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Abstract

With the development of new experimental technologies, biologists are faced
with an avalanche of data to be computationally analyzed for scientific ad-
vancements and discoveries to emerge. Faced with the complexity of analysis
pipelines, the large number of computational tools, and the enormous amount
of data to manage, there is compelling evidence that many if not most scien-
tific discoveries will not stand the test of time: increasing the reproducibility
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of computed results is of paramount importance.

The objective we set out in this paper is to place scientific workflows in
the context of reproducibility. To do so, we define several kinds of repro-
ducibility that can be reached when scientific workflows are used to perform
experiments. We characterize and define the criteria that need to be catered
for by reproducibility-friendly scientific workflow systems, and use such cri-
teria to place several representative and widely used workflow systems and
companion tools within such a framework. We also discuss the remaining
challenges posed by reproducible scientific workflows in the life sciences. Our
study was guided by three use cases from the life science domain involving
in silico experiments.

Keywords: Reproducibility, Scientific Workflows, Provenance, Packaging
environments

1. Introduction

Novel technologies in several scientific areas have led to the generation
of very large volumes of data at an unprecedented rate. This is particularly
true for the life sciences, where, for instance, innovations in Next Generation
Sequencing (NGS) have led to a revolution in genome sequencing. Current
instruments can sequence 200 human genomes in one week whereas 12 years
have been necessary for the first human genome [I]. Many laboratories have
thus acquired NGS machines, resulting in an avalanche of data which has to
be further analyzed using a series of tools and programs for new scientific
knowledge and discoveries to emanate.

The same kind of situation occurs in completely different domains, such
as plant phenotyping which aims at understanding the complexity of inter-
actions between plants and environments in order to accelerate the discovery
of new genes and traits thus optimize the use of genetic diversity under
different environments. Here, thousands of plants are grown in controlled
environments, capturing a lot of information and generating huge amounts
of raw data to be stored and then analyzed by very complex computational
analysis pipelines for scientific advancements and discoveries to emerge.

Faced with the complexity of analysis pipelines designed, the number of
computational tools available and the amount of data to manage, there is
compelling evidence that the large majority of scientific discoveries will not
stand the test of time: increasing reproducibility of results is of paramount



importance.

Over the recent years, many authors have drawn attention to the rise
of purely computational experiments which are not reproducible [2], 3], 4 [5].
Major reproducibility issues have been highlighted in a very large number
of cases: while [6] has shown that even when very specific tools were used,
textual description of the methodology followed was not sufficient to repeat
experiments, [7] has focused on top impact factor papers and shown that
insufficient data were made available by the authors to make experiments
reproducible, despite the data publication policies recently put in place by
most publishers.

Scientific communities in different domains have started to act in an at-
tempt to address this problem. Prestigious conferences (such as two major
conferences from the database community, namely, VLDHH and SIGMODED
and journals such as PNAS Biostatistics [8], Nature [9] and Science [10], to
name only a few, encourage or require published results to be accompanied
by all the information necessary to reproduce them. However, making their
results reproducible remains a very difficult and extremely time-consuming
task for most authors.

In the meantime, considerable efforts have been put into the develop-
ment of scientific workflow management systems. They aim at supporting
scientists in developing, running, and monitoring chains of data analysis pro-
grams. A variety of systems (e.g., [11], [12], [13]) have reached a level of
maturity that allows them to be used by scientists for their bioinformatics
experiments, including analysis of NGS or plant phenotyping data.

By capturing the exact methodology followed by scientists (in terms of ex-
perimental steps associated with tools used) scientific workflows play a major
role in the reproducibility of experiments. However, previous work have ei-
ther introduced individual workflow systems allowing to design reproducible
analyses (e.g., [I4] [15]) without the aim to draw more general conclusions
and discuss the capabilities of the scientific workflow systems to reproduce
experiments or it has discussed computational reproducibility challenges in
e-science (e.g., [16] [I7]) without considering the specific case where scientific
workflow systems are used to design an experiment. There is thus a need
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to better understand the core problematic of reproducibility in the specific
context of scientific workflow systems, which is the aim of this paper.

In this paper, we place scientific workflows in the context of computa-
tional reproducibility in the life sciences to provide answers to the following
key points: How can we define the different levels of reproducibility that
can be achieved when a workflow is used to implement an in silico experi-
ment? Which are the criteria of scientific workflow systems that make them
reproducibility-friendly? What is concretely offered by the scientific workflow
systems in use in the life science community to deal with reproducibility?
Which are the open problems to be tackled in computer science (in algorith-
mics, systems, knowledge representation etc.) which may have huge impact
in the problems of reproducing experiments when using scientific workflow
systems?

Accordingly, we make the following five contributions: We present three
use cases from the life science domain involving in silico experiments, and
elicit concrete reproducibility issues that they raise (Section . We define
several kinds of reproducibility that can be reached when scientific workflows
are used to perform experiments (Section . We characterize and define the
criteria that need to be catered for by reproducibility-friendly scientific work-
flow systems (Section . Using the framework of the criteria identified, we
place several representative and widely used workflow systems and compan-
ion tools within such a framework (Section [5). We go on to discuss the
challenges posed by reproducible scientific workflows in the life sciences and
describe the remaining opportunities of research in several areas of computer
science which may address them in Section [0 before closing the paper in
Section

2. Use Cases

This paper starts with a set of three use cases, extracted from real
projects, where scientific workflow systems are used to manage data anal-
yses.

2.1. Next Generation Sequencing for diagnosis in oncology

2.1.1. Context

New and powerful next-generation sequencing (NGS) techniques allow to
simultaneously and quickly analyze a large number of genes, up to the entire
genome, that are assumed to be involved in diseases. As recently highlighted
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[18], the main challenge in applying NGS to medical diagnosis resides in
workflow development fulfilling diagnosis interpretation requirements, such
as quality control or variant knowledge annotation.

