The Home-Forwarding Mechanism to Reduce the
Cache Coherence Overhead in Next-Generation
CMPs

Gabriele Mencagli*, Marco Vanneschi, and Silvia Lametti
Department of Computer Science, University of Pisa
Largo B. Pontecorvo 3, I-56127, Pisa, ltaly
Email: {mencagli, vannesch, lametti}@di.unipi.it

ABSTRACT

On the road to computer systems able to support the requirements of
exascale applications, Chip Multi-Processors (CMPs) are equipped
with an ever increasing number of cores interconnected through fast
on-chip networks. To exploit such new architectures, the parallel
software must be able to scale almost linearly with the number of
cores available. To this end, the overhead introduced by the run-
time system of parallel programming frameworks and by the archi-
tecture itself must be small enough in order to enable high scala-
bility also for very fine-grained parallel programs. An approach to
reduce this overhead is to use non-conventional architectural mech-
anisms revealing useful when certain concurrency patterns in the
running application are statically or dynamically recognized. Fol-
lowing this idea, this paper proposes a run-time support able to
reduce the effective latency of inter-thread cooperation primitives
by lowering the contention on individual caches. To achieve this
goal, the new home-forwarding hardware mechanism is proposed
and used by our runtime in order to reduce the amount of cache-to-
cache interactions generated by the cache coherence protocol. Our
ideas have been emulated on the Tilera TILEPro64 CMP, showing
a significant speedup improvement in some first benchmarks.

Keywords: Parallel Processing, Cache Coherence, Fine-
grained Parallelism, Chip Multi-Processors

1 Introduction

Recent advances in microprocessor design have been
reflected in high-performance computing architectures that
rely on Chip Multi-Processors (CMPs) as basic building
blocks. According to the new interpretation of Moore’s law,
the number of cores per chip will continue to double ev-
ery two years, and prototypal architectures with thousands
of cores per chip (like Adapteva Epiphany with up to 4,096
cores) are now becoming reality [1]. Future CMPs must
be equipped with high-speed on-chip interconnection net-
works (like optical networks [2]) and connected to very high-
bandwidth 3D-stacked memory sub-systems. Along this

*Corresponding author. Phone: +390502213132, Fax: +390502212726

line, hardware cache coherence (CC), which is still an ex-
pected feature of future CMPs for both technical and legacy
reasons [3], still needs new advancements to support such
architectures with the necessary scalability.

According to this future path, the gap between paral-
lel architectures and parallel programming maturity tends to
widen. To exploit at best the hardware potential, the perfor-
mance of parallel software must scale almost linearly with
the number of cores of next CMPs. This goal poses seri-
ous challenges in the design of the run-time support of par-
allel programming frameworks. In fact, from one side the
exploitation of such large set of cores requires that a high
number of concurrent activities (fasks) can be statically or
dynamically identified. On the other side, good scalability
can be achieved as long as the tasks computation time (gran-
ularity) is sufficiently large than the run-time overhead. The
capability of executing small tasks with frequent synchro-
nizations in an efficient way is prerogative of run-time sup-
ports targeting fine-grained parallelism [4].

Several papers have presented some solutions to en-
able fine-grained parallelism by reducing the run-time sys-
tem overhead using lock-free data structures for low-latency
thread cooperation [5], by improving load balancing using
sophisticated work stealing techniques [6], or by support-
ing autonomic features [7-9]. We claim that the low-level
sources of architectural overhead in CMPs must be formally
analyzed and some countermeasures properly designed by
introducing specific architectural mechanisms directly ex-
ploitable by the run-time system. As suggested in Ref. [3],
the memory hierarchy and more specifically the cache sub-
system is one of the best candidate for such study.

One of the approaches described in recent research pa-
pers consists in configuring the CC mechanisms in such a
way as to exploit a specific sharing pattern of data and re-
duce the CC traffic. Examples are described in Refs. [10]
and [11], where the authors have designed hardware compo-
nents able to detect sharing patterns between cores by dy-
namically analyzing the sequence of memory accesses. The
goal is to enforce hybrid configurations of invalidation-based

and update-based CC protocols in order to reduce the number
of messages exchanged among caches.

Our approach has some analogies with such previ-
ous work. Our goal is to design a runtime for structured
parallel programs [12], also known as Algorithmic Skele-
tons [13] and recently as parallel patterns [14]. They are
based on the instantiation and composition of well-known
parallelism forms (e.g., farm, map, pipeline, stencils, re-
duce, divide&conquer) with a precise cooperation semantics.
Our fundamental observation is that the run-time support for
such patterns can be designed with few base synchronization
mechanisms. This allows us to orchestrate the CC protocol
in such a way as to optimize the communication overhead,
which is precondition to enable scalable fine-grained paral-
lelism.

This work extends the paper published in Ref. [15] by
providing the following specific contributions:

e the cost of CC protocols will be described and evaluated
through benchmarks on CMPs;

e we will list the requirements for an efficient run-time
support. Then, we will introduce the home-forwarding
mechanism, which allows us to reduce communications
among caches in the implementation of parallel patterns;

e we will describe a run-time support that matches our re-
quirements;

e we will evaluate experimentally our approach through
some benchmarks on the Tilera TILEPro64 CMP [16].

The organization of this paper is the following. In the
next section we point out the motivation of our work. Sect. 3
will review some related works, and Sect. 4 will describe the
nature of the CC overhead. Sect. 5 will give the basis for an
efficient runtime design, and Sect. 6 will describe a runtime
that meets our design principles. Sect. 7 will evaluate our
runtime on some parallel programs. Finally, Sect. 8 will con-
clude this paper by outlining our future research directions.

2 Motivation

Any run-time support needs proper mechanisms for syn-
chronizing processing elements (briefly, PE)!. We can dis-
tinguish between two basic synchronization problems: sym-
metric synchronization for mutual exclusion, and asymmetric
synchronization for event notification.

The first problem is solved by adding lock/unlock prim-
itives around the critical sections. In the second problem a
precedence relation must be forced. As an example, let PE;
and PE; be two PEs executing the sequences of operations
{p;c1:q} and {r;cy;s}, and suppose that the execution of ¢;
must precede the execution of ¢;. This can be expressed as
follows: {p;ci;notify(go);q} and {r;wait(go);c;s}, where
notify and wait generate and wait for an abstract event, i.e.
a pure one-to-one synchronization. The wait primitive im-
plies busy-waiting that can be implemented as a spin-loop on

'In this paper we use the generic term processing element to denote the basic
unit of parallelism at the architectural level (e.g., a core of a CMP).

a shared boolean flag, or as an I/O inter-processor commu-
nication. In general, atomic instructions are not needed to
perform the event notification/reception.

This distinction is important. Asymmetric synchroniza-
tion is predominant in the design of run-time supports for
structured parallel programs [12, 13, 17]. Such programs
are characterized by the fact that logically the ownership of
data structures is transferred among threads according to a
producer-consumer scheme. As an example, in a farm pat-
tern an emitter functionality is responsible to dispatch tasks
(data items) to a set of workers by transferring the owner-
ship of them. The availability of a new task can be noti-
fied using asymmetric synchronization, and the emitter, once
transferred the ownership, no longer needs the data item for-
warded. Analogously, in a map pattern a data structure (of-
ten a large array or a matrix) is scattered in partitions whose
ownership is assigned to a set of independent workers.

The producer-consumer scheme can be optimized in
terms of CC actions. In particular, we can note that:

e once the ownership has been transferred, some unnec-
essary CC interactions (e.g., read requests and invali-
dations) can be raised by operations performed by the
owner, because some cache lines of the data might still
be in the private caches of the PE that held the data;

e messages between caches not only increase the latency
of read/write operations, but also generate contention
among caches. In fact, caches act as servers, i.e. they
receive requests from other caches and reply to them.
High contention means long waiting times, and the
real (under-load) latency of read/write operations expe-
rienced by a program can hamper scalability with high
degrees of parallelism.

Optimizations aimed at reducing CC messages and con-
tention can be applied to the run-time support of structured
parallel programs, which can be based on event notifica-
tion as the main synchronization mechanism used by threads.
This will be the goal of our approach.

3 Related Works

The evaluation of the CC overhead on multiprocessors
and more recently on CMPs has been studied in several re-
search papers. In Refs. [18-21] an evaluation has been car-
ried out on systems with invalidation-based CC. The results
have been obtained empirically through benchmarks aimed
at evaluating the base latency of read operations in differ-
ent CC configurations. In Sect. 4.2, we performed similar
benchmarks on the Intel Sandy Bridge and the TILEPro64
CMPs. In addition, we proposed an analysis of the w la-
tency in the case of synchronous writes (with memory fences
in the case of WMO machines), which are used in inter-
process/inter-thread cooperation mechanisms. In other pa-
pers the CC evaluation has been performed by adopting sev-
eral simplifications on the workload model, in order to pre-
dict analytically the overhead by using tools such as Markov
chains [18,22], Generalized Timed Petri Nets [23] and Queu-
ing Networks [24]. In this paper we are not interested in the

exact quantification of the CC overhead, but rather in strate-
gies to design the runtime system in order to reduce both base
latency and contention.

To reduce the overhead of CC, a general approach con-
sists in designing hardware components able to analyze the
requests generated by the processors and to make specula-
tive CC requests when a particular access pattern is detected.
The rationale is to provide optimizations for computations
that exhibit specific memory access patterns. An example is
the work in Ref. [25], where the authors propose an approach
to prefetch data and reduce CC interactions in the case of
embedded processors. The idea of exploiting specific access
patterns to optimize CC is also the motivation of our work.

There is a dichotomy between hardware-level ap-
proaches, in which dynamic optimizations are taken by the
hardware interpreter [26], and static optimizations applied
by the runtime developer or by a compiler through the proper
use of non-conventional architectural mechanisms visible at
the assembler level. The first approach does not need any
assumptions on the running applications, because it is the
hardware level, with a proper additional logic, which is in
charge of detecting the cooperation patterns (e.g., cache in-
teractions) and triggers some actions to optimize the archi-
tectural behavior. Despite the larger applicability, this ap-
proach contributes to increase the CPU chip complexity, thus
to increase its area and, most important, its power consump-
tion. Instead, in the second approach some knowledge of the
parallel application structure must be owned by the developer
of the run-time system or by the compiler, in order to use
non-conventional and easy-to-implement low-level mecha-
nisms provided by the hardware. In this way the hardware
design is kept simple and efficient and compatible with the
future trend of integrating ever more cores in the same chip.
Leveraging the structured parallel programming methodol-
ogy, in this paper we follow this second solution.

The problem of contention is critical in CMPs. In
Ref. [27] an approach for mapping of real-time tasks onto
PEs has been proposed to increase predictability of their run-
ning times. It consists in constraint programming techniques
to find the optimal static task-to-PE mapping. This method
has been applied with micro-benchmarks on the TILEPro64
CMP. It starts from a given set of tasks exchanging messages,
and finds a way to map them in the architecture. As stated in
Sect. 5, process/thread mapping is only one side of the prob-
lem to reduce contention. Even when the mapping is cho-
sen accurately, high contention may still exist between PEs
if the runtime does not exploit proper architectural mecha-
nisms to deal with it. The task scheduling approach studied
in Ref. [28] tries to reduce the base latency only.

The possibility of complementing CC with hardware
mechanisms to reduce messages has been studied in the
past. Similarly to our home-forward synchronous store, in
Ref. [10] the authors propose the so-called remote store
model, in which processes have private memory areas and a
process can write directly into the memory of another pro-
cess using remote stores. Although the similarities, this
mechanism uses atomic instructions for the synchronization
on remote writable areas while our runtime is based on asym-

metric synchronization only, thus it is completely lock-free.
Moreover, no consideration about the reduction of CC over-
head and invalidation/C2C read requests has been made,
while our home-forward technique takes into account CC ex-
plicitly.

