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Abstract: The rapid growth of cloud computing, both in terms of the spectrum and volume of cloud 
workloads, necessitate re-visiting the traditional rack-mountable servers based datacenter design. 
Next generation datacenters need to offer enhanced support for: (i) fast changing system 
configuration requirements due to workload constraints, (ii) timely adoption of emerging 
hardware technologies, and (iii) maximal sharing of systems and subsystems in order to lower 
costs. Disaggregated datacenters, constructed as a collection of individual resources such as 
CPU, memory, disks etc., and composed into workload execution units on demand, are an 
interesting new trend that can address the above challenges. In this paper, we demonstrated the 
feasibility of composable systems through building a rack scale composable system prototype 
using PCIe switch.  Through empirical approaches, we develop assessment of the opportunities 
and challenges for leveraging the composable architecture for rack scale cloud datacenters with a 
focus on big data and NoSQL workloads.  In particular, we compare and contrast the 
programming models that can be used to access the composable resources, and developed the 
implications for the network and resource provisioning and management for rack scale 
architecture. 

 

1 INTRODUCTION 

Cloud computing is quickly becoming the fastest growing platform for deploying 

enterprise, social, mobile, and big data analytic workloads [1-3].  Recently, the need for 

increased agility and flexibility has accelerated the introduction of software defined 

environments (which include software defined networking, storage, and compute) where the 

control and management planes of these resources are decoupled from the data planes so that 

they are no longer vertically integrated as in traditional compute, storage or switch systems 

and can be deployed anywhere within a datacenter [4].  
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The emerging datacenter scale computing, especially when deploying big data 

applications with large volume (in petabytes or exabytes), high velocity (less than hundreds 

of microsecond latency), wide variety of modalities (structure, semi-structured, and non-

structured data) involving NoSQL, MapReduce, Spark/Hadoop  in a cloud environment are 

facing the following challenges: fast changing system configuration requirements due to 

highly dynamic workload constraints, varying innovation cycles of system hardware 

components, and the need for maximal sharing of systems and subsystems resources [5-7]. 

These challenges are further elaborated below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Systems in a cloud computing environment often have to be configured differently in 

response to different workload requirements. A traditional datacenter, as shown in Fig. 1, 

includes servers and storage interconnected by datacenter networks. Nodes in a rack are 

interconnected by a top-of-rack (TOR) switch, corresponding to the leaf switch in a spine-

leaf model.  TORs are then interconnected by the Spine switches. Each of the nodes in a rack 

may have different CPU, memory, I/O and accelerator configurations. Several configuration 

choices exist in supporting different workload resource requirements optimally in terms of 

performance and costs. A typical server system configured with only CPU and memory 

while keeping the storage subsystem (which also includes the storage controller and storage 

cache) remote is likely to be applicable to workloads which do not require large I/O 

bandwidth and will only need to use the storage occasionally. This configuration is usually 

inexpensive and versatile. However, its large variation in sustainable bandwidth and latency 

for accessing data (through bandwidth limited packet switches) make it unlikely to perform 

well for most of the big data workloads when large I/O bandwidth or small latency for 

accessing data becomes pertinent. Alternatively, the server can be configured with large 

amount of local memory, SSD, and storage. Repeating this configuration for a substantial 

Figure 1 Traditional datacenter with servers 
and storage interconnected by datacenter 
networks.   



 

portion of the datacenter, however, is likely to become very expensive. Furthermore, 

resource fragmentation arises for CPU, memory, or I/O intensive big data workloads as these 

workloads often consume one or more dimensions of the resources in its entirety while left 

other dimensions underutilized (as shown in Fig. 2, where there exists unused memory for 

CPU intensive workloads (Fig. 2(b)) or unused CPU for memory intensive workloads (Fig. 

2(c)). In summary, no single system configuration is likely to offer both performance and 

cost advantages across a wide spectrum of big data workload. 

Traditional systems also impose identical lifecycle for every hardware component inside 

the system. As a result, all of the components within a system (whether it is a server, storage, 

or switches) are replaced or upgraded at the same time. The "synchronous" nature of 

replacing the whole system at the same time prevents earlier adoption of newer technology at 

the component level, whether it is memory, SSD, GPU, or FPGA. The average replacement 

cycle of CPUs is approximately 3-4 years, HDDs and fans are around 5 years, battery 

backup (i.e. UPS), RAM, and power supply are around 6 years. Other components in a data 

center typically have a lifetime of 10 years. A traditional system with CPU, memory, GPU, 

power supply, fan, RAM, HDD, SSD likely has the same lifecycle for everything within the 

system as replacing these components individually will be uneconomical. 

System resources (memory, storage, and accelerators) in traditional systems configured 

for high throughput or low latency usually cannot be shared across the data center, as these 

resources are only accessible within the "systems" where they are located. Using financial 

industry as an example, they are often required to handle large number of Online Transaction 

Processing (OLTP) during day time while conducting Online Analytical Processing (OLAP)  

and business compliance related computation during night time (often referred to as batch 

window) [8]. OLTP has very stringent throughput, I/O, and resiliency requirements. In 

contrast, OLAP and compliance workloads may be computationally and memory intensive.  

As a result, resource utilization could be potentially low if systems are statically configured 

for individual OLTP and OLAP workloads. Those resources (such as storage) accessible 

remotely over datacenter networks allow better utilization but the performance in terms of 

Figure 2: Fitting workloads to nodes in a cloud environment.  (a) Typical workloads where CPU and 
memory requirements can be easily fit into a system. (b) CPU intensive workload with unused memory 
capacity. (c) Memory intensive workloads. 



 

throughput and latency are usually poor, due to a prolonged execution time and constrained 

quality of service (QoS).  

Disaggregated datacenter, constructed as a collection of individual resources such as 

CPU, memory, HDDs etc., and composed into workload execution units on demand, is an 

interesting new trend that satisfies several of the above requirements [9]. In this paper, we 

demonstrated the feasibility of composable systems through building a rack scale 

composable system prototype using PCIe switch. Through empirical approaches, we develop 

assessment of the opportunities and challenges for leveraging the composable architecture 

for rack scale cloud datacenters with a focus on big data and NoSQL workloads. We 

compare and contrast the programming models that can be used to access these composable 

resources. We also develop the implications and requirements for network and resource 

provisioning and management. Based on this qualitative assessment and early experimental 

results, we conclude that a composable rack scale architecture with appropriate programming 

models and resource provisioning is likely to achieve improved datacenter operating 

efficiency. This architecture is particularly suitable for heterogeneous and fast evolving 

workload environments as these environments often have dynamic resource requirements 

and can benefit from the improved elasticity of the physical resource pooling offered by the 

composable rack scale architecture.  

