
Composable Architecture for Rack Scale Big Data Computing

Chung-Sheng Li1, Hubertus Franke1, Colin Parris2, Bulent Abali1, Mukil Kesavan3, Victor Chang4
1. IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

2. GE Global Research Center, One Research Circle, Niskayuna, NY 12309, USA

3. VMWare, 3401 Hillview Avenue, Palo Alto, CA 9430, USA

4. IBSS, Xi'an Jiaotong Liverpool University, Suzhou, China.
csli@ieee.org, {frankh,abali}@us.ibm.com, colin.parris@ge.com, mukilk@gmail.com, ic.victor.chang@gmail.com

Keywords: Big data platforms, Composable system architecture, Disaggregated datacenter architecture,
composable datacenter, software defined environments, software defined networking.

Abstract: The rapid growth of cloud computing, both in terms of the spectrum and volume of cloud
workloads, necessitate re-visiting the traditional rack-mountable servers based datacenter design.
Next generation datacenters need to offer enhanced support for: (i) fast changing system
configuration requirements due to workload constraints, (ii) timely adoption of emerging
hardware technologies, and (iii) maximal sharing of systems and subsystems in order to lower
costs. Disaggregated datacenters, constructed as a collection of individual resources such as
CPU, memory, disks etc., and composed into workload execution units on demand, are an
interesting new trend that can address the above challenges. In this paper, we demonstrated the
feasibility of composable systems through building a rack scale composable system prototype
using PCIe switch. Through empirical approaches, we develop assessment of the opportunities
and challenges for leveraging the composable architecture for rack scale cloud datacenters with a
focus on big data and NoSQL workloads. In particular, we compare and contrast the
programming models that can be used to access the composable resources, and developed the
implications for the network and resource provisioning and management for rack scale
architecture.

1 INTRODUCTION

Cloud computing is quickly becoming the fastest growing platform for deploying

enterprise, social, mobile, and big data analytic workloads [1-3]. Recently, the need for

increased agility and flexibility has accelerated the introduction of software defined

environments (which include software defined networking, storage, and compute) where the

control and management planes of these resources are decoupled from the data planes so that

they are no longer vertically integrated as in traditional compute, storage or switch systems

and can be deployed anywhere within a datacenter [4].

mailto:csli@ieee.org
mailto:mukilk@gmail.com

The emerging datacenter scale computing, especially when deploying big data

applications with large volume (in petabytes or exabytes), high velocity (less than hundreds

of microsecond latency), wide variety of modalities (structure, semi-structured, and non-

structured data) involving NoSQL, MapReduce, Spark/Hadoop in a cloud environment are

facing the following challenges: fast changing system configuration requirements due to

highly dynamic workload constraints, varying innovation cycles of system hardware

components, and the need for maximal sharing of systems and subsystems resources [5-7].

These challenges are further elaborated below.

Systems in a cloud computing environment often have to be configured differently in

response to different workload requirements. A traditional datacenter, as shown in Fig. 1,

includes servers and storage interconnected by datacenter networks. Nodes in a rack are

interconnected by a top-of-rack (TOR) switch, corresponding to the leaf switch in a spine-

leaf model. TORs are then interconnected by the Spine switches. Each of the nodes in a rack

may have different CPU, memory, I/O and accelerator configurations. Several configuration

choices exist in supporting different workload resource requirements optimally in terms of

performance and costs. A typical server system configured with only CPU and memory

while keeping the storage subsystem (which also includes the storage controller and storage

cache) remote is likely to be applicable to workloads which do not require large I/O

bandwidth and will only need to use the storage occasionally. This configuration is usually

inexpensive and versatile. However, its large variation in sustainable bandwidth and latency

for accessing data (through bandwidth limited packet switches) make it unlikely to perform

well for most of the big data workloads when large I/O bandwidth or small latency for

accessing data becomes pertinent. Alternatively, the server can be configured with large

amount of local memory, SSD, and storage. Repeating this configuration for a substantial

Figure 1 Traditional datacenter with servers
and storage interconnected by datacenter
networks.

portion of the datacenter, however, is likely to become very expensive. Furthermore,

resource fragmentation arises for CPU, memory, or I/O intensive big data workloads as these

workloads often consume one or more dimensions of the resources in its entirety while left

other dimensions underutilized (as shown in Fig. 2, where there exists unused memory for

CPU intensive workloads (Fig. 2(b)) or unused CPU for memory intensive workloads (Fig.

2(c)). In summary, no single system configuration is likely to offer both performance and

cost advantages across a wide spectrum of big data workload.

Traditional systems also impose identical lifecycle for every hardware component inside

the system. As a result, all of the components within a system (whether it is a server, storage,

or switches) are replaced or upgraded at the same time. The "synchronous" nature of

replacing the whole system at the same time prevents earlier adoption of newer technology at

the component level, whether it is memory, SSD, GPU, or FPGA. The average replacement

cycle of CPUs is approximately 3-4 years, HDDs and fans are around 5 years, battery

backup (i.e. UPS), RAM, and power supply are around 6 years. Other components in a data

center typically have a lifetime of 10 years. A traditional system with CPU, memory, GPU,

power supply, fan, RAM, HDD, SSD likely has the same lifecycle for everything within the

system as replacing these components individually will be uneconomical.

System resources (memory, storage, and accelerators) in traditional systems configured

for high throughput or low latency usually cannot be shared across the data center, as these

resources are only accessible within the "systems" where they are located. Using financial

industry as an example, they are often required to handle large number of Online Transaction

Processing (OLTP) during day time while conducting Online Analytical Processing (OLAP)

and business compliance related computation during night time (often referred to as batch

window) [8]. OLTP has very stringent throughput, I/O, and resiliency requirements. In

contrast, OLAP and compliance workloads may be computationally and memory intensive.

As a result, resource utilization could be potentially low if systems are statically configured

for individual OLTP and OLAP workloads. Those resources (such as storage) accessible

remotely over datacenter networks allow better utilization but the performance in terms of

Figure 2: Fitting workloads to nodes in a cloud environment. (a) Typical workloads where CPU and
memory requirements can be easily fit into a system. (b) CPU intensive workload with unused memory
capacity. (c) Memory intensive workloads.

throughput and latency are usually poor, due to a prolonged execution time and constrained

quality of service (QoS).

Disaggregated datacenter, constructed as a collection of individual resources such as

CPU, memory, HDDs etc., and composed into workload execution units on demand, is an

interesting new trend that satisfies several of the above requirements [9]. In this paper, we

demonstrated the feasibility of composable systems through building a rack scale

composable system prototype using PCIe switch. Through empirical approaches, we develop

assessment of the opportunities and challenges for leveraging the composable architecture

for rack scale cloud datacenters with a focus on big data and NoSQL workloads. We

compare and contrast the programming models that can be used to access these composable

resources. We also develop the implications and requirements for network and resource

provisioning and management. Based on this qualitative assessment and early experimental

results, we conclude that a composable rack scale architecture with appropriate programming

models and resource provisioning is likely to achieve improved datacenter operating

efficiency. This architecture is particularly suitable for heterogeneous and fast evolving

workload environments as these environments often have dynamic resource requirements

and can benefit from the improved elasticity of the physical resource pooling offered by the

composable rack scale architecture.

The rest of the paper is organized as follows: Section 2 describes the architecture of

composable systems for a refactored datacenter. Related work in this area is reviewed in

Seciton 3. The software stack for such composable systems is described in Section 4. The

network considerations for such composable systems are described in Section 5. A rack scale

composable prototype system based on PCIe switch is described in Section 6. We describe

the rack scale composable memory in Section 7. Section 8 describes the methodology for

distributed resource scheduling. Empirical results from various big data workloads on such

systems are reported and discussed in Section 9. Discussions of the implications are

summarized in Section 10.

2 COMPOSABLE SYSTEM ARCHITECTURE

Composable datacenter architecture, which refactors datacenter into physical resource

pools (in terms of compute, memory, I/O, and networking), offers the potential advantage of

enabling continuous peak workload performance while minimizing resource fragmentation

for fast evolving heterogeneous workloads. Figure 3 shows rack scale composability, which

leverages the fast progress of the networking capabilities, software defined environments,

and the increasing demand for high utilization of computing resources in order to achieve

maximal efficiency.

