service).

Cloud Framework employs the most popular but successful
open source project OpenStack to form the basic cloud architec-
ture. However, OpenStack mostly only offers virtual machines
(VMs) through virtualization technologies. These VMs are run
and managed by hypervisors, such as KVM or Xen. Despite
of the excellent scalability, the performance penalty of virtual-
ization is inevitable. To support the HPC cluster environment

Cloud Management

__

Cloud Portal
WPS, WMS, WCS, SOAP(web service), HTTP...

Statistic] [

Multi-tenancy

] [User Authenticotion]

Storage

b — ! Data Management i VS-RS o
! 50 (Subscription & Sharing) i ! (Virtual Processing System for RS) i ! !
| Q |1 : 1 : | !
i § i i s Data Subscription ' i EOrder Monogement} [System Monogement]:i i
! = | " [" \
| _L [[—— ! !
VLS Mop ¢ | workflow Workflow | [RSWorkfiow |11 |
: ‘; a : : Service Data Service i : Customization Processing Depository E : :
1 = 1 1 - 1 !
M 1 |
5 [e oo Y o T e) Pl |
1 % ' Retrieval | | Download || 1 Ls—momzmomoooooooo2-mom—mme oo H
| o [g I !
A) ol VERS T
I - 1
i N i ! ~ i (Virtual HPC Cluster Environment for RS) :: i
] . I
| I RS Data Indexin " : Y I
: (Yl (R+ Indexing Tree, Bloom F%er) | : Task Scheduling (DAG) :' :
! v ! : ! ' (Torque,PBS) :: H
1 ﬁ [} Vol | 1 1
1 %2 | P . | !
1Z| _® | 11| Distributed Programming N
:g 03 |1} Metadata |1 | ‘ RS Data Skeletons 5g ::@%:
:6,_- as | RS Data Management| | ! (__Structure (RS-GPPS) g3 He O
! R Management i IS
=N S QO 1
i (HPGFS) Meladala| |11l HPGFS MP, g3[e<]
> epositon [i i s
Qg cposten | |1 1| adergisioneyre, || MopReduce | @1
1 ' " [1
o ~~— " L I M\ I .T I .m//—mn 1
I e T T L T T) |
1] 1 1
! n Cloud Framework (OpenStack) h !
1
1] 1 1
! 3 Image [Rs Software VM Schedular VM Deployer |1 !
! § ¥ R(er|OSI'(0)fY Repository (nova-schedular) (nova+xCAT) ! i !
c | once))0 — N ——— S |
L 28 | rITITTIIIIIITITITiTiiiiiTiiiiiiiicic: Ho
[
| ez i ''| Storage Quota :: Hypervisor :: '
Ll 2sg | : (Nova-quota) | 11| Virtual Machine Bare Meta ! '
Ll ¥ (VM) 1.
= i [!
i 2 E : (Cinder|, ¥ @@@@ :i :
] = 1
| | i L
1 1 1
1 1 1
1 1 1
| | |
' ! :

Compute

Figure 1: The System Architecture of pipsCloud

in cloud, pipsCloud adopts a bare-metal machine provisioning
approach which extends OpenStack with a bare-metal hypervi-
sor named xCAT. Following this way, both VMs and bare-metal
machines could be scheduled by nova-scheduler and accommo-
dated to users subject to application needs.

VE-RS, namely a RS-specific cluster environment with data-
intensive optimization, which also provided as a VE-RS service
based on the OpenStack enabled cloud framework. By means
of auto-configuration tools like AppScale, VE-RS could build
virtual HPC cluster with Torque task scheduler and Ganglia for
monitoring on top of cloud framework . Then varieties of RS
softwares could be customized and automatically deployed on
this virtual cluster with SlatStack®. Moreover, a generic parallel

9saltstack: https://docs.saltstack.com/en/latest/

skeletons together with a distributed RS data structure with fine-
designed data layout control are offered for easy but productive
programming of large-scale RS applications on MPI-enabled
cluster.

VS-RS, a virtual processing system that built on top of VE-
RS are served as a on-line service especially for large-scale RS
data processing.A VS-RS not only provides RS data products
processing service, but also offers VS-RS processing system as
a service and provide processing workflow customization. By
virtue of Kepler scientific workflow engine, VS-RS could offer
dynamic workflow processing and also on-demand workflow
customization. The thing that worth noting is that enabled by
Kelper, the complex workflow could also be built among clouds
or different data centers with web services. Moreover, the RS
algorithm depository together with RS workflow depository are

employed in VS-RS for workflow customization, interpreting
and implementing. Besides, the order management as well as
system monitoring and management are also equipped in VS-
RS to enable on-line processing and management.

RS Data Management, a novel and efficient way of managing
and sharing RS big data on top of cloud framework. It adopts
unbounded cloud storage enabled by swift to store these vari-
eties of data and served them in a RS data as a service manner.
Wherein, HPGFS the distributed file system for RS data ob-
ject is used for managing enormous unstructured RS data, like
RS imageries, RS data products and interim data. While the
structured RS metadata are managed by a NoSQL database —
HBase[51]. For a quick retrieval from varieties of massive RS
data, a Hilbert R* tree together with in-memory hot data cache
policy are used for indexing acceleration. Last but not least,
the thesis-based data subscription with virtual data catalog and
thesis-based data push are also put forward as a novel way of
data sharing.

Cloud Management and Portal manages the whole pip-
sCloud platform, including system monitoring, user Authen-
tication, Multi-tenancy management as well as statics and ac-
counting. While in the web portal of pipsCloud, the RS data
management, RS data processing capabilities as well as on-
demand RS workflow processing are all encapsulated as OGS
web services interface standards, such as WPS (Web Proccess-
ing Service), WCS (Web Coverage Service) and WMS (Web
Map Service).

4.2. RS Data Management and Sharing

Efficient RS data management and sharing is paramount es-
pecially in the contest of large-scale RS data processing. The
managing of RS big data not only limits to unstructured multi-
source RS imageries, but also varieties of RS data products,
interim data generated during processing, as well as structured
metadata. As is mentioned above, HPGFS with application-
aware data layout optimization is adopted for managing un-
structured RS data, while the RS metadata are stored in HBase
for query. Wherein, these unstructured RS data are organized
in GeoSOT global subdivision grid, and each data block in-
side these data are arranged in Hilbert order and encoded with
a synthetic GeoSOT-Hilbert code combing GeoSOT code with
Hilbert value. The GeoSOT-Hilbert together with the info of
data blocks are stored in the column family of the metadata
in HBase for indexing. For a quick retrieval from varieties of
massive RS data, a Hilbert R* tree with GeoSOT! [52] global
subdivision is employed for indexing optimization. For fur-
ther indexing acceleration, a hot-data cache policy is adopted
to cache “hot” RS imageries and metadata will cached into
Redis[53][54] in-memory database and offer hashe table index-
ing. The most important thing that worth mention is the easy
but novel way of RS data sharing — thesis-based RS data sub-
scription and data push through virtual data catalog mounting
as local .

10GeoSOT: Geographical Coordinate Subdividing Grid with One Dimension
Integer Coding Tree

(Web Portal)

Data
Subsription

ot Found
Hilbert R*-tree VS-RS
(Virtual Processing System)

)
[*1Data Procesing

VE-RS
(Virtual HPC Cluster)

©

QT

RS Interim |y,
Products RS Data .| Metadata
Repository
HPGFS (HBase)
(Distributed RS Data Stoage) Data
N A swit 4N AN

0

Figure 2: The Runtime Implementing of Data Management and Sharing

The runtime implementing of RS data management and shar-
ing is demonstrated as figure 2. Firstly, pipsCloud interprets the
data requests, and check the user authentication. Secondly, it
will conducts a quick search in the “hot” data cache on Redis
in-memory database with hash table index, if cache hit then re-
turn data. Thirdly, search the required data in the Hilbert R*
tree for the unique Hilbert-GeoSOT code. Fourthly, if used the
Hilbert-GeoSOT code of the found data to locate the metadata
entry in HBase, or locate the physical URL of the data for ac-
cessing. Fifthly, for a subscription request, re-organize these
data entries to form a virtual mirror and mount it to users lo-
cal mount point. Sixthly, if a acquisition of data or metadata
is needed, then invoke GridFTP for downloading. Finally, Ac-
counting is used for charging if the data is not free.

