

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

Newcastle University ePrints - eprint.ncl.ac.uk

Deng Z, Han W, Wang LZ, Ranjan R, Zomaya AY, Jie W. An efficient online

direction-preserving compression approach for trajectory streaming data.

Future Generation Computer Systems 2017, 68, 150-162.

Copyright:

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:

https://doi.org/10.1016/j.future.2016.09.019

Date deposited:

22/08/2017

Embargo release date:

04 October 2017

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=231498
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=231498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2016.09.019

An Efficient Online Direction-Preserving Compression
Approach for Trajectory Streaming Data

Ze Denga,b, Wei Hana,b, Lizhe Wanga,b, Rajiv Ranjanc, Albert Y. Zomayad,
Wei Jiee

a School of Computer Science, China University of Geosciences, Wuhan, 430074,
P.R.China

b Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of
Geosciences, Wuhan 430074, China

c School of Computing, Newcastle University, U.K
d School of Information Technologies, The Sydney University, Australia
e School of Computing and Engineering, University of West London, UK

Abstract

Online trajectory compression is an important method of efficiently managing

massive volumes of trajectory streaming data. Current online trajectory meth-

ods generally do not preserve direction information and lack high computing per-

formance for the fast compression. Aiming to solve these problems, this paper

first proposed an online direction-preserving simplification method for trajec-

tory streaming data, online DPTS by modifying an offline direction-preserving

trajectory simplification (DPTS) method. We further proposed an optimized

version of online DPTS called online DPTS+ by employing a data structure

called bound quadrant system (BQS) to reduce the compression time of online

DPTS. To provide a more efficient solution to reduce compression time, this pa-

per explored the feasibility of using contemporary general-purpose computing

on a graphics processing unit (GPU). The GPU-aided approach paralleled the

major computing part of online DPTS+ that is the SP-theo algorithm. The re-

sults show that by maintaining a comparable compression error and compression

rate, (1) the online DPTS outperform offline DPTS with up to 21% compression

time, (2) the compression time of online DPTS+ algorithm is 3.95 times faster

than that of online DPTS, and (3) the GPU-aided method can significantly

Email address: lizhe.wang@gmail.com (Lizhe Wang)

Preprint submitted to Journal of LATEX Templates September 13, 2016

reduce the time for graph construction and for finding the shortest path with

a speedup of 31.4 and 7.88 (on average), respectively. The current approach

provides a new tool for fast online trajectory streaming data compression.

Keywords: Streaming Data, Compression Computing, GPU, Big Data,

Parallel Processing

1. Introduction

Recent advances in sensing, networking, smart grid [1], smart home [2],

and location acquisition technologies have led to a huge volume of trajectory

streaming data (e.g., Global Positioning System (GPS) trajectories). There are

three main challenges when there is such a huge volume of data: (1) storing the5

sheer volume of trajectory data may overwhelm available storage space, (2) the

cost of transmitting a large amount of trajectory data over cellular or satellite

networks can be expensive, and the large size of trajectory data makes it very

difficult to discover useful patterns. Trajectory compression technologies can

provide a solution for these challenges [3].10

Trajectory data compression approaches are generally divided into two cat-

egories: offline or online compression [4]. The offline methods (e.g., Douglas-

Peucker [5] and TD-TR [6]) discard some locations with negligible errors from

an original trajectory, which is already obtained before the compression process

[7]. However, in many applications the trajectory data of the moving objects15

arrive in a stream. These applications include real-time trajectory tracking

[8] and long-term location tracking [9]. Therefore, some online compression

approaches have been proposed to deal with this case. The basic idea is to

use segment heuristic for trajectory and remove some points of the recently

received trajectories. Representative methods include the opening window al-20

gorithm [10], dead reckoning [11], and SQUISH-E(λ) [12]. However, existing

online compression approaches have some drawbacks. First, according to [13],

nearly all trajectory compression approaches are position-preserving trajectory

simplification (PPTS) methods. These methods lose direction information so

2

that many applications based on location-based service (LBS) cannot be broadly25

supported. Although two direction-preserving trajectory simplification (DPTS)

methods [13, 14] have been proposed to solve this issue, these two methods

are designed for offline compression. To the best of our knowledge, no online

DPTS method has been proposed to date. Second, current online approaches

have individual drawbacks in terms of either time costs, compression ratio, and30

error boundaries. For example, the opening window algorithm suffers from

O(n2) time complexity [12] and dead reckoning suffers from a low compression

ratio. Meanwhile, the high efficiency of compression is a key requirement for

current online trajectory compression methods because the volume and density

of streaming data have been rapidly growing. Therefore, there is a need for35

an efficient direction-preserving compression approach for trajectory streaming

data.

To address these research challenges, we propose an online direction-preserving

trajectory compression method for trajectory streaming data that modifies an

offline DPTS method [15], after which a data structure called a bounded quad-40

rant system (BQS) [9, 16] is used to optimize our compression method. Fur-

thermore, a modern GPU platform is used to improve the performance of our

trajectory compression method.

The main contributions of this study are as follows:

1. We have developed an online trajectory compression method for trajectory45

streaming data called online DPTS that preserves error-bound direction

information and has a high compression ratio.

2. We have introduced an advanced online DPTS algorithm called online

DPTS+ with a BQS structure in [9, 16] can significantly reduce the com-

pression time of online DPTS.50

3. We designed a parallel method of the online DPTS+ on a GPU platform,

which further improved the time efficiency of trajectory streaming data

compression. The GPU-aided method accelerate the SP-theo algorithm

in the online DPTS+, with two well-designed GPU parallel schemes.

3

4. We performed extensive experiments to evaluate the proposed methods55

using real trajectory datasets.

To the best of our knowledge, the proposed compression method is the first

online trajectory compression method that takes both direction preserving and

parallel processing into consideration.

The remainder of this paper is organized as follows: Section 2 discusses work60

relating to online trajectory compression. Section 3 introduces our online tra-

jectory compression approaches (i.e., online DPTS and online DPTS+). Section

4 describes the GPU-aided compression approach on a modern GPU platform.

Section 5 presents the experiments and performance evaluation results of the

proposed approaches. Section 6 concludes with a summary and a plan for future65

work.

2. Related Work

A number of successful attempts have been made regarding online trajectory

compression. The most salient works are described.

Opening window (OPW) is a kind of traditional online trajectory compres-70

sion algorithm. Such algorithms, including NOWA and BOPW [10], slide a

window over the points on the original trajectory to approximate each trajec-

tory using the number of points in the window so that the resulting spatial

error is smaller than a bound. This process is repeated until the last point of

the original trajectory is processed. The worst-case time complexity of OPW75

is O(n2). Opening window time ratio (OPW-TR) [10] extended OPW using a

synchronized Euclidean distance (SED) error instead of spatial error.