The rest of the paper is organized as follows: Section 2 describes the architecture of 

composable systems for a refactored datacenter. Related work in this area is reviewed in 

Seciton 3. The software stack for such composable systems is described in Section 4.  The 

network considerations for such composable systems are described in Section 5. A rack scale 

composable prototype system based on PCIe switch is described in Section 6. We describe 

the rack scale composable memory in Section 7.  Section 8 describes the methodology for 

distributed resource scheduling.  Empirical results from various big data workloads on such 

systems are reported and discussed in Section 9.   Discussions of the implications are 

summarized in Section 10.   

2 COMPOSABLE SYSTEM ARCHITECTURE    

Composable datacenter architecture, which refactors datacenter into physical resource 

pools (in terms of compute, memory, I/O, and networking), offers the potential advantage of 

enabling continuous peak workload performance while minimizing resource fragmentation 

for fast evolving heterogeneous workloads.  Figure 3 shows rack scale composability, which 

leverages the fast progress of the networking capabilities, software defined environments, 

and the increasing demand for high utilization of computing resources in order to achieve 

maximal efficiency.   

On the networking front, the emerging trend is to utilize a high throughput low latency 

network as the “backplane” of the system. Such a system can vary from rack, cluster of 



 

racks, PoDs, domains, availability zones, regions, and multiple datacenters. During the past 3 

decades, the gap between the backplane technologies (as represented by PCIe) [10] and 

network technologies (as represented by Ethernet) is quickly shrinking.  The bandwidth gap 

between PCIe gen 4 (~250 Gb/s) [10] and 100/400 GbE [11] will likely become even less 

significant. When the backplane speed is no longer much faster than the network speed, 

many interesting opportunities arise for refactoring systems and subsystems as these system 

components are no longer required to be in the same "box" in order to maintain high system 

throughput. As the network speeds become comparable to the backplane speeds, SSD and 

storage which are locally connected through a PCIe bus can now be connected through a 

high speed wider area network. This configuration allows maximal amount of sharing and 

flexibility to address the complete spectrum of potential workloads. The broad deployment 

of Software Defined Environments (SDE) within cloud datacenters is facilitating the 

disaggregation among the management planes, control planes, and data planes within servers, 

switches and storage [4].     

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

Systems and subsystems within a composable (or disaggregated) data center are 

refactored so that these subsystems can use the network "backplane" to communicate with 

each other as a single system. Composable system concept has already been successfully 

applied to the network, storage and server areas. In the networking area, physical switches, 

routing tables, controllers, operating systems, system management, and applications in 

traditional switching systems are vertically integrated within the same "box". Increasingly, 

the newer generation switches both logically and physically separate the data planes 

(hardware switches and routing tables) from the control planes (controller, switch OS, and 

switch applications) and management planes (system and network management). These 

switches allow the disaggregation of switching systems into these three subsystems where 

Figure 3: In rack scale architecture, each of the 
nodes within the rack is specialized into being rich in 
one type of resources (computing rich, accelerator 
rich, memory rich, or storage rich).   



 

the control and management planes can reside anywhere within a data center, while the data 

planes serve as the traditional role for switching data. Similar to the networking area, storage 

systems are taking a similar path. Those  monolithically integrated storage systems that 

include HDDs, controllers, caches (including SSDs), special function accelerators for 

compression and encryption are transitioning into logically and physically distinct data 

planes – often built from JBOD (just a bunch of drives), control planes (controllers, caches, 

SSDs) and management planes.    

 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

Figure 3 illustrates a composable architecture at the rack level.  In this architecture, each 

of the nodes within the rack is specialized into being rich in one type of resources 

(computing rich, accelerator rich, memory rich, or storage rich). These nodes are 

interconnected by a low latency top-of-rack switch (and potentially a PCIe switch in addition 

to the TOR switch). In contrast to Fig. 1 where each of nodes within a rack may be 

configured differently (with different size or type of memory, accelerators, and local 

storage), there are far fewer node configurations in a rack scale architecture. The same 

concept can be extended to the PoD or datacenter level, as shown in Fig. 4, in which each 

rack consists of a specific type of nodes that have been specialized into computing rich, 

accelerator rich, memory rich, or storage rich nodes. In addition to the low latency TOR for 

providing connectivity at the rack level, low latency spine switch in a spine-leaf model or 

silicon photonics/optical circuit switches may be needed in order to maintain low latency 

between different racks. 

 
 
 
 
 
 
 

Figure 4: Disaggregation architecture 
applied at the PoD or datacenter level.   



 

 
 
 
 
 
 

 

 

 

 

 
 
 
 

Figure 5: Software stack for accessing composable resources 

 

The cost model for the effective cost of a system, CTotal, with Nmemory of memory modules, 

NGPU  of GPU modules, NSSD of SSD modules, and NHDD of HDD modules, assuming the 

cost for each memory, GPU, SSD, and HDD module is Cmemory, CGPU,  CSSD, and  CHDD, 

respectively, and the utilization is Umemory , UGPU , UGPU , and UHDD , respectively, can be 

defined in Eq. (1): 

 

CTotal = Nmemory Cmemory/Umemory+ NGPU CGPU/UGPU + NSSD CSSD/USSD + NHDD CHDD/UHDD           (1) 

 

The effective cost of a traditional system with utilization less than 50% for each type of 

resources is 33% higher than a composable system with 75% utilization for each type of 

resources.  

3 RELATED WORK 

High composability and resource pooling among CPUs, memory, and I/O resources is 

provided in a traditional Symmetric Multi-processing (SMP) with shared memory (scale up) 

architecture. The original logical resource partitioning concept – LPAR - was created during 

early 1970’s as part of the IBM System 370 PR/SM (Processor Resource/System Manager) 

[12].  Subsequently, this concept was extended to DLPAR [13] to allow dynamic 

partitioning and reconfiguration of the physical resources without having to shut down the 

operating systems that runs in the LPAR.  DLPAR enables CPU, memory, and I/O interfaces 

to be moved non-disruptively between LPARs within the same server. Virtual symmetric 

multiprocessing (VSMP) extended this concept in a scale out environment by mapping two 

or more virtual processors inside a single virtual machine or partition [14]. This makes it 

possible to assign multiple virtual processors to a virtual machine on any host having at least 

two logical processors.    

Partially composable memory architecture was proposed by Lim et al [9, 15] in which 

each composable compute node retains a smaller size of memory while the rest of the 
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memory is disaggregated and shared remotely. When a compute node requires more memory 

to perform a task, the hypervisor integrates (or “compose”) the local memory and the remote 

shared memory to form a flat memory address space for the task. During the run time, 

accesses to remote addresses result in a hypervisor trap and initiate the transfer of the entire 

page through RDMA (Remote Direct Memory Access) mechanism to the local memory. 

Their experimental results show an average of ten times performance benefit in a memory-

constrained environment. A detailed study of the impacts of network bandwidth and latency 

of a composable datacenter for executing in-memory workloads such as GraphLab [16], 

MemcacheD [17] and Pig [18] was reported in [19]. When the remote memory is configured 

to contain 75% of the working set, it was found through simulation that the application level 

degradation was minimal (less than 10%) when network bandwidth is 40 Gb/s and the 

latency is less than s10  [20].    