However, when the request data products are not available
then a RS data product processing could be requested to VS-RS.
The interim RS data and final RS data products generated dur-
ing processing would be stored to interim and products reposi-
tory based on HPGFS, while the relevant metadata will be ab-
stracted and insert into metadata repository based on HBase.
Meanwhile, the Hilbert R* tree should also be updated for fur-
ther indexing, and the access RS data or metadata entry would
automatically cache into Redis as “hot” data.

4.2.1. HPGFS: Distributed RS Data Storage with Application-
Aware Data Layouts and Copies

The intensive irregular RS data access patterns of RS applica-
tions which always perform non-contiguous I/O across bunches
of image data files would inevitably result in low I/O efficiency.
While, HPGFS which extends the prototype of OrangeFS of-
fers a an efficient and easy of use solution from server side to
natively support the direct distributed storing and concurrent

accessing of massive RS data with different irregular I/O pat-
terns. With the interfaces for data layout policy customization,
distributed metadata management, OrangeFS is highly config-
urable. In HPGFS, a logical distributed RS data object model
is adopted to organize the RS image datasets with complex data
structure. It is worth mention that HPGFS offers I/O interfaces
with RS data operation semantics together with application-
aware data layout and copy policies associated with expected
data access patterns of applications.

HPGFS adopts a logical distributed RS data object model
to describe the multi-band RS image, geographical metadata
as well as relevant basic RS data operations. Where, the
light-weighted Berkeley DB in distributed metadata servers is
adopted for storing, managing and retrieval of the complex
structured geographical metadata in a key-value fashion. While
the multi-dimensional (normally 3-D) images are sliced and
mapped into a 1-D data array using multiple space-filling curves
simultaneously. Then the arrange data array scattered over a
number of I/O servers with application-aware data layout poli-
cies. Withal, the basic RS data operation includes some meta-
data inquiry interfaces and geographical operations like projec-
tion reform and resampling.

As is depicted in figure 3, application-aware data layouts and
data copy polices consistent with expected RS data access pat-
terns are adopted for optimal data layout and exploiting data
locality. It is worth noting that multiple redundant data copies
with different application-aware data layouts are all simultane-
ously pre-created for each individual RS data. Instead of data
striping method with fixed or variable stripe size, RS data are
sliced into data bricks, which is are also multi-dimensional non-
contiguous data. By awareness of the expected I/O patterns of
RS applications, the 3-D data bricks in each copy of data are
mapping and organized using a Space-filling Curve that best
fits some certain data access pattern. Wherein, data copy orga-
nized in Z-order curve is provided for consecutive-lines/column
access pattern, diagonal curve is for diagonal irregular data ac-
cess pattern, while Hilbert curve is used for rectangular-block
access pattern. With the knowledge of the I/O patterns, the re-
quested RS data region distributed across different datasets or
even data centers can be organized and accessed locally in one
single logical I/O.

As is showed in figure 3, the hot data bricks would be dy-
namically copied and scheduled across I/O nodes adhere to the
statistics of actual data accessing. During the idle time of the
I/O nodes, the data bricks together with the list of the target
I/O nodes would be packaged as a “brick copy task™. Then, the
data brick in the copy task would be copied and transfered to
the target I/O nodes using a tree-based copying mechanism as
in figure 3 to form dynamical copies of data bricks.

4.2.2. RS Metadata Management with NoSQL Database
Metadata management and indexing is also an importance
part of RS data management and service. Recently, most of the
cloud framework adopts a key-value NoSQL database based on
distributed file system for the storage and random, real-time re-
trieval of massive structured data [55]. Therefore, NoSQL ap-
proach is employed in the management of enormous RS meta-

data, which is optimized with bloom filter accelerated indexing.
By virtue of HBase database, the metadata of the RS data like
data types, data products, geographical metadata are organized
and stored in the column family. Wherein, the thumbnails of RS
data for quick view is also stored in HBase in forms of several
compressed tiles that sliced with fixed size. While, The actual
data of the HBase database are stored in HDFS distributed file
system in cloud. Following this approach, the geographically
distributed metadata along with unstructured figures could also
be managed by HBase for on-line metadata retrieval and quick
view.

With the proliferation of data, the amount of metadata and
catalogs would be bound to sour up. Not surprisingly, there
would be millions of data entries in the metadata table of
HBase. Actually, these enormous data entries in key-value
fashion are normally serialized into thousands of files. There-
fore, the on-line retrieval of metadata at extreme volume would
definitely be a disaster ever. Actually, most of the key-value
database are indexed by keyword of the data entry. There are
several common indexing data structures, include Hash-based
indexing, R-tree indexing, B-tree indexing and so on. Wherein,
the indexing trees are normally used for local indexing inside a
key-value storage, while the Hash mechanism is used for locat-
ing the data nodes. However, in this scenario, a global indexing
tree would not be a wise chose, since the cost of building and
maintenance it could be unprecedented huge.

In the distributed scenario of pipsCloud, a hybrid solution
of combing both R-tree indexing and bloom filter is adopted
instead of a global data indexing . Actually, we build a local R-
tree indexing only for the metadata entries serialized in a group
of data files or located in a single data center, instead of a global
one. Meanwhile, bloom filter is a space-eflicient probabilistic
data structure that employed for global Hash-indexing, exam-
ples are Google BigTable and Apache Cassandra. Here, it is
used to test whether the requested data is belonging to specified
group of files or located in a certain data center. When in case of
metadata retrieval, the first step is to determine which group (m
groups) of entries it belongs to by conducting multiple bloom
filter indexing of each group concurrently in parallel. Then fol-
lows a local searching along a R-tree of the selected group of
metadata entries. Eventually, the faster decision of bloom filter
as well as the k independent hash lookups in parallel, would
give rise to an accelerated metadata query through HBase and
reduced costs of global indexing.

4.2.3. RS Data Index with Hilbert R*tree

Quick and efficient data retrieval among enormous dis-
tributed RS data has alway been a considerable challenging is-
sue. Historically, indexing data structures like R-tree or B-tree
are normally used to improve the speed of global RS data re-
trieval and sharing. Actually, the performance of indexing tree
greatly depends on the algorithms used to clustering the min-
imum bounding rectangles (MBRs) of the RS data on a node.
Hilbert R*tree employ a Hilbert space-filling curve to arrange
the data rectangles in a linear order and also group the neighbor
rectangles together. To meet the requirements of real-time RS
data updating, a dynamic Hilbert R*tree is normally more de-

Hilbert Order

(Cross-File Rectangular Access Pattern)

3-DBrick -

Data Organization
Multiple Space-filling Curves

Sequence of
3-D Bricks

Application-aware
Data Layouts

(Multiple Data Copies)

Z-Order Layout

oEen i~

Hilbert-Order Layout u | 2 15 | 6 BRI
Diagonal-Order Layout u w - u-

Data Copying

Figure 3: The Application-aware Data Layout and Data Copies

sirable. But compared to a static tree, it is also relatively more
time-consuming and complicated.

Normally, RS data products are subdivided into standard
scenes according to some global subdivision grid model.
Where, a data scene may spans several degrees of longitude
in lat-long geographical coordination, like 5° for Modis data.
Under this consideration, pipsCloud adopts a hybrid solution,
which combines Hilbert R*tree with GeoSOT global subdivi-
sion grid model. As is showed in figure 4, the global RS data are

Hybrid Indexing Tree
global Pyramid + Hiloert R* tree

Global Subdivision
(GeoSOT)

Global
Pyramid
(Quad-tree)

\Y
Generate
Quad-tree

Building
Hilbert R*- tree

Data Sorting
with Hilbert volde
Building R+-tfree

RS Data
(Temporalseral)

| |
i
RS Data RS Data
(Temporalsercl) (remporalsercl)

Figure 4: Optimal RS Data Indexing with Hilbert R* tree and Global Subdivi-
sion Grid

firstly grouped through a deferred quad-subdivision of GeoSOT
global subdivision grid model. Normally, through several lev-
els of quad-subdivision (like 5 level) a quad-tree could be con-
structed. While if the a RS dataset covers a really big region

that large than the GeoSOT grid, then this dataset would be
logically further divided into data blocks. Then the RS datasets
or data blocks inside the geographical region of each leaf node
of quad-tree would be re-arranged according the Hilbert value
of the center of the rectangles (i.e., MBR of the RS data or
blocks). Following this way, each RS dataset or data blocks
would be encoded with a unique GeoSOT-Hilbert code which
consists of both GeoSOT code and Hilbert value. Given the
Hilbert ordering, we generate new tree nodes and assign rect-
angles of RS data to these tree nodes sequentially. Wherein,
the non-leaf node contains LHVs (Largest Hilbert Value) and
also geographical region of the rectangles. Then by recursively
sorting these new nodes by the Hilbert value of the rectangle of
it and creating new nodes with higher level, a dynamic R*tree
could be generated. The leaf node of this hybrid Hilbert R*tree
is a data entry node, which contains the information (URL) of
a temporal serial of RS data that inside the rectangle of node.