On the networking front, the emerging trend is to utilize a high throughput low latency

network as the “backplane” of the system. Such a system can vary from rack, cluster of

racks, PoDs, domains, availability zones, regions, and multiple datacenters. During the past 3

decades, the gap between the backplane technologies (as represented by PCIe) [10] and

network technologies (as represented by Ethernet) is quickly shrinking. The bandwidth gap

between PCIe gen 4 (~250 Gb/s) [10] and 100/400 GbE [11] will likely become even less

significant. When the backplane speed is no longer much faster than the network speed,

many interesting opportunities arise for refactoring systems and subsystems as these system

components are no longer required to be in the same "box" in order to maintain high system

throughput. As the network speeds become comparable to the backplane speeds, SSD and

storage which are locally connected through a PCIe bus can now be connected through a

high speed wider area network. This configuration allows maximal amount of sharing and

flexibility to address the complete spectrum of potential workloads. The broad deployment

of Software Defined Environments (SDE) within cloud datacenters is facilitating the

disaggregation among the management planes, control planes, and data planes within servers,

switches and storage [4].

Systems and subsystems within a composable (or disaggregated) data center are

refactored so that these subsystems can use the network "backplane" to communicate with

each other as a single system. Composable system concept has already been successfully

applied to the network, storage and server areas. In the networking area, physical switches,

routing tables, controllers, operating systems, system management, and applications in

traditional switching systems are vertically integrated within the same "box". Increasingly,

the newer generation switches both logically and physically separate the data planes

(hardware switches and routing tables) from the control planes (controller, switch OS, and

switch applications) and management planes (system and network management). These

switches allow the disaggregation of switching systems into these three subsystems where

Figure 3: In rack scale architecture, each of the
nodes within the rack is specialized into being rich in
one type of resources (computing rich, accelerator
rich, memory rich, or storage rich).

the control and management planes can reside anywhere within a data center, while the data

planes serve as the traditional role for switching data. Similar to the networking area, storage

systems are taking a similar path. Those monolithically integrated storage systems that

include HDDs, controllers, caches (including SSDs), special function accelerators for

compression and encryption are transitioning into logically and physically distinct data

planes – often built from JBOD (just a bunch of drives), control planes (controllers, caches,

SSDs) and management planes.

Figure 3 illustrates a composable architecture at the rack level. In this architecture, each

of the nodes within the rack is specialized into being rich in one type of resources

(computing rich, accelerator rich, memory rich, or storage rich). These nodes are

interconnected by a low latency top-of-rack switch (and potentially a PCIe switch in addition

to the TOR switch). In contrast to Fig. 1 where each of nodes within a rack may be

configured differently (with different size or type of memory, accelerators, and local

storage), there are far fewer node configurations in a rack scale architecture. The same

concept can be extended to the PoD or datacenter level, as shown in Fig. 4, in which each

rack consists of a specific type of nodes that have been specialized into computing rich,

accelerator rich, memory rich, or storage rich nodes. In addition to the low latency TOR for

providing connectivity at the rack level, low latency spine switch in a spine-leaf model or

silicon photonics/optical circuit switches may be needed in order to maintain low latency

between different racks.

Figure 4: Disaggregation architecture
applied at the PoD or datacenter level.

Figure 5: Software stack for accessing composable resources

The cost model for the effective cost of a system, CTotal, with Nmemory of memory modules,

NGPU of GPU modules, NSSD of SSD modules, and NHDD of HDD modules, assuming the

cost for each memory, GPU, SSD, and HDD module is Cmemory, CGPU, CSSD, and CHDD,

respectively, and the utilization is Umemory , UGPU , UGPU , and UHDD , respectively, can be

defined in Eq. (1):

CTotal = Nmemory Cmemory/Umemory+ NGPU CGPU/UGPU + NSSD CSSD/USSD + NHDD CHDD/UHDD (1)

The effective cost of a traditional system with utilization less than 50% for each type of

resources is 33% higher than a composable system with 75% utilization for each type of

resources.

3 RELATED WORK

High composability and resource pooling among CPUs, memory, and I/O resources is

provided in a traditional Symmetric Multi-processing (SMP) with shared memory (scale up)

architecture. The original logical resource partitioning concept – LPAR - was created during

early 1970’s as part of the IBM System 370 PR/SM (Processor Resource/System Manager)

[12]. Subsequently, this concept was extended to DLPAR [13] to allow dynamic

partitioning and reconfiguration of the physical resources without having to shut down the

operating systems that runs in the LPAR. DLPAR enables CPU, memory, and I/O interfaces

to be moved non-disruptively between LPARs within the same server. Virtual symmetric

multiprocessing (VSMP) extended this concept in a scale out environment by mapping two

or more virtual processors inside a single virtual machine or partition [14]. This makes it

possible to assign multiple virtual processors to a virtual machine on any host having at least

two logical processors.

Partially composable memory architecture was proposed by Lim et al [9, 15] in which

each composable compute node retains a smaller size of memory while the rest of the

G G G M
M

Datacenter

Network

 C C

I

O

H

M M

N

I

C

 C C

I

O

H

M M

N

I

C

Server 1 Server N

…

M
Storage

Devices Shared GPUs Shared

Memory

Cloud OpenStack)

OS

Hypervisor

Bare Metal

Application &

Service API

memory is disaggregated and shared remotely. When a compute node requires more memory

to perform a task, the hypervisor integrates (or “compose”) the local memory and the remote

shared memory to form a flat memory address space for the task. During the run time,

accesses to remote addresses result in a hypervisor trap and initiate the transfer of the entire

page through RDMA (Remote Direct Memory Access) mechanism to the local memory.

Their experimental results show an average of ten times performance benefit in a memory-

constrained environment. A detailed study of the impacts of network bandwidth and latency

of a composable datacenter for executing in-memory workloads such as GraphLab [16],

MemcacheD [17] and Pig [18] was reported in [19]. When the remote memory is configured

to contain 75% of the working set, it was found through simulation that the application level

degradation was minimal (less than 10%) when network bandwidth is 40 Gb/s and the

latency is less than s10 [20].

There has been an ongoing effort to reconcile big data and big compute environments,

such as the LLGrid at MIT Lincoln Lab [21]. Design and implementation of a lightweight

composable operating system for composable processor sharing is reported in [22]. An in-

memory approach for achieving significant performance improvement for big data and

analytic applications was proposed for the traditional clustering and scale-out environment

[23-25].

Large scale exploration of rack scale composable architecture has been demonstrated to

produce substantial cost savings at Facebook for the newsfeed part of the Facebook

infrastructure [26-27]. Server products based on a composable architecture have already

appeared in the marketplace. These include the Cisco UCS M-Series Modular Server [28],

AMD SeaMicro composable architecture [29-30], and Intel Rack Scale Architecture [31] as

part of the Open Compute Project [32].

The focus of this paper, composable rack scale architecture, blends limited amount of

resource pooling capabilities into a scale out architecture without requiring cache coherence

(as compared to [13-14]) in this environment. The results and insights from earlier works for

disaggregated systems as reported in [5, 15, 19] are largely obtained from simulation, and

did not address some of the recent NoSQL workloads such as Giraph and Cassandra. In this

paper, we reported prototyping effort for demonstrating rack scale composability using PCIe

switch, and experimental results from running NoSQL and big data workloads such as

Giraph, MemcacheD, and Cassandra.

4 SOFTWARE STACK

Composable datacenter resources can be accessed by application programming models

through different means and methods. We consider and evaluate the pros and cons for three

fundamental approaches, as shown in Fig. 5, including hardware based, hypervisor/operating

system based, and middleware/application based.

The hardware based approach for accessing composable resources is transparent to

applications and the OS/hypervisor. Hardware based composable memory presents a large

and contiguous logical address space, which may be mapped into physical address space of

multiple nodes, to the application. When the application accesses composable memory, the

system management resolves the logical address of the request to the physical address within

one of the compute nodes. In this case, the physical memory is byte addressable across the

network and is entirely transparent to the applications. While such transparency is desirable,

it forces a tight integration with the memory subsystem either at the physical level or the

hypervisor level. At the physical level, the memory controller needs to be able to handle

remote memory accesses. To avoid the impact of long memory access latencies, we expect

that a large cache system is required. Composable GPU and FPGA can be accessed as an I/O

device based on direct integration through PCIe over Ethernet. Similar to composable

memory, the programming models remain unchanged once the composable resource is

mapped to the I/O address space of the local compute node.

In the second approach, the access of composable resources can be exposed at the

hypervisor, container, or operating system levels. New hypervisor level primitives - such as

getMemory, getGPU, getFPGA, etc. - need to be defined to allow applications to explicitly

request the provisioning and management of these resources in a manner similar to malloc. It

is also possible to modify the paging mechanism within the hypervisor/operating systems so

that the paging to HDD now goes through a new memory hierarchy including composable

memory, SSD and HDD. In this case, the application does not need to be modified at all.

Accessing remote Nvdia GPU through rCUDA [33] has been demonstrated, and has been

shown to actually outperform locally connected GPU when there is appropriate network

connectivity.