There has been an ongoing effort to reconcile big data and big compute environments, 

such as the LLGrid at MIT Lincoln Lab [21]. Design and implementation of a lightweight 

composable operating system for composable processor sharing is reported in [22]. An in-

memory approach for achieving significant performance improvement for big data and 

analytic applications was proposed for the traditional clustering and scale-out environment 

[23-25].  

Large scale exploration of rack scale composable architecture has been demonstrated to 

produce substantial cost savings at Facebook for the newsfeed part of the Facebook 

infrastructure [26-27].  Server products based on a composable architecture have already 

appeared in the marketplace. These include the Cisco UCS M-Series Modular Server [28], 

AMD SeaMicro composable architecture [29-30], and Intel Rack Scale Architecture [31] as 

part of the Open Compute Project [32]. 

The focus of this paper, composable rack scale architecture, blends limited amount of 

resource pooling capabilities into a scale out architecture without requiring cache coherence 

(as compared to [13-14]) in this environment.  The results and insights from earlier works for 

disaggregated systems as reported in [5, 15, 19] are largely obtained from simulation, and 

did not address some of the recent NoSQL workloads such as Giraph and Cassandra. In this 

paper, we reported prototyping effort for demonstrating rack scale composability using PCIe 

switch, and experimental results from running NoSQL and big data workloads such as 

Giraph, MemcacheD, and Cassandra.  

4 SOFTWARE STACK 

Composable datacenter resources can be accessed by application programming models 

through different means and methods. We consider and evaluate the pros and cons for three 

fundamental approaches, as shown in Fig. 5, including hardware based, hypervisor/operating 

system based, and middleware/application based. 



 

The hardware based approach for accessing composable resources is transparent to 

applications and the OS/hypervisor.  Hardware based composable memory presents a large 

and contiguous logical address space, which may be mapped into physical address space of 

multiple nodes, to the application.  When the application accesses composable memory, the 

system management resolves the logical address of the request to the physical address within 

one of the compute nodes.  In this case, the physical memory is byte addressable across the 

network and is entirely transparent to the applications. While such transparency is desirable, 

it forces a tight integration with the memory subsystem either at the physical level or the 

hypervisor level. At the physical level, the memory controller needs to be able to handle 

remote memory accesses. To avoid the impact of long memory access latencies, we expect 

that a large cache system is required. Composable GPU and FPGA can be accessed as an I/O 

device based on direct integration through PCIe over Ethernet. Similar to composable 

memory, the programming models remain unchanged once the composable resource is 

mapped to the I/O address space of the local compute node. 

In the second approach, the access of composable resources can be exposed at the 

hypervisor, container, or operating system levels.  New hypervisor level primitives - such as 

getMemory, getGPU, getFPGA, etc. - need to be defined to allow applications to explicitly 

request the provisioning and management of these resources in a manner similar to malloc. It 

is also possible to modify the paging mechanism within the hypervisor/operating systems so 

that the paging to HDD now goes through a new memory hierarchy including composable 

memory, SSD and HDD.  In this case, the application does not need to be modified at all.   

Accessing remote Nvdia GPU through rCUDA [33] has been demonstrated, and has been 

shown to actually outperform locally connected GPU when there is appropriate network 

connectivity.  

Details of resource composability and remoteness can also be directly exposed to 

applications and managed using application-level knowledge.  Composable resources can be 

exposed via high-level APIs (e.g. Put/Get for memory). As an example, it is possible to 

define GetMemory in the form of Memory as a Service as one of the Openstack service. This 

potential Openstack GetMemory service will set up a channel between the host and the 

memory pool service through RDMA. Through this GetMemory service, the application can 

now explicitly control which part of its address space is deemed remote and therefore 

controls or is at least cognizant which memory and application objects will be placed 

remotely. In the case of GPU as a service, a new service primitive GetGPU can be defined 

to locate an available GPU from a GPU resource pool and host from the host resource pool.  

The system establishes the channel between the host and the GPU through RDMA/PCIe and 

exposes the GPU access to applications via a library or a virtual device. All of the 

experiments conducted in this paper are based on this approach, in which the composable 

resources are directly exposed to the applications. 



 

5 NETWORK CONSIDERATIONS  

One of the primary challenges for a composable datacenter architecture is the latency 

incurred over the interconnects and switches when accessing memory, SSD, GPU, and 

FPGA from remote resource pools. The latency sensitivity depends on the programming 

model used to expose composable resources in terms of direct hardware, hypervisor, or 

resource as a service.  In order for the interconnect and switch technologies to be appropriate 

for accessing remote physical resource pools, the round trip access latency has to be 

insignificant compared to the inherent access latency of the resource so that the access of the 

resource can remain transparent to the applications.  When the access latency of the remote 

resource pool become noticeable compared to the inherent access latency, there might be 

significant performance penalty unless thread level parallelism is exploited at the processor, 

hypervisor, OS, or application levels. 

The most stringent requirement on the network arises when composable memory is 

mapped to the address space of the compute node and is accessed through the byte 

addressable approach. The total access latency across the network cannot be significantly 

larger than the typical access time of locally attached DRAM so that the execution of threads 

within a modern multi-core CPU can remain efficient. The bandwidth and latency for 

accessing locally attached memory through DMI/DDR3 interface today is 920 Gb/s and 75 

ns, respectively. PCIe switch (Gen 3) can achieve latency on the order of 150 ns while low 

latency Top-of-Rack IP switch and Infiniband switch can achieve 800 ns latency or less.  As 

a result, silicon photonics and optical circuit switches (OCS) are likely to be the only options 

to enable composable memory beyond a rack [34-36]. Large caches can reduce the impact of 

remote access. When the block sizes are aligned with the page sizes of the system, the 

remote memory can be managed as extension of the virtual memory system of the local hosts 

through the hypervisor and OS management. In this configuration, locally attached DRAM is 

used as a cache for the remote memory, which is managed in page-size blocks and can be 

moved via RDMA operations.  

Disaggregating GPU and FPGA are much less demanding as each GPU and FPGA are 

likely to have its local memory, and will often engage in computations that last many 

microseconds or milliseconds. So the predominant communication mode between a compute 

node and composable GPU and FPGA resources is likely through bulk data transfer.  It has 

been shown by [37] that adequate bandwidth such as those offered by RDMA at FDR data 

rate (56 Gb/s) already demonstrated superior performance than a locally connected GPU. 

Network latency measurement is important since it can affect the performance in data 

center technologies including high performance computing, storage and data transfer 

between different sites, whereby the impact on network latency on the data center 

performance for Cloud and non-Cloud solutions is investigated in [38]. With the 

advancement in our proposed data technologies, regular measurement is not required since 

current SSD technologies have 100K IOPS and 100 us access latency. Consequently, the 



 

access latency for non-buffered SSD should be on the order of 10 us.  This latency may be 

achievable using conventional Top-of-the-Rack (TOR) switch technologies if the 

communication is limited to within a rack. A flat network across a PoD or a datacenter with 

a two-tier spine-leaf model or a single tier spline model is required in order achieve less than 

10 us latency if the communication between the local hosts and the composable SSD 

resource pools are across a PoD or a datacenter.   