In this context, the preeminent French health and science agency, Na-
tional Cancer Institute (INCa), is in charge of cancer control in France. The
goal of the INCa is to generalize existing workflows designed for diagnosis in
oncology, and deploy them in most French hospital laboratories.

2.1.2. Computational tools used

In INCa, workflows are implemented through both very specific chain-
ing tools using command-lines and workflow systems (Galaxy). As such
workflows are used in production (and for diagnosis purpose), a particular
attention has been paid in deploying solutions allowing different users to (vir-
tually) work in the same run-time computational environment, ensuring in
particular that the exact same version of tools and packages is available.

2.1.3. Reproducibility needs

Workflow run-time environment maintenance. A given workflow in INCa
usually embeds a large variety of tools and makes use of several databases,
evolving quickly. Each version change implies the update, development and
validation of a new stable version of the workflow. In addition to the classical
workflow maintenance, the workflow environment has to be captured again
(packaged) for the workflow to be concretely in use again in the laboratories.

Sharing sample data. Reuse of workflows follows very strict rules in particular
because given accreditations have to be obtained (following specific norms
in the representation and the documentation of the workflow such as CE-
IVD or ISO 13485 norms). As part of the requirements to permit reuse,
workflows designed in InCA should be accompanied with a gold standard
providing a sample data set to be used as input of the workflows and the
expected outputs, so that the workflow can be tested. Since laboratories
process samples from patients, such data sets cannot be used as a standard
for quality control due to both genome variability and confidentiality issues.
Internal controls can be used in a routine context, but do not constitute
a sufficient reference, since they do not cover all cases, and are differently
sequenced across laboratories. An external set of samples is thus required,
offering a gold standard to ensure workflow reuse across laboratories. This
set could be a shared pool of samples provided by laboratories developing
workflows.



2.2. Plant Phenotyping
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Figure 1: Phenoarch Phenotyping Platform

2.2.1. Context

This use case takes place in the context of the ”Phenome”El project where
high-throughput phenotyping platforms (Figure (1)) are used to help assess the
genetic variability of plant responses to environmental conditions by allow-
ing growing and automatic extraction of traits of a large number of plants.
In such platforms, 1,650 plants are imaged from 12 lateral and one apical
view, producing 20,000 images per day and about 3 Terabytes of raw data
per experiment. This raw data (images) should be processed to extract traits
information (size of the leaves, number of leaves...) and then further ana-
lyzed with a response model to simulate the behavior of plants under climate
change. Each of these steps combines tools from very different fields of re-
search including image analysis, plant physiology, and crop modeling.

4https://www.phenome-fppn.fr/



2.2.2. Computational tools used

All computational experiments performed in PhenoArch are designed us-
ing the OpenAlea [19] workflow system, widely used in the Plant modeling
community. Workflows analyze images and combine raw data with numer-
ous and heterogeneous data sets coming from various external databases or
produced by previous workflow runs. Both raw data sets and data sets ana-
lyzed by workflows are stored in a dedicated database. As for the tools used
in the current workflows, they are parts of two versioned Python packages:
phenomenalﬂ for image analysis and alinea ﬁ for eco-physiological simula-
tions. These packages are platform-independent and can be downloaded and
installed to replay an analysis on a local desktop.

2.2.3. Reproducibility needs

Designing and sharing tools. A large variety of algorithms may be used to
extract relevant information from images. Dedicated plant phenotype com-
mercial packages use various functions to estimate, for instance, the total
plant volume and leaf area. A new landscape of models is emerging in sev-
eral communities [20] 21} 22]. They make the link between the reconstructed
plant architecture and eco-physiological models and allow to perform a more
precise analysis of plant traits in varying environmental conditions. These
models integrate plant specific knowledge and are often developed or adapted
by biologist end-users. It is thus particularly important to initially allow
workflow designers to encapsulate such models into (steps of) workflows to
be used and shared with biologist end-users.

Ensuring compatibility of tools’” versions. Image analysis workflows may be
completed by other workflows that couple data analysis with a model for
analyzing the response of plant expansion rate to temperature and water
availability. In such large workflows, tools are usually designed based on var-
ious packages or libraries which may evolve very quickly. Updating analysis
workflows becomes tricky when several tools, each based on different versions
of the same library, have to be combined.

Tracing the workflow history (citation). Workflows can be copy-pasted and
modified to be (partly) reused. In this process, the trace of the original

®https://github.com/openalea/InfraPhenoGrid
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workflows (and the reference to their original designers) is lost. Means to
automatically keep track of the sets of workflows reused would increase the
willingness to share.

Tracking Data to chain analyses. When workflows are run, they generate
large amounts of data which may, in turn, be reused as input of another
workflow. For results produced by such a workflow to be interpreted and
understood properly (in particular to understand outliers or unexpected re-
sults), it is particularly helpful to know how each (reused) data set has orig-
inally been produced.

2.8. Transcriptomics analyses

2.3.1. Context

While genomics studies focus on identifying DNA variations, transcrip-
tomics studies focus on gene expression (RNA) in tissues, organs, or, more
generally, biological samples. RNA sequencing experiments (RNA-seq) can
be seen as an observation of gene expression under multiple biological condi-
tions. A typical RNA-seq experiment aims at linking phenotypes (such as the
response to a treatment, at possibly multiple time-points) to genes. RNA-seq
experiments can especially be useful in the context of multiple pathologies. A
common RNA-seq workflow can thus be used in the context of multi-centric
cancer studies. For gene expression results to be interpreted at the scale of
a multi-centric study, the same RNA-seq workflow has to be reused by all
participating sites. It is also required to share and reuse site-specific datasets
to assess the relevance of the data analysis pipeline.

However, designing and sharing RNA-seq analyses is particularly chal-
lenging both in terms of computing time, massively produced data and mul-
tiplicity and diversity of tools available [23]. In this context, SyMeTRIC is
a federated project in Systems Medicine, launched to standardize RNA-seq
data analysis pipelines and allow the reuse of RNA-Seq experimental results.