Details of resource composability and remoteness can also be directly exposed to

applications and managed using application-level knowledge. Composable resources can be

exposed via high-level APIs (e.g. Put/Get for memory). As an example, it is possible to

define GetMemory in the form of Memory as a Service as one of the Openstack service. This

potential Openstack GetMemory service will set up a channel between the host and the

memory pool service through RDMA. Through this GetMemory service, the application can

now explicitly control which part of its address space is deemed remote and therefore

controls or is at least cognizant which memory and application objects will be placed

remotely. In the case of GPU as a service, a new service primitive GetGPU can be defined

to locate an available GPU from a GPU resource pool and host from the host resource pool.

The system establishes the channel between the host and the GPU through RDMA/PCIe and

exposes the GPU access to applications via a library or a virtual device. All of the

experiments conducted in this paper are based on this approach, in which the composable

resources are directly exposed to the applications.

5 NETWORK CONSIDERATIONS

One of the primary challenges for a composable datacenter architecture is the latency

incurred over the interconnects and switches when accessing memory, SSD, GPU, and

FPGA from remote resource pools. The latency sensitivity depends on the programming

model used to expose composable resources in terms of direct hardware, hypervisor, or

resource as a service. In order for the interconnect and switch technologies to be appropriate

for accessing remote physical resource pools, the round trip access latency has to be

insignificant compared to the inherent access latency of the resource so that the access of the

resource can remain transparent to the applications. When the access latency of the remote

resource pool become noticeable compared to the inherent access latency, there might be

significant performance penalty unless thread level parallelism is exploited at the processor,

hypervisor, OS, or application levels.

The most stringent requirement on the network arises when composable memory is

mapped to the address space of the compute node and is accessed through the byte

addressable approach. The total access latency across the network cannot be significantly

larger than the typical access time of locally attached DRAM so that the execution of threads

within a modern multi-core CPU can remain efficient. The bandwidth and latency for

accessing locally attached memory through DMI/DDR3 interface today is 920 Gb/s and 75

ns, respectively. PCIe switch (Gen 3) can achieve latency on the order of 150 ns while low

latency Top-of-Rack IP switch and Infiniband switch can achieve 800 ns latency or less. As

a result, silicon photonics and optical circuit switches (OCS) are likely to be the only options

to enable composable memory beyond a rack [34-36]. Large caches can reduce the impact of

remote access. When the block sizes are aligned with the page sizes of the system, the

remote memory can be managed as extension of the virtual memory system of the local hosts

through the hypervisor and OS management. In this configuration, locally attached DRAM is

used as a cache for the remote memory, which is managed in page-size blocks and can be

moved via RDMA operations.

Disaggregating GPU and FPGA are much less demanding as each GPU and FPGA are

likely to have its local memory, and will often engage in computations that last many

microseconds or milliseconds. So the predominant communication mode between a compute

node and composable GPU and FPGA resources is likely through bulk data transfer. It has

been shown by [37] that adequate bandwidth such as those offered by RDMA at FDR data

rate (56 Gb/s) already demonstrated superior performance than a locally connected GPU.

Network latency measurement is important since it can affect the performance in data

center technologies including high performance computing, storage and data transfer

between different sites, whereby the impact on network latency on the data center

performance for Cloud and non-Cloud solutions is investigated in [38]. With the

advancement in our proposed data technologies, regular measurement is not required since

current SSD technologies have 100K IOPS and 100 us access latency. Consequently, the

access latency for non-buffered SSD should be on the order of 10 us. This latency may be

achievable using conventional Top-of-the-Rack (TOR) switch technologies if the

communication is limited to within a rack. A flat network across a PoD or a datacenter with

a two-tier spine-leaf model or a single tier spline model is required in order achieve less than

10 us latency if the communication between the local hosts and the composable SSD

resource pools are across a PoD or a datacenter.

 Table 1 summarizes the type of networks required for supporting composability from

physical resource pools (memory, GPU/FPGA, SSD and HDD) at the Rack, PoD, and

Datacenter levels. The entries in this table are derived from the considerations that the total

round trip latency for accessing the remote physical resource pools has to be insignificant

compared to the inherent access latency. The port-to-port latency for various interconnects

and switch technologies are:

 Low latency TOR switch, such as those made by Arista (380-1000 ns) [39]

 Low latency spine-leaf switches, such as those made by Arista (2-10 us) [39]

 InfiniBand switch, such as those made by Mellanox (700 ns) [40]

 Optical circuit switch, such as those made by Calient (<30 ns) [41]

 PCIe switch, such as those made by H3 Platform (~150ns) [42]

The round trip propagation delay, assuming 5 ns/m, for rack, PoD, and datacenter are:

 Intra-rack: the average propagation distance is less than 3 m or 15 ns.

 Intra PoD: the average propagation distance is 50 m or 250 ns.

 Intra datacenter: the average propagation distance is 200 m or 1 us.

Consequently, rack level systems with composable GPU/FPGA, SSD, and HDD can be

easily accommodated by low latency TOR switch, PCIe switch or InfiniBand switch. Low

latency flat network based on spine-leaf switches become the primary option for PoD and

datacenter level interconnect for composable resources.

Table 1: Types of network for supporting composable systems at the rack, PoD and
datacenter levels.

6 RACK SCALE COMPOSABLE I/O PROTOTYPE

Composable I/O is a special case of leveraging high throughput low latency network

(often based on PCIe switch or Infiniband switch) to support physical resource pooling and

reduce resource fragmentation at the rack level. PCIe fabrics do not scale beyond a few

racks. However with the use of PCIe fabrics, resource pooling is simplified at the rack scale.

Main advantage of PCIe fabrics over Ethernet, Fiber Channel, or Infiniband is that a PCIe

fabric requires virtually no changes to the software stack, as a peripheral allocated from a

PCIe-connected resource pool appear to be local to each server.

 Most of the cloud datacenters use 2-socket rack servers in 1U (1.75-inch high) or 2U

(3.5-inch high) physical form factors. 1U and 2U servers typically contain 1-2 and 4-6 PCIe

slots, respectively. When high compute density is required, 1U servers may be used at the

expense of limited number of PCIe slots. As a result, these 1U servers are specialized

according to the functions associated with the PCIe slots such as SSD or GPU-specialized

servers. When PCIe rich servers are required, a 2U server must be used at the expense of

reduced compute density and often vacant PCIe slots. Either scenario leads to inefficiencies

in the datacenter. This is due to mismatches between available system resources configured

in 1U and 2U and the dynamically changing resource requirements for big data workloads.

The composable I/O architecture addresses the I/O aspect of this problem by physically

decoupling the I/O peripherals from individual servers. In one realization of this composable

I/O architecture, PCIe peripherals are aggregated in a common I/O drawer in the rack (as

 Memory

(DMI/DDR3)

GPU/FPGA

(PCIe gen3)

SSD

(SATA/SAS)

HDD

(SATA/SAS)

Latency ~75ns 5-10 us ~100 us ~25 ms

Throughput ~920 Gb/s 12 GB/s ~100K OPS 75-200 OPS

Rack

(~3m, ~15ns)

Silicon photonics TOR switch,

PCIe switch,

Infiniband switch

TOR switch,

PCIe switch

Infiniband switch

TOR switch,

PCIe switch

Infiniband switch

PoD

(~50m, ~250ns)

Optical Circuit

Swtich (OCS)

Flat network

(Spine-Leaf),

OCS

Flat network

(Spine-Leaf),

OCS

Flat network

(Spine-Leaf),

OCS

Datacenter

(~200m, ~1us)

Optical Circuit

Switch (OCS)

Flat network

(Spine-Leaf),

OCS

Flat network

(Spine-Leaf),

OCS

Flat network

(Spine-Leaf),

OCS

shown in Fig. 3). The challenges for realizing such architecture include achieving

multiplexing, scalability, sharing, and reliability:

 Multiplexed I/O is the ability to dynamically attach and detach any PCIe peripheral to

any server. Multiplexed I/O is essential in "bare-metal" clouds in which customers rent

and compose server resources on-demand, such as the type and number of PCIe

peripherals. Multiplexed I/O should also allow logical hot plugability of a PCIe card to a

running server.

 Scalable I/O is the ability to attach large number of PCIe cards to a single server

regardless of its form factor, hence achieving better compute density and resource

utilization at the same time.

 Shared I/O is the ability to share a single PCIe card among multiple hosts, therefore

reducing the infrastructure cost.

 Reliability refers to the highly available and fault tolerant I/O fabrics.