  Table 1 summarizes the type of networks required for supporting composability from 

physical resource pools (memory, GPU/FPGA, SSD and HDD) at the Rack, PoD, and 

Datacenter levels. The entries in this table are derived from the considerations that the total 

round trip latency for accessing the remote physical resource pools has to be insignificant 

compared to the inherent access latency. The port-to-port latency for various interconnects 

and switch technologies are: 

 Low latency TOR switch, such as those made by Arista (380-1000 ns) [39] 

 Low latency spine-leaf switches, such as those made by Arista (2-10 us) [39] 

 InfiniBand switch, such as those made by Mellanox (700 ns) [40] 

 Optical circuit switch, such as those made by Calient (<30 ns) [41] 

 PCIe switch, such as those made by H3 Platform (~150ns) [42] 

The round trip propagation delay, assuming 5 ns/m, for rack, PoD, and datacenter are: 

 Intra-rack: the average propagation distance is less than 3 m or 15 ns. 

 Intra PoD: the average propagation distance is 50 m or 250 ns. 

 Intra datacenter: the average propagation distance is 200 m or 1 us. 

Consequently, rack level systems with composable GPU/FPGA, SSD, and HDD can be 

easily accommodated by low latency TOR switch, PCIe switch or InfiniBand switch. Low 

latency flat network based on spine-leaf switches become the primary option for PoD and 

datacenter level interconnect for composable resources.  

 



 

Table 1: Types of network for supporting composable systems at the rack, PoD and 
datacenter levels. 

 

6 RACK SCALE COMPOSABLE I/O PROTOTYPE 

Composable I/O is a special case of leveraging high throughput low latency network 

(often based on PCIe switch or Infiniband switch) to support physical resource pooling and 

reduce resource fragmentation at the rack level. PCIe fabrics do not scale beyond a few 

racks.  However with the use of PCIe fabrics, resource pooling is simplified at the rack scale.  

Main advantage of PCIe fabrics over Ethernet, Fiber Channel, or Infiniband is that a PCIe 

fabric requires virtually no changes to the software stack, as a peripheral allocated from a 

PCIe-connected resource pool appear to be local to each server. 

 Most of the cloud datacenters use 2-socket rack servers in 1U (1.75-inch high) or 2U 

(3.5-inch high) physical form factors. 1U and 2U servers typically contain 1-2 and 4-6 PCIe 

slots, respectively.  When high compute density is required, 1U servers may be used at the 

expense of limited number of PCIe slots. As a result, these 1U servers are specialized 

according to the functions associated with the PCIe slots such as SSD or GPU-specialized 

servers. When PCIe rich servers are required, a 2U server must be used at the expense of 

reduced compute density and often vacant PCIe slots. Either scenario leads to inefficiencies 

in the datacenter. This is due to mismatches between available system resources configured 

in 1U and 2U and the dynamically changing resource requirements for big data workloads.  

The composable I/O architecture addresses the I/O aspect of this problem by physically 

decoupling the I/O peripherals from individual servers.  In one realization of this composable 

I/O architecture, PCIe peripherals are aggregated in a common I/O drawer in the rack (as 
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shown in Fig. 3). The challenges for realizing such architecture include achieving 

multiplexing, scalability, sharing, and reliability:  

 

 Multiplexed I/O is the ability to dynamically attach and detach any PCIe peripheral to 

any server. Multiplexed I/O is essential in "bare-metal" clouds in which customers rent 

and compose server resources on-demand, such as the type and number of PCIe 

peripherals.  Multiplexed I/O should also allow logical hot plugability of a PCIe card to a 

running server.   

 Scalable I/O is the ability to attach large number of PCIe cards to a single server 

regardless of its form factor, hence achieving better compute density and resource 

utilization at the same time.   

 Shared I/O is the ability to share a single PCIe card among multiple hosts, therefore 

reducing the infrastructure cost.   

 Reliability refers to the highly available and fault tolerant I/O fabrics.   

 

 Addressing all these challenges transparently without impacting the software stack is 

desirable.  Supporting Multiplexed I/O and Scalable I/O requires no changes in the software 

stack. PCIe peripherals simply appear to be local to the server through PCIe switch fabric.   

A management layer for the composable I/O fabrics may be required.  Supporting shared I/O 

requires MRIOV capable adapters or some adaptation of SRIOV as detailed below. 

Recent advances in PCIe switching technologies enable inexpensive implementation of 

the composable I/O architecture. PCIe bus in a traditional server is located on its 

motherboard. A "southbridge" chip served as a gateway from processor and memory to the 

PCIe slots on the motherboard. Newer PCIe switch chips (e.g., from the PLX and IDT) allow 

interconnecting multiple hosts and PCIe peripheral devices. These switch chips (e.g.  PLX 

PEX9797) can provide up to 96 one-bit wide (x1) PCIe lanes that can be combined to create 

a crossbar switch of port sizes at x1, x4, x8, and x16.  Multiple switch chips can be cascaded 

to provide even larger PCIe fabric. Virtual PCIe networks within each fabric may be 

software defined, giving each root the ability to host the private ownership of the 

downstream PCIe devices. Additionally, host-to-host communication is made possible by 

creating remote memory access tunnels and on-chip DMA engines with NIC-like 

functionality, albeit in a non-standard fashion.  PCI-SIG (the standard group responsible for 

defining PCI) has defined the Multi-Root I/O Virtualization (MR-IOV) extension of the 

PCIe spec for multiple hosts sharing a single PCIe adapter. Industry adoption of MR-IOV 

has yet to happen since its inception almost a decade ago.  On the other hand, Single-Root 

I/O Virtualization (SR-IOV) [43] adapters have been more broadly embraced within the 

industry by cloud service providers such as AWS and has been demonstrated to achieve up 

to 95% of the bare metal adapter card [44-45]. SR-IOV adapters were originally intended for 

hypervisor-based hosts. The adapter presents multiple virtual end points to the virtual 



 

machines on a single host, with the hypervisor responsible for managing the physical device.   

It has been demonstrated that MR-IOV adapter can be emulated by the PEX9x switch chips 

to provide connection from multiple physical hosts to virtual interfaces on a single SR-IOV 

adapter [43]. With host-to-host communication and I/O sharing capability, it is conceivable 

that cloud service providers will leverage PCIe switch and SR-IOV NIC combination to 

eliminate or reduce the port counts of the top-of-rack (TOR) switches. To sum up, we expect 

rack scale composable I/O solutions (for example, a chassis of PCIe cards that multiple hosts 

attach to) to become more broadly adopted. 