Finally, a very recent (2015) research work with com-
monalities with this paper is the one in Ref. [11]. The au-
thors introduce a hybrid CC approach that trades off the ad-
vantages of invalidation-based and update-based solutions.
Their idea is to develop a hardware support able to dynam-
ically detect sharing patterns in the running workload, and
to identify the potential consumers for a cache line. The
mechanism extends the existing CC protocol by performing
speculative updates to the potential consumers in order to re-
duce cache misses. This work shares same of the ideas of
our home-forwarding technique. However, in our approach
the decision to home-forward a cache line is taken by the
runtime developer and not dynamically by the hardware in-
terpreter. This simplifies the hardware design because no
special unit is needed to detect data sharing through a deep
analysis of the access pattern. It is worth noting that our ap-
proach does not make the life more complicated to the high-
level programmer of parallel applications, because the use
of home-forwarding optimizations is bounded into the run-
time support. Furthermore, home-forward write operations
also imply self-invalidation, which further reduces the num-
ber of invalidation messages among PEs as already studied
in Ref. [29]. Other papers like the one in Ref. [30] share
analogous ideas with Ref. [11].

4 Cache Coherence on CMPs

In this section we recall the CC problem, which is a
fundamental and well studied issue in multiprocessors and
CMPs. The ensuing discussion will introduce our termi-
nology that will be used to reason about CC and its impact
on parallel programs. Then, we will show the cost of CC
through synthetic benchmarks.

4.1 Preliminaries and abstract model

As it is known, the CC problem [31, 32] derives from
the need to maintain shared data consistent in the presence
of caching. In modern architectures this goal is achieved by
means of cache coherence protocols [32] invisible to the pro-
grammer, which are in charge of automatically maintaining
copies of the same data coherent.

The existing solutions exploit wupdate-based or
invalidation-based protocols [31]. In the first, the store
interpreter updates all the copies of the same cache line
allocated in one or more caches. In the second, once a PE
modifies a cache line in its local cache, the store interpreter
is responsible to atomically invalidate all the other copies.
In the sequel we will refer to the invalidation-based mecha-
nism, which is mostly used in CMPs [32]. For the sake of
simplicity, in this section we will suppose a hierarchy with
main memory and L1/L2 caches private per PE.

CC needs a central locus of control, i.e. a global knowl-
edge of the allocation state (e.g., modified, shared) of all the
cache lines, which must be always updated and available to
any PE. Fig. 1 shows a representation in which an abstract
agent, called Global Controller (GC), is in charge of main-
taining this global state knowledge (GSK). The figure shows
that GC is able to logically communicate with all PEs, and
that it is connected to main memory too. Also an abstract
cache-to-cache interconnect (C2C) is shown.

In the case of a store instruction, the interpreter invokes
GC, which atomically updates the GSK, determines the set
of PEs that maintain a copy of the cache line, and sends an
invalidation to them. Analogous is the case of a cache-miss
load: GC updates the GSK to record that a new copy exists,
and delegates a PE; (currently possessing a valid copy) to
transfer it to the requesting PE though C2C, or (at least log-
ically) it is transferred from the main memory under the GC
control. This model can be optimized by maintaining a lo-
cal state knowledge (LSK) in the cache units that act as local
controllers (see Fig. 1). If LSK contains reliable informa-
tion, it can be used to reduce the GC traffic and parallelize
the CC actions through direct C2C communications.

Main Memory

M

Global Control of Cache
Coherence

GC

PE1 PEi PE;j PEn
i L1 iL1 PL1 i L1
L2 | |b L2 || L2 || L2

'
Local Cache
Control

:
Local Cache
Control

: i
Local Cache
Control

i
Local Cache
Control

Cache to Cache Communications

c2C

Fig. 1: Abstract model of cache coherence in a CMP.

Two different approaches are used to distribute the cen-
tralization point (GSK):

e GSK is atomically replicated, i.e. all LSKs are copies
of GSK, as far as local cache lines are concerned. For
example, every state change is atomically visible to all
PEs (through broadcast/multicast communications);

e GSK is partitioned, notably different partitions corre-
spond to distinct subsets of cache lines, and each parti-
tion has a distinct controller. In order to update the local
LSK, a PE goes and asks the local controllers through
proper point-to-point C2C communications.

The first solution characterizes snoopy-based systems [18,
32], which are suited for low parallelism degrees. The sec-
ond characterizes directory-based architectures with high
number of PEs.

In directory-based protocols the GSK is maintained ex-
plicitly in a data structure (directory), where each entry

stores the state of a cache line. In particular, given a cache
line x, we identify the following entities:

e home node: it is the PE in whose main memory the
cache line is allocated. If the architecture is not strictly
NUMA, anyway it is the PE in charge of controlling a
partition of cache lines that contains x. This PE is able to
serve the requests for x directly via C2C, when the line
is present in its local cache, or by forwarding the request
to the main memory if x is not modified in another PE;

e requestor node: the PE that issues an operation request
for that line;

e owner node: the PE that currently holds the valid copy
of the cache line.

In the case of a cache-miss load, a request-reply inter-
action occurs between requestor and home. If the cache line
x is not modified in any other PE, the reply transfers x from
the home to the requestor (the home can transfer it from one
of its local caches, if x is present, or from the main memory).
Otherwise, if x is modified in another node the request is for-
warded to the owner and x is transferred to the requestor?. In
parallel, the owner informs the home of a new copy.

Similarly, in the case of a store instruction a request-
reply interaction occurs between requestor and home. In
some schemes the request can convey the data word to
be written. In that case the home node can update the
main memory immediately or later on or; in some architec-
tures [16, 33] the word is written in the local cache of the
home. In all these cases, if copies of x are present in other
caches they must be invalidated. The home node sends inval-
idations to all such PEs, which reply with a sort of acknowl-
edgment. The reply comes to the requestor once all the ac-
knowledgments have been received by the home node. This
reply is semantically needed for the sake of memory order-
ing in Total Store Ordering (TSO) machines [34]. In Weak
Memory Ordering ones (WMO) this reply can be waited by
a memory fence instruction (or by synchronous stores).

Fig. 2 shows an exemplification of this behavior in the
Tilera TILEPro64 architecture, see Sect. 7 for a detailed de-
scription of this CMPs. Each core has a L2 cache that main-
tains directory information. A peculiarity of this architecture
is the write-through C2C interaction between the requestor
and the home node, i.e. at each store execution, the home
node receives the word written by the requestor node and
updates its copy in L2.

It is worth noting that today’s shared-memory machines
are often composed of multiple interconnected CMPs. A typ-
ical solution is to provide a hierarchical CC protocol:

e CMP internal caches are kept coherent by an inner pro-
tocol. 1In the case of low-parallelism CMPs (6 + 12
cores), the inner protocol is usually snoopy-based;

e between CMPs the outer CC protocol is directory-based.

This hybrid approach is currently adopted in the composi-
tion of general-purpose low-parallelism CMPs. The abstract

2If more PEs have a valid copy, one is selected for the transferring (the
forward state in the Intel MESIF protocol has this goal).

Home Node

1

Requestor Node

OO

JOICCICICK

I

Requestor Node [: [: c Shared Node
h
T P m-
® inv (x
E- = =EE Lo+dir «
IEEEEEREE X
EEEEEEEEE P
SRS . Sw
nr
[Momint |
P
® ack — e
| L2+dir
@ store (x[0]=1) | = \:,7 ® invalidate (x)
@ x[0]=1 \ .
1 ‘ @® ack inv (x)

Home Node

Fig. 2: Cache coherence interactions in the Tilera TILEPro64 CMP: (left) interactions between home and requestor nodes in the interpreter
of a cache-miss load; (right) interactions between home, shared and requestor nodes in the interpreter of a store instruction.

model of this section can be easily applied to the directory-
based outer protocol by using the term PE to identify a whole
CMP (in the case of an intra-CMP shared L3, it maintains the
directory of the cache lines present in the whole chip).

4.2 Benchmarking the CC overhead

Write and read operations have a different cost based on
the actions taken by the interpreter, which in turn depend of
the state of the cache line. This has been previously studied
in Ref. [21] with specific benchmarks on the Intel Nehalem
and AMD Shanghai CMPs. In this section we show the re-
sults of the same benchmarks on two different CMPs: the
more recent Intel Sandy Bridge and the Tilera TILEPro64.

The Intel architecture is a machine equipped with two
identical Intel Xeon Sandy Bridge E5-2650 CPUs for a total
of 16 cores working at 2GHz. The two CPUs are intercon-
nected through the QuickPath Interconnect (QP I). Each core
is equipped with a private L1d cache of 32KB and a private
L2 cache of 256KB. Each CPU has a L3 cache of 20MB.
The CC protocol is based on a variant of the MEST protocol
with the forward state [20]. The Tilera CMP, shown in Fig. 2,
consists in 64 cores with private L1/L2 caches interconnected
through a 2D mesh network. A detailed description of this
CMP will be provided in Sect. 7.

Read latency. This benchmark follows the same setting de-
scribed in Ref. [21] and consists in a program written in the
C language with parts written directly in assembler. The as-
sembler parts are used mainly for fine-grained latency mea-
surements by reading the Time Stamp Counter (TSC) regis-
ter. In order to have reliable results, we turned off the power-
saving facility by fixing the operating frequency to the max-
imum one of 2 GHz. Since the TSC registers of different
PEs might be not aligned, we run each thread by pinning it
exclusively on a dedicated PE (core).

A separate consideration must be made for the Hyper-
threading feature provided by the Intel Sandy Bridge. In fact,
though Hyperthreading is potentially able to reduce the read
latency if the cache lines have been already loaded by another

thread executed on a SMT context within the same core, in
general such cache sharing can be detrimental if the work-
ing sets of the threads are large and their workload heavily
exploits the processor’s hardware resources (e.g., function
units and other pipeline resources). Since the benefit of Hy-
perthreading depends on the cache utilization and computa-
tional properties of the executed workloads, in this analysis
we decided to disable it.

Finally, due to the out-of-ordering execution model of
the Intel PEs we used proper assembler instructions before
the measurements in order to avoid executing the RDTSC in-
struction (to read the TSC register) earlier or later than the
benchmark expects, and we disabled the hardware prefetches
in order to have a full control of the loaded cache lines.

Prior to the measurements, data are loaded in the caches
in a desired state from the CC perspective. To this end, our
benchmark works as follows:

e a cache line is placed into the modified state by reading
a cache line and then by modifying it (possibly invali-
dating the copies of the other threads);

e a cache line is placed into the exclusive state in the fol-
lowing way: a thread modifies a cache line which is in-
validated in the other caches (if present); then the same
thread invalidates its local copy (through a c1flush
instruction) and then it loads the same cache line again;

e a cache line is placed into the shared state as follows: a
thread places a cache line in the exclusive state and then
another thread loads it.

We configure the benchmark in order to place the data in cer-
tain cache levels. To reduce the effect of the TLB translation
we use huge pages. Further details can be found in Ref. [21].
Tab. 1 shows the results where the first column identifies the
source of the read operation. For example: the read latency
from a core asking a line to a destination core in the same
chip is about 108 clock cycles if the cache line is in state
modified in the L1 of the destination core.

The latency to access local caches is independent from
the CC state. Intra-/inter-chip requests depend instead on the

Source ‘ State ‘ L1 ‘ L2 ‘ L3 ‘ M
Local M/E/S 6 12
Modified | 108 | 102 185
Same Chip | Exclusive 90 39
Shared
Modified 304-312
Other Chip | Exclusive 195-205 280
Shared 195

Table 1: Memory read latency on the Intel machine (Intel Sandy
Bridge) depending on the cache line state. Times in clock cycles.

state of the line. The access to a cache line in the shared state
costs slightly more than reading from a local cache; modified
and exclusive states significantly increase the read latency.
The read latency through the QP I causes a latency increase
between 2x and 4 x.