Some fast online trajectory compression algorithms have been proposed to

overcome the high time overheads of OPW and OPW-TR. These include uni-

form sampling [17] and dead reckoning [11]. The uniform sampling method80

carefully selects a few points to store and discards the remaining points at every

given time interval or distance interval. Dead reckoning stores the location of

the first point and the velocity at this point. It then skips every subsequent

4

point whose location can be estimated from the information about the first

point within the given SED value until it finds one point whose location cannot85

be estimated. The location of the point and the speed at the point are stored

and used to estimate the locations of following points. This process is repeated

until the input trajectory ends. The computational complexity of this kind of

method is O(n). However, the major drawback of this kind of method is the

lower compression rates compared with OPW and OPW-TR. Therefore, a few90

online trajectory compression methods that can ensure both a high compression

ratio and low computing overheads have been presented. For example, given

parameters λ and µ, SQUISH-E can ensure a compression ratio of λ while pre-

venting the SED errors that are not beyond µ. However, this algorithm does

not preserve direction information.95

Significantly different from the existing online trajectory compression meth-

ods, this paper focuses on the emerging challenges of (1) the direction-preserved

online trajectory compression with error boundary and high compression rate

and (2) enabling a high-performance solution to maintain the computational

performance of the proposed method for trajectory streaming data. The pro-100

posed compression method is the first online trajectory compression method

that takes direction preserving and parallel processing into consideration.

3. Online DPTS: Online Direction-Preserved Trajectory Simplifica-

tion

In this section, we formulate the problem, present the details of the proposed105

compression algorithm, and describe the algorithm optimization.

3.1. Problem Formulation

In our setting, a central server continuously collects the location points of

moving objects over time. Thus, such points relating to a moving object O

form a trajectory stream. Noted that, the issue of streaming inconsistency,110

which means the order of location points in the original stream (in input) is dif-

ferent from the output, may happen because the server needs to receive location

5

information of multiple moving objects concurrently. However, in this paper,

we assume that the consistency of streaming has been achieved. In the future,

we will consider the issue of streaming inconsistency and attempt to employ115

some methods such as in [18] or [19] to reorder the input streaming data before

compressing trajectories.

Definition 1 (Location point) : A location point, denoted as p = (x, y,

t), is a tuple that records the latitude, longitude, and timestamp of one location

sample.120

Definition 2 (Trajectory segment) : A trajectory segment, denoted as

g={p1,...,pn}, is a set of continuous location points.

Definition 3 (Compressed Trajectory segment) : A compressed trajec-

tory segment, denoted as g′ = {ps1,ps2,..,psm}, is the simplification of g={p1,p2,...,pn}

where all points from ps1 to psm are consecutive and contained in g.125

Definition 4 (Trajectory stream) : A trajectory stream, denoted as S={g1,g2,...},

consists of an unbounded set of trajectory segments.

Definition 5 (Compressed trajectory stream) : For a trajectory stream

S = {g1, g2, ..., gk, ...}, the compressed trajectory stream is defined as an

unbounded set of compressed segments S′ = {g′1, g′2, ..., g′k,....}, where g′i is the130

simplification of gi ∈ S.

Definition 6 (The direction of trajecory segment line) : Given a line

in a trajectory segment g={p1,...,pn} that is denoted as a vector
−→
l =−−−→pi, pj

where 1 ≤ i < j ≤ n-1, the direction of
−→
l , denoted as θ(

−→
l) = θ (−−−→pi, pj), is

defined as the angle of an anticlockwise rotation from the position of the x -axis135

to the vector −−−→pi, pj .

Definition 7 (The angular difference between two directions) : For two

directions θ1 and θ2, the angular difference between θ1 and θ2, denoted by ∆(θ1,

θ2), is defined as the minimum of the angle of the anticlockwise rotation from

θ1 to θ2 and that from θ2 to θ1, i.e., ∆(θ1, θ2) = min{|θ1 - θ2|, 2π - |θ1 - θ2|}.140

Definition 8 (The compression error of a segment line in g′) : Let g’

be a compression trajectory segment for a trajectory segment g. Given a segment

line
−→
lj = −−−−−→pj , pj+1 in g’, the compression error of

−→
lj , denoted by ε(

−→
lj), is defined

6

as the greatest angular difference between θ(
−→
lj) and θ(

−→
lk), where

−→
lk = −−−−−→pk, pk+1

is one segment line in g approximated by
−→
lj . That means:145

ε(
−→
lj) = Max(∆(θ(

−→
lj), θ(

−→
lk))),

where(lj .pj .t ≤ lk.pk.t) ∧ lk.pk+1.t ≤ lj .pj+1.t)
(1)

Definition 9 (The compression error of S′) : The compression error of

compressed trajectory stream S′, denoted by ε(S′), is defined as the maximum

error of a compressed segment in S′, i.e.,

ε(S′) = Max(ε(lj)),

where(lj is one compressed segment line in S
′)

(2)

Here, the objective is to quickly compress a trajectory stream S to form the

corresponding compressed trajectory stream S′ at one snapshot. As a result,150

ε(S′) is bounded with one direction threshold and S′ has the smallest size.

3.2. Algorithm Description

We proposed an online DPTS that combines an offline DPTS approach [15]

and BQS data structure for online trajectory compression [12]. First, we intro-

duce the offline DPTS approach, convert the offline-DPTS to its online version,155

and optimize the online DPTS using a BQS.

In [15], the authors proposed an implementation of direction-preserving sim-

plification called a SP algorithm for the smallest size that is error-bound under

a threshold εt. The SP algorithm consists of three steps:

Step 1: (Graph Construction): Constructing a graph with an error tolerance160

threshold, denoted as Gεt , based on an offline trajectory so that the

error value of each edge −−−→pi, pj (i < j) in Gεt , ε(−−−→pi, pj) ≤ εt.

Step 2: (Shortest Path Finding): Computing the shortest path based on the

graph Gεt from Step 1.

Step 3: (Solution Generation): Generating the solution for direction-preserving165

trajectory compression using the shortest path found in Step 2.

7

In Step 1, one straightforward solution for constructing Gεt is to try all

possible pairs of −−−→pi, pj (1 ≤ i < j ≤ n) to check whether ε(−−−→pi, pj) ≤ εt. The time

complexity of Step 1 is O(n3) because there exist O(n2) pairs of (−−−→pi, pj) and the

checking cost is O(n), where n is the number of points in the trajectory. In Step170

2, a breadth first search (BFS) procedure is employed to find the shortest path

based on Gεt . The time complexity of Step 2 is O(m2) where m is the number

of points in Gεt . For Step 3, it takes O(m) time to find the solution. Therefore,

the time complexity of the SP algorithm is O(n3).

According to the description of the SP algorithm, the dominant time-consumption175

part of SP focuses on Step 1. To improve the time efficiency of Step 1, a variant

of the SP algorithm called SP-theo is proposed in [15]. SP-theo employs a con-

cept called ”feasible direction range” to reduce the time complexity of checking

whether ε(−−−→pi, pj) ≤ εt from O(n) to O(c), where c is a small constant in cost

cases. For a segment line −−−−−→ph, ph+1 (1 ≤ h < n) in a trajectory T, the feasible180

direction range of −−−−−→ph, ph+1 with respect to one error tolerance εt, is denoted as

fdr(−−−−−→ph, ph+1—εt) = [θ(−−−−−→ph, ph+1) - εt, θ(−−−−−→ph, ph+1) + εt] mod 2π.