A number of recent works demonstrated the benefit of applying composable I/O 

functionality in a cloud environment. A novel use of PCIe switching fabric in the Pelican 

Cold Storage prototype [46] demonstrated highly scalable I/O fabrics.  Pelican is a rack-scale 

hard disk based storage prototype for "cold" data that are only infrequently accessed. In the 

Pelican prototype, only 96 drives out of 1152 (~8.3%) are powered on at any given time to 

minimize the rack power and cooling requirements.  The novel use of PCIe switches come in 

to play when interconnecting the 1152 drives to the two hosts without using SAN storage 

controllers. 

Single host with multiple GPU systems have been experimented in the high performance 

computing community [47-48]. A cluster of nodes with 8 GPUs per host can be created 

using PCIe switches [49], as demonstrated by the Facebook Big Sur system [50].  Workloads 

involving GPU computations are often bandwidth intensive and therefore the single rooted 

PCIe tree can easily become a bottleneck. Consequently, peer-to-peer copy is used by GPUs 

for directly exchanging data with no staging thru the host memory. 

The IBM zEnterprise 196 I/O subsystem demonstrates the reliability aspect of the 

composable I/O concept [51].  The I/O subsystem is contained in a 32-slot I/O drawer (each 

slot is PCIe Gen2 x8). The I/O drawer is divided in to 4 I/O domains of 8 PCIe slots each.  

Each domain contains a 96-lane PCIe switch with x8 downlinks and one x16 uplink 

connected to one of the four SMP processor cards. An x16 failover link interconnects the 

two PCIe switches in two different I/O domains. When an SMP processor card becomes 

offline for any reason (maintenance or faults), the x16 uplink goes down.  The x16 failover 

link provides access to the PCIe peripherals through another processor card. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 DAS (no PCIe switch) PCIe switch 

BW MB/s IOPS BW MB/s IOPS 

Sequential 4KB read (iodepth=16) 1684 431,182 1193 305,648 

Sequential 4KB read (iodepth=64) 1624 415,699 1344 344,029 

 

Table 2: PCIe shared storage experimental results 

 

The prototype rack scale composable system based on PCIe switch developed for this 

paper is shown in Fig. 6. It consisted of an H3 RAID array with 12 SATA drives with a 

single PCIe Gen3 x4 port, a PCIe switch (SW16) with 16 Gen2 x4 ports, and Host Bus 

Adapter (HBA) plugged in to an IBM 3650M4 server. The HBA had two ports, one labeled 

SAN for connecting thru SW16 and the other one labeled DAS for an optional direct 

connection to the RAID array. The SW16 switch contains several stages of PCIe switch 

chips and adds 450 nanoseconds of latency. Note that SW16 ports were Gen2, therefore both 

the RAID box and the HBA would step down to Gen2 speed when connected to SW16, 

whereas the direct DAS connection ran at Gen3 speed.   

Figure 6: PCIe shared storage experimental setup 



 

The sequential 4KB read experiment is conducted on the prototype to determine the 

impact on the I/O latency and throughput due to the PCIe switch introduced in the 

composable rack scale system. Only sequential read is conducted as random reads on HDDs 

often incur additional latency due to access time (often exceeds 25 ms) resulting from the 

seek time of the disk head and rotation delay of the platter. Benchmark had four software 

threads pinned to specific CPUs and initiated read operations with I/O depths of 16 and 64, 

indicating the number of asynchronous I/Os in progress at once.   

Table 2 shows that the bandwidth achieved without and with PCIe switch setups were 

1684 MB/s and 1193 MB/s, respectively. The IOPS rates without and with PCIe switch were 

431K and 305K respectively. These measurements indicate that the Gen2 PCIe switch 

introduces 29% reduction on both the throughput and the IOPS rate. Subsequently, the four 

software threads’ IO depth was increased from 16 to 64 to overlapped I/O requests to 

compensate for the PCIe switch latency. It was observed that the bandwidth increased from 

1193 MB/s to 1344 MB/s and the IOPS rate increased from 305K to 344K. However, this 

still represents 17% penalty on the bandwidth and IOPS rate when compared to the 

configuration without the Gen2 PCIe switch. Again, most of the penalty can be explained by 

the throughput differences between Gen3 vs. Gen2 of PCIe operations, which are 8 GT/s and 

5 GT/s, respectively, for the base standard. 

PCIe switch fabric is expected to continue improving during the coming years. The next 

step of the PCIe switch based rack scale composable system will likely to be (1) based on 

Gen3 PCIe switch fabric (2) supporting larger number of ports (>96 ports) (3) continued 

evolution of the multi-root support.   

7 RACK SCALE COMPOSABLE MEMORY 

Rack scale composable memory intends to reduce the memory fragmentation problem in 

the datacenter. Various workload analysis demonstrated that 30~50% (and sometimes up to 

90%) of server memory capacity goes unused [52-55]. Many of these scenarios indicated 

that CPU capacity is exhausted before memory capacity is reached, therefore leaving a 

fraction of the memory unused. It is hypothesized that when the memory is placed in shared 

pools, higher efficiencies may be achieved by composing servers dynamically through 

carving out the necessary amounts of memory from these shared pools [9, 15-19].  However 

these isolated analyses overlooked the performance and cost issues of memory 

disaggregation. Modern microprocessors and DRAMs often have strong affinity to each 

other. Pooling the memory in a centralized location, either at a rack scale or at datacenter 

scale, will impact memory performance and cost. First, bandwidth of state-of-the-art 

memory channels is couple orders of magnitude higher than that of the existing network 

fabrics. Signal integrity and high bandwidth requirements of long links will require optical 

interconnects but at a much increased cost [56]. Second, disaggregation will increase the 



 

memory latency due to increased physical distance and additional latency introduced by the 

switching.   

The latency of reading one cache block, typically 64 to 128 bytes, from memory to the 

processor cache takes approximately 75 nanoseconds. Additional latency is incurred in 

distributed applications for message passing when messages are sent over Ethernet or 

InfiniBand fabrics between nodes in a cluster. The impact on the performance of these 

applications due to longer network latency is lessened by using large packet sizes and 

asynchronous messaging. However, these approaches are not practical at the processor 

instruction level. As applications access remote memory explicitly (e.g. using RDMA),  they 

most likely utilize a distributed memory cluster environment supporting message passing as 

opposed to a pooled memory environment supporting synchronous load/stores instructions 

from processors. 

The processor performance as a function of memory latency is simulated using a cycle 

accurate processor simulator. The simulated instruction traces of several benchmarks using 

different memory latencies indicated a linear relationship between performance and latency. 

Two hypothetical processors P1 and P2 with 12 and 16 core, respectively, were simulated. 