2.3.2. Computational tools used

The SyMeTRIC project relies on two kinds of solutions to represent in
silico experiments. First, Galaxy is used to design and evaluate a common
RNA-seq workflow in the context of multi-centric cancer studies. Its Web-
based platform is useful to the SyMeTRIC users who want to learn bioin-
formatics tools and re-execute them on reference datasets. Second, when
large-scale data analysis campaigns with hundreds of biological samples have



to be run, Make-like systems (similar to NextFlow) are being used. While
using such approaches requires more technical expertise, they undoubtedly
offer versatility and scalability in the tuning of large-scale experiments [24].

2.3.3. Reproducibility needs
Annotation on workflows and runs. Workflows implemented using scripts are
generally not annotated with any metadata. As for Galaxy workflows, no
standardized metadata is currently in use to annotate workflows either. The
same occurs at the execution level: no provenance module is available yet to
inspect or query execution traces based on standard schemas or vocabularies.
This situation has two kinds of consequences. First, querying workflows
or workflow runs based on keywords/metadata reflecting the nature of data
processing tools or the nature/role of processed data is impossible. Second,
trusting new experiments (without any comparison point with previous ex-
periment) remains difficult.

Reusing parts of executed workflows. SyMeTRIC users may want to reuse a
workflow which has been already run in part, to continue the execution with
new processing tools, without re-executing the full workflow (but only the
new part). The workflow system used in not necessarily the same, either.

Two points should be noticed. First, while continuing a previously run
workflow is possible with scripts supporting check-pointing, it is not always
feasible in workflow environments. Second, workflow systems are currently
poorly inter-operable. Connecting two data analysis workflows, each based
on different systems, generally requires high technical skills.

Alternative workflows to reach the same scientific conclusion. Some techno-
logical evolutions may have huge impacts on the concrete implementations
of data analysis workflows. In transcriptomics, the same biological ques-
tion may be answered relying on two technologies, microarray and RNA-seq,
which data analysis will concretely involve different computational tools. To
foster the reuse of workflows and produced data, it is thus a major require-
ment to identify relevant workflows addressing the same biological questions,
but grounded in different contexts, namely microarray or RNA-seq in this
use case.



3. Levels of reproducibilty

The use cases presented in the previous section exhibit different repro-
ducibility needs. These can be better placed by examining the levels of re-
producibility and reuse described in the literature. We present in this section
such levels of reproducibility. We then introduce definitions of such levels in
the specific context of use of scientific workflow systems.

3.1. Discussion on the concepts associated with reproducibility

Reproducibility has obviously been studied in science in larger contexts
than computational reproducibility, in particular where wet experiments are
involved, and especially in the context of preclinical studies (e.g., [25] 26} 27,
28], see [29] for a review on this topic). A plethora of terms are used including
repeat, replicate, reproduce, redo, rerun, recompute, reuse and repurpose etc.
to name a few. We introduce the terminology we will follow in this paper
based a review of the various definitions provided in the literature [2, 130} 17,
311, [16], [32).

In such definitions, we need to distinguish the results of an in-silico ex-
periment, which are concrete datasets produced, from the conclusion that
can be drawn from the interpretation of such data sets. In particular, the
same conclusion can be obtained by two results, both allowing to validate
the same (e.g., biological) hypothesis. We distinguish four concepts, which
may be considered as several [evels of reproducibility, as described here-after.

Repeat. A wet experiment is said to be repeated when the experiment is
performed in the same lab as the original experiment, that is, on the same
scientific environment [30]. By analogy, an in silico experiment is said to
be repeated when it is performed in the same computational setting as the
original experiment. The major goal of the repeat task is to check whether the
initial experiment was correct and can be performed again. The difficulty lies
in recording as much information as possible to repeat the experiment so that
the same conclusion can be drawn. As discussed in [17], the granularity at
which information (experiments, data sets, parameters, environment) should
or could be recorded. The key point is to determine the right balance between
the effort to make in recording information and the capability of obtaining
very identical results.
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Replicate. A wet experiment is said to be replicated when the experiment
is performed in a different (wet) ”lab” than the original experiment. By
analogy, a replicated in silico experiment is performed in a new setting and
computational environment, although similar to the original ones). When
replicated, a result has a high level of robustness: the result remains valid in
a similar (even though different) setting has been considered. A continuum of
situations can be considered between a repeated and replicated experiments.

Reproduce. Reproduce is defined in the broadest possible sense of the term
and denotes the situation where an experiment is performed within a differ-
ent set-up but with the aim to validate the same scientific hypothesis. In
other words, what matters is the conclusion obtained and not the methodol-
ogy considered to reach it. Completely different approaches can be designed,
completely different data sets can be used, as long as both experiments con-
verge to the same scientific conclusion. A reproducible result is thus a high-
quality result, confirmed while obtained in various ways.

Reuse. A last very important concept related to reproducibility is Reuse
which denotes the case where a different experiment is performed, with sim-
ilarities with an original experiment. A specific kind of reuse occurs when
a single experiment is reused in a new context (and thus adapted to new
needs), the experiment is then said to be repurposed.

Notice. Repeat and replicate may appear to be technical challenges compared
to reproduce and reuse which are obviously the most important scientific
targets. However, before investigating alternative ways of obtaining a result
(to reach reproducibility) or before reusing a given methodology in a new
context (to reach reuse), the original experiment has to be carefully tested
(possibly by reviewers and/or any peers), demonstrating its ability to be at
least repeated and hopefully replicated [3], [17].

3.2. Levels of reproducibility when workflows are used

We now introduce definitions of reproducibility concepts in the particular
context of use of scientific workflow systems.

In such definitions, we clearly distinguish six components of an analy-
sis designed using a scientific workflow. (i) S, the workflow specification,
providing the analysis steps associated with tools, chained in a given order,
(ii) I, the input of the workflow used for its execution, that is, the concrete
data sets and parameter settings specified for any tools, (iii) F, the workflow
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context and runtime environment, that is, the computational context of the
execution (OS, libs, etc.). Additionally, we consider R and C, the result of
the analysis (typically the final data sets) and the high level conclusion that
can be reached from this analysis, respectively.