 Addressing all these challenges transparently without impacting the software stack is

desirable. Supporting Multiplexed I/O and Scalable I/O requires no changes in the software

stack. PCIe peripherals simply appear to be local to the server through PCIe switch fabric.

A management layer for the composable I/O fabrics may be required. Supporting shared I/O

requires MRIOV capable adapters or some adaptation of SRIOV as detailed below.

Recent advances in PCIe switching technologies enable inexpensive implementation of

the composable I/O architecture. PCIe bus in a traditional server is located on its

motherboard. A "southbridge" chip served as a gateway from processor and memory to the

PCIe slots on the motherboard. Newer PCIe switch chips (e.g., from the PLX and IDT) allow

interconnecting multiple hosts and PCIe peripheral devices. These switch chips (e.g. PLX

PEX9797) can provide up to 96 one-bit wide (x1) PCIe lanes that can be combined to create

a crossbar switch of port sizes at x1, x4, x8, and x16. Multiple switch chips can be cascaded

to provide even larger PCIe fabric. Virtual PCIe networks within each fabric may be

software defined, giving each root the ability to host the private ownership of the

downstream PCIe devices. Additionally, host-to-host communication is made possible by

creating remote memory access tunnels and on-chip DMA engines with NIC-like

functionality, albeit in a non-standard fashion. PCI-SIG (the standard group responsible for

defining PCI) has defined the Multi-Root I/O Virtualization (MR-IOV) extension of the

PCIe spec for multiple hosts sharing a single PCIe adapter. Industry adoption of MR-IOV

has yet to happen since its inception almost a decade ago. On the other hand, Single-Root

I/O Virtualization (SR-IOV) [43] adapters have been more broadly embraced within the

industry by cloud service providers such as AWS and has been demonstrated to achieve up

to 95% of the bare metal adapter card [44-45]. SR-IOV adapters were originally intended for

hypervisor-based hosts. The adapter presents multiple virtual end points to the virtual

machines on a single host, with the hypervisor responsible for managing the physical device.

It has been demonstrated that MR-IOV adapter can be emulated by the PEX9x switch chips

to provide connection from multiple physical hosts to virtual interfaces on a single SR-IOV

adapter [43]. With host-to-host communication and I/O sharing capability, it is conceivable

that cloud service providers will leverage PCIe switch and SR-IOV NIC combination to

eliminate or reduce the port counts of the top-of-rack (TOR) switches. To sum up, we expect

rack scale composable I/O solutions (for example, a chassis of PCIe cards that multiple hosts

attach to) to become more broadly adopted.

A number of recent works demonstrated the benefit of applying composable I/O

functionality in a cloud environment. A novel use of PCIe switching fabric in the Pelican

Cold Storage prototype [46] demonstrated highly scalable I/O fabrics. Pelican is a rack-scale

hard disk based storage prototype for "cold" data that are only infrequently accessed. In the

Pelican prototype, only 96 drives out of 1152 (~8.3%) are powered on at any given time to

minimize the rack power and cooling requirements. The novel use of PCIe switches come in

to play when interconnecting the 1152 drives to the two hosts without using SAN storage

controllers.

Single host with multiple GPU systems have been experimented in the high performance

computing community [47-48]. A cluster of nodes with 8 GPUs per host can be created

using PCIe switches [49], as demonstrated by the Facebook Big Sur system [50]. Workloads

involving GPU computations are often bandwidth intensive and therefore the single rooted

PCIe tree can easily become a bottleneck. Consequently, peer-to-peer copy is used by GPUs

for directly exchanging data with no staging thru the host memory.

The IBM zEnterprise 196 I/O subsystem demonstrates the reliability aspect of the

composable I/O concept [51]. The I/O subsystem is contained in a 32-slot I/O drawer (each

slot is PCIe Gen2 x8). The I/O drawer is divided in to 4 I/O domains of 8 PCIe slots each.

Each domain contains a 96-lane PCIe switch with x8 downlinks and one x16 uplink

connected to one of the four SMP processor cards. An x16 failover link interconnects the

two PCIe switches in two different I/O domains. When an SMP processor card becomes

offline for any reason (maintenance or faults), the x16 uplink goes down. The x16 failover

link provides access to the PCIe peripherals through another processor card.

 DAS (no PCIe switch) PCIe switch

BW MB/s IOPS BW MB/s IOPS

Sequential 4KB read (iodepth=16) 1684 431,182 1193 305,648

Sequential 4KB read (iodepth=64) 1624 415,699 1344 344,029

Table 2: PCIe shared storage experimental results

The prototype rack scale composable system based on PCIe switch developed for this

paper is shown in Fig. 6. It consisted of an H3 RAID array with 12 SATA drives with a

single PCIe Gen3 x4 port, a PCIe switch (SW16) with 16 Gen2 x4 ports, and Host Bus

Adapter (HBA) plugged in to an IBM 3650M4 server. The HBA had two ports, one labeled

SAN for connecting thru SW16 and the other one labeled DAS for an optional direct

connection to the RAID array. The SW16 switch contains several stages of PCIe switch

chips and adds 450 nanoseconds of latency. Note that SW16 ports were Gen2, therefore both

the RAID box and the HBA would step down to Gen2 speed when connected to SW16,

whereas the direct DAS connection ran at Gen3 speed.

Figure 6: PCIe shared storage experimental setup

The sequential 4KB read experiment is conducted on the prototype to determine the

impact on the I/O latency and throughput due to the PCIe switch introduced in the

composable rack scale system. Only sequential read is conducted as random reads on HDDs

often incur additional latency due to access time (often exceeds 25 ms) resulting from the

seek time of the disk head and rotation delay of the platter. Benchmark had four software

threads pinned to specific CPUs and initiated read operations with I/O depths of 16 and 64,

indicating the number of asynchronous I/Os in progress at once.

Table 2 shows that the bandwidth achieved without and with PCIe switch setups were

1684 MB/s and 1193 MB/s, respectively. The IOPS rates without and with PCIe switch were

431K and 305K respectively. These measurements indicate that the Gen2 PCIe switch

introduces 29% reduction on both the throughput and the IOPS rate. Subsequently, the four

software threads’ IO depth was increased from 16 to 64 to overlapped I/O requests to

compensate for the PCIe switch latency. It was observed that the bandwidth increased from

1193 MB/s to 1344 MB/s and the IOPS rate increased from 305K to 344K. However, this

still represents 17% penalty on the bandwidth and IOPS rate when compared to the

configuration without the Gen2 PCIe switch. Again, most of the penalty can be explained by

the throughput differences between Gen3 vs. Gen2 of PCIe operations, which are 8 GT/s and

5 GT/s, respectively, for the base standard.

PCIe switch fabric is expected to continue improving during the coming years. The next

step of the PCIe switch based rack scale composable system will likely to be (1) based on

Gen3 PCIe switch fabric (2) supporting larger number of ports (>96 ports) (3) continued

evolution of the multi-root support.

7 RACK SCALE COMPOSABLE MEMORY

Rack scale composable memory intends to reduce the memory fragmentation problem in

the datacenter. Various workload analysis demonstrated that 30~50% (and sometimes up to

90%) of server memory capacity goes unused [52-55]. Many of these scenarios indicated

that CPU capacity is exhausted before memory capacity is reached, therefore leaving a

fraction of the memory unused. It is hypothesized that when the memory is placed in shared

pools, higher efficiencies may be achieved by composing servers dynamically through

carving out the necessary amounts of memory from these shared pools [9, 15-19]. However

these isolated analyses overlooked the performance and cost issues of memory

disaggregation. Modern microprocessors and DRAMs often have strong affinity to each

other. Pooling the memory in a centralized location, either at a rack scale or at datacenter

scale, will impact memory performance and cost. First, bandwidth of state-of-the-art

memory channels is couple orders of magnitude higher than that of the existing network

fabrics. Signal integrity and high bandwidth requirements of long links will require optical

interconnects but at a much increased cost [56]. Second, disaggregation will increase the

memory latency due to increased physical distance and additional latency introduced by the

switching.

The latency of reading one cache block, typically 64 to 128 bytes, from memory to the

processor cache takes approximately 75 nanoseconds. Additional latency is incurred in

distributed applications for message passing when messages are sent over Ethernet or

InfiniBand fabrics between nodes in a cluster. The impact on the performance of these

applications due to longer network latency is lessened by using large packet sizes and

asynchronous messaging. However, these approaches are not practical at the processor

instruction level. As applications access remote memory explicitly (e.g. using RDMA), they

most likely utilize a distributed memory cluster environment supporting message passing as

opposed to a pooled memory environment supporting synchronous load/stores instructions

from processors.

The processor performance as a function of memory latency is simulated using a cycle

accurate processor simulator. The simulated instruction traces of several benchmarks using

different memory latencies indicated a linear relationship between performance and latency.