Each core has an L1 size of 64KB, L2 size of 512KB, and L3 size of 8MB. Both P1 and P2 

use out-of-order execution. P1 can issue 10 instructions per cycle to 16 functional units in 

each core. Each core can have up to 16 outstanding cache misses. Both processors 

implement simultaneous multithreading / hyperthreading (SMT) found in x86 and POWER 

processors [57]. In the SMT mode, each core supports 2, 4 or 8 logical processors that share 

its functional units and the execution pipeline, therefore increasing the total core throughput 

by a factor of 2 to 3. The SPEC CPU2006 Integer and Floating Point suite of benchmark 

[58] traces were simulated on P2. Four commercial benchmarks OLTP, ERP, TRADE, and 

SALES were simulated on P1. OLTP is an online transaction processing benchmark that 

measures the rate of queries/transactions performed on a database. TRADE is a Java based 

stock trading application. ERP is an enterprise resource planning application. SALES is a 

customer order processing and distribution application.  

The workload’s sensitivity to memory latency, Memory Fraction of Performance (MFP), 

is defined in Eq. (2)  

 

MFP = ∆ET /∆ML                    (2) 

 

where ∆ET is the relative increase in benchmark execution time while ∆ML the relative 

increase in the memory latency. Both ∆ET and ∆ML are relative to its baseline value. In 

essence, MFP is the fraction of execution time attributable to the memory latency. For 

example, an MFP of 40% indicates that the memory latency is responsible for 40% of the 

execution time.  Execution time would increase by 40% if the memory latency doubled from 



 

a base of 75ns to 150ns.  A workload with a small MFP is insensitive to the memory latency, 

as its working set fits in to the processor’s on-chip caches.  

 

 
Figure 7: The fraction of the execution time due to memory latency 

 

Fig. 7 summarizes the memory latency sensitivity for commercial and SPEC benchmarks.  

Average MFP for the INT and FP suites are 20% and 16%, respectively, on single threaded 

(ST) cores. Individual benchmarks (not detailed here) had an MFP as high as 59%, which 

demonstrated that composable memory architecture at the PoD or datacenter level is unlikely 

to be suitable for these types of applications where the application performance is sensitive 

to the memory latency. In a comosable memory architecture when the processor and memory 

are more than a few racks apart (with a distance up to 10 meters will introduce a round trip 

delay of 2 x 10 meters x 5ns/m = 100ns), resulting in more than doubling the base latency.   

A noteworthy observation is that MFP decreases with increasing SMT levels for most of 

the benchmarks.  In the case of SPEC INT, the average MFP is reduced from 20% to 8% 

when the simultaneous thread level is increased from single thread to 8 concurrent threads.  

In other words, workloads are more tolerant to increasing memory latencies on an SMT 

processor. This is because the threads of a core may have to wait for each other while 

accessing the shared functional units and pipeline stages, and hides some portion of the 

memory latency.  Results suggest that disaggregated memory systems and other high latency 

memory systems will benefit from high SMT parallelism.  

In a disaggregated memory system, the memory latency may increase because of the 

additional delay contributed by the signal propagation, switches (queueing/buffering), E/O & 

O/E (electrical-to-optical and optical-to-electrical conversion), serialization/deserialization, 

line coding/decoding, and protocol conversion.  Propagation of light in optical fiber will add 

~5 nanoseconds (ns) to the latency per meter. A memory chassis in a single rack may add as 

much as 6 meters roundtrip (30 ns or 40%) to the base latency of 75 ns. Memory racks 

serving an entire data center will add ~500 ns (or ~100m) to the latency. A memory “switch” 

required for a pooled memory may add 75 to 150 ns.  Therefore depending on the scale of 

disaggregation, we estimate that the total memory latency will be at minimum 150 ns, 



 

resulting in at least an increase of 40% of the execution time for the SPEC INT suite. Thus, 

the increased resource utilization efficiency due to disaggregation may be partially or 

entirely offset by the increase in processor costs when the additional latency cannot be 

hidden [56]. 

Another design approach is managing the local/remote (pooled) memory hierarchy using 

software, namely the virtual memory subsystem of the OS or the hypervisor. Referencing to 

pages not present in the local memory is trapped by VMM and those missing pages will be 

retrieved from the pooled memory in to the local memory by using, for example, RDMA. 

Alternatively, the application software can be modified to provide the management of the 

local vs. remote memory explicitly.  Software overhead of this approach can be considerable, 

and often exceeds 1 microseconds per page. An increase of 1 to 10 microsecond memory 

latency will increase the execution time by 266% and 2666%, respectively, for the SPEC 

INT suite according to Eq. (1). Note also that managing the two level local/remote memory 

at the page granularity significantly increases the bandwidth consumption of the memory and 

the fabric, since not all data in a given page are touched by the processor [59]. In Section 9, 

we present experimental results of this software managed remote memory approach. 

In summary, retaining sufficient local DRAM serving as the cache for the pooled memory 

as opposed to full disaggregation of memory resources and retain no local memory for the 

CPU is always recommended to minimize the performance impact due to latency incurred 

from accessing remote memory, regardless whether the access is managed by hardware, OS, 

or applications. Higher SMT levels [57] and/or explicit management by applications that 

maximize thread level parallelism are also essential to further minimize the performance 

impact.   

8 DISTRIBUTED RESOURCE PROVISIONING 

In a composable datacenter with physical resource pooling, it is essential that the physical 

resources are requested and provisioned with minimum latency so that the use of remote 

resources will not create a serious performance bottleneck. A traditional scheduling 

environment provisions resources based on the maximal anticipated resource requirement for 

the duration of a workload. In this section, an approach based on distributed scheduling with 

global shared state in conjunction with predictive resource provisioning is proposed. 

Resource provisioning and scheduling can be carried out through centralized, hierarchical, or 

fully distributed approaches. The centralized approach is likely to achieve the optimal 

resource utilization, but may result in a single point of failure and a severe performance 

bottleneck. The hierarchical approach, such as the one used in Mesos [60], allows flexible 

addition of heterogeneous schedulers for different classes of workloads to a centralized 

scheduler. The centralized scheduler allocates chunks of resources to the workload specific 

scheduler, which in turn allocates resources to individual tasks.  However, this approach 



 

often results in sub-optimal utilization. A fully distributed approach with global shared state, 

such as the Google Omega [61] project, utilizes an optimistic approach for resource 

scheduling. This approach is likely to perform better as compared to other approaches. 

The mechanism for scheduling and provisioning resources from composable physical 

resource pools starts with the requesting node establishing the type and amount of resource 

required. As discussed in the previous section, the amount of resource required can be 

established explicitly by the workload or implicitly as the current requesting node runs out of 

resource locally.  Once the request is received, the resource provisioning engine will identify 

one or more of the resource pools with available resources, potentially based on the global 

shared state, for provisioning resources. It will then communicate with the resource manager 

of the corresponding resource pool to reserve the actual resource. The resource manager for 

each resource pool commits the resource to the incoming request and resolves the potential 

conflicts if multiple requests for the same resource occur simultaneously. Once the resource 

is reserved, the communication between the requesting node and the resource can then 

commence. 