Definition (Repeat - using scientific workflows). Given two analyses A and
A’ performed using scientific workflows, we say that A’ repeats A if and only
if A and A’ are identical on all their components.

Definition (Replicate - using scientific workflows). Given two analyses A and
A’ performed using scientific workflows, we say that A’ replicates A if and
only if they reach the same conclusion while their specification and input
components are similar (see [33] for a discussion on workflow similarity) and
other components may differ (in particular no condition is set on the run-time
environment).

Terms such as rerun, re-compute typically consider situations where the
workflow specification is unchanged.

Definition (Reproduce - using scientific workflows). Given two analyses A
and A’ performed using scientific workflows, we say that A" reproduces A if
and only if they reach the same conclusion. No condition is set on any other
components of the analysis.

Definition (Reuse - using scientific workflows). Given two analyses A and A’
performed using scientific workflows, we say that A’ reuses A if and only if
the specification or input of A" is part of the specification or input of A’. No
other condition is set, especially the conclusion to reach may be different.

3.3. Levels of reproducibility in the use cases

We place the needs expressed in the use cases in the context of the repro-
ducibility and reuse levels introduced.

The purpose of the NGS use case is patient diagnosis. The workflows
are concretely used in production in hospitals. The use case is thus mainly
focused on the repeat level to ensure that the exact same experiment can be
driven. This use case is also related to the replicate level to handle different
pools of patients.

The Plants phenotyping use case describes needs to rerun a given exper-
iment in novel environment or to test the robustness of the approach (over
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time, while tools may have changed, while similar tools and data sets are
used). It is mainly focused on replication and reproducibility.

The Transcriptomics analyses use cases aims at enhancing collaboration
and sharing between different partners, discovering alternative methodologies
to augment the confidence one may have on a scientific result. It is mainly
focused on reuse (repurpose) and reproducibility in the broader sense of the
term.

4. Reproducible-friendly criteria for scientific workflow manage-
ment systems

Scientific workflow systems have very different shapes and features, mak-
ing them not equivalent in the context of reproducibility. In this section we
introduce a set of criteria playing a major role in the ability of an in silico
experiment to be reproducible. Specifically, we tease apart the criteria that
need to be catered for when (i) specifying workflows, (ii) executing them, and
(iii) packaging them considering the context and runtime environment with
the reproducibility levels (requirements), elicited in the previous section, in
mind.

4.1. Workflow specification

The workflow specification provides the definition of the data-driven (or
scientific) workflow, typically specified as a graph, in which the nodes repre-
sents steps, 7.e., processing units, that carry data manipulations and trans-
formations, and the edges represent data dependency (and eventually control
dependency) links.

Workflow modularity. Workflow specifications can become complex when the
target in silico experiments involve a large number of data processing and
analysis steps. While such workflow specifications can be utilized for ver-
ifying repeatability, they are not amenable for checking replicability and
reproducibility. To overcome this problem, workflow systems need to pro-
vide designers with the means to modularise workflow specifications to group
similar workflow steps or steps that are strongly coupled into modules, also
known as subworkflows or nested workflows. As well as facilitating the under-
standing, replicability and reproducibility of workflows, modularity promotes
reuse. Designers are more likely to utilize each other’s subworkflows, instead
of single processing steps, when building new workflows.

13



Heterogeneity of workflow languages. Workflows shared within a workflow
repository are specified using different workflow languages, each dedicated
to the workflow system they belong to. This represents a real impediment
towards workflow reuse: impossibility to interpret a workflow written in an
unknown language, impossibility to repurpose and thus reuse it. This calls
for methods for supporting the reuse of heterogeneous workflows, e.g., by
developing a standard workflow language that acts as a lingua franca between
workflow systems, and/or tools for translating workflow specifications to be
conform to a targeted workflow language.

Awvailability of the source/executable code of workflow steps. Some workflow
systems adopt a controlled approach whereby the workflow specification em-
bed the specification and/or executable of the software programs that imple-
ment the steps of the workflow. This approach ensures the repeatability and
replicability of workflows at least within the host workflow system. There
are also workflow systems that provide workflow designers with the means
to embed calls to software programs that are hosted remotely, and are out-
side the control of the workflow system (e.g., in the form of web services or
services hosted in a cloud environment). While such workflow systems offer
a wider range to users when it comes to selecting the software programs to
implement the steps of the workflow, they do not guarantee the repeatability
of the workflows. Indeed, there is generally no agreement that compels third
party providers to continuously supply their software (services), and as such
they often decide to stop supplying their services without previous notice (see
[34] for more details of the first empirical study dedicated to this problem).

Workflow annotations. Sharing workflow specifications is not sufficient for
enabling reproducibility and reuse: other elements such as annotations de-
scribing the workflow, its component steps, and the software programs im-
plementing the steps are needed. The annotations can take the form of free
text, tags or concepts taken from controlled vocabularies, or a mixture of
the two. The availability of annotations helps users understand the experi-
ments implemented by the workflow and assist users in the exploration and
search of workflow repositories to identify the workflows relevant to their
data analyses.

4.2. Workflow execution
The majority of scientific workflow systems are instrumented to capture
information about the execution of a workflow, including the inputs and out-
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put of the workflows, the intermediary data artifacts produced by the steps
of the workflow. This information allows users to debug workflow specifica-
tions, understand the lineage path that leads to a given result, and analyze
the workflow in various ways.

Heterogeneity of languages for capturing workflow execution. The hetero-
geneity of the languages (formats) adopted by workflow systems to encode
their executions can be an impediment for assessing the reproducibility of ex-
periments. In particular, comparing the execution traces of equivalent work-
flows that are ran on different workflow systems become challenging if such
systems use different languages for encoding workflow executions. Adopting
standards languages for encoding workflow executions is, therefore, desirable
to support workflow reproducibility.