Tab. 2 shows the results of the TILEPro64 CMP, where
we used a similar setting for the benchmark, i.e., a 64-bit
free running cycle counter equivalent to the TSC of Intel is
available to collect fine-grained time measurements [16].

Source ‘ L1 ‘ L2 ‘ M

2 8 120
Incoherent
Coherent
40-70 160-204
HOME

Table 2: Memory read latency on the Tilera TILEPro64 architec-
ture. Times in clock cycles.

In terms of cache coherence states, on the Tilera CMP
we have a more limited set of possibilities. Owing to the
fact that in this architecture the copy of a cache line in the
home node is always updated, the state of a line can be either
shared or invalid. Another interesting comparison is between
having or not CC enabled. In fact, on TILEPro64 the CC can
be disabled for certain memory pages, and this can be config-
ured by the programmer through the use of special functions
of the Tilera Multicore Library [16].

As we can see, disabling CC has a cost. With CC en-
abled, if a cache has the requested cache line, we pay from
40 to 70 clock cycles depending on the distance on the mesh
between the source and the destination core of the request.
Since this architecture is distance-sensitive, the benchmark
has been repeated several times with different thread alloca-
tions, and the table reports the range of values or only the
average value if the standard deviation of the measurements
is small. Without CC, we must always go to the main mem-
ory, which costs 120 clock cycles on average.

Write latency. We adapt the benchmark to write opera-
tions, which have not been studied in Ref. [21]. We measure

the latency of a store instruction with synchronous seman-
tics, i.e. the one needed for synchronization mechanisms as
it will be described in Sect. 6. On the Tilera (which uses the
WMO model) this has been achieved using explicit memory
fence instructions after the stores. Tabs. 3 and 4 show the re-
sults for the memory write latencies respectively on the Intel
Sandy Bridge and on the Tilera TILEPro64 CMP.

Source ‘ State ‘ L1 ‘ L2 ‘ L3 ‘ M
Modified
9 15 39
Local Exclusive
Shared 80 83
185
Modified | 102 ‘ 97 44
Same Chip | Exclusive 86
Shared 83-95
Modified | 228 ‘ 225 ‘ 190
Other Chip | Exclusive 213-215 280
Shared 233-285

Table 3: Memory write latency on the Intel machine (Intel Sandy
Bridge) depending on the cache line state. Times in clock cycles.

M
Source L1 | L2
wRead w/oRead
Exclusive 5-28
Local
Shared 12-292
174-219 57-86
Exclusive 45-73
HOME
Shared 52-332
Exclusive 2 7
Local = HOME 226-274 | 121-147
Shared 7-285

Table 4: Memory write latency on the Tilera TILEPro64 architec-
ture. Times in clock cycles.

For Intel Sandy Bridge we can make analogous consid-
erations of that made for the read latencies. As we can ob-
serve, the write latency in the local private cache by a core
(both L1 and L2) is higher if that cache line is in the shared
state. In fact, in the shared case several invalidations must
be sent and the synchronous semantics forces to wait for all
the corresponding acknowledgment messages. In the case of
a write operation from a core in the same chip, we can see
that the latency is greater if the cache line is in state modified
in the destination core because more actions must be exe-
cuted, i.e. before invalidating the copy in that core the cache
line must be transmitted to the source core and then modified
(the standard store semantics is fetch-and-write).

In the TILEPro64 we have a similar behavior. As an ex-
ample, a local write operation from a core on a cache line
currently in its L1 cache in shared state costs from 12 clock
cycles to 292. This difference is due to the number of in-
validations that must be transmitted, which depends on the

Effect of contention: Ts=80t, Lb=230t

Effect of contention: Ts=20t, Lb=50t1

Effect of contention: Ts=1t, Lb=20t

15 T T 15 T T 18 T T
Tp=lt —o— Tp=11 —o— Tp=1t ——
= Tp=10t1 = Tp=10t1 = Tp=10t
® 12 | Tp=100T —— 1 ® 12| Tp=1001 —— 1 ®16| Tp=1001 —— 4
> Tp=500T —X%— > Tp=5001 —%— > Tp=500T —%—
o] Tp=1000T —%— 2 Tp=1000T —%— 2 Tp=1000T —%—
g g Q14 f 1
T T ®
— - -
e} e e
I 5] ©1.2 1
o o o
z z . ot s
< < c 1r 1
=} >)
08 Il Il Il Il Il
1 2 4 8 16 32 1 2 4 8 16 32

Number of requesting PEs (p)
(a) Ts =807, L, =2307.

Number of requesting PEs (p)
(b) Ts =207, L, = 507.

Number of requesting PEs (p)
() Ts=17,L, =207.

Fig. 3: Effect of contention on a shared server receiving requests from p identical clients. The system is modeled as a M/D/1 queuing
system. Cases with different server service time T and base latency L, values expressed in clock cycles 7.

number of cores that have a copy of the same line. There-
fore, we repeated the experiments several times with differ-
ent threads having a copy of the same cache line. The inter-
vals in the TILEPro64 architecture are wider than in the In-
tel Sandy Bridge because the Tilera machine has more cores
(64) interconnected in a distance-sensitive network (a bidi-
mensional mesh).

In conclusion, these benchmarks confirm that the la-
tency of read and synchronous write operations is dependent
on the state of the cache line, and on the presence of other
PEs having a copy of it in their private caches.

5 Goals and Requirements of an Efficient Runtime

From the previous section, we know that basic opera-
tions have different latencies according to the specific ac-
tions taken by the automatic CC mechanisms. Moreover, the
effective latencies experienced by a parallel program may
result higher than the ones measured by the benchmarks.
This is due to the contention in using shared physical re-
sources (e.g., memory and caches), which is one of the pri-
mary sources of performance degradation in shared-memory
architectures [35]. The base latency of read and write oper-
ations is measured without congestion, and depends only on
the architectural characteristics (e.g., which type of on-chip
and off-chip interconnection networks are available). The
under-load latency instead, includes the congestion delay in
the network and in the shared memory modules/cache units,
and depends both on architectural characteristics, and on the
way in which the architecture is used by the parallel program.

In order to exemplify the concepts, suppose to have a
memory module shared between the PEs of a CMP. Concep-
tually, the memory module is modeled as a server, which
receives requests from the PEs and produces corresponding
replies. Let p be the contention parameter, i.e. average num-
ber of PEs making requests to the same server, and 7, be the
average time interval between two successive requests. The
base latency comprises the time spent by a request to reach
the server (including all the network links), the service la-
tency to process the request, and the time spent to forward
the reply. The under-load latency is the average response

time of the server, denoted by Rp. Approximatively, it is
the base latency plus the average waiting time to serve the
incoming requests, which in turn depends on the server’s uti-
lization. The figures show the ratio between the under-load
latency and the base latency as a function of the number of
PEs accessing the server. The results are obtained using the
analytical model of a M/D/1 queuing system [36], with ex-
ponentially distributed clients and a deterministic distribu-
tion of the server service time. This model describes a sce-
nario in which several PEs independently generate requests
to the same server which has a constant service time (this ap-
proximates the behavior of memories and caches). Distinct
curves are depicted for different values of the 7, parameter.
Fig. 3 show the ratio between the under-load latency and the
base latency for different combinations of the server service
time 75 and the base latency L.

For compute-intensive workload (i.e. with high 7, val-
ues) the impact of contention tends to become negligible.
In contrast, the impact is substantial for medium-grained
and fine-grained computations because the utilization of the
server increases. Our goal is to use the architecture in such
a way that the under-load latency is very close to the base
one (ratio near to 1), otherwise the efficiency and scalability
of parallel programs become relatively low despite a large
number of used PEs. Although the goal of this preliminary
analysis is not to quantitatively model the performance of
CMP, it gives us a reasonable insight into a first design prin-
ciple of a scalable run-time support for parallel programs:

Observation 1. Reducing the number of PEs making re-
quests to the same server is a way to reduce contention.

It is worth noting that contention can be alternatively re-
duced by increasing the T, parameter, i.e. by making less
frequently requests to the same server. This aspect is the
rationale followed by several optimization techniques of se-
quential programs that may also produce better scalability in
parallel programming. These techniques are aimed at im-
proving the exploitation of the cache hierarchy (e.g., tiling,
blocking, polyhedral approaches to loop optimizations [37]).
However, the idea to increase T), is strongly dependent on

the specific features of the algorithm, while the idea to re-
duce the contention parameter is of more general application
provided that: i) parallel programs are expressed as instantia-
tion of well-known parallel patterns; ii) the run-time support
is designed with policies and mechanisms suited to handle
contention by reducing the contention parameter. In this pa-
per we follow exactly this idea.

Another observation is that the previous analysis can be
generalized to any kind of server. In cache coherent CMP-
based architectures, local caches act as servers of CC op-
erations, e.g., cache-to-cache transfers and invalidation (or
update) communications generated by the other cache units
on-chip or off-chip. This consideration is important from the
performance viewpoint: automatic CC protocols may be a
potential source of performance degradation since they con-
tribute to increase contention in the cache units. Just to ex-
emplify, let us consider the example depicted in Fig. 4. The
figure shows that case of a farm parallel pattern in which
an emitter thread (E) distributes tasks (e.g., a data structure
on which a computation must be applied) to a set of identi-
cal worker threads (W). Each task is assigned to an available
worker.

C2C read
request

C2C read
request

invalidation
request

invalidation

request
v E7

Fig. 4: Task scheduling in the farm parallel pattern. Each request
has a corresponding reply not shown in the figure.

Suppose for simplicity a cache hierarchy in which each
PE has private L1 and L2 caches (no shared caches), and that
the home node of the cache lines of a task #; is the PE (PE;)
of the destination worker W;. The figure shows the C2C re-
quests in the case of a system with CC based on invalidation.
Once the worker is notified of the presence of the task, e.g.,
through an asymmetric notification from the emitter, PE; gen-
erates several C2C read requests (once per cache line of the
task) to the L2 cache of the emitter PE. In fact, as the emitter
has prepared the task before the notification, the cache lines
of the tasks are likely in its L2 cache. Moreover, if the task
data structure is modified (e.g., during the worker computa-
tion), several invalidations are transmitted to the L2 cache of
the emitter, and this happens in parallel for all the workers of
the parallel program. The result is that the number of cache
units making requests to the emitter L2 cache is proportional
to the parallelism degree (number of workers) and this may
be a source of congestion. For this reason, we can derive a
second important observation:

Observation 2. The shared data must be managed in such

a way as to generate loosely-coupled interactions between
caches, i.e. by making the contention parameter independent
from the parallelism degree of the parallel program.

This observation allows us to clarify an important and
often misleading aspect of parallel programming:

e process/thread mapping consists in pinning them onto
the PEs in such a way as to reduce the base latency.
This affect the performance if the architecture is highly
distance-sensitive. In general, the base latency is rela-
tively low inside a low-medium parallelism CMP, while
the network topology becomes important for highly par-
allel CMPs with distance-sensitive topologies;

e once a process/thread mapping has been chosen, shared
data mapping has a relevant impact on under-load la-
tency minimization.

In other words, at first glance it seems that the topological
mapping of parallel programs is a critical issue, at least for
distance-sensitive networks; however, shared data mapping
is often much more relevant than process/thread mapping.