Two hypothetical processors P1 and P2 with 12 and 16 core, respectively, were simulated.

Each core has an L1 size of 64KB, L2 size of 512KB, and L3 size of 8MB. Both P1 and P2

use out-of-order execution. P1 can issue 10 instructions per cycle to 16 functional units in

each core. Each core can have up to 16 outstanding cache misses. Both processors

implement simultaneous multithreading / hyperthreading (SMT) found in x86 and POWER

processors [57]. In the SMT mode, each core supports 2, 4 or 8 logical processors that share

its functional units and the execution pipeline, therefore increasing the total core throughput

by a factor of 2 to 3. The SPEC CPU2006 Integer and Floating Point suite of benchmark

[58] traces were simulated on P2. Four commercial benchmarks OLTP, ERP, TRADE, and

SALES were simulated on P1. OLTP is an online transaction processing benchmark that

measures the rate of queries/transactions performed on a database. TRADE is a Java based

stock trading application. ERP is an enterprise resource planning application. SALES is a

customer order processing and distribution application.

The workload’s sensitivity to memory latency, Memory Fraction of Performance (MFP),

is defined in Eq. (2)

MFP = ∆ET /∆ML (2)

where ∆ET is the relative increase in benchmark execution time while ∆ML the relative

increase in the memory latency. Both ∆ET and ∆ML are relative to its baseline value. In

essence, MFP is the fraction of execution time attributable to the memory latency. For

example, an MFP of 40% indicates that the memory latency is responsible for 40% of the

execution time. Execution time would increase by 40% if the memory latency doubled from

a base of 75ns to 150ns. A workload with a small MFP is insensitive to the memory latency,

as its working set fits in to the processor’s on-chip caches.

Figure 7: The fraction of the execution time due to memory latency

Fig. 7 summarizes the memory latency sensitivity for commercial and SPEC benchmarks.

Average MFP for the INT and FP suites are 20% and 16%, respectively, on single threaded

(ST) cores. Individual benchmarks (not detailed here) had an MFP as high as 59%, which

demonstrated that composable memory architecture at the PoD or datacenter level is unlikely

to be suitable for these types of applications where the application performance is sensitive

to the memory latency. In a comosable memory architecture when the processor and memory

are more than a few racks apart (with a distance up to 10 meters will introduce a round trip

delay of 2 x 10 meters x 5ns/m = 100ns), resulting in more than doubling the base latency.

A noteworthy observation is that MFP decreases with increasing SMT levels for most of

the benchmarks. In the case of SPEC INT, the average MFP is reduced from 20% to 8%

when the simultaneous thread level is increased from single thread to 8 concurrent threads.

In other words, workloads are more tolerant to increasing memory latencies on an SMT

processor. This is because the threads of a core may have to wait for each other while

accessing the shared functional units and pipeline stages, and hides some portion of the

memory latency. Results suggest that disaggregated memory systems and other high latency

memory systems will benefit from high SMT parallelism.

In a disaggregated memory system, the memory latency may increase because of the

additional delay contributed by the signal propagation, switches (queueing/buffering), E/O &

O/E (electrical-to-optical and optical-to-electrical conversion), serialization/deserialization,

line coding/decoding, and protocol conversion. Propagation of light in optical fiber will add

~5 nanoseconds (ns) to the latency per meter. A memory chassis in a single rack may add as

much as 6 meters roundtrip (30 ns or 40%) to the base latency of 75 ns. Memory racks

serving an entire data center will add ~500 ns (or ~100m) to the latency. A memory “switch”

required for a pooled memory may add 75 to 150 ns. Therefore depending on the scale of

disaggregation, we estimate that the total memory latency will be at minimum 150 ns,

resulting in at least an increase of 40% of the execution time for the SPEC INT suite. Thus,

the increased resource utilization efficiency due to disaggregation may be partially or

entirely offset by the increase in processor costs when the additional latency cannot be

hidden [56].

Another design approach is managing the local/remote (pooled) memory hierarchy using

software, namely the virtual memory subsystem of the OS or the hypervisor. Referencing to

pages not present in the local memory is trapped by VMM and those missing pages will be

retrieved from the pooled memory in to the local memory by using, for example, RDMA.

Alternatively, the application software can be modified to provide the management of the

local vs. remote memory explicitly. Software overhead of this approach can be considerable,

and often exceeds 1 microseconds per page. An increase of 1 to 10 microsecond memory

latency will increase the execution time by 266% and 2666%, respectively, for the SPEC

INT suite according to Eq. (1). Note also that managing the two level local/remote memory

at the page granularity significantly increases the bandwidth consumption of the memory and

the fabric, since not all data in a given page are touched by the processor [59]. In Section 9,

we present experimental results of this software managed remote memory approach.

In summary, retaining sufficient local DRAM serving as the cache for the pooled memory

as opposed to full disaggregation of memory resources and retain no local memory for the

CPU is always recommended to minimize the performance impact due to latency incurred

from accessing remote memory, regardless whether the access is managed by hardware, OS,

or applications. Higher SMT levels [57] and/or explicit management by applications that

maximize thread level parallelism are also essential to further minimize the performance

impact.

8 DISTRIBUTED RESOURCE PROVISIONING

In a composable datacenter with physical resource pooling, it is essential that the physical

resources are requested and provisioned with minimum latency so that the use of remote

resources will not create a serious performance bottleneck. A traditional scheduling

environment provisions resources based on the maximal anticipated resource requirement for

the duration of a workload. In this section, an approach based on distributed scheduling with

global shared state in conjunction with predictive resource provisioning is proposed.

Resource provisioning and scheduling can be carried out through centralized, hierarchical, or

fully distributed approaches. The centralized approach is likely to achieve the optimal

resource utilization, but may result in a single point of failure and a severe performance

bottleneck. The hierarchical approach, such as the one used in Mesos [60], allows flexible

addition of heterogeneous schedulers for different classes of workloads to a centralized

scheduler. The centralized scheduler allocates chunks of resources to the workload specific

scheduler, which in turn allocates resources to individual tasks. However, this approach

often results in sub-optimal utilization. A fully distributed approach with global shared state,

such as the Google Omega [61] project, utilizes an optimistic approach for resource

scheduling. This approach is likely to perform better as compared to other approaches.

The mechanism for scheduling and provisioning resources from composable physical

resource pools starts with the requesting node establishing the type and amount of resource

required. As discussed in the previous section, the amount of resource required can be

established explicitly by the workload or implicitly as the current requesting node runs out of

resource locally. Once the request is received, the resource provisioning engine will identify

one or more of the resource pools with available resources, potentially based on the global

shared state, for provisioning resources. It will then communicate with the resource manager

of the corresponding resource pool to reserve the actual resource. The resource manager for

each resource pool commits the resource to the incoming request and resolves the potential

conflicts if multiple requests for the same resource occur simultaneously. Once the resource

is reserved, the communication between the requesting node and the resource can then

commence.

Due to the low latency requirement for provisioning physical resources in a composable

datacenter, it is likely that the resources will need to be provisioned and reserved before the

actual needs from the workload arise rather than on demand. This may require the resource

scheduler to monitor the history of the resource usage so that an accurate workload

dependent projection of the resource usage can always be maintained. The impact to the

resource utilization due to advanced reservation can be minimized by (1) maintaining a

distributed global resource state, and (2) utilizing opportunistic based distributed reservation

scheme such as the methodology reported in [62] to minimize scheduling latency and hence

the required advanced reservation.