Then, let T[i,j]={pi,pi+1,...,pj} be the sub-trajectory of T. The feasible di-

rection range of T[i,j] with respect to εt is denoted by fdr(T[i,j]|εt). Based on

Lemma 4 in [15], if θ(−−−→pi, pj) is in fdr(T[i,j]|εt), εt(θ(−−−→pi, pj)) ≤ εt. Therefore,185

checking whether ε(θ(−−−→pi, pj)) < εt in the SP-theo algorithm is equivalent to

checking if ε(θ(−−−→pi, pj)) is in fdr(T[i,j]|εt). Because the size of fdr(T[i,j]|εt) is

bounded by min{1+
⌊

εt
π−εt

⌋
, j-i}, the computing cost can be bounded by a con-

stant c. Therefore, the time complexity of constructing graph part of SP-theo is

O(c · n2), as there are O(n2) times of checking whether ε(−−−→pi, pj) < εt and each190

check can be done in O(c) time with fdr(T[i,j]|εt)). Meanwhile, the fdr(T[i,j]|εt)

set can be incrementally computed using the following equation:

fdr(T [i, j]|εt) = fdr(T [i, j − 1]|εt) ∩ fdr(−−−−−→pj−1, pj),

where 1 ≤ i < j ≤ n
(3)

In this paper, we employ the SP-theo algorithm to compress an online tra-

jectory stream S. The basic idea is that we incrementally compress S with the

8

SP-theo algorithm and equation (3). The online compression algorithm is shown195

in algorithm 1, which works as follows. Initially, we input all sample points in

the first trajectory segment g1 of S into Q (see line 6 in algorithm 1). We

then execute the SP-theo algorithm with equation (3) over these points to get

a shortest path sp that is stored in Q (see line 8 and lines 14-21). We treat the

sp as the compressed trajectory and append all points in sp to the tail of S′ (see200

line 9). Next, we update Q to only keep the last two points (see line 10). The

process is repeated until all trajectory segments in S are processed.

As an example, given a trajectory stream S consisting of two trajectory

segments {g1,g2}, Fig. 1 illustrates the compression procedure. The trajectory

segment g1= {p1,p2,p3,p4,p5} is compressed using SP-theo to get the shortest205

path sp = {p1,p2,p3,p5} and store it in S′. We then merge the last two points

{p3,p5} and the next trajectory segment g2= {p6,p7,p8,p9,p10,p11,p12} into the

new trajectory segment Q = {p3,p5,p6,p7,p8,p9,p10,p11,p12} and compress Q

using SP-theo again. As a result, Q = {p3, p6, p7, p8, p9, p12}. Finally, we merge

Q and S′ in the previous round to get the current S′ = {p1, p2, p3, p6, p7, p8,210

p9, p12}. Note that for each round we need to keep the last two points instead of

just the last point to avoid keeping the points that should have been abandoned.

For instance, in Fig. 1, the point p5 can be removed through our scheme. As we

can see, the proposed algorithm can process one trajectory stream by repeatedly

calling the SP-theo algorithm in each trajectory segment. The time complexity215

of our algorithm is still O(c·n2) for each trajectory segment, as we employed the

SP-theo algorithm. Therefore, the algorithm processing efficiency still needs to

be improved for processing the trajectory stream. In the following section, we

propose how to improve the time efficiency of our algorithm.

3.3. Algorithm Optimization220

As we can see, the time complexity of the proposed online DPTS for each

trajectory segment is O(c·n2) because there exist n2 pairs of (−−−→pi, pj) in each

trajectory segment and the checking cost is O(c), where n is the number of

points in one trajectory segment. Our heuristic optimization scheme is to reduce

9

Algorithm 1: The description of online DPTS

1 Online DPTS Procedure(S, εt)/* Input: S is a trajectory

streaming data on one time snapshot, εt is the upper bound

on direction error tolerance. Output: S’ is the compressed

trajectory streaming data on the time snapshot. */

2 Initialize a queue Q ← {}

3 Initialize S’ ← {}

4 Initialize a fdr set F ← {}

5 for each trajectory segment gi ∈ S; i++ do

6 Append all points in gi into Q

7 if Q.length > 2 then

8 Q ← do SP-theo(Q, F, εt)

9 S’ ← Q

10 remove all points in Q but the last two points

11 end

12 end

13 return S’

/* run the SP-theo algorithm on the current trajectory

streaming data */

14 do SP-theo(Q, F, εt)

15 Compute incrementally all new fdr sets = {fdr set} from Q with F and

equation (3)

16 F ← {fdr set} ∪ F

17 Construct a Gεt on Q with F

18 Set s node as the first point in Q

19 Set e node as the last point in Q

20 Get the shortest path sp from s node to e node with BFS

21 return sp

10

g1 g2

S

S’

S’

p1

p2

p3 p4 p5 p6

p7

p8 p9 p10p11 p12

p1

p2

p3 p5

p1

p2

p3 p6

p7

p8 p9 p12

Figure 1: Example of the online DPTS algorithm

the number of pairs of (−−−→pi, pj) before using the SP-theo algorithm to compress225

a trajectory segment g in S. Consequently, the total runtime of compressing S

can be significantly reduced. To achieve this goal, we employed a BQS data

structure applied in an online PPTS trajectory compression method [9, 16] to

filter trajectory segments. In [9] and [16], BQS is a convex hull that is formed

by a bounding box and two angular bounds around all points to be compressed.230

Then, the PPTS compression method can be used to make fast compression

decisions without calculating the maximum error in most cases. However, the

BQS structure is based on the position error rather than the direction error.

Therefore, we first propose one scheme to transform the direction error to the

position error to employ the BQS structure, and then we introduce the optimized235

online DPTS algorithm using the BQS structure.

3.3.1. The transformation scheme

According to the descriptions of LEMMA 2 in [13], the DPTS method can

give an error bound on the position εd when the direction error tolerance εt ¡

π/2. This means the following inequality holds:240

11

c1 c2

c3c4

p1

p2

p3

p4

p5

p6

p7

p9

p8

Segment lines in T Segment lines in T’

Diagonal lines in the convex hull of T

Figure 2: Example of bounding Lmax

εd ≤ 0.5 · tan(εt) · Lmax, (4)

where Lmax = Max(len(
−→
li |T ′)) and len(

−→
li |T ′) is the distance length of a seg-

ment line
−→
li in the compressed trajectory T′. Therefore, by using the formula

(4), it appears that we can transform a direction error εt into its correspond-

ing position error εd and can apply the BQS to filter the trajectory stream S.

However, the value of Lmax in the formula (4) is generally unknown a priori245

unless we finish the whole compression procedure. To address this issue, we

first present a theorem:

Theorem 1 : Given a compression trajectory T′, Lmax is bounded by the

length of the diagonal line of the convex hull contain all points in T.

Proof of Theorem 1: We use an example shown in Fig. 2 to prove Theorem250

1. As we can see in Fig. 2, for a trajectory T={p1,p2,p3,p4,p5,p6,p7,p8}, the

corresponding convex hull is able to be represented by a box B={C1,C2,C3,C4}.