With the unique GeoSOT-Hilbert code, the Hilbert R* tree
and the RS metadata repository could be easily connected. For
each RS dataset indexed in the leaf node of Hilbert R* tree, the
GeoSOT-Hilbert code as well as MBR of the data its-self and
the data blocks inside this data would all be stored together with
metadata in HBase. Accordingly, the searching of a given data
region would be started from the root, it descends the quad-
tree of GeoSOT global grid model, and then visits the nodes in
the Hilbert R*tree that intersect the desired rectangle to get the
GeoSOT-Hilbert code of the data so as to access metadata in
HBase and acquire imageries with URL.

4.2.4. RS Data Subscription and Distribution

Data sharing is paramount especially in the scenario where
enormous RS data are geographically scattered across data cen-
ters. pipsCloud provides on-demand data sharing to a wide

range of users in a data subscription manner. Through data sub-
scription, the required RS data retrieved by search condition
can be re-arranged and virtually mounted to the local storage of
user’s virtual machine or virtual environment as local catalogs
(figure 5). Unlike conventional ways of data sharing, the sub-
scribed RS data could be accessed and shared in a more easy-
of-use and intuitive way through virtual data catalog mounted
locally. Once when there is an up-to-date distribution of the
subscripted data, data users may be informed and choose to up-
date the virtual data catalog mirror without extra data retrieval
or downloading.

HPRSCloud
User's Virtual View Virtual Miror Hibert R*-tree

(VM, VE-RS,VS-RS) 'Y SPOT-5
| Local Directory } 2012
i vy e »2013

_.-~"Mount V2014 Data
| >/doto¢ Virtual Mirror! Supscription| .
| »/home ™. I VRegion(lationg)i 1.
| V/lio . | P Datal 47
| s P Data2 -+
| VM,VE-RS,VS-RS I » Datas 41
| No— DU WHRIA
VM

Figure 5: Data Subscription and Virtual Catalog Mirror

The flow of RS data subscription is as follows:

- Image Data Retrieval: Users can get the list of the request RS
data through data retrieval. Normally different ways of data
retrieval are also offered, including inquiry condition and vis-
ible data selection through map. The inquiry condition could
be the synthesis of satellite, sensor, data product type, resolu-
tion, spatial region of data and time span.

- Constructing Virtual Data Catalog Mirror: Re-organize the
retrieved RS data as in user or application customized catalog
fashion, then link these data to form a virtual data catalog
mirror.

- Mount Virtual Data Catalog Mirror: Take this catalog mirror
as a shared network disk space and virtually mount it to the
local disk of the user’s VM or VE. Accordingly, data users
could access any of the RS data inside the virtual data cata-
logs without extra data downloading operations.

Quick and efficient RS data distribution and browsing of geo-
graphically distributed massive multi-resolution RS image data
is another challenging issue in a remote sensing cloud. pip-
sCloud offers GeoSOT global subdivision grid (GSG) model
together with Hilbert Space-filling curve and code to create a
Hilbert global image pyramid. Based on global image pyramid,
the MapServer!! is employed as the major platform for on-line
RS data distribution and map browsing. For performance effi-
ciency, TileCache'? is used for caching the requested hot image
tiles. Finally, the image data are published as WMS service
for map displaying and retrieval by web-based map client like
OpenLayers!? or Ka-Map'?#).

U MapServer, http://www.mapserver.org

12TileCache, http://tilecache.org

130OpenLayers, http://en.wikipedia.org/wiki/OpenLayers

14Ka-Map, http://ka-map.maptools.org/index.phtml?page=home.html

4.3. VE-RS: RS-specific HPC Environment as A Service

VE-RS offers a RS-specific cluster environment as a service
on top of OpenStack enabled cloud framework. Based on the
VMs or BMs provided by cloud framework, VE-RS could build
virtual HPC cluster through automatic deployment of cluster
auto-configuration tools like AppScale. By means of SlatStack,
VE-RS allows customized deployment of RS softwares such as
ENVI, GDAL and ERDAS, together with HPC tools like MPI,
MapReduce, Torque and Ganglia on VMs or PMs in the virtual
cluster. Furthermore, pipsCloud also provides easy-to-use in-
terfaces for auto-deployment of RS-specific HPC cluster with
the APIs of ApppScale and SlatStack.

For efficient managing of RS big data, VE-RS adopts a par-
allel file system named HPGFS especially for RS imageries. To
solve the poor I/O performance introduced by intensive irreg-
ular I/O pattern, HPGEFS adopts application aware data layout
policy so as to exploiting data locality and reduce data move-
ments. Moreover, for easy but productive programming, VE-
RS provides RS-GPPS, a generic parallel skeletons for large-
scale RS data processing applications on MPI-enabled cluster
environment. It also adopts a distributed RS data structure with
fine-designed data layout control across distributed memories
for efficient loading and communicating of RS big data. In ad-
dition, VE-RS adopts Torque scheduler as local resource man-
ager and scheduler in virtual cluster, and ganglia for system
monitoring.

G

-

Resource List
CentOS: wget(URL/centosS.iso) VE-RS Request
*GNU C++: wget(URL/gnuc.4.tar.gz) 11
*IDL: wget(URL/idl..tor.gz) ParSIng

*MySQL: wget(URL/mysal.tor.gz)

*MPI: wget(URL/intelmpi.tar.gz)

Refrieve BMs/VMs | BMs/VMs

—O

Repository

L 9

Create BMs/VMs
| Machine Scheduling
ﬁ ﬁ ﬁ 1| & Image Deployment

— N
m Clider.Swift

Employ Network

Register
BMs/VMs -’

“+}.»| Mount Cloud Storage \W/
_.--1 Metadata
. v B . - Repository
SIS i Data —
. HP C‘Ipols Mount RS Data Mirror Subscription
; HPC Cluster HPC Tools ———————
\ fAuto-conﬁgurotion <
RS software *, *.| Software
. Wget
(use SaltStack) é] (software...) .| Repository
RS Software " —
Auto-Deployment [< o
e~
VE-RS
PR > Repository
V.E_RS. Register (Glance)
Registration VE-RS Image
v

Figure 6: The Generation and Auto-deployment of VE-RS

When a Virtual HPC cluster is requested, the generation and

auto-deployment of VE-RS is invoked as showed in figure 6.
Firstly, the VE-RS customization request is parsed into de-
tailed resource requirement, such as the number or type of CPU,
Memory, network as well as cloud storage. Secondly, retrieve
available BMs or VMs in the BMs/VMs repository. Thirdly, if
the existing BMs/VMs could be fit the requirement then create
it according to user needs, including physical machine schedul-
ing by nova-scheduling, BM/VM image deploying, employing
network by nova-network, mount cloud storage from Cinder
or Swift and register it to BMs/VMs repository. Fouthly, em-
ploy cluster auto-configuration tools like AppScale to automat-
ically build HPC cluster with HPC tools like MPI/MapReduce,
Torque and Ganglia. Fifthly, use SlatStack to automatically de-
ploy programming model for RS, and other RS software like
ENVI, GDAL and ERDAS. Following this way, a RS-specific
cloud-enabled cluster environment would be automatically gen-
erated and registered into VE-RS repository for later use.

