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Abstract

On the road to exascale, coprocessors are increasingly becoming key building blocks of High Per-
formance Computing platforms. In addition to their energy efficiency, these many-core devices
boost the performance of multi-core processors. In this paper, we revisit the design and imple-
mentation of Branch-and-Bound (B&B) algorithms for multi-core processors and Intel Xeon Phi
coprocessors considering the offload mode as well as the native one. In addition, two major par-
allel models are considered: the master-worker and the work pool models. We address several
parallel computing issues including processor-coprocessor data transfer optimization and vec-
torization. The proposed approaches have been experimented using the Flow-Shop scheduling
problem (FSP) and two hardware configurations equivalent in terms of energy consumption: Intel
Xeon E5-2670 processor and Intel Xeon Phi 5110P coprocessor. The reported results show that:
(1) the proposed vectorization mechanism reduces the execution time by 55.4% (resp. 30.1%)
in the many-core (resp. multi-core) approach ; (2) the offload mode allows a faster execution on
MIC than the native mode for most FSP problem instances ; (3) the many-core approach (offload
or native) is in average twice faster than the multi-core approach ; (4) the work pool parallel
model is more suited for many/multi-core B&B applied to FSP than the master-worker model
because of its irregular nature.

Keywords: Muti-core, Coprocessor/Many-core, Intel Xeon Phi, Parallel Branch-and-Bound,
permutation Flow-Shop.

1. Introduction

In addition to multi-core processors, coprocessors are increasingly becoming key building blocks
of High Performance Computing platforms. Besides their energy efficiency, they boost the per-
formance of traditional multi-core processors through the combination of a larger number of
processing cores, vector-SIMD processing and multi-threading. Currently, the most used copro-
cessors (Top500 ranking of November 2015) [1] are Nvidia GPU accelerators and Intel MIC!
coprocessors. The former are composed of a large number of slim cores while the latter, the

IMIC stands for Many Integrated Cores
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focus of this paper, integrate a relatively smaller number of streamlined largish cores relying on
SIMD processing. From now on, for brevity “MIC” is used to designate Intel Xeon Phi and
“MC” to represent multi-core. Today, MIC coprocessors allow to achieve peak performance of
the order of one TeraFlops. Nevertheless, it is often difficult to extract the largest portion of the
theoretically available performance. Indeed, the specific features of these coprocessors raise sev-
eral issues including the optimization of data transfer between the processor and its coprocessor,
vectorization, data placement optimization, etc. Several research works have recently addressed
these issues in different application areas including supervised deep learning [21], DNA sequence
analysis [17], astrophysics (dynamics of astrophysical objects) [10], hydrodynamics (smoothed
particle hydrodynamics simulation of a nebula) [7], etc. However, in combinatorial optimization
the parallelization for Xeon Phi coprocessors is rarely addressed. The overall objective of this pa-
per is to revisit the parallel design and implementation of Branch-and-Bound (B&B) algorithms
for MIC coprocessors. For comparison (MC versus MIC), a multi-core implementation is also
considered using the same parallelization approach.

B&B algorithms are well-known methods for solving to optimality NP-hard optimization prob-
lems”. They are based on an implicit enumeration of the solutions composing the search space
associated with the problem to be tackled. The search space is explored by dynamically build-
ing a tree whose root node designates the original problem. Each internal or intermediate node
represents a subproblem obtained by the decomposition of the subproblem associated with its
parent node. The leaf nodes designate potential solutions or subproblems that cannot be decom-
posed. The construction of the B&B tree and its exploration are performed using four operators:
branching, bounding, selection and elimination. The algorithm proceeds in several iterations
to progressively improve the best solution found so far. The generated and not yet examined
subproblems are kept in a pool, that is initialized with the original problem. At each iteration,
the selection operator is used to select a subproblem from this pool, according to some strategy
(depth-first, best-first,...). The branching operator performs its decomposition into smaller sub-
problems. The bounding operator calculates a lower bound of each generated subproblem. Each
subproblem having a lower bound higher than the current upper bound (best solution found so
far) is discarded by the elimination operator. It means that this subproblem will not be decom-
posed.