Given T’={p1,p4,p8,p9} is a compressed trajectory of T, it is easy to discover

that the length of any diagonal line of B (i.e., C1C3 or C2C4) is greater than

the length of any segment line in T′.255

In our setting, a trajectory stream S consists of a set of trajectory segments

={g1,g2,...,gm} so that the compression of S will sequentially compress these

12

p1

p2

p3 p4

p5

p6

p7

g

p8

p1

p2

p3 p4

p5

p6

BQS

p9

p7
p8

c1 c2

c3c4
l1 l2

u1

u2

dub

x

y

ɵl

ɵu

dlb

Figure 3: Example of constructing BQS for a trajectory segment

trajectory segments with the SP-theo algorithm (see algorithm 1). Therefore,

for every compression procedure of one trajectory segment gi(1 ≤ i ≤ m), the

value of Lmax, which is defined as Lmax(gi), can be bounded by the length of one260

diagonal line of a convex hull over all points in gi that is defined to be LD(gi).

That means the position error of gi, which is defined as εd(gi), is bounded by

the following inequality:

εd(gi) ≤ 0.5 · tan(εt) · Lmax(gi) ≤ 0.5 · tan(εt) · LD(gi), (5)

3.3.2. Optimizing the online DPTS algorithm using BQS

After the above-mentioned transformation from εt to εd, we can construct265

the corresponding BQS to filter each trajectory segment. The procedure is

illustrated in Fig. 3.

In Fig. 3, for a trajectory segment g, we first buffer a few points (i.e.,

from p1 to p7). We then treat p1 as the start point and p8 as a new incoming

13

point to be checked. For convenience, we assume all points (i.e., from p2 to p7)270

in the buffer are within εd(g) w.r.t p1. In fact, the assumption can be relaxed

because we still can use the following SP-theo algorithm to process these points.

Because the number of these points is very small, the compression performance

is slightly influenced. Therefore, one BQS structure is constructed according to

the following steps:275

Step 1: Split the space into four quadrants from the start point p1 of the current

segment.

Step 2: For each quadrant where there exist points, a bounding box (i.e.,

C1C2C3C4) is set for points (from p2 to p7) in this quadrant.

Step 3: Two bounding lines record the smallest and greatest angles between280

the x axis and the line from the start point to any points for each

quadrant (i.e., θl and θu).

Step 4: Get at most eight significant points, including four vertices on the

bounding box (i.e., C1C2C3C4) and four intersection points from bound-

ing lines intersecting with the bounding box (i.e., l1,l2,u1,u2).285

Step 5: Based on the position deviations between lines from the start point to

the significant points and the current path line(i.e, −−−→p1, p8), we get a

group of lower bound candidates and upper bound candidates for the

maximum position deviation.

Step 6: From these candidates, a pair consisting of a lower bound and an upper290

bound <dlb, dub> is derived to make compression decisions without the

full computation of segment direction deviation in most of cases.

The pair of <dlb, dub> can be computed using the formula (7),(8),(9),(10)

in [9]. Based on the pair of bounds and the converted position error εd(g), the

new incoming point p8 can be determined using the following rules:295

Rule 1: If the position distance between p1 and p8 d(p1, p8) ≤ εd(g) , p8

belongs to the current segment and a new segment does not need to

be started.

14

Rule 2: If dub ≤ εd(g), p8 belongs to the current segment and a new segment

does not need to be started.300

Rule 3: If dlb > εd(g), p8 breaks the tolerance and a new segment needs to be

started.

Rule 4: If dlb ≤ εd(g) < dub, p8 cannot be determined using BQS.

To conveniently filter points, we set a state property f for each point to

indicate whether they need to be filtered. If the value of f equals ’1’, it means305

it needs to be filtered and if the value is ’0’, it needs to remain in the trajectory

segment. Therefore, when the incoming point p8 satisfies rule 1 and rule 2,

we set p8.f as ’1’ to filter this point; otherwise, we keep p8 for further online

DPTS compression. After determining the point p8, we can continue to process

the rest of points. After processing all points in g, we compress all points310

with f = ’0’ using SP-theo. The optimized online DPTS compression algorithm

(called online DPTS+) is shown in algorithm. 2. Compared with the online

DPTS algorithm, the new algorithm adds a filtering procedure before running

compression (see line 9 in algorithm. 2 and algorithm. 3). Therefore, we can

run the SP-theo algorithm with the time complexity of O (c × m2), where m315

� n.

4. The GPU-aided online DPTS+ method

To more efficiently compress trajectory streaming data using online DPTS+,

we focus on the solution for parallelizing our proposed online DPTS+ using

GPU. Because our proposed online DPTS+ algorithm heavily depends on the320

SP-theo algorithm, we propose a way to parallelize the SP-theo algorithm.

According to the description of the SP-theo algorithm in section 3.2, the

graph construction (Step 1) and the shortest path finding (Step 2) are dominant

in terms of time costs. Therefore, a parallel scheme is proposed to accelerate

Step 1, and then we introduce how to employ a GPU-aided BFS to improve the325

computing performance of Step 2.

15

Algorithm 2: The description of online DPTS+

1 Online DPTS+ Procedure(S, εt)/* Input: S is a trajectory

streaming data on one time snapshot, and εt is the upper

bound on direction error tolerance. Output: S’ is the

compressed trajectory streaming data on the time snapshot.

*/

2 Initialize a queue Q ← {}

3 Initialize S’ ← {}

4 Initialize a fdr set F ← {}

5 for each trajectory segment gi ∈ S; i++ do

6 Store all points in gi in Q

7 if Q.length > 2 then

8 Q ← do filterByBQS(Q, εt) //see algorithm 3

9 Q ← do SP-theo(Q, F, εt) //see algorithm 1

10 S’ ← Q

11 remove all points in Q but the last two points

12 end

13 end

14 return S’

4.1. A Parallel Scheme on GPUs for Graph Construction

According to the above-mentioned descriptions about the graph construction

of SP-theo in section 3.2, we can see that the key point to parallelize graph con-

struction is to parallelize the computational procedure of O(n2) times of check-330

ing whether ε(
−−−→
Pi, Pj) < εt, with each check taking O(c) time with fdr(T[i,j]|εt)).

Therefore, we propose a parallel scheme for Step 1 based on the method of com-

puting fdr(T[i,j]|εt)) with the incremental property in [13]. In [13], fdr(T[i,j]|εt)

can be incrementally computed using equation (3): fdr(T[i,j]|εt) = fdr(T[i,j-

1]|εt) ∩ fdr(
−−−−−→
Pj−1, Pj)where 1 ≤ i < j ≤ n). So, after j-i rounds, fdr(T[i,j]|εt)335

can be computing using the following equation:

16

Time

fdr(T[1,2])

fdr(T[2,3])

fdr(T[n-1,n])

...