5.1 What do we need?

In this part we list the ingredients for a run-time support
that minimizes the contention aspects discussed previously.
A preliminary aspect is the placement of the home node.
In general, depending on the architecture, it may or not be
possible to choose the home node. Typically, to balance the
workload among caches, systems adopt different policies:

e a round-robin home node placement, in which the home
node of a cache line is chosen is a round-robin way, e.g.,
the selection is performed by a modulo operation on the
low order bits of the physical address;

e a hash-based home node placement, in which the home
node identifier is the result of a hash function applied on
the starting physical address of the line. This approach
is the default option on the TILEPro64 CMP [16].

According to the access pattern to a shared data structure by
concurrent threads, it could be convenient to establish pre-
cisely the home node for all its cache lines. This feature is
important for our approach, because allows us to configure
the directory-based CC protocol in such a way as to be tai-
lored for a specific and recurrent use case. Therefore, we
identify a first requirement:

Requirement 1. The architecture should allow the runtime
system developer to manually configure the home node
placement for the runtime data structures.

The home node selection can be provided with differ-
ent granularities, e.g., based on single cache lines or at the
page granularity. As an example, the TILEPro64 allows the
programmer to disable the default hash-based placement by
allowing to statically fix the home node at the granularity of
memory pages. The Tilera Multicore Library offers several
malloc-like primitives to dynamically allocate heap memory,

and the user can choose the home node for all the cache lines
of the allocated area.

A more general problem is the global synchroniza-
tion implied by invalidation. In general, write operations
are asynchronous, i.e. they are just launched by the pro-
cessor without waiting the termination of their interpreter.
However, synchronous write operations are needed in or-
der to correctly perform thread synchronization. In Sect. 2
we hinted the case of asymmetric synchronization between
threads, where a thread A modifies a shared data structure s
and notifies a thread B. After receiving the notification, B can
use the data structure s by possibly modifying it. For the sake
of correctness, all the write operations performed by A on s
must be visible to B after the notification, i.e. they must be
synchronous (in TSO) or alternatively a memory fence must
be used (in WMO). From Sect. 4.2, we know that the latency
of a synchronous store grows proportionally with respect to
the number of invalidations, i.e. the number of copies. From
this we derive a second requirement:

Requirement 2. The runtime should be designed in such a
way as to minimize the number of current copies of the same
cache line.

This requirement helps but does not solve the problem
of contention raised in Observation 1. Fig. 4 shows that C2C
read and invalidation requests from workers PEs to the emit-
ter PE introduce contention even if each task is shared be-
tween the emitter thread and the assigned worker only. The
number of entities making C2C requests to the emitter L2
cache is proportional to the number of workers, which is an
undesirable property as stated in Observation 2.

To solve this problem a proper architectural mechanism
must be provided at the hardware level. The idea is to intro-
duce the possibility to use a different semantics for so-called
non-local store instructions, i.e. a store that accesses a cache
line x whose home node is distinct from the PE executing the
instruction. This is described by the following definition:

Definition 5.1 (Home-forward semantics). The interpreter
of a non-local store with the home-forward semantics
executes the following sequence of actions:

1. as in any store semantics, the home node is informed
of the store in order to update its LSK. In addition, the
whole cache line modified by the store is transmitted
(forwarded) to the home node. The line is allocated (or
updated if already present) in the L2 cache of the home
node and, possibly, in L1 too;

2. the referred cache line is self invalidated (de-allocated)
from the requestor node caches (both L1 and L2). This
action is performed locally by the requestor node;

3. (optionally) the home node may also be responsible to
update the copy in main memory asynchronously.

This hardware mechanism must be visible at the assem-
bler level through special synchronous store instructions or
rather by a dedicated instruction hfwd addr, which per-
forms the home-forwarding of the cache line of the logical
address addr (e.g., passed through a register).

This technique has several advantages that contribute to
reduce contention on caches. The first is that it allows to
eliminate some invalidation communications between caches
by reducing contention on non-home nodes. Going back to
the example of Fig. 4, let us suppose that the store instruc-
tions performed by the emitter thread on the task #; have the
home-forward semantics. If, once received, task #; is modi-
fied by the worker PE (which is the home node), no invalida-
tion is performed because the cache lines of #; are no more
valid in the local caches of the emitter PE (they have al-
ready been invalidated). It is worth noting that this advan-
tage would be achieved also with only a self-invalidation
mechanism performed by the emitter thread. However, in
that case the successive load instructions performed by the
worker thread would require to transfer the cache lines of #;
from the main memory. This is the reason for point /) in
Definition 5.1: the home-forward semantics generates a C2C
transfer of the cache line from the requestor cache to the L2
home cache, and hopefully into home L1 too depending on
the size of #;. In this way the worker PE already finds the
needed cache lines of the task at least in its L2. Fig. 5 shows
the C2C requests in the case of home-forward write opera-
tions performed by the emitter thread.

home-forward
request

home-forward

s (Eitter)

J
|

. ;
b (WoOTkeY)

Fig. 5: Task scheduling in the farm parallel pattern: C2C requests
in the case of invalidation-based CC with home-forwarding. Each
request has a corresponding reply not shown in the figure.

(WOrker) mm—

The home-forward optimization minimizes contention
(on both the home and requestor node): as we can see the
only servers are the local caches of the workers PEs that re-
ceive C2C write requests. Therefore, the number of entities
making requests to the same cache is minimized according
to Observation 1 and this value is constant and does not de-
pend on the parallelism degree of the computation (Obser-
vation 2). Furthermore, another important advantage is that
when data are “of interest of the thread executed on the home
node itself”, this optimization reduces the base latency of
read operations too. In fact, the thread executed on the home
node PE can directly read the cache lines of the task directly
from its L2 (or better L.1) cache because it is also the owner
of them. In this way the base read latency of those lines in-
cludes only local interactions between the processor and its
L1/L2. As studied in Sect. 4.2, this is the ideal situation, with
a latency of few clock cycles, see Tabs. 1 and 2.

Although simple, the scenario depicted in Figs. 4 and 5
is recurrent in parallel patterns as hinted in Section 2. This

result can be summarized in a last requirement:

Requirement 3. In order to avoid making several cache-to-
cache requests (e.g, read requests, invalidations) to the same
cache, the architecture must provide mechanisms for single
cache line forwarding and self-invalidation.

These principles will be extensively applied in the next
section to the design of an efficient runtime.

6 Run-time Support Implementation

In this section we describe the design of a run-time sup-
port that matches the requirements discussed in the previous
section. Our approach is inherently lock-free, and entirely
based on asymmetric synchronization mechanisms. Further-
more, we will made the assumption that the underlying phys-
ical system is dedicated to host the execution of a single par-
allel program, i.e. each process/thread is mapped exclusively
on a single PE. This assumption, often precondition to effi-
ciently use lock-free mechanisms based on busy waiting, has
justification in mission-critical applications with very strict
high-throughput and low-latency requirements. In the fu-
ture, we plan to study the applicability of the approach to
more general multi-programmed/multi-tasked environments.

6.1 The base mechanism

The base mechanism of the run-time support is the so-
called rdy-ack communication interface, described for the
first time in Ref. [15] and used to synchronize and exchange
messages between threads like in Ref. [38]. The mechanism
provides a point-to-point communication between two part-
ners, sender (S) and receiver (R), with a buffer of one posi-
tion. The idea is depicted in Fig. 6.

Receiver

isend (msg) { receive (data) {

wait until ack is true wait until rdy is true
copy vtg into data
reset rdy

i
i

3 copy msg into vtg

| reset ack

i signal rdy to the receiver
i

i

,,,

Fig. 6: Basic mechanism of the run-time support: rdy-ack commu-
nication interface between two partners.

The pseudocode of the send and receive primitives uses
two boolean events:

e the ready event (rdy) is true when a new message is
present in the vrg variable. It is false otherwise;

e the ack event (ack) is true when the last transmitted
message has been received and copied into a private
variable data by the receiver.

With the signal operation, the corresponding event is set to
true, while the reset one sets the event to false. For the sake

of correctness, the rdy and the ack events are initialized to
false and true respectively.

Any possible implementation of this mechanism imple-
ments the vrg data structure as a shared variable between the
sender and the receiver threads. Different possibilities can
be adopted to implement the two events rdy and ack. A first
solution consists in implementing them as shared boolean
flags. We define a data structure VTG_S as composed of three
fields: two boolean flags for the two events, and the vtg vari-
able as shown in Fig. 7. The figure reports the C-like pseu-
docode, where the waiting of an event is implemented by a
while-loop statement on the corresponding flag. The VTG_S,
as well as all the other data structures of a communication
interface that will be described in the sequel, are properly
padded and aligned in order to avoid false sharing.

El send (vtg s, msg) { E
12 while(vtg s->ack == 0); !
VTIG_S 53 <copy msg into vtg_s->vtg> 1
'4 vtg_s->ack = 0; E
RDY 55 vtg _s->rdy = 1; !
ACK 6} i
receive (vtg_s, data) {
vig while(vtg_s->rdy == 0);
<copy vtg_s->vtg into data>

0;
1;

vtg_s->ack

1
2
3
4 vtg_s->rdy
5
6

Fig. 7: Implementation of the rdy-ack communication interface
through shared boolean flags for the synchronization events.

To prove the correctness, let us consider an abstract
multi-processor architecture M respecting the Sequential
Consistency memory model [34]. The following proposition
holds:

Proposition 6.1 (Rdy-ack correctness). The send and re-
ceive algorithms executed on M implement a lock-free
single-producer single-consumer buffer of one position.

Proof. Tnitially (rdy,ack) = (0,1), i.e. the sender can pro-
ceed by executing the send while the receiver is eventually
waiting on line 2 of the receive. The sender copies msg into
the vzg variable and sets the flags such that (0,1) — (1,0).
Now the receiver can execute the receive primitive. It reads
vtg and copies it into data, and sets the flags such that
(1,0) — (0,1) going back to the initial condition. It is worth
noting that row 3 in the send must be executed after ack is
set to 1 (otherwise a new message can overwrite a previous
and possibly unreceived message), and row 5 after row 3 (the
rdy must be set to 1 after the store of the message in msg is
visible to the receiver). Similarly, row 3 in the receive must
be executed if and only if rdy is equal to 1, and row 5 after
row 3 (saving the message in the private variable before it
can be overwritten by the sender). [J

In the case of an architecture adopting the WMO mem-
ory model, we need to enforce memory ordering of the op-
erations in the send and receive primitives by adding proper
memory fence instructions, as explained in Ref. [15].

Furthermore, to avoid the additional copy from vzg into
data, an alternative code for the receive primitive can be pro-
vided. The only difference with the one in Fig. 7 is that in the
receive algorithm we do not have the copy statement at row 3
and the last statement at row 5. A special set_ack primitive
is provided to set the ack flag to true, and it is used when the
destination thread has terminated to utilize vzg, and it content
can be safely overwritten with a new message.

6.2 Generalizations and optimizations

The base mechanism can be extended to communica-
tions with more than one buffer position. Let k > 1 be the
maximum number of messages that a sender can transmit
without waiting for the first sent message being received.
This communication can be achieved with k instances of
VTG_S used in a round-robin fashion by the sender and the
receiver. To this end, each partner has a private array VIG_V
of pointers to the k VTG_S instances and a corresponding
private integer index initialized to zero. Fig. 8 shows a rep-
resentation of this implementation scheme.

SENDER ...RECEIVER
P | Private
I Shared | Cvie v
} VIG_S[0] VIG_S[k-1] } - =
I RDY RDY |
} ACK ACK I
|
} vig vig |
I
I I

Fig. 8: Generalization of the rdy-ack communication interface with
k > 1 buffer positions.

Each time the sender executes a send primitive, the
VTG_S instance at address VIG_V [index] is used and the
index is incremented by 1 modulo k. Symmetric actions are
performed on the receiver’s side.