Annotation of workflow executions. Workflow execution graph tends to be
much larger than workflow specification when the latter contains iterations
("for each’ or 'repeat’ loops). This calls for mechanisms that helps the user
explores workflow execution graphs. Descriptions that annotate the nodes
of the workflow execution graph can assist the user in the exploration of
such graphs, their understanding, and ultimately reproducibility. Such an-
notations can be automatically injected by the workflow system or manually
added by a workflow user, especially for domain-dependent annotations.

Presentation of workflow executions. To allow users take advantage of recorded
workflow executions, there is a need for facilities that present such executions
in a user-friendly manner. For example, the user should be able to examine
for a given workflow execution, the results produced and identify for each
of them the contributing data inputs, among other things. Such capabilities
assist users in the task of interpreting and comparing workflow executions,
which are required for verifying reproducibility.

4.83. Workflow context and runtime environment

Workflow specifications and associated execution runs are by no means
sufficient to guarantee their reproducibility. Indeed, workflows are executed
within (and depends on) a runtime environement, e.g., operating system,
cloud, and used to test a scientific hypothesis. We therefore need to capture,
or more specifically package, information about the runtime environement,
and the scientific context to enable reproducibility. Accordingly, we distin-
guish between two needs to cater for different reproducibility levels:
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Need for system-wide packaging. To be able to repeat the experiment as
it was carried out by the scientist, we need information about the operat-
ing system and/or the cloud environement hosting the workflow system, the
libraries/software utilized for running the workflow system, as well as infor-
mation about the libraries/software needed for running the software/scripts
that implement the steps of the workflow. In short, we need to freeze and
package the runtime environement of the workflow system.

Need for scientific-wide packaging. Although being able to re-compute an
experiment is a major step towards reproducibility, it does not cater for repli-
cability and reproducibility. To achieve these, we need to capture contextual
information that describes the scientific study that involves the workflow(s),
the hypothesis that is examined by running the workflows, and the conclu-
sions made by the scientist after examining workflow executions.

5. Workflow system and companion tools faced with reproducibil-
ity and reuse: Status

In the first subsection, we review standards, models and tools that were
proposed in the last few years to cater for some of the workflow reproducibil-
ity needs presented in Section [d] The next subsection is dedicated to the
evaluation of workflow systems on such criteria.

5.1. Companion tools and standards

5.1.1. Workflow interoperability

To promote workflow reuse, a number of initiatives has been launched
to deal with the heterogeneity of workflow languages (introduced in Section
[4.1). In particular, in the context of the SHIWA project [35], Plankensteiner
et al. proposed a workflow specification language called IWIR [36] to allow
portability between major workflow management systems. To annotate (and
complement) IWIR workflows, Cerezo and Montagnat [37] proposed a con-
ceptual workflow language for describing the high-level scientific tasks. To
promote interoperability, a consortium composed of multiple organizations
and workflow system vendors has recently proposed the Common Workflow
Language (CWL) [38][7] with the objective to promote workflow specification
portability. CWL is undergoing development.

"https://github.com/common-workflow-language
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5.1.2. Standards and models for workflow executions

Achieving interoperability between workflow systems requires the use of
a common language/standard for describing their executions. This is wit-
nessed by the recent efforts made by the suppliers of major scientific work-
flow systems to adopt the Open Provenance Model and later on the W3C
PROV recommendation. PROV does not provide all the concepts necessary
for modeling workflow executions. Because of this, we have seen the rise
of a handful of PROV-compliant languages for capturing information about
workflow executions, e.g., OPMWEL Wfprovﬂ, prov-wf [39], ProvONEH These
languages differ in the kind of information they capture. That said, they tend
to agree on the PROV concepts used or extended to model the core concepts
and relationships of workflow executions, namely activities and entities, and
the usage and generation relationships relating them.

5.1.3. Annotating workflows and their executions

A number of proposals have been made to help users understand workflow
specifications and the execution graphs obtained as a result of their execution.
For example, Garijo et al. [40] proposed an ontology of workflow motifs
for annotating workflow specifications, and Missier et al. [41] showed how
the nodes representing data products in the workflow execution graph can
be annotated by leveraging the annotations made at the level of workflow
specification.

5.1.4. Workflow repositories

To promote workflow reuse, and ultimately reproducibility, a number of
scientific workflow repositories, e.g., CrowdLabs [42], SHIWA [43], the repos-
itories offered with Kepler [44] and Galaxy [45] and myExperiment [46], have
been launched to allow scientists to share, publish their workflows for the
benefit of the scientific community. As well as workflow repositories, there
exists nowadays software catalogs, such Bio.tools [47] and Biocatalogue [4§]
for sharing information about the software products that can be used to im-
plement the steps of workflows. Both kinds of catalogs are accompagnied
with annotations, using free texts and/or controlled vocabularies, that de-
scribe the workflows/software products. For example, Bio.tools utilizes con-

S8http://www.opmw.org/model/ OPMW /
9nttp://purl.org/wf4ever/wfprov
Ohttp://vcvcomputing. com/provone/provone.html

17


http://purl.org/wf4ever/wfprov
http://vcvcomputing.com/provone/provone.html

cepts from domain ontologies, e.g., the EDAME], to annotate the operations
of a given software tool and their input and output parameters.

5.1.5. Workflow context and runtime environments
Several approaches have been proposed to preserve workflow runtime en-
vironment and their scientific context.

System-wide packaging solutions. Virtualization technologies, e.g., VMware,
KVM, VirtualBox and Vagrant can be used to package, “freeze”, and expose
the workflow working environments. These thechniques are expensive in
that they require to copy all the runtime environment. Containers technolo-
gies such as OpenVZF_Z], LXqT_SI, Docker [49] or Condaﬁ represent plausible
lightweight alternatives. They only capture the specific sotware dependen-
cies required by applications and share the low-level components provided
by the operating system. Containers come with support for their assembly,
e.g. Docker files, and their composition, versioning and sharing. Other ap-
proaches like ReproZip [50] and CDE [51] allow capturing the command line
history and associated input and output files, and package them in the case
of Reprozip in the form of workflows.