Block 1 Block nBlock 2

GPU Thread Grid

r1

fdr(T[1,3])

fdr(T[2,4])

fdr(T[n-2,n])

...

r2

fdr(T[1, n-1])

fdr(T[2, n])

fdr(T[1,n])

...

rn-2 rn-1

Figure 4: The parallel scheme for constructing graph

fdr(T [i, j]|εt) = ∩i≤h<jfdr(
−−−−−→
Ph, Ph+1|εt). (6)

Our parallel scheme is shown in Fig. 4. We compute all fdr(T [i, j]|εt) to

check whether ε(
−−−→
Pi, Pj) < εt by executing the GPU kernels in n-1 rounds. In

round 1, we compute all fdr(T [h, h + 1]|εt) in parallel where h ∈ [1, n-1] and

store these results in GPU global memory for the following computing. In round340

r (2 ≤ r < n), we can parallelize the computational procedure for all fdr(T [h, h+

r]|εt) where h ∈ [1, n-r] based on equation (6) and all fdr(T [h, h + 1]|εt)

stored in global memory. For example, in round 2 we compute fdr (T[1,3]|εt),

fdr(T[2,4]|εt),...,fdr(T[n-2, n]|εt)) in parallel. Of these, fdr(T[1,3]|εt) can be com-

puted using equation (6) (i.e., fdr(T [1, 3]|εt) = fdr(T [1, 2]|εt)∩fdr(T [2, 3]|εt)).345

For our parallel scheme, two aspects can be improved. The first one is that

as the value of r increases, the number of sets that intersected in equation (6)

also increases. Thus, we can parallelize the procedure of equation (6) as well.

For instance, for the n-1 round in Fig. 4, fdr(T [1, n]|εt) = fdr(T [1, 2]|εt) ∩

fdr(T [2, 3]|εt) ∩ fdr(T [3, 4]|εt)... ∩ fdr(T [n− 1, n]|εt).350

We can optimize the computing procedure using well-known GPU parallel

reduction methods in [20]. The second aspect is that we only store fdr sets

computed in round 1 in the GPU memory, bearing in mind that the GPU

17

memory space is very limited. Consequently, in our scheme, all fdr sets in

other rounds are computed based on the roundst fdr sets. This scheme involves355

many repeated computations. For example, we compute fdr(T [1, 4]|εt) and

fdr(T [2, 5]|εt) in parallel in round 3 as the following procedure:

fdr(T [1, 4]|εt) = fdr(T [1, 2]|εt) ∩ fdr(T [2, 3]|εt) ∩ fdr(T [3, 4]|εt)).

fdr(T [2, 5]|εt) = fdr(T [2, 3]|εt) ∩ fdr(T [3, 4]|εt) ∩ fdr(T [4, 5]|εt)).

In this procedure, the computation for fdr(T [2, 3]|εt) ∩ fdr(T [3, 4]|εt) is360

executed two times. To avoid this, we temporarily store all fdr sets of the last

round in GPU memory. Thus, we can directly compute the fdr set of the current

round based on the fdr sets of the last round and the partial fdr sets of first

found. This method is illustrated in Fig. 5. Figure 5(a) shows we attempt to

store the computation results of fdr sets for the last round in GPU memory to365

accelerate the computing procedure of the current round. The additional space

cost is that we need to keep an array S2 with a maximum size of —S1—-1.

Figure 5(b) presents an example of the optimized effect of my method. In this

example, we can employ the computing results stored in GPU memory that is

fdr(T [1, 3]|εt) and fdr(T [2, 4]|εt) in round 2 to accelerate the computations of370

fdr(T [1, 4]|εt) and fdr(T [2, 5]|εt) in round 3.

4.2. The BFS implementation on GPUs

After constructing the graph with error tolerance threshold εt, Gεt , SP-theo

runs a BFS algorithm on Gεt to find the shortest path from p1 to pn. Therefore,

we employ a fast BFS implementation on GPUs (i.e., BFS-4K [21]) to accelerate375

this step.

The BFS-4K method uses the concept of frontier in [22] for parallel visits

in one graph. Given one BFS tree generated by BFS has root s and contains

all reachable vertices, the vertices in each level of the BFS tree make up a

frontier. A procedure called frontier propagation is executed to form the BFS380

tree. The frontier propagation procedure checks every neighbour of a frontier

vertex to see whether it has already been visited already. If not, the neighbour

is added to a new frontier. BFS-4K implements the frontier propagation using

18

Start

Compute fdr sets of round r
in parallel with S1 and S2

Return results

End

r ≤ N

Check direction errors

N
Y

CPU

GPU

r++

r = 2

Input trajectory segment into GPU

Compute fdr sets of round 1
in parallel

Return results

GPU

Check direction errors

Store results into an array S1

In GPU memory

Update S2 with the computing
results of round r

Allocate an array S2 in GPU
memory and initialize it as NULL

(a) The flowchart for optimizing the computation of

fdr sets

Time

fdr(T[1,2])

fdr(T[2,3])

fdr(T[n-1,n])

...

Block 1 Block nBlock 2

GPU Thread Grid

r1

fdr(T[1,3])

fdr(T[2,4])

fdr(T[n-2,n])

...

r2

fdr(T[1, 4])

fdr(T[2, 5])

r3

...
fdr(T[3,4]) ...
fdr(T[4,5])

(b) The effect of the optimization method

Figure 5: Illustrating the optimization of computing fdr sets

19

two data structures, Fd and Fdnew. Fd represents the actual frontier, which is

read by the parallel threads to start the propagation step. Fdnew is written by385

the threads to generate the frontier. Then, Fdnew is filtered to guarantee the

correctness of the BFS visit and is swapped with Fd for the next iteration.

In our setting, we only need to find the shortest path from p1 to pn on

Gεt using BFS-4K instead of computing all shortest paths between any two

vertices. Therefore, we start the BFS-4K procedure from p1 and terminate390

the frontier propagation once Pn is retrieved. We slightly modified the frontier

propagation of BFS-4K to find the shortest path, which is shown in algorithm

4. As we can see, the BFS-4K starts from pstart referring it as a root in the

tree (see line 2) and Fd is set by pstart (line 4). Then, multiple iterations

are run. Each iteration consists of two steps: propagation step (lines 6-9) and395

filtering step (lines 10-16). In the propagation step, the proposed techniques in

[21] can be used to optimize this step, including exclusive prefix-Sum, dynamic

virtual warps, dynamic parallelism, and edge-discover. In the filtering step,

after filtering Fdnew with the hash table method in [21], we check whether the

end point pstart is in the leaves of tree or not. If it is, we can terminate the400

finding procedure. Otherwise, the tree grows by one level and Fd is swapped

by Fdnew for the next iteration.

Note that for Step 3 in the SP-theo solution generation, the final compressed

trajectory T’ can be acquired from the tree using a parallel tree traversal.

5. Performance Evaluation405

We have evaluated the performances of the proposed online DPTS, online

DPTS+, and the GPU-aided online DPTS+ against trajectory data streaming

using a cutting-edge NVIDIA GPU. These experiments mainly concern direction

error, compression rate, and compression time.

5.1. Experimental Setup410

The trajectory datasets used in this paper come from T-Drive trajectories

[23] and GeoLife trajectories [22]. T-Drive recorded the trajectories of 33,000

20

taxis over a period of three months in Beijing, and GeoLife contains 17,621

trajectories from different GPS loggers and GPS phones, with different sampling

rates. The features of the two datasets are shown in Table 1.415

All experiments were executed on one computer equipped with a Maxwell

GPU (GTX TITAN X), and the configurations are presented in Table 2.

5.2. Evaluating the online DPTS algorithm

In this section, we evaluate the direction error, compression rate, and run-

time of online DPTS. For comparison, we used the offline DPTS method, that420

is SP-theo. We randomly selected some trajectories from two datasets. For

each trajectory, SP-theo processed the whole trajectory, while the online DPTS

compressed the set of trajectory segments.