Recently, the parallelization of B&B algorithms has been revisited for multi-core (clusters of)
processors [2] and GPU [15, 12, 4] and their combination [3, 22]. In [4], it is shown that
the bounding operator represents on average between 98 % and 99 % of B&B applied to the
Flow-Shop problem (considered as a case study in this paper). Such result demonstrates that
the bounding operator needs massively parallel computing. The GPU-accelerated bounding has
been investigated in [16]. The reported results show that the CPU-GPU data transfer is costly.
Therefore, it is recommended to perform also the branching operator on GPU in order to generate
locally the subproblems and evaluate their lower bounds. In this paper, we reuse this idea within
the context of MIC coprocessors using the offload (GPU-like) mode. Regarding the paralleliza-
tion of B&B on MIC coprocessors, it has only been previously addressed in our work [18] using
the native mode without vectorization. The parallelization of the algorithm is based on the work
stealing model. In the native mode, the coprocessor is standalone and executes the whole B&B

2 An optimization problem consists of minimizing or maximizing a cost function. Without loss of generality, in this
paper the minimization case and the permutation Flow-Shop scheduling problem are considered.
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algorithm. To the best of our knowledge, the parallelization of B&B on MIC coprocessors has
not been previously addressed using the offload mode. The major contributions of this paper are
the following:

o Revisiting the parallelization of B&B and its implementation on MC processors and MIC
coprocessors. The objective is to investigate the parallel bounding model combined with
the parallel tree exploration model of B&B algorithms to allow highly efficient solving of
large instances of the Flow-Shop problem on MC processors and MIC coprocessors. Two
parallel models are considered: master-worker and work-pool [11]. Unlike in the master-
worker model, in the work pool model the work distribution is initiated by the workers (not
the master) which makes this model more suited for irregular applications such as B&B.

e For the parallelization on MIC, investigating the offload-based approach as well as the
native-oriented one.

e Proposing a vectorization mechanism for multi-core processors as well as for MIC copro-
cessors. Vectorization has not been considered in our previous work [18].

o Finally, evaluating and discussing the performance of the proposed approaches consider-
ing different criteria: multi-core vs. many-core, offload vs. native, vectorized vs. non-
vectorized, and master-worker vs. work pool. The experiments have been performed using
the Flow-Shop scheduling problem and two hardware configurations equivalent in terms
of energy consumption: Intel Xeon E5-2670 and Intel Xeon Phi 5110P.

The rest of the paper is organized as the following. In Section 2, we first present the [VM-
based serial B&B algorithm. IVM is a new data structure dedicated to permutation problems
and presented in the next section. In Section 3, we detail the multi-core and many-core paral-
lelization approaches. In Section 4, we report some experimental results comparing the different
approaches. Finally, some conclusions are drawn in Section 5.

2. IVM-based serial B&B

As quoted in the introduction, B&B is a tree-based exploration algorithm using four operators:
selection, bounding, elimination and branching. At implementation, these four operators act on
the data structure that stores the generated subproblems. Therefore, the design of the data struc-
ture has a great impact on the efficiency of these operators. A stack implemented as a linked-list
is often used in existing works related to B&B algorithms using depth-first selection. In [18],
it is shown that the IVM data structure, which stands for Integer-Vector-Matrix, allows to speed
up the exploration using a smaller memory footprint than its linked-list counterpart. Therefore,
IVM is reused in this paper to deal with permutation optimization problems. A permutation op-
timization problem consists in finding a permutation of n objects which optimizes an objective
function. For instance, for the Flow-Shop problem, considered as a case study in this paper, it
consists in finding the schedule of n jobs on m machines that minimizes the makespan. In other
words, the objective is to find a permutation of n jobs that minimizes the due date of the last
job on the last machine. The IVM data structure for the Flow-Shop problem is illustrated in
Figure 1 where the left side (Figure 1.(a)) is the tree-based representation using top-down gray
rows and the Linked-list-based representation using horizontal and vertical solid lines. In the

3



<l o|lo|lr|r

M

(a) LL data structure (b) IVM data structure

Figure 1: LL and IVM-based representations

tree-based representation, each node designates a partial (subproblem) permutation or a full (so-
lution) permutation. The jobs before the “/” symbol are scheduled while the following ones are
to be scheduled.

On the other hand, IVM illustrated in Figure 1.(b) indicates the next subproblem to be solved.
The integer I of IVM gives the level (position of “/” + 1) of this subproblem. In this example,
the level of the next subproblem is 1. The vector V indicates the jobs that are already scheduled
(jobs 2 and 3 in the example) and thus the position of the subproblem among its sibling nodes in
the tree. The matrix M, which is triangular, contains the jobs to be scheduled at each level: all
the n jobs (for a problem with n jobs) for the first row, n — 1 jobs for the second row, and so on.
To use the IVM data structure in the B&B algorithm, some of its operators are revisited as the
following:

e The bounding operator just associates a lower bound to a subproblem, so it is not changed.
The three other operators act on the data structure, so they have to be redefined.

e The selection operator indicates the next subproblem (23/14 in the example) to be solved
using the integer and the vector.

e The bounding operator associates a lower bound to the selected subproblem. If the lower
bound is smaller than the cost of the best solution found so far, the subproblem is decom-
posed.

e The branching (decomposition) operator is performed by modifying the IVM data struc-
ture. The modification of IVM consists in increasing the level, meaning the value of 7, and
copying in the matrix M the next jobs to be scheduled to the next row.

e The elimination operator withdraws a subproblem if its lower bound is greater than the cost
of the best solution found so far. Its implementation consists in incrementing the index in
V if possible. Otherwise, the value of the integer [ is decremented and the value of V is
incremented.