Scientific-wide packaging solutions. Other solutions directly address scien-
tific reproducibility, e.g., Research Objects (RO) [52] or Investigation/Stu-
dy/Assay (ISA) [53] which capture and expose auxiliary information about
the hypothesis investigated and the conclusions made by the scientists. Such
approaches create self-contained and query-able packages capturing the re-
quired i) data, ii) metadata (including provenance) and iii) protocol /workflow
specifications.

5.2. Evaluation of representative workflow systems in the context of repro-
ducibility

We have chosen to present in more details in this section Taverna, Galaxy,

OpenAlea, and Nextflow as major representatives of the variety of scientific

workflows used to analyze life science data. More precisely, the set of systems

has been selected based on three main criteria. First-of-all, all systems are

http://edamontology.org/
2https://openvz.org/
B3https://linuxcontainers.org/
“http://conda.pydata.org
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currently in use in large life science projects (and in particular, they are
used in our use cases). Second, we do not consider the family of systems
focusing on distributed scheduling, which have been studied in detailed in
[54] and pose another spectrum of challenges. Third, we restrict the number
of systems presented to have one main representative of each kind of workflow
system. For instance, systems such as Kepler, Wings, or Knime have common
features with one or several workflow systems described in this section.

A summary and comparative information on the systems with respect to
reproducible-friendly criteria for workflow specification, execution and envi-
ronment are respectively provided in the following Tables[1} [2] and 3] (in such
tables, a hyphen (-) means that the criteria in question is not supported by
the workflow system). In addition to the four workflow systems mentioned
above, tables provide information on VisTrails, a workflow system very pop-
ular in the neurosciences, with many interesting workflow features related
with reproducibility.

Taverna Galaxy OpenAlea VisTrails Nextflow
Workflow nested nested nested nested -
modularity workflows workflows workflows workflows -
Workflow lan- XML tav- tTSON ded- | Python dedi- ?(ML ded- Dedicated file
erna ontology | icated file | cated file for- | icated file
guage (SCUFL2) format mat format format
Interoperability| extends (A}alai;rk uszsf export to | )
support PROV CWL CWL
Workflow
steps:
Local lib tools | Java, R - Python Python Groovy
Command
line tools yes yes yes yes yes
Remote ser-
vice tools yes no no yes no
Access to
source  code | local tools local tools | local tools
of  workflow | only ) yes only only
steps
free-text free-text
Workflow an- (tags? . for (tags? . for free—text. doc-
notation describing the | describing the | - umentation of | -
workflow and | workflow and the steps
its steps its steps

Table 1: Workflow specification features
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Taverna Galaxy OpenAlea VisTrails Netflow
Plain  text
Taverna- Binary & PROV and .
Language provONE dedicated
PROV JSON OoPM format
Standard
used  or | PROV - PROV gf;ff and | _
extended
Annotation | - - - - -
GUI to .
GUI to explore a G.UI’ visu- | Reports
display GUI to ex- given run alize  tree | traces, per-
. plore, share " | of ver- | formances,
Presentation | and explore and  reuse Jupyter sions  and | and ox
saved/latest | .. . notebook .
uns histories for linear compare ecution
workflows runs DAG

Table 2: Workflow execution features
How the framework records execution provenance and which tools are pro-
vided to explore the provenance.

Taverna Galaxy OpenAlea VisTrails Nextflow
Conda,

Sy;tem— K Plans  for | Docker, Con(ia, lVa— Vagrant, Dock
Z,Vlh: PACE T Docker Conda, ?5?%’05{2;18 Docker, ocker
sing ReproZip
Scientific- Research

. Research .
wide pack- Objects Objects and | - - -
aging J ISA

Table 3: Workflow Environment features
Framework used to capture the environment of execution of a workflow.

5.2.1. Taverna

Taverna [55] is an open source scientific workflow management system
that provides a workbench for designing workflows, an embedded workflow
engine for local execution, and a separate workflow server for remote execu-

tion.

Workflow specification. A Taverna workflow is defined in terms of the SCUFL2
language [56], an XML format that extends W3C PROV. Taverna workflows
are mainly data driven although for-each loops can be expressed. Proces-
sors can be associated with local programs (bean script, R-script) or remote
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programs (REST service, cloud service). A user can specify a workflow from
scratch or use existing workflows as embedded subworkflows. Taverna is in
principle domain-independent. However, it has been used extensively in the
life sciences. Taverna also embeds search capabilities to retrieve workflows
and tools from myExperiment and biocatalogue, respectively.

Workflow execution. Taverna is instrumented to capture the retrospective
provenance of workflow executions using Taverna-PROV, a model that ex-
tends PROV and WfPROVE to capture features that are specific to Taverna
workflows, in particular iterations. Taverna provides a basic result panel for
browsing the results of workflow executions. The panel is primarily used
to show for a given processor input (respectively output) the data artifacts
that were used (respectively generated) during the execution. Sophisticated
queries for tracing the lineage of data artifacts or comparing the results of
multiple execution of the same or different workflows are not supported.

Context and runtime environment. Taverna does not yet support virtualiza-
tion using a mechanism such as Docker, although there are current develop-
ment efforts that will allow users to create a Docker Image that executes a
Taverna processor. Taverna also comes with a plugin for using UNICORE
grid resources.

Regarding scientfic wide packaging, it has been demonstrated how taverna
workflows can be pacakged into reproducible research objects [52].

Taverna: limitations in the context of reproducibility. Taverna allows work-
flow designers to make use of third party web services in the composition of
their workflows. This reliance on volatile third party web services means that
workflows cannot run because of the unavailability of one or more services
used within the workflow in question.

Taverna workflow tends to contain an important number of shims, which
are processors that are utilized for performing basic data format transforma-
tion. Indeed, the reliance on third party web services that adopt different
data structures for their input and output generates the need for using shims
to resolve the mismatches between services in a workflow. As a result, the
workflow specification becomes more complex than it should be, as it contains
processors that do not contribute to the overall data analysis implemented

http://purl.org/wfdever/wfdesc#
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by the workflow, and therefore may make it more difficult for a potential user
to understand the experiment implemented by the workflow based solely on
the workflow specification.