4.3.1. On-demand HPC Cluster Platforms with Bare Meta Pro-
visioning

In this paper, we adopt xCAT to extend the dominant Open-
Stack platform for supporting bare-metal provisioning, and use
KVM hypervisor for VMs provisioning. OpenStack consists of
a collection of software components, including Nova for com-
puting resource (VMs/BMs) management, Glance for image
management and Swift for building cloud storage. Normally,
OpenStack basically offers virtual machines and the resource
visualization is enabled by some hypervisors like Xen or KVM.
As is showed in figure 7, we use KVM hypervisor for the cre-
ation and management of VMs from the pool of physical ma-
chines. When a virtual machine is requested, Nova-compute of
OpenStack will invoke the API of KVM for the creation and
deployment of VMs. While, the virtualization and deployment
of network resources is conducted by nova-network.

Actually, bare-metal provisioning is not directly supported
in OpenStack. Hypervisor xCAT as a scalable distributed
resource-provisioning tool, provides unified interfaces for dis-
covery and software deployment of physical machines. How-
ever, to enable bare meta machines in OpenStack through
xCAT, a bare-metal driver for XCAT should be integrated in
Nova-compute component ([24]). Normally, Nova-compute
uses libvirt library to manage different hypervisors for diverse
virtualization approaches. In this context, the bare-metal driver
for xCAT is needed as an alternative to the libvirt driver. On
one hand, XCAT driver deals with the bare-metal (BM) machine
requests from Nova-compute, and on the other hand it commu-
nicates with XCAT to complete resource provisioning.

As is showed in figure 7, when a HPC cluster environment
for RS data processing with bare-metal machine is requested
by user, the nova scheduler will choose a nova-compute node
and pass the request to the Libvert driver of it. Then, the Lib-
vert driver would invoke the so implemented bare-metal driver
of xCAT and transfer the request to xCAT. Consequently, the
xCAT will take charge of everything. It gets the information
of bare-metal machines from BM/VMs database, and down-
loads the system images with OS and software needed for build-
ing HPC cluster for RS. Then, xCAT activate the boot loader

10

Nova-Compute

Libvert Driver

Bare Meta

Image Depository Driver

for RS Systems
(GLANCE)

Downloa
System Images

XCAT

(Bare Meta Hypervisor)

Invoke KVYM
Download—
System Images

KVM

(VMs Hypervisor)

Updat&®
2 S
Get BMinfo

Involk
xCAT Driver

PXE
Boot from Network

VMs/BM

Database
PXE
(System Boot Drive) VMs Creatio
and Deployment
S L)
Image
=g
- - Ell - - -
Ll | L |y | e ot L e
]]]
y Lol | | | [l | iy [B | i L
Image B2)]
Ll | L | g L | e ot L e
] o
| o [l | [l | [s

Cluster
(Physical Machines)

Figure 7: Bare Meta Provisioning in Cloud with xCAT

of the physical machine using PXE (Preboot Execute Envi-
ronment), and power on the machine with power management
driver IMPI. After that, XCAT boots the physical machine from
network and deploys it with specified system image (OS and
software). Finally, the register the information of bare-meta
machine into the BM/VMs database. In case that the bare-metal
machine is running, the XCAT is also responsible for the man-
aging and monitoring the status of it. Following this way, not
only VMs but also BMs could be accommodated for on-demand
needs of variable HPC cluster platform for RS applications, so
as to decrease performance penalty.

4.3.2. Skeletal Programming for RS Big Data Processing

Cluster-based HPC platforms will be characterized by ex-
treme scale and a multilevel hierarchical organization. Efficient
and productive programming for these systems will be a chal-
lenge, especially in the context of data-intensive RS data pro-
cessing applications.

To properly solve the aforementioned problems, we propose
RS-GPPS, Generic Parallel Programming Skeletons for mas-
sive remote sensing data processing applications enabled by
template class mechanism, and work on top of MPI. Generic
parallel algorithms are abstract and recurring patterns lifting
from many concrete parallel programs and conceal parallel de-
tails as skeletons. This approach relies on type genericity to
resolve polymorphism at compile time, so as to reduce the run-
time overhead while providing readability of high-level. We fo-
cus on so-called class templates, which are parameterized com-
putations patterns and used to implement algorithm skeletons
(figure 8). The main contribution of RS-GPPS is that it provides

Data Partition
Partition_Policy() ' el .

Generic Parallel RS Programming Skeletons

Pipeline “m ImageFusion
— —
== AR . ——
B
& K% |+
RS-Farm : glggrec;itco(r]sl : Registration
(=) 9 @ S I
‘motmim] o, va 3
me B

—~

(a) RS SKeleton Clode

Generate MPI

[Rs-Gi

using namespace RS-GPPSSkeleton;

Code from

C++ SKeleton Code

#include <RS-FarmPipetne-tr

R

Initialize ();

MPL_Init(&argv,&argc);
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

static void doWork(Job job, Dist_RSData<T> dist_A,

RS Operator Job()
NDVI = (NIR-R)/(NIR+R)

B=dist_B.zip():
RS-GPPSSkeleton.Finalize():

app::doWork(resampling,dist_A, dist_B); 7*\—’

Dist_RSData<T> &dist_B){

// construct pipeline here with pseudo code
Stage: pLoad|(dist_A(i])): // MPI_Read]()
Stage2: dist_A(ij-1)=job(dist_A(i-1));
Stage3 dist_Bi=zip (dist_B(1-2));

RS Dataset b 9

zip(dist_B(i,j-2)): //MPI_Reduce()
pWiite(dist_B(i)): //MPI_Write()
1

Auto- it AG] P istA()] distAGD | dist Al
implementing @ @ '@ :
in Parallel il [Rar

-2
“Job()
[ne]

' Multicore Cluster

Figure 8: The Skeletal Parallel Programming Model for RS Big Data in pipsCloud

both generic distributed RS data structure and generic parallel
skeletons for RS algorithms.

Generic distributed RS data structure is a MPI-enabled data
structure that allows the distribution of RS data across comput-
ing nodes in cluster. The massive RS data object with multi-
dimensional image data and complex metadata, whose data are
slicing into blocks and distributed among nodes is abstracted
and wrapped as generic distributed RSData class template. Also
the MPI one-sided messaging primitives and serialization of
complex data structure are be used in data structure template, to
offer the simple data accessing and residing of whole massive
RS data in distributed memory space among nodes like local
ones.

Generic parallel skeletons for RS algorithms that perform
computations on distributed RS data structures could be used
for RS algorithms with different computation modes. These
skeletons express parameterization of parallelism without con-
cern for implementation details like data distribution and task
partition, complicated access modes of RS data, and all low-
level architecture dependent parallel behaviors. When a generic
parallel skeleton is instantiated and declared, the computa-
tions on distributed remote sensing data objects are performed.
Firstly, the task would be divided into subtasks by two-stage

11

task partition strategy, first nodes then intra-nodes, which con-
sistent with the data partition strategy. Then to actually load
the data blocks owned by each node concurrently through the
parallel I/O operations enabled by parallel file system. Finally,
the user defined remote sensing sequential code encapsulated
in job class would be implemented in parallel by each process.
In this situation, the easy of parallel programming could be of-
fered with a minimum concern for architecture-specific parallel
implementation behaviors.

4.4. VS-RS: Cloud-enabled RS Data Processing System

VS-RS offers on-demand workflow customization and dy-
namic processing for various large-scale RS applications in
cloud as on-line services on top of a cloud-enabled HPC clus-
ter environment VE-RS. It consists of order manager, resource
scheduler, runtime for collaborative workflow processing, and
data or algorithm repositories. Wherein, the order manager is
responsible for parsing the requested RS data processing orders
into abstract collaborative workflows according to the workflow
repositories. While the resource scheduler adopts an optimal
scheduling strategy to conduct an optimized resource mapping
for the abstract workflow to form a concrete one, including data,
algorithm and computing resources. Actually, these concrete

workflows are constructed dynamically through dynamic opti-
mal resource allocation during runtime according to the mon-
itored status of resources and system. Meanwhile, the kepler-
enabled workflow processing runtime dynamically implements
each step of the workflow with allocated resources on Local
cluster in VE-RS or launched it to remote data centers, and fi-
nally coordinates the whole collaborative workflow processing
procedure.

4.4.1. Dynamic Workflow Processing for RS Applications in
Cloud

The RS data processing applications are typically some what
on-the-flow processing. The whole processing procedure are
consists of several processing stages. Take a typical multi-
stage pre-processing for instance, it includes LO processing,
radiometric correction (RC), geometric rectification (GR) and
followed by fine rectification (FR) or ortho-rectification (OR).
Each of the processing step produces corresponding RS data
products. This kind of RS data processing workflow generates
a data-driven processing flow, each step depends on the output
data of the preceding step as input data.