3. Many-core and Multi-core B&B

In this section, we first briefly describe the MIC-based hardware architecture and its as-
sociated parallel programming model. Then, we detail the offload-based and native-oriented
4
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Figure 2: Hardware view: Intel Xeon Phi = coprocessor of CPU.

parallelization approaches for MIC coprocessors. The parallelization approach for multi-core
processors is the same as the native-based one for MIC coprocessors.

3.1. MIC-based architecture and parallelization

The market of accelerators has been dominated by Nvidia during several years. Since re-
cently, they are faced to the competition of Intel with its Many Integrated Cores (MIC)-based
Xeon Phi. This latter is a coprocessor coupled to the processor through a PCI Express bus. As
illustrated in Figure 2, a typical platform consists of one to two Intel Xeon processor(s) (CPUs)
and one to eight (two in this figure) Intel Xeon Phi coprocessors per host. Multiple such platforms
may be interconnected to form a cluster or supercomputer [6].

From the hardware point of view, the Xeon Phi board has one Knights Corner (KNC) pro-
cessor, the first production chip based on the MIC architecture, and 8 GB of GDDR5 RAM.
As illustrated in Figure 3, KNC integrates up to 60 CPU-cores interconnected by a high-speed
bi-directional ring, and runs at over 1 GHz. It connects to its private external memory with a
peak bandwidth of over 320 Gbps. The cores are based on the Intel Pentium architecture. Each
core has 32 KB of L1 data and instruction cache, 512 KB of L2 data cache kept coherent by a
global-distributed tag directory (TD), and a 512-bit vector Floating Point Unit (FPU). This latter
performs fused-multiply-add (FMA) operations. Therefore, the peak performance is about 32
(resp. 16) GFlops in single (resp. double) precision. Consequently, the KNC delivers a peak
performance of about 2 (resp. 1) TFlops in single (resp. double) precision.

From a programming standpoint, the key is to treat the Intel Xeon Phi coprocessor as an
x86-based SMP-on-a-chip with over 50 cores, with multiple threads per core and 512-bit SIMD
instructions. From programming language point of view, Intel Xeon Phi is more accessible
than Nvidia GPU because it can be programmed using standard programming environments
such as OpenMP, MPI, Cilk Plus and Posix Threads. However, to achieve higher performance
one should consider three fundamental features: scaling through locality, Simultaneous Multi-
Threading (SMT) and vectorization. These last two are often combined as it is done in this
paper and other papers such as [17] and [21]. In [17], thread-level parallelism is used in splitting
the DNA sequence into chunks, and vectorization is applied to the transition function of finite
automata (loop vectorization). In [21], thread parallelism is used to divide the input over the
available threads, allowing threads to process samples concurrently. Vectorization is applied
in convolutional layers to the computations of partial derivatives and weight gradients. On the
other hand, as an Intel Xeon Phi coprocessor runs an operating system (Linux) and has its own
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Figure 4: Offload-oriented many-core B&B.

IP address, there are two ways to involve it in a parallel program: a processor-centric “offload”
mode and a “native” mode. In the next sections, we investigate the two approaches.

3.2. Offload-based parallelization of B&B for MIC coprocessors

The parallelization approach of the B&B algorithm uses the thread-based Master-Worker
parallel model. The master thread performs the selection and pruning operators of the B&B
while the worker threads execute the branching and bounding operators. To take maximum
advantage of the computational power provided by the massively parallel MIC coprocessors
these latter should be fed by a large number of computations (many-task computing). To achieve
that as illustrated in Figure 4, the master thread maintains multiple IVM-based pools of tree
nodes generated and evaluated by the worker threads. On the processor side, at each iteration
of the exploration process a set of tree nodes (whose size is a user-parameter) is selected. The
selected set of nodes is offloaded to the coprocessor to be processed.

On the coprocessor side, as illustrated in Algorithm 1 (Line 10-23), each thread generates
and evaluates one or more children subproblems. Each child subproblem is uniquely identified
by the corresponding parent subproblem and an index indicating its position among sibling nodes
(Line 13-15). After mapping a thread onto a parent node and a child index, the thread generates
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Algorithm 1 Pseudo-code for the offload-based Branch-and-Bound algorithm.