The primary challenges in developing a workload forecasting mechanism include [63-66,

69-71]: (1) potential overheads related to change of provisioned resources as it will take time

to properly set up resources before they can be used by the workload, (2) ability to

accurately predict future workload behavior, and (3) ability to compute the right amount of

resources required for the expected increase or decrease in workload [62]. The general

framework of such a scheduling mechanism can be represented by the pseudocode below:

Initialize Observation window

Initialize Prediction window

While (Workload is in progress) {

Generate predicted memory requirement for the next Prediction Window from the current Observation

Window;

Provision memory based on the memory requirement;

Generate predicted accelerator requirement for the next Prediction Window from the current

Observation Window;

Provision accelerator based on the accelerator requirement;

Generate predicted IO requirement for the next Prediction Window from the current Observation

Window;

Provision IO based on the IO requirement;

}

In this mechanism, an observation window of length w is set up for the workload to

collect the behavior pattern in terms of resource consumption of the workload. A prediction

function is defined to predict the peak usage amount of the specific resource type (memory,

accelerators, and IO) during the prediction window. The simplest prediction mechanism can

be based on autoregressive moving average (ARMA) [62] based on the workload behavior

pattern collected during the observation window:

M (t+1) = a + a0 M (t) + a1 M (t-1) + …. + aw-1 M (t-w+1)

A (t+1) = b + b0 A (t) + b1 A (t-1) + …. + bw-1 A (t-w+1)

IO (t+1) = c + c0 IO (t) + c1 IO (t-1) + …. + cw-1 IO (t-w+1)

(3)

where ai, bi, and ci (i = 0,…, w-1) are the ARMA coefficients, and M (t+1) , A (t+1), and

IO (t+1) are the predicted memory, accelerator, and IO requirements, respectively. More

sophisticated resource estimation models including those based on machine learning

techniques such as neural networks have been developed for workloads ranging from

transaction oriented (i.e. OLTP) to data intensive computations [63-66]. Based on the

predicted resource requirements from the observation window, the execution environment

can then provision the resources for the next prediction window:

 GetMemory (Predicted_Memory_Requirement)

 GetAccelerator (Predicted_Accelerator_Requirement)

 GetIO (Predicted_IO_Requirement)

Provisioning resources based on shorter term needs of the workload enable more aggressive

resource sharing among workloads. This provisioning mechanism becomes similar to the

traditional provisioning mechanism when the prediction window approaches the entire

duration of the workload execution.

9 EXPERIMENTAL RESULTS

In this section, we describe experiments that demonstrate the workload behavior when a

cloud centric big data or NoSQL application such as MemcacheD, Giraph, and Cassandra is

deployed in a composable system environment where remote memory or storage is exposed

at the middleware/application level through simplified API.

a. MemcacheD workload

Figure 8: Experimental setup for
performance measurement in a
composable environment for
MemcacheD.

In this environment, part of client application data is in local DRAM, while the rest is

located in the memory of a remote node accessed through an RDMA capable fabric via the

Verbs API [67]. The composable infrastructure, as shown in Fig. 8, is entirely transparent to

the MemcacheD client. The server side is modified so that the data accessed via key-value

interface will be automatically retrieved from either local or remote memory.

The experiment is as follows: A small program on a remote machine allocates a specified

amount of memory and registers the allocation with the InfiniBand HCA. MemcacheD

handshakes with the remote server and obtains the pertinent information such as remote

buffer address and access_key. After an initial handshake, it can now perform RDMA reads

and writes directly to the remote buffer. The remote buffer is treated as a “victim cache” and

is maintained as an append-only log. When MemcacheD runs out of local memory, instead

of evicting a key/value pair in the local memory, it now does an RDMA write to the remote

memory. When looking up a particular key, it first checks with the local memory (via a hash

table). If the key does not exist locally, MemcacheD checks the remote memory via a locally

maintained hash table. If key/value is in the remote memory, it reads in this value through

RDMA to a temporary local buffer and sends it to the client. A particular key/value is always

either in local memory or remote memory and can never reside in both locations.

The experiments consist of 100,000 operations (95% reads, 5% updates) with uniform

random accesses (i.e. no notion of working set as this represents the most challenging

situation) running in a single thread.

As shown in Fig. 9, higher percentage of local data always introduces fewer penalties.

However, the difference begins to diminish among different ratio of local vs. remote data

when the data block size is larger than 64 KB, as larger block size reduces the overhead in

the data transfer.

The second set of experiments consist of 100,000 read and update operations (95% reads,

5% updates) with uniform random accesses (i.e. no notion of working set as this represents

the most challenging situation) evenly split among 10 threads.

As shown in Fig. 10, the throughput penalty is nearly nonexistent when 75% of the access

is local and the data size is 4KB. The penalty increases to 2% when only 25% of the access

is local. As the data sizes increase, the transfer time of the entire page between the local and

the remote node increases, resulting in higher penalty at 4% and 6%, respectively, for 75%

and 25% local access.

Figure 9: Average read latency penalty vs. data size with respect to 100% local access when the local

portion of data varies from 75% to 25%

Figure 10: Average read/update throughput penalty vs. data size with respect to 100% local

access when the local portion of data varies from 75% to 25%.

We can conclude from these experiments that negligible latency and throughput penalty

are incurred for the read/update operations if these operations are 75% local and the data size

is 64 KB. Smaller data size results in larger latency penalty while larger data size results in

larger throughput penalty when the ratio of nonlocal operations is increased to 50% and

75%.

b. Giraph workload

The second experiment focuses on the popular graph analytics platform Giraph, which

enables implementation of distributed vertex-centric graph algorithms. The goal is to

quantify the memory usage of a popular graph algorithm in order to identify opportunities

for running it in a composable memory environment. In this particular case, a 50-node

virtual compute cluster is populated with a randomly generated graph with 100 million

vertices. The graph is partitioned into 502 partitions and are distributed evenly across the

computing nodes. The TopKPagerank algorithm [68] is then run on the entire graph for a

fixed number of supersteps. As the computation progresses, messages need to be exchanged

to traverse the graph as the computation crosses node boundaries. Dependent on the

connectivity of the graph, the variance in the message creation can result in substantially

different memory consumptions per node. When the available memory is constrained,

Giraph will swap the entire partitions and the messages associated with the vertex to disk

using LRU. The memory utilization across the nodes is monitored as computations

progresses. While CPU utilization is very uniform across all nodes and across the execution

of the program, memory utilization varies considerably, which is shown as a heatmap in Fig.

11.

Analysis of this data reveals that per node memory usage between peak and average has a

2.78:1 ratio, where the aggregate memory usage has a 1.68:1 ratio. The memory per node is

then reduced by a factor of 3 to explore the impact of memory pressure, while the average

Figure 11: (a) Memory and (b) CPU Consumption of Distributed Giraph TopKPagerank
application over time.

per node memory is maintained. This increases the overall runtime of the experiment by a

factor of 13.8x - highlighting that best performance requires a memory overprovisioning of a

factor of three or the workload suffers a substantial performance penalty. When the swap

disk on each node is configured to a RamDisk, the overhead is reduced to a factor of 6.14x -

which is still too high. Having observed the low overheads of RDMA in the MemcacheD

example, it can be stipulated that sharing unused memory across the entire compute cluster

instead of through a swap device to a remote memory location can further reduce the

overhead. However the rapid allocation and deallocation of remote memory is imperative

for the sharing of a memory pool to be effective.

c. Cassandra workload

The third experiment focuses on the impact of composable storage by using Cassandra, a

popular persistent (i.e. disk based) key value NoSQL store as the workload. In the traditional

setup (as shown in Fig. 12 (a)), a single server is populated with eight SATA disks that

together form the block storage for a ZFS filesystem on which the key value pair storage

resides. Ultimately the number of disks in the server is limited to the order of 10s due to

constraints imposed by the packaging and the SATA v3 bandwidth, which is limited to 6

Gbps. In the composable setup (as shown in Fig. 12 (b)), there are a total of 4 storage nodes

with eight disks attached to each node and Cassandra was accessed over a 10 Gbps Ethernet.

The ZFS cache was limited and data was flushed out of the page cache to ensure that almost

all accesses go to disk. A client consisting of 20 threads issued 10K operations (95% read)

uniformly accessing the data domain.

The bandwidth and latency improvement are shown in Figures 13 and 14. Access block

size is set at 256KB and 512KB. For these block sizes, the throughput is improved up to

195% and 79 %, respectively, and latency improvement is 67% and 51%, respectively, for

Figure 12: Experimental setup for (a) traditional vs. (b) composable HDDs for Cassandra workloads.

the composable system case. This experiment substantiates the thesis that accessing data

from across multiple disks connected via Ethernet poses less of a bandwidth restriction than

SATA and thus improves throughput and latency of data access and obviates the need for

data locality. Overall, composable storage systems are cheaper to build, manage, and

incrementally scalable, and offer superior performance than traditional setups.

10 SUMMARY AND FUTURE WORK

Deploying big data applications with large volume, high velocity, wide variety of

modalities involving NoSQL, MapReduce, Spark/Hadoop in a cloud environment are facing

the challenges of fast changing system configuration requirements due to highly dynamic

workload constraints, varying innovation cycles of system hardware components, and the

Figure 13: Throughput improvement of disaggregated storage for Cassandra workload

Figure 14: Latency improvement of disaggregated storage for Cassandra workload

need for maximal sharing of systems and subsystems resources. Composable system offers

the potential of addressing these challenges. Datacenters based on this architecture allows

the refactoring of the datacenter for improved operating efficiency and decoupled innovation

cycles among components while the datacenter network becomes the "backplane" of the

datacenter.

In this paper, the feasibility of composable systems is demonstrated through building a

number of rack scale composable system prototypes including one based on PCIe switch.