5.2.1. Direction error

In this experiment, we randomly selected 10 trajectories from T-Driver and425

GeoLife and tuned the error tolerance εt ranging from 0.2 to 1 to compare

the average direction error between DPTS and online DPTS. Each segment

contains 200 points (the reason for selecting 200 is introduced in the following

experiments). Figure 6 shows that there is no difference in terms of direction

error between the DPTS and online DPTS for two datasets. This indicates430

online DPTS can have the same direction tolerance as DPTS.

5.2.2. Compression rate

In this section, we investigate the compression rate of online DPTS. The

compression rate is measured by size ratio that is defined in [13] and is equal

to

∑
T ′∈D′ |T

′|∑
T∈D

|T |
, where D is the set of raw trajectories and D’ is the set of the435

corresponding compressed trajectories. We first observed the effect of segment

size on the compression rate of our online DPTS, and then we compared the

compression rate of online DPTS against the one of SP-theo. In the first exper-

iment, we fixed the number of trajectory points at 5000 and the error tolerance

εt at 1 to observe the size ratio of online DPTS with different segment sizes440

ranging from 50, 100,200,400 to 800. The experimental results in Fig. 7 show

21

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
Di

rec
ion

 er
ro

r

� t

 D P T S
 o n l i n e D P T S

(a) T-Driver dataset

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

� t

Di
rec

tio
n e

rro
r

 D P T S
 o n l i n e D P T S

(b) GeoLife dataset

Figure 6: The comparison of direction error with DPTS

22

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
0 . 2 5 1

0 . 2 5 2

0 . 2 5 3

0 . 2 5 4

0 . 2 5 5

0 . 2 5 6

0 . 2 5 7

N u m b e r o f p o i n t s

Siz
e R

ati
o

 o n l i n e D P T S

(a) T-Driver dataset

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 00 . 0 1 4
0 . 0 1 6
0 . 0 1 8
0 . 0 2 0
0 . 0 2 2
0 . 0 2 4
0 . 0 2 6
0 . 0 2 8
0 . 0 3 0
0 . 0 3 2

Siz
e R

ati
o

N u m b e r o f p o i n t s

 o n l i n e D P T S

(b) GeoLife dataset

Figure 7: The effect of segment size on online DPTS

that the size ratio of onlin DPTS can keep a steady value when segment size is

greater than 200 in both datasets.

In the second experiment, the segment size was fixed at 200 and the number

of trajectory points was fixed at 5000. The segment size was set to 200 because445

we observed that the compression rate had no obvious change when the segment

size ≥ 200 in the previous experiment. We then compare the size ratio of online

DPTS against DPTS under different value of error tolerance from 0.2, 0.4, 0.6,

0.8 to 1. Figure 8 shows that the size ratio of online DPTS is slightly higher than

the one of DPTS for both datasets. The reason is that online DPTS compresses450

23

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

 � t

Siz
e R

ati
o

 D P T S
 o n l i n e D P T S

(a) T-Driver dataset

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

Siz

e R
ati

o

 D P T S
 o n l i n e D P T S

� t

(b) GeoLife dataset

Figure 8: The compression rate of online DPTS

multiple trajectory segments while DPTS simplifies the whole trajectory, so

online DPTS keeps a few trajectory points that can be removed if compressing

the whole trajectory using DPTS. However, the difference between online DPTS

and DPTS in terms of size ratio is very slight.

5.2.3. Runtime455

In this section, we observe the compression time of online DPTS. We set the

segment size at 200 (the reason is shown in the above experiments in terms of

compression rate). We also set the εt = 1 to observe the runtime of online DPTS

24

and DPTS under different trajectory sizes (ranging from 2,000 to 10,000).

The experiment results in Fig. 9 shows that online DPTS is faster than460

DPTS about 11% for the T-Driver dataset and 79% for the GeoLife dataset.

The great performance gain of online DPTS compared to DPTS is because that

the SP-theo algorithm in the online DPTS can run on some small-size trajectory

segments. Meanwhile, the reason why the gain for the GeoLife dataset is much

better than the T-Driver dataset is that the compression rate of the T-Driver is465

much lower than the one in the experimental results in Fig. 8. Therefore, both

DPTS and online DPTS take much less time to compress T-Driver trajectories

than GeoLife trajectories. Therefore, the superiority of online DPTS over DPTS

is not obvious for the T-Driver dataset.

5.3. Evaluating the online DPTS+ algorithm470

In this section, we evaluate the performance of proposed online DPTS+ in

terms of direction error, compression rate, and compression time against the

online DPTS algorithm. For all experiments in this section, we set the segment

size = 200.

5.3.1. Direction error475

In this experiment, we also randomly selected 10 trajectories from T-Driver

and GeoLife and tuned the error tolerance εt ranging from 0.2 to 1 to compare

the average direction error between online DPTS and online DPTS+. Figure.

10 shows there is no difference in terms of direction error between the online

DPTS+ and online DPTS for the two datasets. That indicates online DPTS+
480

has the same direction tolerance as online DPTS.

5.3.2. Compression rate

In this section, we investigate the compression rate of online DPTS+. The

compression rate is measured by size ratio. The number of trajectory points is

fixed as 5000. We compare the size ratio of online DPTS+ against online DPTS485

under different values of error tolerance from 0.2, 0.4, 0.6, 0.8 to 1. According to

the experimental results in Fig.11, online DPTS+ has the same compression rate

25

2 K 4 K 6 K 8 K 1 0 K
1 0

2 0

3 0

4 0

5 0

6 0

7 0
Ru

nti
me

(m
s)

N u m b e r o f p o i n t s

 D P T S
 o n l i n e D P T S

(a) T-Driver dataset

2 K 4 K 6 K 8 K 1 0 K
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0

N u m b e r o f p o i n t s

Ru
nti

me
(m

s)

 D P T S
 o n l i n e D P T S

(b) GeoLife dataset

Figure 9: The compression time of online DPTS

26

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

� t

Di
rec

ion
 er

ro
r

 o n l i n e D P T S
 o n l i n e D P T S +

(a) T-Driver dataset

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

� t

Di
rec

ion
 er

ro
r

 O n l i n e D P T S
 O n l i n e D P T S +

(b) GeoLife dataset

Figure 10: The comparison of direction error with online DPTS

27

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

 � t

Siz
e R

ati
o

 o n l i n e D P T S
 o n l i n e D P T S +

(a) T-Driver dataset

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

Siz

e R
ati

o

 o n l i n e D P T S
 o n l i n e D P T S +

� t

(b) GeoLife dataset

Figure 11: The compression rate of online DPTS+

as the online DPTS for the two datasets. This proves The filtering procedure

in online DPTS+ has no influence on the compression rate.

5.3.3. Runtime490

In this section, we investigate the time efficiency of online DPTS+ process-

ing trajectories. Because the core part of online DPTS+ lies in pruning the

trajectories with BQS, we first observed the pruning power of online DPTS+

using the measuring method in [9]. The method uses a metric called pruning

power, denoted as PP, which is defined as 1 - Ncomputed

Ntotal , where N computed is the495

28

number of points needed to be computed with SP-theo and the number of total

points. We randomly selected 10 trajectories with the fixed size = 10000 points

and changed the direction error tolerance εt ranging from 0.2 to 1 to observe

the average PP values. As we can see in Fig. 12, the average pruning power

of online DPTS+ is 70.5% for T-Driver and 85.1% for GeoLife. The reason the500

PP value for T-Driver is lower than that for GeoLife is because that GeoLife

trajectories are easier to compress than T-Driver trajectories according to ex-

periments about compressing rate (see Fig. 8 and 11)), so that online DPTS+

can prune more points from GeoLife than T-Driver.