An important alternative implementation consists in us-
ing inter-processor communications (e.g., I/O interrupts) for
the notification of rdy/ack events. The goal is to avoid hav-
ing shared boolean flags, i.e. the only shared variables be-
tween the sender and the receiver are the vtg variables in
the VTG_S instances. Therefore, in this solution the VTG_S
structure collapses in the vtg since shared flags do not exist
anymore. In this implementation we must be able to dis-
tinguish the synchronization events, i.e. to identify whether
inter-processor messages correspond to rdy or ack events and
which is the corresponding communication interface and the
target VT G_S instance. To this end, each communication in-
terface in the parallel program has a unique identifier. For
each thread of the application, a private table TB is used to
obtain from the interface identifier the pointers to all the in-
teresting data structures (VTG_V and the VTG_S instances).
Furthermore, two additional data structures are associated
with each communication interface:

e an array EVENT_ACK that contains the boolean ack flags
of each VTG_S instance. All the flags of this data struc-
ture are now private of the sender;

e an array EVENT_RDY that contains the boolean rdy flags
of each VTG_S instance. Symmetrically, this data struc-
ture is private of the receiver.

These two arrays have exactly k flags. Each event (e.g., im-
plemented as an I/O interrupt) is a pure synchronization mes-
sage that conveys the tuple (event,ra_id,vtg-id), where
the first element is the type of the event (rdy or ack), the sec-
ond is the unique identifier of the communication interface,
and the last is the identifier of the VTG_S instance, see Fig. 9.
As we will see in Sect. 6.3, in this solution synchronization
can be performed very efficiently.

....SENDER ... RECEIVER

{ Private { Private

VIG_V VIG_V

vig vig

INTERPROCESSOR
COMMUNICATION
FACILITY ev,

7
ireceive (ra, data) {

] | wait(rdy, ra, ra->index); |
1send (ra, msg) { | <copy ra->vtg_s[ra->index] into data>|
! wait(ack, ra, ra->index); i i
V< i —> ->i >
! co;.:y msg into ra: ‘ftg_s[ra. index] ;<compute phase>
i notify(rdy, ra->ra_id, ra->index++); |

D Iset_ack (ra) { !
notify(ack, ra->ra_id, ra->index++); !

Fig. 9: Implementation of the rdy-ack communication interface
with inter-processor communications.

The pseudocode uses two primitives notify and wait.
The first performs an inter-processor communication of the
tuple (event,ra_id,vtg-id). This is a wrapper to a proper
set of assembler instructions that perform this notification.
Different possibilities can be recognized:

e if the inter-processor communication is performed
through I/O interrupts, the primitive contains proper in-
structions to prepare the interrupt message that will be
transmitted to a local I/O unit in charge of executing the
communication. This is performed by special assembler
instructions or through standard store operations accord-
ing to the memory mapped I/O model;

e alternatively, if some special architectural facilities are
available, the notification can use a mechanism com-
pletely different from the I/O subsystem. As we will
see in Sect. 7, in the Tilera TILEPro64 CMP this can be
achieved by exploiting proper user-accessible on-chip
networks, which provide a very efficient way to ex-
change small messages between cores.

Once received, the inter-processor communication must
be properly processed by a run-time support interrupt han-
dler. The handler inspects the message to determine the iden-
tifiers of the corresponding communication interface and of
the VTG_S instance. The result is that the proper event flag is
set to true in either EVENT_RDY or EVENT_ACK structures
according to the event type.

Slightly more complex is the primitive wait, whose be-
havior is depicted in Fig. 10. This primitive checks the cor-
responding event flag, private of the calling thread. If it is
already true, it resets it and returns. Otherwise, it waits for
an inter-processor communication using a special assembler
instruction (a generic rcv_ip_comm in the figure) that moves
the calling processor into a sort of “wait for interrupt” mode
until an inter-processor communication is received. During
this waiting phase, other event notifications can be received,
and they must be properly buffered by writing the corre-
sponding flag in the correct data structure associated to the
target communication interface.

31 wait(evt, ra, idx) {
'2 let evt={RDY,ACK} be EV

|
i
!

13 if(ra->EVENT EV[idx] == 1) !

! ra->EVENT EV[idx] = 0; '

'5 else {

1 while(rev_ip comm(ev_rcv, ra id rcv, idx rcv)) do

37 if !(evt==ev_rcv & ra->ra id==ra id rcv & idx==idx rcv)

18 if(ev_rcv==RDY) !

39 TB[ra_id rcv]->EVENT RDY[idx rcv] = 1; '

110 else TB[ra id rcv]->EVENT ACK[idx_rcv] = 1; |
1
|
|

Fig. 10: Pseudocode of the wait synchronization primitive using
inter-processor communication.

In the next part we will analyze the impact of this mech-
anism in terms of CC interactions.

6.3 Implications on CC

The first design choice is to properly choose the home
node of all the data structures of a rdy-ack communication
interface. An interface with home node sender has always a
non-home node receiver. The vice-versa is not mandatory, al-
though having the home node in one of the two communica-
tion partners allows the design principles exposed in Sect. 5.1
to be applied in order to reduce contention between caches.

Non-home node runtime. Let us start with the case of rdy
and ack events implemented as shared boolean flags (Fig. 8).
Consider the phase in which a non-home node sender (re-
ceiver) reads (via C2C read requests the first time) the first
cache line of the current VTG_S, and suppose it finds ack
(rdy) equal to 0. If the sender (receiver) maintains this line
in its local caches, the in-cache retry test pattern (while loop
in Fig. 7) is performed without generating additional traffic
between caches. Although useful for this reason, this scheme
has a fundamental drawback: it increases contention in non-
home local caches due to subsequent invalidations transmit-
ted by the home node receiver (sender) when the event will
be set to true. In the case in which the PE is the non-home
node sender (receiver) of other communication interfaces,
this increases contention because it receives many invalida-
tions (e.g., one per worker PE in the farm case).

A solution to this problem is the following: the sender
(receiver) self invalidates from its L1/L2 caches the cache
line of the shared flag and the request is repeated (with C2C
reading) until the event is true. However, this technique in-
creases the frequency of the requests to the home node cache.

This can be alleviated by introducing a periodic retry in the
while loop, although its configuration requires proper tuning.

This issue can be solved efficiently by relying on inter-
processor communications. The presence of an event is no-
tified asynchronously by the partner using an inter-processor
communication. The most likely situation is that the event
has already been registered in the private data structures
EVENT_RDY and EVENT_ACK. Otherwise, the sender (re-
ceiver) PE waits for the inter-processor communication with-
out generating further cache-to-cache requests.

The other actions taken by the run-time support are the
following:

e (I) in the send performed by a non-home node PE, the
message is copied into the vzg. Each cache line must
be home-forwarded to the L2 (potentially also L1) of
the home node receiver PE. According to Definition 5.1,
this causes the self-invalidation from the sender caches;

e (2) the write operations on the vtg performed by the
non-home node sender PE must avoid loading those
lines before modifying them. In fact, such lines are al-
ways written and never read by the sender. Therefore,
a proper store instruction with no-allocate-on-write se-
mantics must be provided by the architecture and used;

e (3) in the version with shared flags the cache line of the
rdy (ack) once modified (rows 4 and 5 in Fig. 7) must be
home-forwarded to the home node receiver (sender) PE;

e (4) once the non-home node receiver PE has terminated
to use the vrg cache lines, those lines must be self in-
validated from its L1/L2 caches in order to avoid further
invalidations by the home node sender PE.

Home node runtime. In the version with shared flags, the
read operations on the ack (rdy) shared flag by the home node
sender (receiver) are performed locally on the L1/L2 cache.
When the flag is modified by the receiver (sender) PE, that
cache line is home-forwarded to the sender (receiver) private
caches. Therefore, the write operations to reset the flag do
not cause invalidations to the non-home node PE receiver
(sender) owing to home-forwarding. Furthermore, in the
case of the home node sender PE, the store instructions on
the message are performed locally without generating inval-
idations. Similarly, the home node receiver PE can directly
use vtg whose cache lines have been directly forwarded into
its L2 and, hopefully, also in L1.

Example. Let us exemplify the behavior of the run-time
support in the case of a farm parallel program with an emitter
(E), a set of workers (Ws) and a collector (C). Let L be the
number of cache lines of a message transmitted from E to
the workers and from the workers to C. Let 6 be the size of
the L2 cache line, and suppose each worker PE the home
node of the data structures associated with its input/output
rdy-ack interfaces from E and to C.

Fig. 11a depicts the requests between L2 caches. As a
first case we suppose the basic invalidation semantics, i.e.
the run-time support implementation does not exploit home-
forward stores and self-invalidations. Events rdy and ack are
implemented as shared boolean flags stored in a single cache

1 C2C reads
and
1+ ;store notifications

->

(home)

Worker PE

—_—
1+ £ invalidations
g and
1 C2C read request

L 7/ k \
(non-home) + - C2C reads I (non-home)
(and in i 1+ - C2C reads and
Emitter PE / 1 store notification |Collect. PE
el
L e
I " 1+~ C2C reads and N
L+ & C2C reads 1 store notification

(and invalidations)

1 C2C reads
and
1+ ;store notifications

\ (home) K

Worker PE

/

1+ L invalidations
a and
1C2C reads

~—

_~

(home)
Worker PE
—— B2l |
L home-forwarding '.-...-.i-j.-...-.' L C2C read requests
o writes a
(non-home) \(non-home)
Emitter PE Collect. PE
(home) /
L home-forwarding Worker PE L cac read requests
o writes g

—p

—

(a) Without home-forwarding and self-invalidation.

(b) With home-forwarding and self-invalidation.

Fig. 11: Example of interactions between caches in the case of a farm pattern with an emitter (E), a set of workers (Ws) and a collector

(C) thread.

line. The figure shows the number of requests produced per
service time (i.e. per task). Each request has a corresponding
reply not shown in the figure.

Intuitively, the L2 caches of E and C are heavily stressed.
They receives invalidation and C2C read requests from the
workers L2 caches. The number of clients that make requests
with those L2 caches is equal to the parallelism degree of the
program, and this can be a source of high contention. In this
scenario the under-load latency can result much more greater
than the base latency of read/write operations, and the scala-
bility of the parallel program may be critically hampered.

Fig. 11b shows the same program with the run-time sup-
port exploiting the home-forward and self-invalidation tech-
nique with inter-processor communications. Here, the L2
caches of E and C are no longer servers, i.e. they produce
home-forward write and C2C read requests to the workers
L2 caches which, in turn, do not generate invalidations nor
C2C read requests to them. Local caches are more loosely-
coupled and the number of clients making requests with the
same cache is limited (p = 3 in this example) and indepen-
dent from the parallelism degree.

The counterpart is that the notification of the rdy and ack
events occurs through inter-processor communications (not
shown in the figure). It should be noted that such interac-
tions are asynchronous, thus not according to a request-reply
behavior as for the synchronous cache-to-cache interactions
of CC. This time the critical parameter is not the number of
clients accessing the same server, but the server service time,
i.e. the interrupt handler service time (or the equivalent com-
putation in the wait operation). Provided that it is smaller
than the inter-arrival time of notifications, this mechanism
does not introduce significant performance degradations. In
conclusion, asynchronous notifications do not affect perfor-
mance on condition that the inter-processor communication
facility has low overhead, which is technologically feasible
as it will be shown in the next section.

7 Experimental Evaluation

Our run-time support can be implemented on archi-
tectures on which the home-forwarding mechanism (see
Def. 5.1) is available or it can be emulated. On Intel mul-
ticores this mechanism cannot be emulated, because a self-
invalidation instruction is not directly provided and it is not
possible for a core to allocate and write some cache lines
into the remote caches of another core. Instead such features
can be accurately emulated on the Tilera TilePro64 which
represents a concrete architecture where the benefits of our
runtime can be verified and assessed for the first time.