In a traditional RS data processing system, the workflows for
various RS applications are always predefined as static ones.
But many RS applications normally demand for on-demand
workflow processing capability. In this scenario, the dynamic
customization of application-specific workflows according to
the variable needs is essential. Moreover, the RS observation
data generally are scattered among different satellite data cen-
ters geographically. So a large-scale RS applications like re-
gional to global drought monitoring ([56]), normally need a
collaboration of several data centers. In this sense, not only the
data, but also the processing workflows from other data centers
or scientist need to be shared and cooperated. To complicated
the situation that the unstable computing environment across
data centers will inevitably lead to the failure of whole process-
ing. Therefore, a dynamic resource allocation and scheduling
is essential for a distributed workflow collaboration across data
centers.

To solve the dynamic RS workflow processing issue, we put
forward a two-level worklow processing scheme with both the
abstract workflow and the concrete one. The abstract work-
flow is used to logically represent the complex processing pro-
cedure customized by domain scientists. Each processing step
in the abstract workflow is a logical function rather than an ac-
tual processing program, whose actual algorithm and data re-
sources are not decided yet. When an abstract workflow is cus-
tomized, it would be expressed in XML format and stored in the
RS workflow depository. While, the concrete workflow is not
built at once but dynamically constructed and implemented by
an efficient workflow engine through dynamic resource map-
ping during runtime. In case when one step of the abstract
workflow is allocated with required algorithm, data and com-
puting resources then it will be launched to designated nodes or
remote data center for parallel implementing and collaboration
by workflow engine. Following this way, the large-scale RS ap-
plication could be dynamically implemented on HPC cluster or

12

across data centers for global workflow collaboration with op-
timal runtime resource allocation according to resource status.

For dynamic workflow processing with high efficiency, a
proper workflow engine is also of vital importance. Currently,
scientific workflows ([57]) are gradually employed to formal-
ize and enable distributed scientific processing for in various
disciplines, such as Physics and Earth Science. Compared to
the traditional control flow oriented workflow system, scientific
workflow management system (SWFMSs) like VIEW ([57],
Kepler ([58] and Pegasus ([59]) are typically data flow oriented.
In this paper, we adopt Kepler engine that are most widely used
as the main scientific workflow runtime and management sys-
tem.

On-demand workflow customization serviced by VS-RS in
pipsCloud is demonstrated in figure 9. When a RS processing
workflow creation or customization is requested through simple
drag-and-drop of algorithms in graphical user portal, a search-
ing operation is triggered in RS algorithm repository for a name
catalog of various registered RS algorithms. Then follows the
composition of user selected algorithms together with the con-
trol logics among these algorithms to form an abstract work-
flow. Here the algorithms which form workflows only refer
to the functional names of them rather than the real algorithm
resources with executable program. The customized abstract
workflows expressed in XML format are then registered into
RS abstract workflow repository for further processing.

Dynamic RS workflow runtime enabled by Kepler workflow
engine and a two-level workflow scheme is illustrated in figure
9 for collaborative large-scale RS workflow processing across
data centers or clouds. In case when a RS data products pro-
cessing order is requested by user through portal, then a RS
data processing procedure would be launched on the RS work-
flow runtime for processing.

The dynamic processing of large-scale collaborative work-
flows on Kepler-enabled runtime goes as follows:

— Firstly, Abstract workflow matching is a responsible for in-
terpreting the requested orders into abstract RS worflows
without allocation. With the key word “Product Type”, run-
time searches for the corresponding abstract workflow in the
workflow repository for each RS order requested through
cloud web portal. While, the abstract workflow interpreted
only tells the blueprint of the data processing procedure, in-
cludes functional name of each step as well as the control
logic among them. But the actual processing program or data
needed for processing in each workflow step is not decided
yet.

Secondly, Optimal Resource Allocation continues to con-
duct optimal resource mapping for each workflow step ac-
cording to the current status of various resource and sys-
tem. Wherein, the resources here refers to three main cat-
egories of resources including algorithm resources with ac-
tual programs, various RS data required for processing and
also processing resources like processors and network which
are needed for execution. Initially, a knowledge query from
product knowledge repository is invoked for acquiring the
knowledge rules for this designated RS data product. The

[Web Portal (SOAP,WPS, WCS, WMS, HTTP....)

)

I
Workflow Request

Y
u

Search
Workflow v

AbstractWorkflow
Matching

RS abstract
Workflow
Repository

@@

N

selp]
Step2

Build

Workflow
.-

Workflow
Customization

—

S <P

RS
Algorithm
Repository

Tos S35 \-—q—’® -

Search
Algorithms

OrderRequest & -+ - -- -~ -~ -~ - =- =- —=- == o

RS Order

Type: NDVI
Region: China
Time: 2011,May

l

Abstract Workflow

O
@@

I
i

T
'
'
ro
'
'
'

> Multi-objective
RS Product Optimal ,"
Knowledge |- .o........ . cheduling Mode| |
Repository | Dclt% ’ ,I +
nowlecge o- - - -- - - o/ /Concrete Workflow: Kepler
- i |
Data Processor P (@7 [o©®. O 7~
RS Data : Allocation = \3 g'@'}”(&
i =]
1 ¢ G
RS D} p @
Metadata | R Oz O /
Repository | ..* Generate [S N
ﬁ S5 L. Next Kepler Workflow
v 57 4 Step
Y
RS : RS Data Run
Imageries : Products Kepler Workflow
THE R Kepler
%% I 2 (Workflow Engine)
— \ Run Remot
o : ; Task Run un semote
. Submission Remote Action Action/Workllow \ o rkflow Execution
%) N D(cjltclt
on @O (O AN T 00
------- @ O-He @ ey (e s
Virtual HPC Cluster(VE-RS)
) Task Scheduling Task Schedulin
Eacuion - . ° 5 i
n H Al thi LRM:) gorithm
Execution (LRM:Torque/Falker) Ex%?:rulnig:\ ERATorque Execution
Il & Il S| Il
Parallel Parallel " femag=— | eeeeee L A | Parallel
Execution Execution] hv4 Ex(e';‘:g}l)on
(MPI) (MPI) == = W=

Figure 9: Dynamic and optimal Workflow processing for Large-scale RS Applications with Kepler

product knowledge represents in rules mainly indicate the re-
quirement of the RS data, such as the resolution or sensor of
the RS imageries, auxiliary data as well as some parameter
data or file needed. Then with the knowledge rules of data
products, there follows the generating of condition statement
for RS data query. Accordingly, a list of RS imageries or
auxiliary data could be draw out from the data repository for
further processing. After that goes the algorithm allocation,
the candidate executable programs are deposit from the al-
gorithm repository with the key word of functional name of
algorithms. In addition, the available computing resources
like processor and network are also allocated for processing
according to the current status through monitoring.

However, the problem worth noticing is that how to choose
the resources that fit the data processing procedure best so as
to achieve an optimal performance QoS target. The main

13

reason for that would be the plenty of candidate program of
algorithms, RS data as well as computing resources meet-
ing the requirement of these specified processing steps in the
workflow of data products processing. Nevertheless the loca-
tion of RS data, network bandwidth and usage as well as the
CPU capacity and usage of processors are all the factors that
affect the total performance QoS target of the whole work-

flow.

To achieve optimal resources for a certain step of work-
flow, the workflow runtime employs an optimal resource
scheduling model with performance QoS target function and
user-customized scheduling rules. Wherein the QoS target
function is a target function which take data amount, network
width, program performance and processor performance into
considerations each factor of which a assigned with a em-
pirical weight value. Moreover, the scheduling rule could

also be customized and stored into rule repository in a key-
condition-threshold style. Some basic scheduling rules like
near-data computing for reducing data movement are also
provided in the workflow scheduling for optimization. Ac-
cording to the performance QoS target function and schedul-
ing rules, we could select the best-fit RS data, algorithm pro-
grams and computing resources from candidates with an op-
timal final performance QoS. Then these resources are allo-
cated to this certain processing step of wokflow.

Thirdly, Partly generating concrete Kepler workflow from
abstract workflow with allocated resources. Here runtime
only generates part of the Kepler workflow for certain pro-
cessing steps with allocated resources. Each step of the Ke-
pler workflow is then represented as an executable Kepler
“actor”.