1: procedure BrRANCH-AND-Bounp
2 N := problem-size
3 while (true) do
4: for (i: 0 —» #IVM) do
5: poolOfParentNodes[i] «selectNextSubproblem(i)
6 end for
7 if (no subproblemFound) then
8: STOP
9: end if
10: #pragma offload(mic:0) in(poolOfParentNodes) out(poolOfLowerBounds)
11: {
12: for (i: 0 » #IVM x N)) do > parallelize this loop using OpenMP directives
13: ivme«i/N
14: childldei (mod N)
15: child-subpb«generateChild(poolOfParentNodes[ivm], childId)
16: if isLeaf(child-subpb) then
17: LB «-evaluateSolution(child-subpb)
18: else
19: LB <«computeLB(child-subpb)
20: end if
21: poolOfLowerBounds[i] LB
22: end for
23: }
24: for (i: 0 —» #IVM) do
25: branchOnCPU(i) > Can be overlapped with computation of bounds
26: end for
27: for (i: 0 —» #IVM) do
28: eliminateSubproblems(poolOfLowerBoundsli], i)
29: end for

30: end while
31: end procedure

the child subproblem. For children that are leaves the cost of the solution is evaluated. The chil-
dren which are internal nodes are evaluated (bounded) using Algorithm 2 and their associated
lower bounds are returned to the CPU. In order to avoid transferring the resulting children nodes
the branching operator is also performed on the CPU (this operation can be overlapped with the
computation of lower bounds using the signal and wait specifiers). Every child having a lower
bound greater than the cost of the best solution found so far is pruned on CPU. The selection and
pruning operators (Lines 5 and 26) are performed in parallel using all the processing cores of the
CPU. The process is iterated until the exploration is completed and the optimal solution is found.

The implementation on Intel Xeon Phi of the coprocessor-based B&B requires to address
the challenging issues quoted in previous section. First, to deal with the processor-coprocessor
data transfer optimization the branching operator, which generates tree nodes or subproblems, is
moved to the coprocessor. The execution of the branching operator on the coprocessor allows
one to avoid the transfer of the branched parent nodes from CPU to Xeon Phi which is costly.
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However, this raises other issues related to thread granularity and mapping. Indeed, if a parent
node is processed entirely (branching and bounding) by a single thread there will be a load im-
balance. In fact, the parent nodes may have different numbers of children as they are located at
different levels in the B&B tree. To deal with this problem the tasks assigned to threads are child
nodes instead of parent nodes.

The semantics of the algorithm and its data structures is not the focus of this paper. For more
details on these ones and on the lower bound please refer to the Ph.D thesis of I. Chakroun [5].

Algorithm 2 Computation of lower bound (un-vectorized)
input: subproblem = {permutation, nbFixed (#jobs fixed)}, constant data (MM, JM, PTM, LM)
output: lower bound (LB) of subproblem

1: n := #jobs
2: procedure compuTE LB

3 RM, QM, SM « InitTabs(permutation, nbFixed)

4 LB« 0

5. for (k=0— ") do

6: tmp0, tmp1, ma0, mal « InitFun(k, nbFixed, MM, RM)
7 for (j =0 — n) do

8 job—IMIK][j]

9: if (SM[job]==0) then

10: tmp0 += PTM[ma0][job]

11: tmpl = max(tmp1, tmp0 + LM[k][job]) + PTM[mal][job]
12: end if

13: end for

14: tmp1«<EndFun(tmp0, tmp1, k, nbFixed, QM)

15: LB = max(tmpl, LB)

16: end for

17: return LB
18: end procedure

3.2.1. Vectorization

One of the major mechanisms allowing performance improvement on Intel Xeon Phi is vector-
ization [20]. Different levels are provided ranging from compiler-based automatic easy-to-use
vectorization to manual and programmer control vectorization. In our work, as quoted previ-
ously, the most consuming part of the B&B algorithm is the calculation of the lower bound
function (Algorithm 2). In the rest of this section, we first present FSP then we propose a method
for the vectorization of its associated lower bound function.

Flow-Shop Problem (FSP). The Flow-Shop scheduling problem is a permutation problem which
consists in scheduling n jobs on m machines [8]. For instance, in Figure 5, we have 4 jobs
designated by different colors to be scheduled on 3 machines.

The scheduling must be done with respect to two constraints: each machine cannot be simul-
taneously assigned to more than one job (to more than one color), and the execution order of the
jobs (the colors) is the same on all the machines. The objective is to minimize the makespan,
i.e. the termination date of the last job on the last machine. In this example, the solution consists
in scheduling first the red job, then the blue job and orange one, and finally the green job. The
solution can be coded as a permutation (3, 4,2, 1) and its cost is the termination date of the green
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Solution=(3,4,2,1)

Cost of the solution

Figure 5: Illustration of the Flow-Shop problem.

job on the machine M3. In this work, the lower bound function proposed by Lageweg et al. [13]
is used in our bounding operator (Algorithm 2). This lower bound is mainly based on Johnson’s
theorem [9] which provides a procedure for finding an optimal solution for Flow-Shop schedul-
ing problem with 2 machines. This bound is known for its good results and has a computational
complexity of O(m*nlog(n)), where n is the number of jobs and m the number of machines. For
large values of the parameters m and n, the problem is time-intensive. More details on the lower
bound and its computational complexity can be found in [16].