Regarding workflow execution presentation, Taverna provides little sup-
port for their exploration, e.g., it is difficult to trace the lineage of a given
result. This is particularly the case when some of the workflow processors
are executed multiple times, through iteration, within a single execution.

Taverna has also limited support for virtualization. Although there are
currently efforts by the Taverna team in this direction, Taverna does not
provide at the time of writing support for, e.g., deploying Taverna workflows
on Cloud environments, to our knowledge.

5.2.2. Galaxy
Galaxy [57, 58] is very popular workflow system in the bioinformatics
community.

Workflow specification. Galaxy workflows are internally specified as compos-
ite tasks, each of which is defined by a tool descriptor specifying the asso-
ciated software and input and output parameters. Galaxy uses a dedicated
JSON format for specifying workflow, although a fork of it utilize the Com-
mon Workflow Language (CWL). Galaxy supports nesting of subworkflows.
Galaxy uses Toolshed, a repository [45] to manage tool versions as well as
their dependencies for automated local deployment. It also provides Galazy
Pages to document and share the above-mentioned elements in a human-
readable form.

Workflow execution. Galaxy uses Histories, which trackes workflow execu-
tions, through tool configuration parameters, input parameters, including
reference datasets [45], and produced results. It also provides a GUI for
exploring and sharing workflow executions.

Context and runtime environment. Galaxy allows the use of a number of
external solutions to resolve tool dependencies, such as Docker, to provide
a persistent and portable execution environment. Regarding scientific-wide
packaging, Gonzalez-Beltran et al. showed how galaxy workflows can be
packaged into reproducible research objects and ISA-TAB experiments [59].
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Galaxy: limitations in the context of reproducibility. Galaxy currently en-
counters four main limitations.

The first limitation is due to the technical complexity of the system relying
on specific software and reference datasets that must be locally available with
the appropriate version to allow workflow repeat. Although best practices for
managing the system can prevent such issues, the use of Toolsheds can lead
to duplicated maintenance effort, when the same tools need to be available
outside of the Galaxy environment.

A second associated point is that experiments run in Galaxy are difficult
to re-run outside Galaxy. This is mainly due to the use of an in-house
language for tool and workflow specifications and executions. Such a lack of
standardization leads to porting issues, even between two different versions
of Galaxy.

Third, there is currently no possibility to reuse such code as building
blocks for other analysis, through their inclusion in workflows for instance.

Finally, Galaxy presents some limitation regarding the reuse and shar-
ing of workflows runs and produced results in particular. Galaxy Histo-
ries record provenance information, but they do not rely on a reference
schema/vocabulary. This limitation seriously hinders the possibilities to
query one or multiple histories based on standard vocabularies. This also
prevents from exporting and combining them as interoperable provenance
traces.

5.2.8. OpenAlea

OpenAlea is an open source scientific workflow system with a visual pro-
gramming environment that enables users to design, execute and interact
with workflows. Being domain-independent, OpenAlea has been used in a
variety of domains but its main applications come from the plant science
community (e.g., with the simulation of crop physiology and development).

Workflow specification. The architecture of OpenAlea is based on the Python
language. Every component in OpenAlea can be accessed through the lan-
guage, allowing the user to interact with the outputs of a workflow execution,
to drive the execution and to extend the system by adding new components
dynamically. OpenAlea provides users with the possibility of exporting work-
flow specifications into a CWL format. OpenAlea tools (e.g., models, work-
flows, components) are published and shared as Python packages on the web
either on public repositories (e.g., PyPi), or through the main OpenAlea
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web repository and through dedicated web sites of groups which use and
contribute to OpenAlea']

Workflow ezecution. OpenAlea is equipped with a provenance module to
keep track of the data items produced during execution. OpenAlea has re-
cently launched a new feature where workflow executions can be exported
as notebooks: Each cell of the notebook contains the script of the workflow
node executed [60]. The input/output data are direct references to the data
produced and stored. When workflow executions have a complex structure
(e.g., because loops are involved), this approach is not a suitable solution.

Context and runtime environment. OpenAlea uses the distribution/installation
mechanism of Python packages to share both tools and workflows. Workflows
and tools are both viewed, in OpenAlea, as components. OpenAlea pack-
ages are extensions of classical Python packages. They contain data, tools
libraries and workflow specification.

OpenAlea packages can be automatically converted to Debian or rpm
packages, because they contain enough meta-information and inherit of the
features of Python packages . OpenAlea is thus compatible with several
systems, from local virtual environment (e.g., VirtualEnv, Conda) to virtual
machines (Vagrant) and Docker containers.

OpenAlea: limitations in the context of reproducibility. Reproducibility in
OpenAlea encounters several limitations.

The first limitation is the possible large and hidden complexity of the
system which depends on a large and heterogeneous set of interconnected
libraries, both provided by the OpenAlea community, but also developed by
single users and dynamically discovered by the OpenAlea package manager.
While this feature allows end-users to add new packages and share them
with the OpenAlea community, several workflows may not be usable if their
dependencies are not released as public OpenAlea packages.

A second limitation which concerns both reproducibility and reuse is the
lack of central repository for OpenAlea workflows, packages and provenance.
Searching for a given tool or workflow is limited to packages already installed
on a given computer. This solution guarantees that any workflow found on

16See for example the following web sites:  http://www.stse-software.org and
https://www.cpib.ac.uk /research/themes/digital-plant
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a computer will be actually runnable. In return, it hampers the simple ex-
change of workflows and the discovery of workflows currently in development
elsewhere.

A third limitation concerns is with respect to workflow execution pre-
sentation. While OpenAlea is able to capture the provenance of execution
and expose it to users as electronic notebooks, there is no simple solution to
visualize and navigate a huge amount of provenance data in a concise way.