Fourthly, Run Kepler workflow on Kepler workflow engine.
In case when the processing step of workflow is a local ac-
tor, then a PBS/Torque task submission is triggered to the
LRMs (Local Resource Manager). Then the LRMs would
launch the program of this workflow processing step onto
the allocated processors (VMs or BMs) in virtual HPC clus-
ter environment in cloud and executed it in parallel. While,
if the workflow step is “sub-workflow” expressed as a web
service actor, Kepler would directly invoke the web service
interfaces for execution. If the processing step is a remote job
execution, then a remote action is invoked with a remote job
submission. After receiving the job submission, the LRMs
of the remote data center would soon run the program on
processors and final feedback with interim data. The interim
data would be cached into the interim data repository so as
to preparing for data transferring to next data center or cloud
for further processing of workflow. As is showed in figure 9,
in the processing workflow of producing global NDVI data
products, runtime firstly executes two initial steps of LO pro-
cessing and geometric correction (GC) on the virtual HPC
cluster of cloud, then pass the interim data products to Data
Center 2 and launch a remote execution of radiometric cor-
rection (RC), when RC is finished, then Kepler triggers a re-
mote job submission to the LRMs of data center N for the
parallel implementing of the last two programs.

Finally, continue the workflow processing recursively from
optimal resource allocation, generating Kepler workflow
to implementing workflow collaboratively until end of the
workflow procedure. Following this way, the entire complex
processing workflow could be generated and implemented
dynamically on Kepler engine with an nearly optimal per-
formance QoS of the whole processing procedure. When the
workflow ends, the RS data products would be registered into
RS data product repository for downloading.

Consequently, with the logical control and data transferring
among data centers, a distributed workflow among different
data center or cloud systems could be collaboratively imple-
mented. Each step of the workflow is implemented with the
optimal allocated resources according to current system status.
Even when a failure of the allocated resources are occurred,
then a re-allocation of the resource would be triggered for the a

14

re-build and re-run of the Kepler workflow.

5. Experiments and Discussion

The pipsCloud which offers high-performance cloud envi-
ronment for RS big data has been successfully adopted to build
the Multi-data-center Collaborative Process System (MDCPS).
By virtue of the data management service in pipsCloud, the
multi-source raw RS data, interim data and also data products
could all be efficiently managed and accessed. Through the VE-
RS service in pipsCloud, a customized virtual HPC cluster envi-
ronment is easily built and equipped with RS softwares, parallel
programming model and large-scale task scheduling especially
for RS applications. By employing the VS-RS service offered
in pipsCloud, MDCP are well constructed and equipped upon
the VE-RS cluster environment with order management, work-
flow engine and depository for RS algorithms and workflows.
Furthermore, enabled by the Kepler workflow engine, the com-
plex processing procedures for global RS data products are cus-
tomized as dynamic workflows that implemented through the
collaboration cross multiple data centers. These processing is
dynamic since the concrete workflows are not predefined but
dynamically formed through runtime resource mapping from
abstract workflows to data centers.

Actually, MDCPS connects several national satellite data
centers in China, such as CCRSD!, NSOAPS!®, NMSC'". It
offers on-line processing of regional to global climate change
related quantitative RS data products with these multi-source
RS data across data centers. The RS data products generated
by MDCPS include vegetation related parameters like NDVI '8
and NPP'?, radiation and hydrothermal flux related parameters
like AOD?® and SM?!, as well as global ice change and mineral
related parameters. The 5-day global synthetic NDVI parameter
product in 2014 generated using MODIS 1km data is showed in
figure 10. The 5-day global synthetic NPP parameter products
which also produced with MODIS 1km data in day 211to 215
and day 221 to 225 in 2014 are relatively demonstrated in sub
figure (a) and (b) in figure 11.

The performance experiments on typical RS algorithms with
both increasing processors and data amounts are carried out
for the validation of the scalability of the pipsCloud platform.
In this experiment, two MPI-enabled RS algorithms are cho-
sen for implementing, including NDVI and NPP. Meanwhile,
pipsCloud platform offers a virtual multi-core cluster with 10
nodes connected by a 20 gigabyte Infiniband network using
RDMA (Remote Direct Memory Access) protocol. Each node
is a bare-meta provisioned processor with dual Intel (R) Quad
core CPU (3.0 GHz) and 8 GB memory. The operating system

I5CCRSD: China Centre for Resources Satellite Data
I5N'SOAPS: National Satellite Ocean Application Service
1"NSMC: National Satellite Meteorological Centre
I$NDVI: Normalized Differential Vegetation Index
19NPP: Net Primary Productivity

20 AOD: Aerosol optical depth

21SM: Soil Moisture

Figure 10: The 5-day synthetic Global NDVI products in 2014

(a) NPP products from day 211 to 215

(b) NPP products from day 221 to 225

Figure 11: The 5-day synthetic Global NPP products in 2014

was Cent OS5.0, the C++ compiler was GNU C/C++ Com-
piler with optimizing level O3, and the MPI implementation
was MPICH.

Run Time with Scaling Nodes

600

500

400 1

300 1

Time (min)

200

100 +

1(1) 1(8) 2(16) 3(24) 4(32) 5(40) 6(48) 7(56) 8(64) 9(72) 10(80)
Nodes(Cores)

Figure 12: Run Time of NPP and NDVI with Scaling nodes

The runtime and speedup performance merit of both NPP and
NDVI with increasing numbers of processors are illustrated rel-
atively in figure 12 and figure 13. As is demonstrated in sub
figure (a), the run time merit curves of these two algorithms de-
crease almost linearly especially when scale to less than 4 pro-

15

Speedup

Speedup with Scaling Nodes

60

50 1

40 1

30 1

20 1

1(1) 1(8) 2(16) 3(24) 4(32) 5(40) 6(48) 7(56) 8(64) 9(72) 10(80)
Nodes(Cores)

Figure 13: Speedup of NPP and NDVI with Scaling nodes

cessors (32 cores). However, the decrease rate is mush slower
when scale from 5 processors (40 cores) to 10 processors (80
cores). The main reason for that would be the total run time
which is relatively small makes the speedup not that obvious,
since the system overhead could not be omitted. The same trend
is also showed in sub figure (b) that the speedup metric curves
of both two algorithms soar up linearly when scaling to 10 pro-
cessor (80 cores) .

Run Time
1200
1000 -
v
—e— NDVI -
800 - O NPP)'/
—-w— NDWI //

600 -

400 1

Run Time (min)

200

10.0
RS Data Amount(GB)

22.0 100.0 150.0 200.0 250.0 300.0

Figure 14: Run Time of NPP and NDVI with Increasing Data Amount

With the amount of RS data increasing from 0.5 gigabytes
to about 300 gigabytes, the experimental result is depicted in
figure 14. Judging from the performance curves demonstrated,
the MPI-enabled NPP and NDVI algorithms implemented on
pipsCloud both show their excellent scalability in terms of data.

6. Conclusion

The Cloud computing paradigm has been widely accepted
in the IT industry with highly matured Cloud computing mid-
dleware technologies, business models, well-cultivated ecosys-
tems. Remote sensing is a typical information associated zone,
where data management and processing play a key role. With
the advent of high resolution earth observation era give birth to
the explosive growth of remote sensing (RS) data. The prolif-
eration of data also give rise to the increasing complexity of RS
data, like the diversity and higher dimensionality characteristic
of the data. RS data are regarded as RS “Big Data”.

In this paper we discusses how to bring the cloud computing
methodologies into the remote sensing domain. We focus the
overall high performance Cloud computing concepts, technolo-
gies and software systems to solve the problems of TS big data.
pipsCloud, a prototype software system for high performance
Cloud computing for RS is proposed and discussed with in-
deep discussion of technology and implementation. As a con-
tribution, this paper bring a complete reference design and im-
plementation of high performance Cloud computing for remote
sensing.

In the future applications, such as smart cities and disaster
management, the great challenges will arise due to fusion of
huge remote sensing data with other IoT data. The pipsCloud,

16

benefiting from the ubiquity, elasticity and high-level of trans-
parency of cloud computing model, could be able to manage
and process the massive data, meeting the future applications
requirements.