Vectorization of the lower bound of FSP. The focus is put on the most compute-intensive portion
of the lower bound function and its main data-dependencies. This portion of code is the inner
for-loop (Lines 7-13) which consumes about 70% of the bounding time. The body of this inner
loop is executed n? x (n — 1)/2 times, n being the number of jobs. Regarding data dependen-
cies, the statement in Line 11, including a dependency of current tmpl on tmpl from previous
iteration prevents vectorization (icc do not auto-vectorize it). In addition, except for Line 15
the iterations of the outer loop are independent (private variables: tmp0, tmpl, ind0, ind1 and
current). However, only the inner loop may be vectorized .

In order to allow more vectorization than provided by the compiler, the order of the nested
loops must be inverted as illustrated in the vectorized lower bound function (Algorithm 3).

3http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf



Algorithm 3 Computation of lower bound (vectorized)
input: subproblem = {permutation, nbFixed (#jobs fixed)},  constant data (MM, JM, PTM, LM)
output: lower bound (LB) of subproblem

1: n:=#jobs
2: procedure coMPUTE LB VECTORIZED
: RM, QM, SM « InitTabs(permutation, nbFixed)

4 LB« 0

5: for(k=0- ") do

6: TmpO[k], Tmp1[k], MaO[k], Mal[k] « InitFun(k, nbFixed, MM, RM)

7 end for

8 for G=0—1J)do > permute loop-order
9 #pragma ivdep

10: for (k=0 — @) do > inner loop vectorizable
11: jobe=IM[j1[k] > transpose JM
12: if (SM[job]==0) then

13: TmpO[k] += PTM[Ma0[k]][job]

14: Tmpl[k] <« max(Tmp1[k], TmpO[k] + LM[k][job]) + PTM[Mal[k]][job]

15: end if

16: end for

17: end for

18:  for(k=0- “%D)do

19: Tmp1[k]<—EndFun(TmpO[k], Tmp1[k], k, nbFixed, QM)
20: end for

21: LB«—max-reduce(Tmp1[])
22: return LB
23: end procedure

For auto-vectorization by the compiler it is preferable to write small separate loops, rather
than merging into a single loop. The outer loop is thus split into 3 separate serial loops and a
max-reduce operation (Line 20) in order to isolate the k-dependent instructions from the inner-
loop. The cost to pay for this is to declare the scalars tmp0, tmpl, maO and mal as arrays
(resp. Tmp0, Tmpl, MaO and Mal) of size @ The same strategy on GPU severely breaks
down performance due to the memory problem (these intermediate variables are no longer stored
into registers). In order to improve performance and assist the compiler in vectorizing the
loops all arrays are aligned at 64 byte boundaries. For static arrays this is achieved by us-
ing __attribute__((aligned(64))). For dynamically allocations the -mm malloc function
is used and the statement __assume_aligned(arr, 64) informs the compiler immediately be-
fore the concerned loop that the starting address of array arr is a multiple of 64 bytes. Even
with the highest optimization level activated (—O3) the Intel compiler (icc) still needs the hint
“#pragma ivdep” to vectorize the inner loop (Line 10) successfully. The two other for-loops are
auto-vectorized.

3.3. Multi-core and native-based many-core parallelization of B&B

As pointed out in Section 3.1, in the native mode the Xeon Phi coprocessor is used as an
independent many-core device. Therefore, the parallel B&B algorithm can be executed entirely
on the coprocessor. For a fair comparison between MC and MIC, the same parallelization ap-
proach is used for the two architectures. We have considered the two parallelization models:
master-worker and work pool. In the master-worker approach illustrated in Figure 6, as for the
offload-based parallelization approach (for a fair comparison), the master thread maintains a set
of IVM-based pools of subproblems and performs an iterative exploration process until the op-
timal solution is found. At each iteration, it selects a subset of parent subproblems from those
pools to be sent to the worker threads which perform their decomposition and the evaluation of
the generated children. These later are sent back to the master thread together with their associ-
ated lower bounds. The selection and pruning operators are performed in parallel using all the

10



multi-core and native MIC B&B

for all pools
select parent subproblems

I I 1
I N

for all pools
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with LB>best
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empty?

Figure 6: Native-oriented many-core or multi-core B&B.

processing cores of the CPU.

In the work pool-oriented parallelization approach, the master thread plays the same role. How-
ever, the parent subproblems are distributed to the worker threads on their request. As pointed
out in the introduction this approach is well-suited in our case because the calculation function
of the lower bounds is irregular. The master thread stops the exploration process when all the
pools of subproblems are empty.

The implementations of the master-worker and work pool approaches using OpenMP are quite
similar. The major difference between them is the parameter of the “schedule” clause in the work
sharing parallel loop, which is “static” (resp. “dynamic”) for the master-worker (resp. work pool)
implementation. Finally, the two implementations are vectorized using the same method as for
the offload-based many-core approach, presented in Section 3.2.1.