The TILEPro64 is a CMP specialized in the fast execu-
tion of network workload. Fig. 12 gives a general overview
of the CMP. It is equipped with 64 identical processing cores
(called tiles) interconnected by an on-chip network named
iMesh. Each tile is composed of: a) a 3-way VLIW in-order
processor running at 866MHz with a single thread context, b)
a private cache subsystem composed of 16KB L1i, 8KB L1d
and 64KB L2 (inclusive), L2 cache line size of 64 bytes, and
¢) a switch for the interconnection with the iMesh network.
Four DDR2 memory controllers are placed at the edges of the
chip. The TILEPro64 is mounted on a PCI express card of a
host machine and it is equipped with on-chip PCle and net-
work controllers. The architecture supports a Weak Memory
Ordering consistency model.

The Tilera CMP is often used as a co-processor for ac-
celerating time-critical kernels, thus the dedicated environ-
ment assumption made at the beginning of Sect. 6 is justified.
Furthermore, though not able to reach the peak performance
of off-the-shelf multicores produced by leading vendors, the
TILEPro64 has very peculiar features that make it a valuable
candidate for prototyping our methodology. More specifi-
cally:

o TILEPro64 allows the programmer to dynamically al-
locate memory (e.g., using malloc-equivalent calls like

DDR2 controller DDR2 controller

pe (ite)[||| “*

E
DDR2 controller DDR2 controller

Fig. 12: Tilera TILEPro64 CMP: interconnection networks and
structure of a generic PE (also called tile).

tmc_alloc_map, tmc_alloc_set_home) by explicitly
choosing the home node PE (Requirement 1) at the gran-
ularity of virtual memory pages;

e the interaction between a requestor PE and the home
node has the write-through semantics, i.e. the data word
written by a store instruction is forwarded to the home
node PE which, if not present, allocates the correspond-
ing cache line in its L.2;

e one of the interesting facility of this CMP is the User
Dynamic Network (UDN), an on-chip network for the
transfer of small messages (up to 128 32-bit words).
Each PE has five UDN hardware queues accessed as reg-
isters through special assembler instructions. PEs can
transmit messages composed of one header word, a tag
word and the payload.

We exploit such architectural features in order to provide
an implementation of the rdy-ack run-time support with an
emulation of the home-forward mechanism (Requirement 3):

e as said before, each word written by a non-home node
PE is forwarded to the home node that maintains an up-
dated copy in its L2. This, in conjunction with a sub-
sequent self-invalidation (inv instruction) and a mem-
ory fence allows us to emulate synchronous writes with
home-forward semantics. It should be noted that this
mechanism is less flexible, because every cache line
homed at a remote PE is forwarded, while in general
we could desire a finer control;

e store instructions on write-only data structures (e.g., the
vtg by the sender PE) can be performed using the wh64
instruction (write hint), which hints that the program in-
tends to write every byte of the specified cache line be-
fore reading it. Using it, the processor avoids fetching
the line from main memory or another cache;

e for the sake of memory ordering, because of the WMO
consistency model adopted by Tilera, some fence in-
structions are added in proper points of the rdy-ack run-
time. See Ref. [15] for further details.

Finally, the architecture allows us to implement inter-
processor communications for notifying the rdy and the ack
events. For that, we exploit the UDN network facility. The

wait and notify primitives used in Sect. 6.2 are implemented
as wrapper to pop-like/push-like assembler instructions on
UDN hardware queues of each PEs. UDN messages have a
tag field. Each time a new message is received, the tag is
inspected and the message is de-multiplexed into the corre-
sponding queue. In the case of a tag-miss, the message is
enqueued into the catch-all queue and a configurable inter-
rupt is raised [33]. We use this mechanism to implement the
optimized rdy-ack communication interface.

7.1 Evaluation of the base mechanism

In this section we will evaluate the rdy-ack mechanism
on the TILEPro64 CMP. We measure the communication la-
tency, i.e. the time from the execution of the send primitive to
when the destination thread receives the message. To acquire
such measurements, we use the same benchmark setting de-
scribed in Sect. 4.2.

The scheme of the benchmark is a basic ping-pong pro-
gram with two threads A and B mapped onto distinct PEs. A
transmits a minimal (one-word) message to B and waits for a
reply from it. B receives the message and sends back a reply
to A. The benchmark consists of 10° iterations. We measure
the completion time and we divide it by 2- 103 in order to ap-
proximate the communication latency. The experiments have
been compiled with the t i1e—gcc cross compiler with the
—-03 optimization flag enabled. The test has been repeated
several times by changing the mapping of threads onto the
PEs, in order to study the latency with different distances be-
tween the two communication partners.

The results are shown in Fig. 13 for three implementa-
tions: i) RA is the implementation with the rdy/ack events
implemented as shared boolean flags, basic invalidation se-
mantics with default home node selection (hash-based); ii)
RA_HF is the implementation with the emulation of home
forwarding (the home node of every rdy-ack interface is
the destination PE); iii) RA_UDN is the implementation with
inter-processor communications and home forwarding.

Fig. 13: Communication latency of the rdy-ack communication
interface with different distances between communication partners.

The experiments show that RA-HF outperforms the ba-
sic version RA. The average improvement is of 50 + 65%.
With longer distance between the two threads, we measure

a higher latency in the RA-HF version, while this is not true
for RA. The reason is that in the RA version the home nodes
of the rdy-ack interface cache lines are chosen by the OS.
Therefore, the home PEs can be any third PE with respect to
the ones of A and B. The version with UDN outperforms both
the variants based on shared flags. On average, the commu-
nication latency achieved with RA-UDN is one third of the
latency with RA-HF and it slightly increases with the dis-
tance. This confirms that the UDN network facility is highly
optimized for the transmission of short messages (few data
words), as needed by the rdy-ack mechanism. Tab. 5 pro-
vides the numerical results and further information about the
standard deviation and peak measurements.

Comm. Latency
Implementation Hops Avg Std dev Max (T)
T usec

1 42.13 0.0486 0.091 42.39
RA_UDN 8 49.63 0.0573 0.087 49.88

14 55.64 0.0642 0.080 55.84

1 363.55 | 0.4198 | 0.2039 363.83
RA_HF 8 337.01 0.3892 | 0.1621 337.14

14 331.06 | 0.3823 | 0.1769 331.22

1 124.27 | 0.1435 | 0.0848 124.38
RA 8 150.31 0.1736 | 0.1121 150.42

14 168.33 | 0.1934 | 0.1081 168.42

Table 5: Results of the communication latency of the rdy-ack com-
munication interface.

7.2 Evaluation on parallel programs

The goal of this final section is to provide a first experi-
mental evaluation of our methodology on parallel programs.
In order to emphasize the possible outcome of our optimiza-
tions, we target fine-grained computations.

Fine-grained parallelism is characterized by a low
computation-to-communication ratio, i.e. coopera-
tion/synchronization primitives between the execution
of different tasks are very frequent, owing to the low running
times of tasks. A parallel program that executes in parallel
tasks with a small sequential computation time is considered
fine-grained in our terminology. As a general principle, the
more fine-grained the parallel program the more efficient the
runtime mechanisms in order to achieve good speedup.

We show two parallel programs operating on large in-
put streams of tasks received from the network. In order
to take advantage of our approach, both the benchmarks are
characterized by a small computational grain per task whose
computation operates on a relatively small working set. We
will show the potential of our approach in reducing the ser-
vice time per tasks (also in cases of very fine-grained func-
tions lasting from tens of microseconds to few milliseconds)
which reflects in a substantially lower completion time to
process all the tasks belonging to the stream (reduction of
several minutes/seconds). In term of parallelism, the first
benchmark is based on the farm parallel pattern while the

second example is parallelized as a map. Further studies of
other patterns (e.g., stencils, reduce, parallel prefix, data-flow
parallelism) will be analyzed in our future works.

Farm benchmark. The program consists in a farm pattern
composed of an emitter, a set of workers and a collector as
described in the previous sections. The emitter produces a
stream of 10° matrices of size M. The basic elements of the
matrices are integers each one represented by 4 bytes. Each
matrix corresponds to a task, transmitted by the emitter (E) to
a worker (W) selected according to an on-demand scheduling
policy. Each worker operates on each input tasks indepen-
dently and produces a result data structure which is trans-
mitted and gathered by the collector (C). On each received
task, a worker executes a matrix-convolution algorithm, typ-
ical of difference methods and image filters. The new value
of each matrix element is calculated by applying a mathe-
matical transformation on the surrounding elements. In the
farm approach each matrix represents an independent task to
be computed in parallel, i.e. workers compute different ma-
trices in parallel. Alternatively, the same problem could be
parallelized by exploiting parallelism within the same ma-
trix, i.e. all the workers compute the same matrix working
in parallel on a subset of its rows. In this case a task is a
partition of the matrix. In this part we analyze the case of the
farm parallelization, while at the end of this section a data
parallel example will be described and studied in detail.

Since we operate on a stream of tasks, we are interested
in the service time measurement, i.e. the average time inter-
val between the beginning of the executions on two consecu-
tive input tasks (matrices). We measure the relative speedup
as the ratio of the average computation time of the sequen-
tial algorithm on each input task over the service time of the
parallel implementation. The results of this first experiment
show that while for large matrices (more than 1,000 rows)
this program achieves near-ideal speedup up to the maximum
number of PEs of the architecture, the speedup is relatively
low with very small matrices of few tens of rows. This is the
scenario that we try to optimize with our run-time support
and optimizations. Fig. 14 shows the results of the experi-
ments in which we report the speedup achieved with a dif-
ferent number of workers. The maximum is 56 because two
PEs are used by the emitter and the collector threads and the
others are reserved to the operating system. In the experi-
ments we pin each thread onto a PE in an exclusive fashion
and we repeated each experiment 50 times. The standard
deviation of the measurements is low (less than 10% of the
average). Therefore, we omit to report the error bars for the
sake of representation clarity. Since standard parallel pro-
gramming frameworks like OpenMP and MPI are not avail-
able on Tilera, we compare the execution of the application
with the following runtimes:

e the first one is our runtime based on rdy-ack interfaces
with inter-processor communications over the UDN net-
work. For each worker, the data structures of the E-W
and W-C interfaces are homed in the PE executing the
worker thread. As studied in Sect. 6.3, this home selec-
tion strategy in combination with home-forwarding and

Speedup M=32x32 DataType=INT

Speedup M=64x64 DataType=INT

Speedup M=128x128 DataType=INT

16 T I 40— T T I 40 T T
RA-UDN —o— RA-UDN —o— RA-UDN —o—
RA-SM —— RA-SM —— RA-SM ——
FF-QUEUE —&— FF-QUEUE —&— FF-QUEUE —a—
12 30 30
o o o
3 3 3
2 8 2 20 2 20
Q. o o
(%) (7] %)
4 10 10
L S S S S S O S Y oM L i [0 A S S T S O Y
1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56
Number of workers Number of workers Number of workers
(a) M =32 x 32 DataType=INT. (b) M = 64 x 64 DataType=INT. (c) M = 128 x 128 DataType=INT.
Speedup M=32x32 DataType=FLOAT Speedup M=64x64 DataType=FLOAT Speedup M=128x128 DataType=FLOAT
OrrT—TTT T T T T T T T T T T T T 2T T T T T T T T T T T T T T 2T T T T T T T T T T T T T T
RA-UDN —o— RA-UDN —&— RA-UDN —&—
RA-SM —— RA-SM —— RA-SM ——
FF-QUEUE —a— FF-QUEUE —a&— FF-QUEUE —a&—
30 | 39 | 39 |
o o o
3 3 3
8 20 g 26 g 26
Q. Q. j=R
(%) (%) »n
10 13 13
T T N T T Y T T S S B A S T T T S N N T T S Y N S S A S T T T S N N T T Y Y N S S B

0
1 4 7 101316192225283134374043464952 56
Number of workers

(d) M = 32 x 32 DataType=FLOAT.