Through empirical approaches, the opportunities and challenges for leveraging the

composable architecture for rack scale cloud datacenters are evaluated with a focus on big

data and NoSQL workloads. We also establish the implications and requirements for

network and resource provisioning and management. Based on this assessment and

experimental results, we conclude the following:

 A composable rack scale architecture with appropriate programming models and

resource provisioning is likely to achieve improved datacenter operating efficiency. This

architecture is particularly suitable for heterogeneous and fast evolving workload

environments as these environments often have dynamic resource requirements and can

benefit from the improved elasticity of the physical resource pooling offered by the

composable rack scale architecture.

 Composable resources can be exposed through hardware based, hypervisor/operating

system based, and middleware/application based approaches. Directly expose resource

composability to applications and manage using application-level knowledge is likely to

achieve the best flexibility and performance gain.

 The primary concern for the composable architecture is the potential performance

impacts arising from accessing resources such as memory, GPU, and I/O from non-local

shared resource pools. Retaining sufficient local DRAM serving as the cache for the

pooled memory as opposed to full disaggregation of memory resources and retain no

local memory for the CPU is always recommended to minimize the performance impact

due to latency incurred from accessing remote memory. Higher SMT levels and/or

explicit management by applications that maximize thread level parallelism are also

essential to further minimize the performance impact.

 Negligible latency and throughput penalty are incurred in the MemcacheD experiments

for the read/update operations if these operations are 75% local and the data size is 64

KB. Smaller data size results in larger latency penalty while larger data size results in

larger throughput penalty when the ratio of nonlocal operations is increased to 50% and

75%.

 Frequent underutilization of memory is observed while CPU is more fully utilized across

the cluster in the Giraph experiments. However, introducing composable system

architecture in this environment is not straightforward as sharing memory resources

among nodes within a cluster through configuring RamDisk presents very high overhead.

Consequently, it is stipulated that sharing unused memory across the entire compute

cluster instead of through a swap device to a remote memory location is likely to be more

promising in minimizing the overhead. In this case, rapid allocation and deallocation of

remote memory is imperative to be effective.

 The Cassandra experiment substantiated the thesis that accessing data from across

multiple disks connected via Ethernet poses less of a bandwidth restriction than SATA

and thus improves throughput and latency of data access and obviates the need for data

locality. Overall composable storage systems are cheaper to build, manage and

incrementally scalable and offer superior performance than traditional setups.

 The experiments involving rack scale architecture using PCIe switch demonstrated the

feasibility of PCIe based composable architecture where the I/O is composed

dynamically from multiple nodes.

Our results support the importance of Big Data in the Cloud since the next-generation of

services should be investigated to meet demands from volume, velocity and variety aspects

of Big Data services. Our proposal can provide better technical performance and capacity for

the future datacenters as demonstrated in the paper.

The next step of this work will include demonstrating in-memory Spark-based big data

and NoSQL workloads in a composable system environment involving composable memory

and GPU resources. We also plan to explore use workload cases from cybersecurity,

cognitive computing, and internet of things.

REFERENCES

[1] L. A. Barroso, J. Clidaras and U. Hölzle. The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines, Second edition, 2013.

[2] NIST SP 800-145, A NIST definition of cloud computing,

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[3] NIST SP 500-292, Cloud Computing Reference Architecture, v1.0.

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

[4] C.-S. Li, B. L. Brech, S. Crowder, D. M. Dias, H. Franke, M. Hogstrom, D. Lindquist, G.

Pacifici, S. Pappe, B. Rajaraman, J. Rao, R. P. Ratnaparkhi, R. A. Smith and M. D. Williams.

Software defined environments: An introduction. In IBM Journal of Research and Development

Vol. 58 No. 2/3 pp. 1-11, March/May, 2014.

[5] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch (2012, October).

Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the

Third ACM Symposium on Cloud Computing (p. 7). ACM.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

[6] Q. Zhang, J. L. Hellerstein, and R. Boutaba. "Characterizing task usage shapes in Google’s

compute clusters." Large Scale Distributed Systems and Middleware Workshop (LADIS’11).

2011.

[7] A. Samih, R. Wang, C. Maciocco, T. Y. C. Tai, and Y. Solihin (2011, October). A collaborative

memory system for high-performance and cost-effective clustered architectures. In Proceedings

of the 1st Workshop on Architectures and Systems for Big Data (pp. 4-12). ACM.

[8] V. Chang. The business intelligence as a service in the cloud. Future Generation Computer

Systems, 37, 512-534, 2014.

[9] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt and T. F. Wenisch. Disaggregated

Memory for Expansion and Sharing in Blade Servers. In Proc. ISCA, 2009.

[10] PCI-SIG: Peripheral Component Interconnect Express (PCIe) 4.0 http://www.pcisig.com, 2015.

[11] IEEE P802.3bs 400 Gb/s Ethernet Task Force, http://www.ieee802.org/3/bs/

[12] IBM Corp., z/VM built on IBM Virtualization Technology General Information Version 4

Release 3.0, 2002.

[13] J. Jann, L. M. Browning, & R. S. Burugula (2003). Dynamic reconfiguration: Basic building

blocks for autonomic computing on IBM pSeries servers. IBM Systems Journal, 42(1), 29-37,

2003.

[14] C. Xu, Y. Bai, and C. Luo. "Performance evaluation of parallel programming in virtual machine

environment." Network and Parallel Computing, 2009. NPC'09. Sixth IFIP International

Conference on. IEEE, 2009.

[15] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F. Wenisch.

System-level implications of composable memory. In Proc. HPCA, 2012.

[16] GraphLab. http://graphlab.com/

[17] Memcached - a distributed memory object caching system. http://memcached.org/

[18] PigMix benchmark tool.http://cwiki.apache.org/confluence/display/PIG/PigMix

[19] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout (2011) May. It's

Time for Low Latency. In HotOS (Vol. 13, pp. 11-11).

[20] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, (2013) Network support for

resource disaggregation in next-generation datacenters. In Proc. HotNets.

[21] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A. McCabe, P.

Michaleas, J. Mullen, D. O'Gwynn, and A. Prout (2012) September. Driving big data with big

compute. In High Performance Extreme Computing (HPEC), 2012 IEEE Conference on (pp. 1-

6). IEEE.

[22] S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky (2012). Jet: An embedded DSL for

high performance big data processing. In International Workshop on End-to-end Management of

Big Data (BigData 2012) (No. EPFL-CONF-181673).

[23] R. Xin, U. C. AMPLab, J. Gonzalez, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I.

Stoica, (2013) Beating State-of-the-art By-10000%. In CIDR.

[24] M. Franklin (2013, October). The Berkeley Data Analytics Stack: Present and future. In Big

Data, 2013 IEEE International Conference on (pp. 2-3). IEEE.

http://www.pcisig.com/
http://www.ieee802.org/3/bs/
http://graphlab.com/
http://memcached.org/
http://cwiki.apache.org/confluence/display/PIG/PigMix

[25] M. Zaharia., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica (2010, June). Spark:

cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot

topics in cloud computing (Vol. 10, p. 10).

[26] J. Taylor (2013) ARM and disaggregated Rack, Keynote, LCA 2013.

https://www.youtube.com/watch?v=LRfsIMM1KjQ

[27] J. Parikh (2015) Facebook News, Keynote, Opencompute Summit.

[28] Cisco UCS M-Series Modular Servers. http://www.cisco.com/c/en/us/products/servers-unified-

computing/ucs-m-series-modular-servers/index.html

[29] AMD Disaggregates the Server, Defines New Hyperscale Building Block.

http://www.seamicro.com/sites/default/files/MoorInsights.pdf

[30] SeaMicro Technology Overview. http://seamicro.com/sites/default/files/SM_TO01_64_v2.5.pdf

[31] Intel, Facebook Collaborate on Future Datacenter Rack Technologies,

http://newsroom.intel.com/community/intel_newsroom/blog/2013/01/16/intel-facebook-

collaborate-on-future-data-center-rack-technologies, Jan. 2013.

[32] Open Compute Project. http://www.opencompute.org

[33] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ortí, (2010, June). rCUDA:

Reducing the number of GPU-based accelerators in high performance clusters. In High

Performance Computing and Simulation (HPCS), 2010 International Conference on (pp. 224-

231). IEEE.

[34] A. Vahdat, H. Liu, X. Zhao, and C. Johnson (2011, March). The emerging optical data center.

In Optical Fiber Communication Conference (p. OTuH2). Optical Society of America.

[35] N. Farrington, G. Porter, P. C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, and A.

Vahdat (2012) A demonstration of ultra-low-latency data center optical circuit switching. ACM

SIGCOMM Computer Communication Review, 42(4), pp.95-96.