4. Experimentation

In this section, we propose an experimental study of the proposed many-core approaches
for Intel Xeon Phi (offload and native) and compare them to their multi-core counterpart. We
first describe the hardware and software testbeds and give some parameter settings used for our
experiments. Then, we report and discuss some experimental results.

4.1. Hardware and software testbeds and parameter setting

For the multi-core implementation, we have used OpenMP version 4.0. All the experiments
are run on hardware described in Table 1. The compiler used for the CPU and MIC implementa-
tions is Intel icc version 15.0 for Intel devices. For all experiments the compilation level 3 (-O3)
is used. On the other hand, the UNIX time command is used to measure the elapsed execution
time for each Flow-Shop instance. Finally, the GFLOPS(DP) row is obtained using the following
computations:

o MIC: 16(flops/Ghz) X 60(cores) x 1.053(GHz/core) = 1010.88GF/s
o CPU: 8(flops/Ghz) x 8(cores) X 2.6(GHz/core) = 166GF/s

The last row indicates that the two hardware configurations (considering a two-socket multi-core
processor) are equivalent in terms of energy consumption. For Intel Xeon E5-2670, as the server
11



Intel Xeon E5-2670 Intel Xeon-Phi 5110P

#Physical cores 8 60
#Logical cores 16 240
clock(Ghz) 2.6 1.053
GFLOPS(DP) 166 1011
SIMD 256-bit 512-bit
Cache(MB) 20 30
Mem BW(GBs) 51.2 320
Watt 115 225

Table 1: Hardware execution platform

Elapsed time vs. number of IVM structures for offload and native MIC-mode
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Figure 7: Elapsed time vs. Number of IVMs for MIC-B&B in offload and native mode.

includes two sockets its power (in Watt) value is equal to 115 x 2 = 230.

As quoted in Section 3.1, the coprocessors are many-core devices dedicated to massively
parallel computing. Therefore, they need to be fed by a large number of computations. To do that,
many B&B trees must be explored simultaneously in order to generate multiple (IVM-based)
pools maximizing the use of the coprocessor cores. Before the experiments are performed, the
number M of IVM-based pools to be created is calibrated through a series of experiments on the
problem instance Ta028 for the MIC (offload and native) and MC approaches. The experimental
results are reported in Figure 7. Based on the figure, the number of IVMs is fixed to 2500 (resp.
240 and 32) for the offload-based MIC approach (resp. native-based MIC approach and multi-
core approach).

In addition, in our experiments multithreading (2 threads per physical core) is used for the MIC-
based approach. This parameter is determined experimentally as shown in Figure 8. The problem
instance Ta028 (8.1 millions of decomposed subproblems) is considered for this calibration.

4.2. Experimental results

The performance analysis consists in comparing the performance of the parallel multi-core
approach and the two many-core MIC-based approaches. The objective is to evaluate the impact
on performance of the hardware architecture (multi-core vs. many-core), the programming mode
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Figure 8: Impact of multithreading on the performance of MIC-based approach

of MIC (offload vs. native), the vectorization mechanism (vectorized vs. non-vectorized), and
the parallelization model (master-worker vs. work pool). The different approaches have been
experimented using the 10 instances (7a021 — Ta030) of the Taillard’s problem 20 jobs on 20
machines. The best solution found so far is initialized to the optimal solution to guarantee that
the amount of work (explored nodes) is the same for each of the experimented approaches. This
allows to prevent from the well-known speed up anomalies investigated for instance in [14].

4.2.1. Impact of hardware architecture, programming mode and vectorization

We first investigate three performance factors: the hardware architecture (MC vs. MIC),
the programming mode of MIC (offload vs. native), and the vectorization mechanism (with vs.
without). Table 2 reports the experimental results obtained on the Ta021 — T'a030 Taillard’s
instances. During the exploration of these instances on average 43.1 millions of subproblems are
decomposed. The largest instance is 7a@023 with 140.8 millions of decomposed subproblems.
The experimental results shown in Table 2 are obtained using a static task assignment in the
parallel bounding phase.

Table 2: Exploration time (in seconds) obtained using the multi-core and MIC master-worker approach.