0
1 4 7101316192225283134374043464952 56
Number of workers

(e) M = 64 x 64 DataType=FLOAT.

0
1 4 7101316192225283134374043464952 56
Number of workers

(f) M = 128 x 128 DataType=FLOAT.

Fig. 14: Speedup of the farm benchmark with different run-time supports and optimizations on the Tilera TILEPro64 CMP.

self-invalidation is capable of reducing the number of
clients making requests to the same caches;

o the second runtime is the one at the previous point ex-
cept that we use shared flags for inter-thread synchro-
nization (rdy and ack events);

o the third is a generic runtime that exploits the lock-free
shared queues [39] used by the low-level mechanisms
of the FastFlow parallel programming framework [5]3.
In this model threads cooperate by exchanging memory
pointers to shared data structures through push-like and
pop-like operations on shared queues. In this runtime
the homing of the data structures is left to the OS. We
choose this runtime because, as stated by the authors [5],
it targets fine-grained parallel computations.

Fig. 14 indicates these implementations with the names
RA-UDN, RA-HF and FF-QUEUE respectively. We perform
experiments with different matrix sizes (M = 32 x 32,64 x
64,128 x 128) and we consider two cases in which the ele-
ments are integers and single-precision floating-point num-
bers. The TILEPro64 CMP does not have floating-point
units, and decimal operations are emulated by software.
Thus, by using floats we can study the effect of coarser-
grained computation with the same number of cache misses
(floats require the same number of bytes of integers).

In general, the finer the computation the greater the ben-
efit of our approach. In the case of M = 32 x 32 we achieve
an improvement of 65% in speedup with RA-UDN compared

3http://mc-fastflow.sourceforge.net/

with FF-QUEUE, although the speedup is far from being
ideal due to the very fine-grained nature of the computation
with very small matrix sizes. The use of inter-processor com-
munications through the UDN network makes it possible to
greatly improve performance. The gain with respect to us-
ing shared flags is of 36%. In fact, the solution with shared
flags for the rdy and ack events requires additional interac-
tions among caches. As stated in Sect. 6.2, the non-home
node PE must repeatedly read and self-invalidate the cache
line of the flag by generating additional network traffic on
the chip. This synchronization is instead efficiently imple-
mented by the UDN, and requires just one message when the
notification must be transmitted from the home node.

With larger matrices the difference between RA-UDN
and RA-SM becomes smaller (13% with M = 64 x 64 and
11% with M = 128 x 128). In fact, with larger matrices the
impact of the cache-to-cache interactions for the shared flags
becomes less important while the advantage in the v¢g trans-
mission is dominant with respect to FF-QUEUE. In our run-
time a matrix is directly home-forwarded into the L2 cache of
the corresponding worker PE, which can start using it with-
out paying additional cache misses (except for L1-L2 trans-
fers that are local to the PE). This optimization cannot be
exploited in the FF-QUEUE runtime, which provides a max-
imum speedup 35% lower than RA-UDN for M = 64 x 64
(24% with M = 128 x 128). The problem here is that the
destination worker of a task is defined late at runtime (on-
demand scheduling), and the homing of the cache lines of
the tasks is left to the operating system.

In the case of floats instead of integers, we observe that
the difference between runtimes becomes small as soon as
matrices of size M = 64 x 64 are used. Therefore, we can
conclude that our runtime is mainly effective with very fine-
grained computations, which is the final goal of our work.
Tab. 6 summarizes the best service time and speedup results
achieved in the different cases by the sequential version and
by the parallel implementations with the various runtimes.

32 %32 64 x 64 128 x 128
Ts(usec) | S Ts(usec) | S Ts(usec) | S
Seq. (int) 526 1 218 1 848 1
RA —UDN (int) 3.76 13.98| 6.99 31.16| 25.53 33.21
RA — SM (int) 5.65 9.31 8.12 26.85| 28.16 29.9
FF — QUEUE (int) 6.68 7.88 | 9.42 23.15| 34.06 249
Seq. (float) 187 1 748 1 3035 1
RA —UDN (float) 5.21 35.86| 16.69 46.98| 62.58 48.50
RA — SM (float) 6.70 27.89| 17.53 44.72| 65.34 46.45
FF — QUEUE (float) 9.26 20.17| 20.69 37.89| 78.42 38.7

Table 6: Summary of results of the farm benchmark: best service
time (7s) and speedup (5) results for each configuration.

Finally, Fig. 15 shows the estimated number of CC
requests exchanged between L2 caches during the whole
execution of the benchmark. The results show that the
RA-UDN version significantly reduces the number of re-
quests. On average the reduction is of 57%. No invali-
dation message is transmitted in the RA-UDN version ow-
ing to home-forwarding synchronous writes to the home
node that also self-invalidate the cache lines from the non-
home node caches. In addition, the contention parameter
is smaller: in FF-QUEUE, which is a generic run-time sup-
port, all the workers PEs make CC requests to the L2 caches
of the emitter and collector PEs (see Fig. 4), while in the
RA-UDN/RA-SM versions workers PEs receive C2C requests
from the emitter and collector PEs only.

Number of CC requests

c2C-Reads !]
5e+08 | Store Notif. =Z==x=3
Invalid.
HF-Writes m—
@ 4e+08
[
()
=)
§ se+08 |
%)
18]
c 2e+08 -
z
“l %
0 P e

FF-QRA-UDN
32x32

FF-QRA-UDN
64x64

FF-QRA-UDN
128x128

Fig. 15: CC requests exchanged between L2 caches: comparison
between FF-QUEUE and RA-UDN with various matrix sizes.

Map benchmark. This benchmark consists in a linear alge-
bra computation (generalized matrix-vector product) applied
to a stream of 10° matrices of size M (one order of magni-
tude longer than the previous experiment). For each matrix

A, the computation produces a vector ¢ by applying the op-
eration ¢ = o Ax+ By, where x and y are constant vectors of
size /M and o and P are constants. The program is a map
parallel pattern where each worker (W) operates on a partition
of the current input matrix (i.e. a task is a set of contiguous
rows) and produces a set of entries of the array ¢. To work
independently, the workers must share the vectors x and y.

In order to avoid being a bottleneck, the scatter distribu-
tion of the input matrices is performed according to a binary
tree topology mapped onto the workers according to a depth-
first strategy. A S thread (root of the three) divides each
matrix in two partitions and transmits them to two workers.
Each non-leaf worker divides the received partition in two
parts and transmits them to other two workers and so forth.
Each worker applies the computation on its partition of A
independently, and produces a corresponding number of en-
tries of the vector ¢, which are transmitted to a gather thread
G that collects them and builds the final result vector. As for
the farm, the rdy-ack communication interfaces S-W and W-G
are homed at the worker PE. Furthermore, workers commu-
nicate to perform the tree-based scatter distribution. Each
communication interface between W;-W; is homed at the des-
tination worker PE. Since each node of the tree has a unique
parent, this strategy minimizes the number of non-home PEs
accessing to the same home node PE cache.

Also in this case we study the speedup by varying the
size of the matrix M = 56 x 56,168 x 168,224 x 224 and
the data type. We choose these values in order to have the
same number of rows per worker with the maximum paral-
lelism degree (1, 2 and 3 rows with 56 workers). The results
are shown in Fig 16. The sequential time of the program is
90 usec, 840 usec and 1500 usec with the three matrix sizes
respectively and integer data type. For floats the grain in-
creases of 3.60 times with respect to using integers.

Our approach achieves the greatest benefits with very
fine-grained computations and large parallelism degrees.
With M = 56 x 56 RA-UDN is able to increase speedup of
41% and 64% than RA-SM and FF-QUEUE respectively.
This case is remarkable: although the partition of each
worker consists in one row of the matrix A with 56 workers,
the computation is still able to achieve a decent speedup of
19.21 with RA-UDN. The distance is still important but lower
if we use floats instead of integers. With integers the dif-
ference between runtimes remains also with the other sizes,
though smaller. A near-ideal speedup is achieved in the case
of floats and M = 168 x 168,224 x 224, and the difference
is negligible with M = 224 x 224. Finally, in terms of CC
requests exchanged, we measured a 48% reduction with the
RA-UDN runtime with respect to FF—QUEUE. The reduction
is lower than in the farm benchmark, because here the com-
munication pattern is more complex as the worker caches
communicate with each other in order to perform the tree-
based scatter distribution.

Tab.7 summarizes the best service time and speedup re-
sults obtained in this benchmark.

Speedup M=56x56 DataType=INT

Speedup M=168x168 DataType=INT

Speedup M=224x224 DataType=INT

24 T T T T T 40 T T T T T T T T
RA-UDN —o— RA-UDN —&—
RA-SM RA-SM
FF-QUEUE —A— FF-QUEUE —&—
18 B 30 -
Q. o
3 3
812t {1 820
Q. o
4]]
6 i 10
I T S T Y T Y Y S R oM oM
1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56
Number of workers Number of workers Number of workers
(a) M = 56 x 26 DataType=INT. (b) M = 168 x 168 DataType=INT. (c) M =224 x 224 DataType=INT.
Speedup M=56x56 DataType=FLOAT Speedup M=168x168 DataType=FLOAT Speedup M=224x224 DataType=FLOAT
56 T T T T T T T T T T T T T T 6 T T T T T T T T T T T T T T T T 56 T T T T T T T T T T T T T T
RA-UDN —é— RA-UDN —é— A RA-UDN —&—
RA-SM RA-SM RA-SM
FF-QUEUE —a— FF-QUEUE —a— FF-QUEUE —aA—
42 - 42 - 8 42 F 4
o o o
3 3 3
g28r 1 82871 { B8t i
Q. Q. j=R
0 2] 0
14 Y 14} 1 1t i
Nl A A I R AR A A Y A I I A A A A A A Py ol S 0 0 N 0 0 A A A
1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56 1 4 7101316192225283134374043464952 56
Number of workers Number of workers Number of workers
(d) M = 56 x 56 DataType=FLOAT. (e) M = 168 x 168 DataType=FLOAT. (f) M = 224 x 224 DataType=FLOAT.
Fig. 16: Speedup of the map benchmark with different run-time supports and optimizations on the Tilera TILEPro64 CMP.
56 x 56 168 x 168 224 x 224 scheme between processes/threads following a producer-
Ts(psec) | S Ts(psec) | S Ts(psec) | S consumer paradigm that can be implemented according to
Seq. (int) 94.1 1 843 1 1502 1 asymmetric synchronization mechanisms. We analyzed the
RA — UDN (int) 4.95 19.01| 24.23 34.79| 4231 3545| impact of CC in modern CMPs: our benchmarks confirmed
RA — SM (int) 8.50 11.06| 27.06 31.15| 45.33 33.09| that the base latency of read/write operations is signifi-
FF — QUEUE (int) 14.00 6.72 | 34.05 24.76| 51.4 29.18| cantly affected by CC. Then, we identified the goals that our
Seq. (float) 343 1 3093 1 5502 1 methodology. The first is to properly designing the run-time
RA — UDN (float) 8.39 40.86| 58.70 52.69| 101 5398/ support in such a way as to minimize the base latency of co-
RA — SM (float) 11.56 29.67| 59.90 51.63| 102.8 5351| operation mechanisms. Furthermore, we analyzed the prob-
FF — QUEUE (float) | 20.21 1697 62.27 49.97| 101.9 5398 lem of contention which, especially in fine-grained computa-

Table 7: Summary of results of the map benchmark: best service
time (7s) and speedup (5) results for each configuration.