Another observation is that our pruning power is lower than the one (90%)505

in [9]. The main reason for this is that the online DPTS+ algorithm only prunes

the points complying with Rule 1 and Rule 2 (see lines 23-35 in algorithm 2) to

accelerate the following SP-theo algorithm, while the method in [9] uses Rule 1,

Rule 2, and Rule 3 to run its online trajectory compression algorithm.

In the following experiment, we evaluate the runtime of online DPTS+. We510

set the εt = 1 to observe the runtime of online DPTS+ and online DPTS under

different trajectory sizes (ranging from 2,000 to 10,000). Because the online-

DPTS+ algorithm consists of two parts, filtering and compression, the time

overheads of these two parts are measured individually. The experiment results

in Fig. 13 show that online DPTS+ outperforms online DPTS by an average of515

2.23 times for the T-Driver dataset and 3.95 times for the GeoLife dataset. The

results indicate that online DPTS+ can significantly reduce time consumption

by employing BQS structure to decrease the number of pairs of −−−→pi, pj to check

whether ε(−−−→pi, pj)≤ εt during the compression. Meanwhile, the performance gain

for GeoLife dataset is better than T-Driver dataset because online DPTS+ can520

prune more points for GeoLife than T-Driver shown in Fig. 12. Additionally,

the filtering time of online DPTS+ takes about 30.1% of the whole time cost for

T-Driver and 13.6% for GeoLife.

29

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 6 8 0

0 . 6 8 5

0 . 6 9 0

0 . 6 9 5

0 . 7 0 0

0 . 7 0 5

0 . 7 1 0

0 . 7 1 5

� t

Pr
un

ing
 po

we
r

 o n l i n e D P T S +

(a) T-Driver dataset

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 8 5 0

0 . 8 5 2

0 . 8 5 4

0 . 8 5 6

0 . 8 5 8

� t

Pr
un

ing
 po

we
r

 o n l i n e D P T S +

(b) GeoLife dataset

Figure 12: The pruning power of online DPTS+

30

2 K 2 K 4 K 4 K 6 K 6 K 8 K 8 K 1 0 K 1 0 K0

1 0

2 0

3 0

4 0

5 0

6 0

N u m b e r o f p o i n t s

Ru
nti

me
(m

s)

 o n l i n e D P T S
 o n l i n e D P T S + (f i l t e r)
 o n l i n e D P T S + (c o m p r e s s)

(a) T-Driver dataset

2 k 2 k 4 k 4 k 6 k 6 k 8 k 8 k 1 0 k 1 0 k0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

N u m b e r o f p o i n t s

Ru
nti

me
(m

s)

 o n l i n e D P T S
 o n l i n e D P T S + (f i l t e r)
 o n l i n e D P T S + (c o m p r e s s)

(b) GeoLife dataset

Figure 13: The runtime of online DPTS+

31

5.4. GPU-aided Online DPTS+ Method Evaluation

In this section, we observe the runtime of the GPU-based online DPTS+
525

method when handing trajectory data. The SP-theo algorithm is the most time

consuming part in online DPTS+, and the graph construction and shortest

path finding dominate the time costs in the SP-theo algorithm. Therefore,

we evaluate the time efficiency of the GPU-aided graph construction method

and the method of shortest path finding in the following experiments. For530

convenience, we refer to graph construction and shortest path finding in the SP-

theo algorithm as GC and SPF. Thus, the GPU-based graph construction and

its advanced version are called G-GC and G-GC+, respectively. The shortest

path finding based on BFS-4K is called G-SPF.

5.4.1. Evaluating the GPU-aided graph construction535

In this experiment, we randomly selected 10 trajectories whose lengths are

more than 35K points from both the T-Drive and GeoLife datasets. We replaced

the graph construction in SP-theo with the GPU-aided graph construction. We

then observed the average time consumption of GC and G-GC for handling 10

sub-trajectories with various sizes (from 15K points to 35K points). The error540

tolerance εt was set to 1. The experimental results in Fig. 14 show that G-

GC was 14.3 times faster than GC on average. Furthermore, G-GC+ improved

G-GC by about 2.2 times on average.

5.4.2. Evaluating the shortest path finding based on BFS-4K

In this experiment, based on the graphs from the experimental results in545

Fig. 14, we investigate the time consumption of G-SPF compared with SPF.

Figure. 15 shows that G-SPF outperforms SPF about by 7.88 times on average.

However, we also observed that the performance gain is less than the experi-

mental results in [21]. The reason is that online DPTS+ divided a trajectory

into multiple segments and also used the BQS structure to filter trajectories so550

that the number of points in SPF stage is very small, which hinders the GPU’s

parallelism.

32

1 5 K 2 0 K 2 5 K 3 0 K 3 5 K0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Ru
nti

me
(m

s)

N u m b e r o f p o i n t s

 G C G - G C
 G - G C +

Figure 14: The runtime of GPU-aided graph construction

1 5 K 2 0 K 2 5 K 3 0 K 3 5 K

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Ru
nti

me
(m

s)

N u m b e r o f p o i n t s

 S P F
 G - S P F

Figure 15: The runtime of GPU-aided shortest path finding

33

6. Conclusions and Future Work

This paper addresses the need to compress online trajectory streaming data

by preserving direction information. We converted an offline DPTS algorithm555

into an online DPTS method and applied a BQS data structure in an online

PPTS method to optimize our proposed online DPTS method, called online

DPTS+. The proposed online DPTS+ meets the need to quickly compress tra-

jectory streaming data. A parallel method for online DPTS+ has been developed

to ensure the performance of compressing trajectory streaming data with the560

support of a contemporary Maxwell GPU. The proposed approach provids a

new tool for fast online trajectory stream compression.

The experimental results show that (1) the online DPTS outperforms offline

DPTS with up to 79% less compression time while maintaining a comparable

compression error and compression rate, (2) the compression time of online-565

DPTS+ algorithm is 3.95 times faster than that of online DPTS, and (3) the

GPU-aided methods can significantly reduce the time for the graph construction

and for the shortest path finding with a speedup of 31.4 and 7.88 (on average),

respectively. For future work, we will extend the compressed approach to process

trajectories in the road network and consider the streaming inconsistency issue.570

Acknowledgments

This work was supported in part by National Science and Technology Major

Project of the Ministry of Science and Technology of China(2016ZX05014-003),

the China Postdoctoral Science Foundation (2014M552112), the Fundamental

Research Funds for the National University, China University of Geosciences575

(Wuhan)(No.1610491B24).

References

[1] X. Chen, S. Hu, Distributed generation placement for power distribution

networks, Journal of Circuits, Systems, and Computers 24 (2015) 1550009–

1–1550009–23.580

34

[2] X. Chen, T. Wei, S. Hu, Uncertainty-aware household appliance scheduling

considering dynamic electricity pricing in smart home, IEEE Trans. Smart

Grid 4 (2013) 932–941.