Nodes  Xeon Phi offload Xeon Phi native Multi-core

Inst. (x10%  No-Vect  Vect No-Vect  Vect No-Vect  Vect
21 414 1,137 535 1,410 629 1,599 1,103
22 22.1 566 269 700 306 785 562
23 140.8 3,756 1,705 4,643 2,007 5,307 3,709
24 40.1 938 431 1,200 517 1,391 971
25 414 1,144 570 1,400 641 1,603 1,069
26 714 1,651 766 2,120 929 2,371 1,714
27 57.1 1,342 559 1,699 668 1,982 1,372
28 8.1 228 108 276 118 296 209
29 6.8 183 84 218 91 241 173
30 1.6 51 25 55 24 60 44

AVG 431 1,100 505 1,372 593 1,564 1,092
13




The first two columns of the table contain respectively the numbers of the 10 solved problem
instances and their associated search space sizes in millions of nodes. The following double-
columns designate the exploration times in seconds obtained using respectively the MIC-accelerated
offload-based approach, the MIC-accelerated native-based approach, and the multi-core approach.
Each double-column designates the exploration times obtained without (NoVect) and with vec-
torization (Vect). The MIC offload-based (resp. native-based) approach uses 236 ((resp. 240)
threads while the multi-core hyperthreading-based approach uses 32 threads. In [19], the authors
report some experimental results demonstrating the impact on data transfer overhead of the Co-
processor Offload Infrastructure (COI) daemon in the offload mode. The COI daemon runs the
services required to support data transfer for offload on a dedicated core. The reported results
show that it is beneficial to avoid using this core for user code, i.e., one should use only 59 cores.
Following this recommendation, we have used 236 threads (corresponding to 59 cores) in our
experiments for the offload-based MIC approach.

From the last row of the table, three major observations can be made. First, the proposed
vectorization mechanism allows one to speed up the MIC-based (resp. multi-core) approach
by about 55.4% (resp. 30.1%) in average. The improvement ratio is computed as follows:
% One can notice that the improvement is close to double on MIC than on MC be-
cause the size of the registers on Xeon Phi 5110P (512 bits) is double than the size of registers
on Xeon E5-2670 (256 bits). Second, the offload-based MIC-accelerated approach is on average
faster than its native-based counterpart whatever is the tackled problem instance.

Using the offload-based approach there is, on the one hand, the additional cost induced by
processor-coprocessor data transfer. On the other hand, the partially sequential [IVM-management
is performed on the CPU and thus with a higher clock rate. The following subsection investi-
gate this issue more closely. Finally, the MIC-accelerated approaches outperform their energy-
equivalent multi-core counterpart for all problem instances in their non-vectorized as well as
vectorized versions. For instance, considering their vectorized versions the offload-based (resp.
native-based) MIC approach is 2.16x (resp. 1.84x) faster than its multi-core counterpart.

4.2.2. Impact of the parallelization model

Another series of experiments has been performed using the work pool parallel model with
vectorization considering the MC and MIC architectures. The obtained results are reported
in Table 3. The two first columns are the same as those of Table 2. The three following
double-columns designate the exploration times (in seconds) obtained using respectively the MIC
offload-based vectorized approach, the MIC native-based vectorized approach and the multi-core
vectorized approach. Each double column comprises the time obtained using the master-worker
(schedule=static) model and the time obtained using the work pool (schedule=dynamic).
From the last row of the table, two major observations can be made. First, for the two architec-
tures the work pool model allows a faster resolution for all the tackled problem instances. This
can be explained by the irregular nature of the lower bound calculation function illustrated in
Figure 9. Subproblems with smaller lower bound calculation cost do not penalize the subprob-
lems with a greater lower bound evaluation cost. Second, the benefit of using dynamic instead
of static task assignment varies according to the target architecture and model. Using a dynamic
instead of a static task assignment in the offload mode allows to decrease the average execution
time by 6% while it allows an improvement of 17% (resp. 22%) in the native (resp. MC) case.
These numbers correlate to the size of the task-pools evaluated in parallel. Because of averaging,
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Figure 9: Illustration of the irregular nature of the bounding function. Average elapsed time (1000000 evaluations)
required for computing the lower bound for a subproblems according to its depth in the tree.

when a very large pool is used a static task repartition is indeed likely to lead to smaller relative
differences between per-thread workloads than the repartition of a small task-pool.

Considering the work pool model, the average resolution time for the offload and native mod-
els are nearly equivalent. The native-based algorithm outperforms its offload-based counterpart
for the three smallest instances 7a028 — T'a030, while the latter is faster for all other instances.
Considering the work pool model, the offload-based (resp. native-based) MIC approach is 1.78%
(resp. 1.72x) faster than its multi-core counterpart.

4.2.3. Breakdown of execution time

In Figure 10 the average execution time (for instances 7a021 — Ta030) is decomposed into
three parts: bounding, IVM-management and overhead induced by the parallelization of the
bounding phase. The IVM-management time includes the selection of parent nodes and node
elimination. The overhead is measured as follows. The parallel node evaluation is invoked
twice: a first time without computing the lower bounds and a second time actually carrying out
the evaluation of subproblems. The purpose of the first operation is to isolate the transferring

Table 3: Exploration time (in seconds) obtained using the vectorized multi-core and MIC master-worker and work pool
approaches.