7. Acknowledgement

This research was supported by the National High Technol-
ogy Research and Development Program of China (“863” Pro-
gram) (No. 2013AA12A301) , National Natural Science Foun-
dation of China (No. 41401512) and Youth Innovation Promo-
tion Association CAS.

References
[1] Th. Udelhoven. Big data in environmental remote sensing: Challenges
and chances, 12 2013.
N Skytland. Big data: What is nasa doing with big data today. Open. Gov
open access article, 2012.
OGC-OpenGIS Consortium et al. The opengis abstract specification-topic
7: The earth imagery case, 1999.
P. Gamba, Peijun Du, C. Juergens, and D. Maktav. Foreword to the special
issue on “human settlements: A global remote sensing challenge”. Se-
lected Topics in Applied Earth Observations and Remote Sensing, IEEE
Journal of, 4(1):5-7, March 2011.
C.A. Lee, S.D. Gasster, A. Plaza, Chein-I Chang, and Bormin Huang.
Recent developments in high performance computing for remote sensing:
A review. Selected Topics in Applied Earth Observations and Remote
Sensing, IEEE Journal of, 4(3):508-527, Sept 2011.
A Rosenqvist, M Shimada, B Chapman, A Freeman, G De Grandi,
S Saatchi, and Y Rauste. The global rain forest mapping project-a review.
International Journal of Remote Sensing, 21(6-7):1375-1387, 2000.
Mathieu Fauvel, Jon Atli Benediktsson, John Boardman, John Brazile,
Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Paolo
Gamba, A Gualtieri, M Marconcini, et al. Recent advances in techniques
for hyperspectral image processing. Remote Sensing of Environment,
pages 1-45, 2007.
Antonio J. Plaza. Special issue on architectures and techniques for real-
time processing of remotely sensed images. J. Real-Time Image Process-
ing, 4(3):191-193, 2009.
Dongjian Xue, Zhengwei He, and Zhiheng Wang. Zhouqu county 8.8
extra-large-scale debris flow characters of remote sensing image analy-
sis. In Electronics, Communications and Control (ICECC), 2011 Inter-
national Conference on, pages 597-600, Sept 2011.
G. Schumann, R. Hostache, C. Puech, L. Hoffmann, P. Matgen, F. Pap-
penberger, and L. Pfister. High-resolution 3-d flood information from
radar imagery for flood hazard management. Geoscience and Remote
Sensing, IEEE Transactions on, 45(6):1715-1725, June 2007.
A.H.S. Solberg. Remote sensing of ocean oil-spill pollution. Proceedings
of the IEEE, 100(10):2931-2945, Oct 2012.
Bingxin Liu, Ying Li, Peng Chen, Yongyi Guan, and Junsong Han. Large
oil spill surveillance with the use of modis and avhrr images. In Remote
Sensing, Environment and Transportation Engineering (RSETE), 2011 In-
ternational Conference on, pages 1317-1320, June 2011.
A. Rosenqvist, M. Shimada, B. Chapman, K. McDonald, G. De Grandi,
H. Jonsson, C. Williams, Y. Rauste, M. Nilsson, D. Sango, and M. Mat-
sumoto. An overview of the jers-1 sar global boreal forest mapping
(gbfm) project. In Geoscience and Remote Sensing Symposium, 2004.
IGARSS ’'04. Proceedings. 2004 IEEE International, volume 2, pages
1033-1036 vol.2, Sept 2004.
G. De Grandi, P. Mayaux, Y. Rauste, A. Rosenqvist, M. Simard, and S.S.
Saatchi. The global rain forest mapping project jers-1 radar mosaic of
tropical africa: development and product characterization aspects. Geo-
science and Remote Sensing, IEEE Transactions on, 38(5):2218-2233,
Sep 2000.
Antonio J. Plaza and Chein-I Chang. High Performance Computing in
Remote Sensing. Chapman & Hall/CRC, 2007.

(2]

(3]

[4]

[3]

[6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

[23]

[24]

(25]

(26]

(27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

Yan Ma, Lizhe Wang, Albert Y. Zomaya, Dan Chen, and Rajiv Ranjan.
Task-tree based large-scale mosaicking for remote sensed imageries with
dynamic dag scheduling. IEEE Transactions on Parallel and Distributed
Systems, 99(PrePrints):1, 2013.

Xinyuan Qu, Jiacun Li, Wenji Zhao, Xiaoli Zhao, and Cheng Yan. Re-
search on critical techniques of disaster-oriented remote sensing quick
mapping. In Multimedia Technology (ICMT), 2010 International Confer-
ence on, pages 1-4, Oct 2010.

Yuehu Liu, Bin Chen, Hao Yu, Yong Zhao, Zhou Huang, and Yu Fang.
Applying gpu and posix thread technologies in massive remote sensing
image data processing. In Geoinformatics, 2011 19th International Con-
ference on, pages 1-6, June 2011.

Yan Ma, Lingjun Zhao, and Dingsheng Liu. An asynchronous parallelized
and scalable image resampling algorithm with parallel i/o. In Computa-
tional Science-ICCS 2009, volume 5545 of Lecture Notes in Computer
Science, pages 357-366. Springer Berlin Heidelberg, 2009.

Min Cao and Zhao-liang Shi. Primary study of massive imaging auto-
processing system pixel factory. Bulletin of Surveying and Mapping,
10:55-58, 2006.

S. Pandey, A. Barker, K.K. ”, and R. Buyya. Minimizing execution costs
when using globally distributed cloud services. In Advanced Informa-
tion Networking and Applications (AINA), 2010 24th IEEE International
Conference on, pages 222-229, April 2010.

Daniel Mandl. Matsu: An elastic cloud connected to a sensorweb for
disaster response. pages 1-22, 2011.

K. Keahey and M. Parashar. Enabling on-demand science via cloud com-
puting. Cloud Computing, IEEE, 1(1):21-27, May 2014.

Jun Xie, Yujie Su, Zhaowen Lin, Yan Ma, and Junxue Liang. Bare
metal provisioning to openstack using xcat. Journal of Computers(JCP),
8(7):1691-1695, 2013.

A. Remon, S. Sanchez, A. Paz, E.S. Quintana-Orti, and A. Plaza. Real-
time endmember extraction on multicore processors. Geoscience and Re-
mote Sensing Letters, IEEE, 8(5):924-928, Sept 2011.

R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel pro-
gramming on clusters of multi-core smp nodes. In Parallel, Distributed
and Network-based Processing, 2009 17th Euromicro International Con-
ference on, pages 427-436, Feb 2009.

Plaza A., Qian Du, Yang-Lang Chang, and King R.L. High performance
computing for hyperspectral remote sensing. Selected Topics in Applied
Earth Observations and Remote Sensing, IEEE Journal of, 4(3):528-544,
Sept 2011.

Yinghui Zhao. Remote sensing based soil moisture estimation on high
performance pc server. In Environmental Science and Information Appli-
cation Technology (ESIAT), 2010 International Conference on, volume 1,
pages 64-69, July 2010.

Yanying Wang, Yan Ma, Peng Liu, Dingsheng Liu, and Jibo Xie. An
optimized image mosaic algorithm with parallel io and dynamic grouped
parallel strategy based on minimal spanning tree. In Grid and Coop-
erative Computing (GCC), 2010 9th International Conference on, pages
501-506, Nov 2010.

Xue Xiaorong, Guo Lei, Wang Hongfu, and Xiang Fang. A parallel fu-
sion method of remote sensing image based on ihs transformation. In
Image and Signal Processing (CISP), 2011 4th International Congress
on, volume 3, pages 1600-1603, Oct 2011.

Taeyoung Kim, Myungjin Choi, and Tae-Byeong Chae. Parallel process-
ing with mpi for inter-band registration in remote sensing. In Parallel and
Distributed Systems (ICPADS), 2011 IEEE 17th International Conference
on, pages 1021-1025, Dec 2011.

Yan Ma, Lizhe Wang, Dingsheng Liu, Peng Liu, Jun Wang, and Jie Tao.
Generic parallel programming for massive remote sensing data process-
ing. In Cluster Computing (CLUSTER), 2012 IEEE International Con-
ference on, pages 420—428, Sept 2012.