Due to the low latency requirement for provisioning physical resources in a composable 

datacenter, it is likely that the resources will need to be provisioned and reserved before the 

actual needs from the workload arise rather than on demand. This may require the resource 

scheduler to monitor the history of the resource usage so that an accurate workload 

dependent projection of the resource usage can always be maintained.  The impact to the 

resource utilization due to advanced reservation can be minimized by (1) maintaining a 

distributed global resource state, and (2) utilizing opportunistic based distributed reservation 

scheme such as the methodology reported in [62] to minimize scheduling latency and hence 

the required advanced reservation.   

The primary challenges in developing a workload forecasting mechanism include [63-66, 

69-71]: (1) potential overheads related to change of provisioned resources as it will take time 

to properly set up resources before they can be used by the workload, (2) ability to 

accurately predict future workload behavior, and (3) ability to compute the right amount of 

resources required for the expected increase or decrease in workload [62]. The general 

framework of such a scheduling mechanism can be represented by the pseudocode below: 

 

Initialize Observation window 

Initialize Prediction window 

While (Workload is in progress) { 

Generate predicted memory requirement for the next Prediction Window from the current Observation 

Window;  

Provision memory based on the memory requirement; 

Generate predicted accelerator requirement for the next Prediction Window from the current 

Observation Window; 

Provision accelerator based on the accelerator requirement; 



 

Generate predicted IO requirement for the next Prediction Window from the current Observation 

Window; 

Provision IO based on the IO requirement; 

} 

  

In this mechanism, an observation window of length w is set up for the workload to 

collect the behavior pattern in terms of resource consumption of the workload. A prediction 

function is defined to predict the peak usage amount of the specific resource type (memory, 

accelerators, and IO) during the prediction window. The simplest prediction mechanism can 

be based on autoregressive moving average (ARMA) [62] based on the workload behavior 

pattern collected during the observation window: 

 

M (t+1) = a + a0 M (t) + a1 M (t-1) + …. + aw-1 M (t-w+1) 

A (t+1) = b + b0 A (t) + b1 A (t-1) + …. + bw-1 A (t-w+1) 

IO (t+1) = c + c0 IO (t) + c1 IO (t-1) + …. + cw-1 IO (t-w+1) 

(3) 

 

where ai, bi, and ci (i = 0,…, w-1) are the ARMA coefficients, and  M (t+1) , A (t+1), and 

IO  (t+1) are the predicted memory, accelerator, and IO requirements, respectively. More 

sophisticated resource estimation models including those based on machine learning 

techniques such as neural networks  have been developed  for workloads ranging from 

transaction oriented (i.e. OLTP) to data intensive computations [63-66]. Based on the 

predicted resource requirements from the observation window, the execution environment 

can then provision the resources for the next prediction window: 

 

 GetMemory (Predicted_Memory_Requirement) 

 GetAccelerator (Predicted_Accelerator_Requirement) 

 GetIO (Predicted_IO_Requirement) 

 

Provisioning resources based on shorter term needs of the workload enable more aggressive 

resource sharing among workloads. This provisioning mechanism becomes similar to the 

traditional provisioning mechanism when the prediction window approaches the entire 

duration of the workload execution. 

9 EXPERIMENTAL RESULTS 

In this section, we describe experiments that demonstrate the workload behavior when a 

cloud centric big data or NoSQL application such as MemcacheD, Giraph, and Cassandra is 

deployed in a composable system environment where remote memory or storage is exposed 

at the middleware/application level through simplified API. 



 

a. MemcacheD workload 

Figure 8: Experimental setup for 
performance measurement in a 
composable environment for 
MemcacheD. 
 

 
 
 
 
 
 

 

 

 

  

  

In this environment, part of client application data is in local DRAM, while the rest is 

located in the memory of a remote node accessed through an RDMA capable fabric via the 

Verbs API [67]. The composable infrastructure, as shown in Fig. 8, is entirely transparent to 

the MemcacheD client. The server side is modified so that the data accessed via key-value 

interface will be automatically retrieved from either local or remote memory. 

The experiment is as follows: A small program on a remote machine allocates a specified 

amount of memory and registers the allocation with the InfiniBand HCA. MemcacheD 

handshakes with the remote server and obtains the pertinent information such as remote 

buffer address and access_key. After an initial handshake, it can now perform RDMA reads 

and writes directly to the remote buffer. The remote buffer is treated as a “victim cache” and 

is maintained as an append-only log. When MemcacheD runs out of local memory, instead 

of evicting a key/value pair in the local memory, it now does an RDMA write to the remote 

memory. When looking up a particular key, it first checks with the local memory (via a hash 

table). If the key does not exist locally, MemcacheD checks the remote memory via a locally 

maintained hash table. If key/value is in the remote memory, it reads in this value through 

RDMA to a temporary local buffer and sends it to the client. A particular key/value is always 

either in local memory or remote memory and can never reside in both locations. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The experiments consist of 100,000 operations (95% reads, 5% updates) with uniform 

random accesses (i.e. no notion of working set as this represents the most challenging 

situation) running in a single thread.  

As shown in Fig. 9, higher percentage of local data always introduces fewer penalties.  

However, the difference begins to diminish among different ratio of local vs. remote data 

when the data block size is larger than 64 KB, as larger block size reduces the overhead in 

the data transfer.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The second set of experiments consist of 100,000 read and update operations (95% reads, 

5% updates) with uniform random accesses (i.e. no notion of working set as this represents 

the most challenging situation) evenly split among 10 threads.   

As shown in Fig. 10, the throughput penalty is nearly nonexistent when 75% of the access 

is local and the data size is 4KB. The penalty increases to 2% when only 25% of the access 

is local.  As the data sizes increase, the transfer time of the entire page between the local and 

the remote node increases, resulting in higher penalty at 4% and 6%, respectively, for 75% 

and 25% local access.  

Figure 9: Average read latency penalty vs. data size with respect to 100% local access when the local 

portion of data varies from 75% to 25% 

Figure 10: Average read/update throughput penalty vs. data size with respect to 100% local 

access when the local portion of data varies from 75% to 25%. 



 

We can conclude from these experiments that negligible latency and throughput penalty 

are incurred for the read/update operations if these operations are 75% local and the data size 

is 64 KB.  Smaller data size results in larger latency penalty while larger data size results in 

larger throughput penalty when the ratio of nonlocal operations is increased to 50% and 

75%.   

b.  Giraph workload 

The second experiment focuses on the popular graph analytics platform Giraph, which 

enables implementation of distributed vertex-centric graph algorithms. The goal is to 

quantify the memory usage of a popular graph algorithm in order to identify opportunities 

for running it in a composable memory environment. In this particular case, a 50-node 

virtual compute cluster is populated with a randomly generated graph with 100 million 

vertices. The graph is partitioned into 502 partitions and are distributed evenly across the 

computing nodes. The TopKPagerank algorithm [68] is then run on the entire graph for a 

fixed number of supersteps. As the computation progresses, messages need to be exchanged 

to traverse the graph as the computation crosses node boundaries. Dependent on the 

connectivity of the graph, the variance in the message creation can result in substantially 

different memory consumptions per node. When the available memory is constrained, 

Giraph will swap the entire partitions and the messages associated with the vertex to disk 

using LRU.  The memory utilization across the nodes is monitored as computations 

progresses. While CPU utilization is very uniform across all nodes and across the execution 

of the program, memory utilization varies considerably, which is shown as a heatmap in Fig. 