8 Concluding Remarks and Future Work

This paper proposes a novel approach for enabling scal-
able fine-grained parallelism on next-generation CMPs. The
tendency of recent architectures is to have ever more cores in-
tegrated into the same chip, properly interconnected by com-
plex on-chip network infrastructures and cache hierarchies.
To achieve good scalability even with very fine-grained par-
allel computations, all the possible sources of overhead in the
architecture must be taken into account in the design of a run-
time support for parallel programs. Notably, CC is known to
be a critical part of modern CMPs, whose overhead may be
a limiting factor to achieve linear scalability [18].

Our approach targets structured parallel programs [12,
13]. These patterns are characterized by a precise interaction

tions, affects caches more than memories. Caches are heavily
involved in request/reply interactions and they may became
highly congested in highly parallel programs that frequently
exchange/invalidate cache lines. To this end, we defined a
low-level architectural mechanism to deal with contention
and latency reduction in producer-consumer schemes: syn-
chronous stores with home-forward semantics.

This architectural mechanism allows us to design a very
efficient runtime that minimizes contention among caches
and the base latency in the case of structured parallel pro-
grams. We exemplified our methodology on the TILEPro64
CMP, which is equipped with non-conventional hardware fa-
cilities that make it possible an emulation of our ideas. The
results confirmed our expectations: our run-time support and
optimizations make it possible to achieve good speedup even
in the case of very fine-grained parallel computations.

In the future our work could be extended in several re-
search directions. First of all, other parallel patterns can be
evaluated on the TILEPro64, like stencils and reduce. Sec-

ond, the approach is designed to be general and not only
tailored to the Tilera CMPs. Unfortunately, some of the
mechanisms that we need are not available on commodity
CMPs produced by the major vendors. Therefore, we plan
to provide a validation of our approach using proper archi-
tecture simulation tools by carefully understanding the po-
tential pitfalls of using such tools to handle mechanisms not
available on commodity CMPs. Third, a future interesting
point is to evaluate the applicability of our approach to multi-
programmed environments, not studied in this work. Finally,
the idea of home-forwarding writes can be adapted to the
case of multi-CMPs architectures too, featuring a hierarchi-
cal CC subsystem and shared levels of caches. This case,
introduced at the end of Sect. 4.1, has not been studied in
this work and will be analyzed in the future.

Acknowledgements

We would like to thank Dr. Daniele Buono (PhD) and Dr.
Tiziano De Matteis (PhD) for their collaboration with useful and
thoughtful discussions during the preparation of this work.

References

[1] Kurian, G., Miller, J. E., Psota, J., Eastep, J., Liu, J.,
Michel, J., Kimerling, L. C., and Agarwal, A., 2010.
“Atac: A 1000-core cache-coherent processor with on-
chip optical network”. In Proceedings of the 19th In-
ternational Conference on Parallel Architectures and
Compilation Techniques, PACT 10, ACM, pp. 477-
488.
Shacham, A., Bergman, K., and Carloni, L., 2008.
“Photonic networks-on-chip for future generations of
chip multiprocessors”. Computers, IEEE Transactions
on, 57(9), Sept, pp. 1246-1260.
Martin, M. M. K., Hill, M. D., and Sorin, D. J., 2012.
“Why on-chip cache coherence is here to stay”. Com-
mun. ACM, 55(7), July, pp. 78-89.
Kumar, S., Hughes, C. J., and Nguyen, A., 2007. “Car-
bon: Architectural support for fine-grained parallelism
on chip multiprocessors”. SIGARCH Comput. Archit.
News, 35(2), June, pp. 162-173.
Danelutto, M., and Torquati, M., 2015. “Structured par-
allel programming with “core” fastflow”. In Central
European Functional Programming School, V. Zsok,
7. Horvath, and L. Csato, eds., Vol. 8606 of LNCS.
Springer.
Faxen, K. F,, 2010. “Efficient work stealing for fine
grained parallelism”. In 2010 39th International Con-
ference on Parallel Processing, pp. 313-322.
Mencagli, G., and Vanneschi, M., 2011. “Qos-control
of structured parallel computations: A predictive con-
trol approach”. In 2011 IEEE Third International Con-
ference on Cloud Computing Technology and Science,
pp- 296-303.
Bertolli, C., Mencagli, G., and Vanneschi, M., 2010.
“A cost model for autonomic reconfigurations in high-
performance pervasive applications”. In Proceedings

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

of the 4th ACM International Workshop on Context-
Awareness for Self-Managing Systems, CASEMANS
10, ACM, pp. 3:20-3:29.

Mencagli, G., Vanneschi, M., and Vespa, E., 2014. “A
cooperative predictive control approach to improve the
reconfiguration stability of adaptive distributed parallel
applications”. ACM Trans. Auton. Adapt. Syst., 9(1),
Mar., pp. 2:1-2:27.

Hoffmann, H., Wentzlaff, D., and Agarwal, A., 2010.
“Remote store programming: A memory model for em-
bedded multicore”. In Proceedings of the 5th Inter-
national Conference on High Performance Embedded
Architectures and Compilers, HIPEAC’10, Springer-
Verlag, pp. 3-17.

Kayi, A., Serres, O., and El-Ghazawi, T., 2015.
“Adaptive cache coherence mechanisms with producer-
consumer sharing optimization for chip multiproces-
sors”. Computers, IEEE Transactions on, 64(2), Feb,
pp- 316-328.

McCool, M., Reinders, J., and Robison, A., 2012.
Structured Parallel Programming: Patterns for Effi-
cient Computation, 1st ed. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

Gonzalez-Vélez, H., and Leyton, M., 2010. “A survey
of algorithmic skeleton frameworks: High-level struc-
tured parallel programming enablers”. Softw. Pract. Ex-
per., 40(12), Nov., pp. 1135-1160.

Mattson, T., Sanders, B., and Massingill, B., 2004.
Patterns for Parallel Programming, first ed. Addison-
Wesley Professional.

Buono, D., and Mencagli, G., 2014. “Run-time mech-
anisms for fine-grained parallelism on network pro-
cessors: The tilepro64 experience”. In High Perfor-
mance Computing Simulation (HPCS), 2014 Interna-
tional Conference on, pp. 55-64.

Tilera Corporation, 2011. uGl101 -
Tile Processor User Architecture = Manual.
http://http://www.tilera.com/scm/docs/UG101-User-
Architecture-Reference.pdf.

De Matteis, T., Luporini, F., Mencagli, G., and Van-
neschi, M., 2013. “Evaluation of architectural supports
for fine-grained synchronization mechanisms”. In Pro-
ceedings of the 11th IASTED International Conference
on Parallel and Distributed Computing and Networks.
Dubois, M., and Briggs, F. A., 1982. “Effects of
cache coherency in multiprocessors”. Computers, IEEE
Transactions on, C-31(11), Nov, pp. 1083-1099.
Eggers, S. J., and Katz, R. H., 1988. “A characteriza-
tion of sharing in parallel programs and its application
to coherency protocol evaluation”. SIGARCH Comput.
Archit. News, 16(2), May, pp. 373-382.

Molka, D., Hackenberg, D., and Schone, R., 2014.
“Main memory and cache performance of intel sandy
bridge and amd bulldozer”. In Proceedings of the
Workshop on Memory Systems Performance and Cor-
rectness, MSPC * 14, ACM, pp. 4:1-4:10.

Hackenberg, D., Molka, D., and Nagel, W. E., 2009.
“Comparing cache architectures and coherency proto-

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

cols on x86-64 multicore smp systems”. In Proceedings
of the 42Nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 42, ACM, pp. 413—
422.

Bennett, A. J., Field, T., and Harrison, P., 1996. “Mod-
elling and validation of shared memory coherency pro-
tocols”. Performance Evaluation, 2728, pp. 541 — 563.
Vernon, M. K., and Holliday, M. A., 1986. “Per-
formance analysis of multiprocessor cache consistency
protocols using generalized timed petri nets”. SIGMET-
RICS Perform. Eval. Rev., 14(1), May, pp. 9-17.

Yang, Q., Bhuyan, L. N., and Liu, B.-C., 1989. “Anal-
ysis and comparison of cache coherence protocols for
a packet-switched multiprocessor”. IEEE Trans. Com-
put., 38(8), Aug., pp. 1143-1153.

Marandola, J., Louise, S., Cudennec, L., Acquaviva, J.,
and Bader, D., 2012. “Enhancing cache coherent archi-
tectures with access patterns for embedded manycore
systems”. In System on Chip (SoC), 2012 International
Symposium on, pp. 1-7.

Vanderwiel, S. P, and Lilja, D. J., 2000. “Data
prefetch mechanisms”. ACM Comput. Surv., 32(2),
June, pp. 174-199.

Zimmer, C., and Mueller, F., 2012. “Low contention
mapping of real-time tasks onto tilepro 64 core proces-
sors”. In Proceedings of the 2012 IEEE 18th Real Time
and Embedded Technology and Applications Sympo-
sium, RTAS *12, IEEE Computer Society, pp. 131-140.
Muddukrishna, A., Podobas, A., Brorsson, M., and
Vlassov, V., 2013. “Task scheduling on manycore pro-
cessors with home caches”. In Proceedings of the 18th
International Conference on Parallel Processing Work-
shops, Euro-Par’ 12, Springer-Verlag, pp. 357-367.
Lebeck, A. R., and Wood, D. A., 1995. “Dynamic self-
invalidation: Reducing coherence overhead in shared-
memory multiprocessors”. SIGARCH Comput. Archit.
News, 23(2), May, pp. 48-59.

Kayi, A., Serres, O., and El-Ghazawi, T., 2014. “Band-
width adaptive cache coherence optimizations for chip
multiprocessors”. Int. J. Parallel Program., 42(3),
June, pp. 435-455.

Patterson, D. A., and Hennessy, J. L., 2013. Computer
Organization and Design, Fifth Edition: The Hard-
ware/Software Interface, 5th ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Sorin, D. J., Hill, M. D., and Wood, D. A., 2011. A
Primer on Memory Consistency and Cache Coherence,
Ist ed. Morgan & Claypool Publishers.

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L.,
Edwards, B., Ramey, C., Mattina, M., Miao, C.-C.,
Brown III, J. F,, and Agarwal, A., 2007. “On-chip in-
terconnection architecture of the tile processor”. IEEE
Micro, 27(5), Sept., pp. 15-31.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons,
P., Gupta, A., and Hennessy, J., 1990. “Memory con-
sistency and event ordering in scalable shared-memory
multiprocessors”. SIGARCH Comput. Archit. News,
18(2SI), May, pp. 15-26.

[35]

[36]

(37]

(38]

(39]

Sorin, D. J., Pai, V. S., Adve, S. V., Vernon, M. K., and
Wood, D. A., 1998. “Analytic evaluation of shared-
memory systems with ilp processors”. SIGARCH Com-
put. Archit. News, 26(3), Apr., pp. 380-391.
Gchnefeld, R., and Jacobi, H., 1985. “Stochastic model
of a multiprocessor system in the presence of memory
contention”. Annual Review in Automatic Program-
ming, 12, pp. 449 — 452.

Kowarschik, M., and Weif}, C., 2003. Algo-
rithms for Memory Hierarchies: Advanced Lectures.
Springer Berlin Heidelberg, Berlin, Heidelberg, ch. An
Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms, pp. 213-232.
Buono, D., Matteis, T. D., Mencagli, G., and Van-
neschi, M., 2014. “Optimizing message-passing
on multicore architectures using hardware multi-
threading”. In 2014 22nd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based
Processing, pp. 262-270.

Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin,
M., and Torquati, M., 2012. “An efficient unbounded
lock-free queue for multi-core systems”. In Proc. of
18th Intl. Euro-Par 2012 Parallel Processing, Vol. 7484
of LNCS, Springer, pp. 662-673.