[3] I. S. Popa, K. Zeitouni, V. Oria, A. Kharrat, Spatio-temporal compression

of trajectories in road networks, Geoinformatica preprint.585

[4] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, T. Wolle, Compress-

ing spatio-temporal trajectories, LNCS 4835 (2007) 763–775.

[5] D. H. DOUGLAS, T. K. PEUCKER, Algorithms for the reduction of the

number of points required to represent a line or its caricature, The Cana-

dian Cartographer 10 (1973) 112–122.590

[6] N. Meratnia, R. A. de By, Spatiotemporal compression techniques for mov-

ing point objects, in: International conference on extending database tech-

nology (EDBT), 2004, pp. 765–782.

[7] Y. Zheng, X. Zhou, Computing with Spatial Trajectories, Springer, 2011.

[8] R. Lange, F. Dürr, K. Rothermel, Efficient real-time trajectory tracking,595

The VLDB Journal 20 (2011) 671–694.

[9] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, R. Jurdak, Bounded quad-

rant system: Error-bounded trajectory compression on the go, in: The

IEEE International Conference on Data Engineering (ICDE), 2015, pp.

987–998.600

[10] N. Meratnia, R. A. de By, Spatiotemporal compression techniques for mov-

ing point objects, LNCS 2992 (2004) 765–782.

[11] T. G, C. H, S. P, W. O, V. D, On-line data reduction and the quality of

history in moving objects databases, in: ACM international workshop on

data engineering for wireless and mobile access (MobiDE), 2006, pp. 19–26.605

35

[12] J. Muckell, P. W. O. Jr., J.-H. Hwang, C. T. Lawson, S. S. Ravi, Com-

pression of trajectory data: a comprehensive evaluation and new approach,

Geoinformatica 18 (2014) 435–460.

[13] C. Long, R. C. Wong, H. V. Jagadish, Direction-preserving trajectory sim-

plification, Proceedings of the VLDB Endowment 6 (2013) 949–960.610

[14] C. Long, R. C. Wong, H. V. Jagadish, Trajectory simplification: On mini-

mizing the direction-based error, Proceedings of the VLDB Endowment 8

(2014) 49–60.

[15] C. Long, R. C.-W. Wong, H. V. Jagadish, Direction-preserving trajectory

simplification, in: International Conference on Very Large Data Bases,615

2013, pp. 949–960.

[16] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, J.-G. Lee, R. Jurdak,

A novel framework for online amnesic trajectory compression in resource-

constrained environments, IEEE Transactions on Knowledge and Data En-

gineering PP (2016) –.620

[17] J. S. Vitter, Random sampling with a reservoir, ACM TOMS 11 (1985)

37–57.

[18] F. Xhafa, V. Naranjo, L. Barolli, M. Takizawa, On streaming consistency of

big data stream processing in heterogenous clutsers, in: 18th International

Conference on Network-Based Information Systems (NBiS), 2015, pp. 476–625

482.

[19] L. Golab, T. Johnson, Consistency in a stream warehouse, in: Conference

on Innovative Data Systems Research, 2011, pp. 114–122.

[20] NVIDIA CUDA C Programming Guide version 6.5 (2015).

[21] F. Busato, N. Bombieri, Bfs-4k: An efficient implementation of bfs for630

kepler gpu architectures, IEEE Transactions on Parallel and Distributed

Systems 26 (2015) 1826–1838.

36

[22] Y.Zheng, X.Xie, W.Y.Ma, Geolife: A collaborative social networking ser-

vice among user, location and trajectory, IEEE Data Engineering Bulletin

33 (2010) 32–40.635

[23] J. Yuan, Y. Zheng, X. Xie, G. Sun, Driving with knowledge from the phys-

ical world, in: KDD, 2011, pp. 949–960.

37

Algorithm 3: Filtering using BQS

1 do filterByBQS(Q, εt)

2 εd = 0.5 · tan(εt) · LD(Q) /* transfer the direction error to the

position error using formula (5) */

3 set a tiny buffer B that contains the first λ points in Q, i.e., Q[1:λ]

4 set the first λ - 1 points’ filtering property f as ’0’

5 set the first point in B as the start point s

6 set the last point in B as the new incoming point e

7 set i = λ and len = the length of Q

8 while i ≤ len do

9 if d(s,e) ≤ εd then // satisfy rule 1

10 Q[i].f = 1 and e → B

11 ;

12 else

13 Construct or maintain a BQS structure over the buffer B

14 if dub ≤ εd(g) then // satisfy rule 2

15 Q[i].f = 1 and e → B

16 ;

17 else

// satisfy rule 3 or rule 4

18 Q[i-1].f = 0

19 s ← Q[i-1] // Current segment stops and new segment

starts at the previous point before e

20

21 end

22 end

23 end

24 Update Q to only keep points whose f property equals 0

25 return updated Q

38

Algorithm 4: Finding the shortest path using BFS-4K

1 FindingSP Procedure(G, pstart, pend, tree) /* Input: G is one

graph for BFS-4K, pstart is the start point, and pend is the

end point for BFS. Output: the tree is a BFS tree where

pstart is its root node and pend is located in its leaf

nodes. */

2 tree.root ← pstart

3 tree.level++

4 Fd ← tree.root

5 while true do

/* propagation step */

6 foreach each vector v ∈ Fd in parallel do

7 ns ← finding Fd’s neighbours

8 Fdnew ← ns

9 end

/* filtering step */

10 filtering Fdnew in parallel

11 fill updated Fdnew into tree’s leaves

12 if pend ∈ tree.leaves then

13 return tree

14 end

15 Fd ← Fdnew

16 tree.level++

17 end

39

Table 1: Datasets

set

name

of tra-

jectories

total # of

positions

average

of

positions

per tra-

jectory

directional

difference

between

two ad-

jacent

segments

T-

Driver
10,359 17,740,902 1,713

(0.657,

0.803)

GeoLife 17,621 24,876,978 1,412
(0.364,

0.615)

Table 2: Configurations of the Computer

Specifications of

CPU platforms
Computer

OS Ubuntu14.04

CPU
i7-5820k (3.3GHz, 6

cores)

Memory 32GB DDR4

Specifications of

GPU platforms
GTX TITAN X

Architecture Maxwell

Memory 12GB DDR5

Bandwidth
Bi-directional band-

width of 16GB/s

CUDA SDK 7.0

40

	Introduction
	Related Work
	Online DPTS: Online Direction-Preserved Trajectory Simplification
	Problem Formulation
	Algorithm Description
	Algorithm Optimization
	The transformation scheme
	Optimizing the online DPTS algorithm using BQS

	The GPU-aided online DPTS+ method
	A Parallel Scheme on GPUs for Graph Construction
	The BFS implementation on GPUs

	Performance Evaluation
	Experimental Setup
	Evaluating the online DPTS algorithm
	Direction error
	Compression rate
	Runtime

	Evaluating the online DPTS+ algorithm
	Direction error
	Compression rate
	Runtime

	GPU-aided Online DPTS+ Method Evaluation
	Evaluating the GPU-aided graph construction
	Evaluating the shortest path finding based on BFS-4K

	Conclusions and Future Work