11.   

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Analysis of this data reveals that per node memory usage between peak and average has a 

2.78:1 ratio, where the aggregate memory usage has a 1.68:1 ratio.  The memory per node is 

then reduced by a factor of 3 to explore the impact of memory pressure, while the average 

Figure 11:   (a) Memory and (b) CPU Consumption of Distributed Giraph TopKPagerank 
application over time. 



 

per node memory is maintained. This increases the overall runtime of the experiment by a 

factor of 13.8x - highlighting that best performance requires a memory overprovisioning of a 

factor of three or the workload suffers a substantial performance penalty. When the swap 

disk on each node is configured to a RamDisk, the overhead is reduced to a factor of 6.14x - 

which is still too high.  Having observed the low overheads of RDMA in the MemcacheD 

example, it can be stipulated that sharing unused memory across the entire compute cluster 

instead of through a swap device to a remote memory location can further reduce the 

overhead.  However the rapid allocation and deallocation of remote memory is imperative 

for the sharing of a memory pool to be effective.  

c.  Cassandra workload 

The third experiment focuses on the impact of composable storage by using Cassandra, a 

popular persistent (i.e. disk based) key value NoSQL store as the workload. In the traditional 

setup (as shown in Fig. 12 (a)), a single server is populated with eight SATA disks that 

together form the block storage for a ZFS filesystem on which the key value pair storage 

resides. Ultimately the number of disks in the server is limited to the order of 10s due to 

constraints imposed by the packaging and the SATA v3 bandwidth, which is limited to 6 

Gbps. In the composable setup (as shown in Fig. 12 (b)), there are a total of 4 storage nodes 

with eight disks attached to each node and Cassandra was accessed over a 10 Gbps Ethernet. 

The ZFS cache was limited and data was flushed out of the page cache to ensure that almost 

all accesses go to disk. A client consisting of 20 threads issued 10K operations (95% read) 

uniformly accessing the data domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bandwidth and latency improvement are shown in Figures 13 and 14.  Access block 

size is set at 256KB and 512KB. For these block sizes, the throughput is improved up to 

195% and 79 %, respectively, and latency improvement is 67% and 51%, respectively, for 

Figure 12: Experimental setup for (a) traditional vs. (b) composable HDDs for Cassandra workloads. 



 

the composable system case. This experiment substantiates the thesis that accessing data 

from across multiple disks connected via Ethernet poses less of a bandwidth restriction than 

SATA and thus improves throughput and latency of data access and obviates the need for 

data locality. Overall, composable storage systems are cheaper to build, manage, and 

incrementally scalable, and offer superior performance than traditional setups.  

   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

10 SUMMARY AND FUTURE WORK 

Deploying big data applications with large volume, high velocity, wide variety of 

modalities involving NoSQL, MapReduce, Spark/Hadoop in a cloud environment are facing 

the challenges of fast changing system configuration requirements due to highly dynamic 

workload constraints, varying innovation cycles of system hardware components, and the 

Figure 13: Throughput improvement of disaggregated storage for Cassandra workload 

Figure 14: Latency improvement of disaggregated storage for Cassandra workload 



 

need for maximal sharing of systems and subsystems resources. Composable system offers 

the potential of addressing these challenges. Datacenters based on this architecture allows 

the refactoring of the datacenter for improved operating efficiency and decoupled innovation 

cycles among components while the datacenter network becomes the "backplane" of the 

datacenter. 

In this paper, the feasibility of composable systems is demonstrated through building a 

number of rack scale composable system prototypes including one based on PCIe switch. 

Through empirical approaches, the opportunities and challenges for leveraging the 

composable architecture for rack scale cloud datacenters are evaluated with a focus on big 

data and NoSQL workloads. We also establish the implications and requirements for 

network and resource provisioning and management. Based on this assessment and 

experimental results, we conclude the following:  

 A composable rack scale architecture with appropriate programming models and 

resource provisioning is likely to achieve improved datacenter operating efficiency. This 

architecture is particularly suitable for heterogeneous and fast evolving workload 

environments as these environments often have dynamic resource requirements and can 

benefit from the improved elasticity of the physical resource pooling offered by the 

composable rack scale architecture. 

 Composable resources can be exposed through hardware based, hypervisor/operating 

system based, and middleware/application based approaches.  Directly expose resource 

composability to applications and manage using application-level knowledge is likely to 

achieve the best flexibility and performance gain.   

 The primary concern for the composable architecture is the potential performance 

impacts arising from accessing resources such as memory, GPU, and I/O from non-local 

shared resource pools. Retaining sufficient local DRAM serving as the cache for the 

pooled memory as opposed to full disaggregation of memory resources and retain no 

local memory for the CPU is always recommended to minimize the performance impact 

due to latency incurred from accessing remote memory.  Higher SMT levels and/or 

explicit management by applications that maximize thread level parallelism are also 

essential to further minimize the performance impact. 

 Negligible latency and throughput penalty are incurred in the MemcacheD experiments 

for the read/update operations if these operations are 75% local and the data size is 64 

KB. Smaller data size results in larger latency penalty while larger data size results in 

larger throughput penalty when the ratio of nonlocal operations is increased to 50% and 

75%.   

 Frequent underutilization of memory is observed while CPU is more fully utilized across 

the cluster in the Giraph experiments. However, introducing composable system 

architecture in this environment is not straightforward as sharing memory resources 

among nodes within a cluster through configuring RamDisk presents very high overhead. 



 

Consequently, it is stipulated that sharing unused memory across the entire compute 

cluster instead of through a swap device to a remote memory location is likely to be more 

promising in minimizing the overhead. In this case, rapid allocation and deallocation of 

remote memory is imperative to be effective.  

 The Cassandra experiment substantiated the thesis that accessing data from across 

multiple disks connected via Ethernet poses less of a bandwidth restriction than SATA 

and thus improves throughput and latency of data access and obviates the need for data 

locality. Overall composable storage systems are cheaper to build, manage and 

incrementally scalable and offer superior performance than traditional setups.  

 The experiments involving rack scale architecture using PCIe switch demonstrated the 

feasibility of PCIe based composable architecture where the I/O is composed 

dynamically from multiple nodes.  

 

Our results support the importance of Big Data in the Cloud since the next-generation of 

services should be investigated to meet demands from volume, velocity and variety aspects 

of Big Data services. Our proposal can provide better technical performance and capacity for 

the future datacenters as demonstrated in the paper.    

The next step of this work will include demonstrating in-memory Spark-based big data 

and NoSQL workloads in a composable system environment involving composable memory 

and GPU resources. We also plan to explore use workload cases from cybersecurity, 

cognitive computing, and internet of things. 
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