Nodes  Xeon Phi offload Vect  Xeon Phi native Vect Multi-core Vect

Inst.  (x10%)  static dynamic static dynamic static  dynamic
21 41.4 535 501 629 520 1,103 843
22 22.1 269 254 306 259 562 434
23 140.8 1,705 1,608 2,007 1,673 3,709 2,862
24 40.1 431 396 517 411 971 749
25 414 570 540 641 559 1,069 834
26 71.4 766 714 929 747 1,714 1,320
27 571 559 524 668 545 1,372 1,083
28 8.1 108 102 118 99 209 163
29 6.8 84 80 91 78 173 133
30 1.6 25 24 24 20 44 34
AVG 431 505 474 593 491 1,092 845
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and marshaling of data, thread creation and the scheduling of the node evaluation loop from
the computation of lower bounds. The time labeled as “overhead” in Figure 10 is obtained by
measuring the time required for this first operation. The bounding time is obtained by subtracting
the measured overhead from the time required to perform the actual evaluation of the lower
bounds.

Compared to a master-worker model the work pool approach allows to reduce the time re-
quired to perform the parallel bounding operation, which reduces the overall execution time. On
the other hand, Figure 10 clearly shows that the work pool model is costlier to manage than
its static master-worker counterpart. However, for both the MC and MIC-based approaches the
benefits resulting from a better workload repartition outweigh this increased overhead.

Unsurprisingly, the offload-based approach incurs the highest overhead among the three con-
sidered approaches. Compared to the native execution model, the offload model spends less time
managing the pool of subproblems, as this part is performed with a higher clock rate on the
CPU. This allows the offload-based approach to use a higher number of IVMs without being
penalized by a high IVM-management cost. As mentioned, especially in the case of a static task
assignment, a larger pool-size may also improve the performance of the bounding phase, reduc-
ing the load imbalance between threads. Indeed, comparing the results obtained for the statically
scheduled offload and native models, one can notice that the offload-based algorithm spends less
time in the bounding phase than its native-based counterpart. This difference disappears when
switching to the dynamic task assignment. This indicates that the relative penalty induced by
load imbalance is lower for larger overall work loads, i.e. a larger number of IVMs.

5. Conclusion

According to the recent Top500 ranking (November 2015) [1], it is confirmed that hybrid
HPC platforms including coprocessors is the trend towards the exascale era. On the other hand,
it appears that the market of hybrid HPC is dominated by Nvidia followed by Intel with its Xeon
Phi. In this paper, we have revisited the parallelization of B&B algorithms for many-core copro-
cessors, more exactly Intel Xeon Phi which emerged recently as a strong concurrent to Nvidia
GPU. From the design point of view, we have combined two hierarchical parallel models: the
parallel tree exploration model and the parallel bounding. The bounding operator is performed
on the coprocessor because, on the one hand, it is the most time-consuming part of the B&B
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algorithm. On the other hand, it is massively data parallel and thus well-suited for coprocessors.
In addition, the branching operator, which generates tree nodes during the exploration process,
is also performed on the coprocessor to minimize the cost of their offloading from the processor
to the coprocessor.

Such coprocessor-based design of B&B algorithms gives rise to other issues including processor-
coprocessor data transfer optimization and vectorization on Intel Xeon Phi. To deal with the first
issue we have reused some recommendations proposed in [5] as quoted above. For the second
issue, we have proposed a vectorization mechanism for the lower bound function. The differ-
ent implementations have been experimented on the 10 instances of the 20 jobs on 20 machines
problem using equivalent hardware configurations in terms of energy consumption: Xeon Xeon
E5-2670 and Xeon Phi 5110P. The reported results show that first, the vectorization mechanism
allows in average an improvement of 55.4% (resp. 30.1%) on Xeon Phi 5110P (resp. Xeon
E5-2670). Second, the offload mode allows a faster execution than the native mode due the pro-
cessing of sequential and weakly parallel parts on the higher-clocked CPU. Hyper-threading (2
threads per physical core) is used to speed up the execution on Xeon Phi. Third, the MIC-based
parallelization is up to twice faster than its multi-core counterpart whatever is the used mode on
MIC: offload or native. Finally, the work pool parallel model is more suited than the master-
worker model for B&B applied to the Flow-Shop problem because of its irregular nature.

In the near future, we plan to extend our work to deal with parallel exact optimization on
hybrid architectures combining multi-core processors, Xeon Phi coprocessors and GPU accel-
erators. Work partitioning between the three devices will be a particular challenging issue [7].
Then, we will extend the resulting hybrid approach with a cluster-level parallelism. This will
allow us to solve efficiently the hardest unsolved Taillard’s instances of the Flow-Shop problem.
Finally, we believe that the conclusions drawn from the experiments reported in this paper will
be useful for the parallelization of other tree-based applications. Therefore, in the long term,
we will try to generalize the approach to other tree-based exploration algorithms such as B&X
(X=cut, price, ...).
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