Filip Blagojevi, Paul Hargrove, Costin Iancu, and Katherine Yelick. Hy-
brid pgas runtime support for multicore nodes. In Proceedings of the
Fourth Conference on Partitioned Global Address Space Programming
Model, PGAS 10, pages 3:1-3:10, New York, NY, USA, 2010. ACM.
Wei-Yu Chen, C. Iancu, and K. Yelick. Communication optimizations for
fine-grained upc applications. In Parallel Architectures and Compilation
Techniques, 2005. PACT 2005. 14th International Conference on, pages
267-278, Sept 2005.

Nan Dun and K. Taura. An empirical performance study of chapel pro-

17

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

gramming language. In Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
497-506, May 2012.

J. Milthorpe, V. Ganesh, AP. Rendell, and D. Grove. X10 as a parallel
language for scientific computation: Practice and experience. In Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pages 1080-1088, May 2011.

Ciprian Dobre and Fatos Xhafa. Parallel programming paradigms and
frameworks in big data era. International Journal of Parallel Program-
ming, 42(5):710-738, 2014.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The eucalyptus open-source cloud-computing
system. In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on, pages 124—131, May 2009.
Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107-113, January 2008.
Feng-Cheng Lin, Lan-Kun Chung, Wen-Yuan Ku, Lin-Ru Chu, and Tien-
Yin Chou. Service component architecture for geographic information
system in cloud computing infrastructure. In Advanced Information Net-
working and Applications (AINA), 2013 IEEE 27th International Confer-
ence on, pages 368-373, March 2013.

Bo Li, Hui Zhao, and Zhenhua Lv. Parallel isodata clustering of remote
sensing images based on mapreduce. In Cyber-Enabled Distributed Com-
puting and Knowledge Discovery (CyberC), 2010 International Confer-
ence on, pages 380-383, Oct 2010.

Mohamed H. Almeer. Cloud hadoop map reduce for remote sensing im-
age analysis. Journal of Emerging Trends in Computing and Information
Sciences, 3(4):637-644, April 2012.

R. Nasim and A.J. Kassler. Deploying openstack: Virtual infrastructure or
dedicated hardware. In Computer Software and Applications Conference
Workshops (COMPSACW), 2014 IEEE 38th International, pages 84—89,
July 2014.

A.B.M. Moniruzzaman, K.W. Nafi, and S.A. Hossain. An experimen-
tal study of load balancing of opennebula open-source cloud computing
platform. In Informatics, Electronics Vision (ICIEV), 2014 International
Conference on, pages 1-6, May 2014.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP *03, pages 164—177, New York, NY,
USA, 2003. ACM.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. Kvm: the linux
virtual machine monitor. In OLS ’09: Ottawa Linux Symposium 2009,
pages 225-230, Jul 2007.

Qasim Ali, Vladimir Kiriansky, Josh Simons, and Puneet Zaroo. Perfor-
mance evaluation of hpc benchmarks on vmwares esxi server. In Michael
Alexander and P Da Ambra, editors, Euro-Par 2011: Parallel Processing
Workshops, volume 7155 of Lecture Notes in Computer Science, pages
213-222. Springer Berlin Heidelberg, 2012.

Yi-Man Ma, Che-Rung Lee, and Yeh-Ching Chung. Infiniband virtualiza-
tion on kvm. In Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on, pages 777781, Dec 2012.
S. Varrette, M. Guzek, V. Plugaru, X. Besseron, and P. Bouvry. Hpc per-
formance and energy-efficiency of xen, kvm and vmware hypervisors. In
Computer Architecture and High Performance Computing (SBAC-PAD),
2013 25th International Symposium on, pages 89-96, Oct 2013.

S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes. Enabling smart
cloud services through remote sensing: An internet of everything enabler.
Internet of Things Journal, IEEE, 1(3):276-288, June 2014.

Mehul Nalin Vora. Hadoop-hbase for large-scale data. In Computer Sci-
ence and Network Technology (ICCSNT), 2011 International Conference
on, volume 1, pages 601-605, Dec 2011.

Nan Lu, Chengqi Cheng, An Jin, and Haijian Ma. An index and retrieval
method of spatial data based on geosot global discrete grid system. In
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE Inter-
national, pages 4519-4522, July 2013.

Jeremy Zawodny. Redis: Lightweight key/value store that goes the extra
mile. Linux Magazine, 79, 2009.

QI Jianghui, ZHANG Feng, DU Zhenhong, and LIU Renyi. Research
of the landuse vector data storage and spatial index based on the main
memory database. Journal of Zhejiang University(Science Edition),

[55]

[56]

(571

(58]

[59]

13(3):365-370, 2015.

Cloud computing adoption framework: A security framework for busi-
ness clouds. Future Generation Computer Systems, 57:24 — 41, 2016.
Meixia Deng, Liping Di, Genong Yu, A. Yagci, Chunming Peng, Bei
Zhang, and Dayong Shen. Building an on-demand web service sys-
tem for global agricultural drought monitoring and forecasting. In Geo-
science and Remote Sensing Symposium (IGARSS), 2012 IEEE Interna-
tional, pages 958-961, July 2012.

Cui Lin, Shiyong Lu, Xubo Fei, A. Chebotko, Darshan Pai, Zhaoqiang
Lai, F. Fotouhi, and Jing Hua. A reference architecture for scientific work-
flow management systems and the view soa solution. Services Computing,
IEEE Transactions on, 2(1):79-92, Jan 2009.

Bertram Ludscher, Bertram, Ilkay Altintas, Chad Berkley, Dan Higgins,
Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao.
Scientific workflow management and the kepler system. Concurrency and
Computation: Practice and Experience, 18(10):1039-1065, 2006.

Ewa Deelman, Gurmeet Singh, Mei hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John
Good, Anastasia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus:
a framework for mapping complex scientific workflows onto distributed
systems. SCIENTIFIC PROGRAMMING JOURNAL, 13:219-237, 2005.

18

*Biographies (Text)

Dr. Lizhe Wang is a “ChuTian” Chair Professor at School of Computer Science, China Univ. of
Geosciences (CUG), and a Professor at Inst. of Remote Sensing & Digital Earth, Chinese Academy
of Sciences (CAS). Prof. Wang received B.E. & M.E from Tsinghua Univ. and Doctor of Eng. from
Univ. Karlsruhe (Magna Cum Laude), Germany. Prof. Wang is a Fellow of IET, Fellow of British
Computer Society. Prof. Wang serves as an Associate Editor of IEEE T. Computers, IEEE T. on Cloud
Computing, IEEE T. on Sustainable Computing. His main research interests include HPC, e-Science,

and remote sensing image processing.

Yan Ma received the Doctor of Engineering degree from Chinese Academy of Sciences, in 2013.
She is an Associate Professor at Institute of Remote Sensing & Digital Earth, Chinese Academy of
Sciences (CAS), Beijing, China. Her research interests include high performance geo-computing

and parallel remote sensing image processing. She is a member of the IEEE.

Jining Yan is a Ph.D. student in the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences. His main research interests include remote sensing data processing and

information service, cloud computing in remote sensing.

Dr. Victor Chang is a Senior Lecturer at Leeds Beckett University since September 2012. Within four years, he
completed PhD (CS, Southampton) and PGCert (Higher Education, Fellow) part-time. He helps organizations in
achieving good Cloud design, deployment and services. He won a European Award on Cloud Migration in 2011, best
papers in 2012 and 2015, and numerous awards since 2012. He is one of the most active practitioners and researchers
in Cloud Computing, Big Data and Internet of Things in the UK. He is an Editor-in-Chief of 1JOCI & OJBD journals,
Editor of FGCS, founding chair of two international workshops and founding Conference Chair of 10TBD 2016

www.iotbd.org and COMPLEXIS 2016 www.complexis.org.

*Biographies (Photograph)
Click here to download high resolution image

. ACCEPTEDMANUSCRIPT

*Biographies (Photograph)
Click here to download high resolution image

. ACCEPTEDMANUSCRIPT

*Biographies (Photograph)
Click here to download high resolution image

. ACCEPTEDMANUSCRIPT

*Biographies (Photograph)
Click here to download high resolution image

1. A high performance Cloud computing system architecture for remote sensing big data processing is
proposed.

2. The system level implementation techniques are discussed for HPC Cloud computing.

3. The HPC Cloud computing application is discussed, remote sensing cloud computing, which

enables regional environmental and disaster monitoring system as on-demand real-time services.