[36] A. Vahdat, "Delivering Scale Out Data Center Networking with Optics--Why and How." Optical

Fiber Communication Conference. Optical Society of America, 2012.

[37] C. Reano, R. May, E. S. Quintana-Orti, F. Silla, J. Duato, A. J. Pena, Influence of InfiniBand

FDR on the Performance of Remote GPU Virtualization, IEEE International Conference on

Cluster Computing (CLUSTER), pp. 1-8, 2013.

[38] V. Chang and G. Wills. (2016). “A model to compare cloud and non-cloud storage of Big

Data”. Future Generation Computer Systems, 57, 56-76.

[39] Arista, “Arista Networks Cloud Networking Portfolio”,

https://www.arista.com/en/products/switches, accessed on 23 December, 2015.

[40] Mellanox Technologies, “InfiniBand Performance”,

http://www.mellanox.com/page/performance_infiniband, accessed on 23 December, 2015.

[41] Calient “Calient S320 Datasheet”, http://www.calient.net/members-area/?redirect-

to=/download/s320-optical-circuit-switch-datasheet/, accessed on 23 December, 2015.

[42] H3 Platforms

http://www.h3platform.com:443/opencart/index.php?route=product/category&path=60

http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-m-series-modular-servers/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-m-series-modular-servers/index.html
http://www.seamicro.com/sites/default/files/MoorInsights.pdf
http://seamicro.com/sites/default/files/SM_TO01_64_v2.5.pdf
http://newsroom.intel.com/community/intel_newsroom/blog/2013/01/16/intel-facebook-collaborate-on-future-data-center-rack-technologies
http://newsroom.intel.com/community/intel_newsroom/blog/2013/01/16/intel-facebook-collaborate-on-future-data-center-rack-technologies
http://www.opencompute.org/
https://www.arista.com/en/products/switches
http://www.calient.net/members-area/?redirect-to=/download/s320-optical-circuit-switch-datasheet/
http://www.calient.net/members-area/?redirect-to=/download/s320-optical-circuit-switch-datasheet/

[43] J. Suzuki, Y. Hidaka, J. Higuchi, T. Baba, N. Kami, and T. Yoshikawa, (2010, August). Multi-

root share of single-root I/O virtualization (SR-IOV) compliant PCI Express device. In 2010 18th

IEEE Symposium on High Performance Interconnects (pp. 25-31). IEEE.

[44] Scalable Logic: Enhanced Networking in the AWS Cloud.

http://blogs.scalablelogic.com/2013/12/enhanced-networking-in-aws-cloud.html, 2013.

[45] Scalable Logic: Enhanced Networking in the AWS Cloud - Part 2.

http://blogs.scalablelogic.com/2014/01/enhanced-networking-in-aws-cloud-part-2.html, 2014.

[46] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper, S. Legtchenko, A.

Ogus, E. Peterson, and A. Rowstron, (2014) Pelican: A building block for exascale cold data

storage. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI

14) (pp. 351-365).

[47] K. Spafford, J. S. Meredith, and J. S. Vetter. "Quantifying numa and contention effects in multi-

gpu systems." Proceedings of the Fourth Workshop on General Purpose Processing on Graphics

Processing Units. ACM, 2011.

[48] J. S. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. McNally, J. Meredith, J.

Rogers, P. Roth, K. Spafford, and S. Yalamanchili (2011) Keeneland: Bringing heterogeneous

GPU computing to the computational science community. Computing in Science and

Engineering, 13(5), pp.90-95.

[49] P. Micikevicius "Multi-GPU programming." GPU Computing Webinars, NVIDIA (2011).

[50] T. P. Morgan (2015) “Facebook to open up Custom Machine Learning Iron”

http://www.nextplatform.com/2015/12/10/facebook-to-open-up-custom-machine-learning-iron/

[51] T. A. Gregg, D. Craddock, D. J. Stigliani, F. E. Bosco, E. E. Cruz, M. F. Scanlon, P. Sciuto, G.

Bayer, M. Jung, and C. Raisch (2012) Overview of IBM zEnterprise 196 I/O subsystem with

focus on new PCI express infrastructure. IBM Journal of Research and Development, 56(1.2),

pp.8-1.

[52] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis. Efficient resource

provisioning in compute clouds via vm multiplexing. In Proceedings of the 7th international

conference on Autonomic computing, pp. 11–20. ACM, 2010.

[53] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third ACM

Symposium on Cloud Computing, page 7. ACM, 2012.

[54] A. Samih, R. Wang, C. Maciocco, T.-Y. C. Tai, and Y. Solihin. A collaborative memory system

for high-performance and cost-effective clustered architectures. In Proceedings of the 1st

Workshop on Architectures and Systems for Big Data, pages 4–12. ACM, 2011.

[55] Q. Zhang, J. L. Hellerstein, and R. Boutaba. Characterizing task usage shapes in Google

compute clusters. In Large Scale Distributed Systems and Middleware Workshop (LADIS.11),

2011.

[56] B. Abali, R. J. Eickemeyer, H. Franke, C.-S. Li, and M. A. Taubenblatt (2015). Disaggregated

and optically interconnected memory: when will it be cost effective? arXiv preprint

arXiv:1503.01416, arXiv:1503.01416 , 3 Mar 2015.

http://blogs.scalablelogic.com/2013/12/enhanced-networking-in-aws-cloud.html
http://blogs.scalablelogic.com/2014/01/enhanced-networking-in-aws-cloud-part-2.html
http://www.nextplatform.com/2015/12/10/facebook-to-open-up-custom-machine-learning-iron/
http://arxiv.org/abs/1503.01416

[57] D. M. Tullsen and J. A. Brown (2001, December). Handling long-latency loads in a

simultaneous multithreading processor. In Proceedings of the 34th annual ACM/IEEE

international symposium on Microarchitecture (pp. 318-327). IEEE Computer Society.

[58] SPEC. SPEC CPU 2006 benchmarks. http://spec.org

[59] C. Chou, A. Jaleel, and M. K. Qureshi. "CAMEO: A Two-Level Memory Organization with

Capacity of Main Memory and Flexibility of Hardware-Managed Cache." Proceedings of the

47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer

Society, 2014

[60] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D Joseph, R. H Katz, S. Shenker, I.

StoicaMesos (2011): Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.

Proc. ACM USENIX Symposium on Networked Systems Design & Implementation (NSDI),

2011.

[61] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes (2013, April). Omega:

flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM European

Conference on Computer Systems (pp. 351-364). ACM.

[62] N. Roy, A. Dubey, and A. Gokhale. "Efficient autoscaling in the cloud using predictive models

for workload forecasting." Cloud Computing (CLOUD), 2011 IEEE International Conference on.

IEEE, 2011.

[63] A. Khoshkbarforoushha, R. Ranjan, R. Gaire, P. P. Jayaraman, J. Hosking, and E.

Abbasnejad (2015). Resource Usage Estimation of Data Stream Processing Workloads in

Datacenter Clouds. arXiv preprint arXiv:1501.07020.

[64] B. Mozafari, C. Curino, and S. Madden (2013, January). DBSeer: Resource and Performance

Prediction for Building a Next Generation Database Cloud. In CIDR.

[65] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy (2008, December). Profiling and modeling

resource usage of virtualized applications. InProceedings of the 9th ACM/IFIP/USENIX

International Conference on Middleware (pp. 366-387). Springer-Verlag New York, Inc..

[66] A. Ganapathi, Y. Chen, A. Fox, and R. Katz, and D. Patterson. (2010, March). Statistics-driven

workload modeling for the cloud. In Data Engineering Workshops (ICDEW), 2010 IEEE 26th

International Conference on (pp. 87-92). IEEE.

[67] C. Mitchell, Y. Geng, and J. Li. "Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient

Key-Value Store." USENIX Annual Technical Conference. 2013.

[68] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis (2013) Mizan: a

system for dynamic load balancing in large-scale graph processing, In Proc. Of Eurosys

[69] J. Jiang, J. Lu, G. Zhang, and G. Long (2013, May). Optimal cloud resource auto-scaling for

web applications. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM

International Symposium on (pp. 58-65). IEEE.

[70] R. Cushing, S. Koulouzis, A. S. Belloum, and M. Bubak (2011, December). Prediction-based

auto-scaling of scientific workflows. In Proceedings of the 9th International Workshop on

Middleware for Grids, Clouds and e-Science (p. 1). ACM.

http://spec.org/

[71] M. Mao and M. Humphrey (2011, November). Auto-scaling to minimize cost and meet

application deadlines in cloud workflows. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis (p. 49). ACM.