5.2.4. Neztflow

Nextflow[61] is a command-line based workflow system implemented in
Groovy [62] (a scripting language for the Java Virtual Machine), developed
to simplify design of complex parallel scientific workflows. Unlike workflow
systems presented above, it comes with no GUI. Workflows are written in
text files, and run in a terminal, or with the help of NextflowWorkbench[63],
an integrated development environment (IDE).

Workflow specification. Nextflow is based on the dataflow programming model.
A workflow is made of two kinds of nodes: processors (as in Taverna) and
operators (that can be seen as native processors), and its edges are channels
that represent the data flow and connect two nodes.

Nextflow processors are responsible for the execution of scientific compu-
tations, and are specified by defining their input and output channels and the
computation to execute. Computations are defined as generic scripts (shell,
groovy, or any scripting language). Descriptions of processors also specify
how the computation will be executed (local mode, HPC platform or cloud).
Nextflow operators are used to apply specific transformations to data (e.g.,
connecting or forking channels, filtering data, etc.). Workflows are specified
using a dedicated language that, unfortunately, is not based on a standard.

Workflow execution. Workflow execution is deduced from the input and out-
put channels of each processor, and its initial data. If a processor is added
or modified, or input data is modified, only computations that are affected
by the change are rerun if resume mode is enabled. Moreover, using the
cache directive, a processor can specify if it must be rerun each time or not.
Nextflow does not use or extend a standard for workflow execution. It does
not provides either a means for annotating them. Nextflow does not provide
a proper module to query and/or visualize workflow executions.
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Context and runtime environment. Nextflow does not directly support tool
dependency management. If a tool needed by the workflow is not present in
the running system, runs will not complete. However, it uses several systems
to minimize the risk of having missing tools, and to keep track of each version
of tools that have been run. For example, it is compatible with Docker.
Each processor can thus specify in which docker container it must run, or
which tool to load from modules. Docker will take care of automatically
downloading the containers required for the workflow execution.

Nextflow users are encouraged to use git hosting services (e.g., GitLab,
BitBucket and GitHub) as workflow repositories. Nextflow can automatically
retrieve and execute a workflow located in a public repository on GitHub for
example.

Nextflow: limitations in the context of reproducibility. Nexflow encounters
three main limitations.

First, as there is no central repository of tools, it is the responsibility
of the developer to implement the workflow in a reproducible way. If the
workflow does not control the tools used to execute it using Docker module
and git, it may be difficult or impossible to reproduce. Second, once the
workflow executed, provenance information consists of tags associated with
each processor in output log files. As it does not rely on a reference vocab-
ulary, it is not possible to query this data so far. Third, on the one hand,
Nextflow is versatile in the sense that it is very easy to install and workflows
can be developed very quickly. On the other hand, it does not define any
structured provenance information and there is not any GUI interface for
building workflows or query their execution logs which make workflow less
easy to share and reuse.

Note also that all reviewed systems suffers from the fact that they do not
provide the means for annotating workflow execution runs before eventually
sharing and publishing them.

6. Challenges and Opportunities

While referencing to the specific problems encountered in the use cases,
this section discusses major remaining open challenges related to repro-
ducibility and reuse of experiments implemented using scientific workflows.
We clearly distinguish problems associated with social issues from computer
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science issues, and focus on the latter. The first subsection is dedicated to
problems where partial solutions are available (we clearly underline which
are the remaining challenges) while the next subsection highlights even more
open issues.

6.1. Partial available solutions

6.1.1. On the representation of Workflow Specification and Ezecution (Re-
peat and Replicate)

The previous section has provided information on the state-of-the-art
techniques especially addressing points such as how to track workflow spec-
ifications and workflow executions (expressed in the plant use cases and,
to some extent, also in the transcriptomic use case) describing usable stan-
dards both to describe prospective (workflow specification) and retrospective
(workflow execution) provenance (families of PROV approaches). There thus
exist standards, in particular for provenance information, which are able to
represent the description of each workflow and all the elements involved in a
given workflow execution.

However, at least three major remaining open problems (directly associated
with complex computer science research problems) have to be underlined.

Need for tools to visualize, mine, query huge amounts of provenance infor-
mation. While a few workflow systems currently use such standards, many
systems are still based on in-house workflow and provenance representation as
depicted in Tables|l] and [2 mainly because PROV standards are very generic,
involve a large variety of terms in standardized vocabularies and to be better
understood and used, provenance information samples need to be explored,
visualized, queried, compared, and mined. However, except for specific cases,
there is currently no interactive systems and tools able to visualize, query or
mine provenance information represented using these standards. Faced with
the potential huge size of the provenance graphs generated, designing such
tools is not as easy as one may think. It directly means developing care-
fully optimized algorithms to tackle the inherent complexity of graph-related
problems (e.g., the (sub)graph isomorphism problem).

Need for interoperability between workflows. Being able to rerun a possibly
complex experiment which has been partly run in the past is a need illus-
trated in the transcriptomics use case. Command-line workflow systems (like
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Snakemake [64] or NextFlow) may provide solutions and some workflow sys-
tems (like VisTrails or OpenAlea) allow that only part of a given workflow is
rerun. However, the major difficulty to enable partial recomputation lies in
composing several sub-part of workflows, possibly designed in different sys-
tems. While CWL may provide hints (it is still a work under development),
workflow interoperability is particularly difficult to achieve (as witnessed by
several attempts in this direction, like Tavaxy [65]). The key research point is
indeed not to provide a common representation of the workflows (which is al-
ready complex faced with the diversity of systems) but to provide a runnable
representation. This involves carefully defining links between the workflow
specification and the workflow execution, possibly designing new models of
computation and thus involve research in language theory, compilation, and
software engineering. Part of the challenges to be tackled here are thus natu-
rally common to the challenges mentioned in the Workflow Specification and
Ezecution paragraph.

Need for reducing workflow execution graphs. Workflow execution graphs
tends to be much larger than workflow specifications. To address this issue,
several researchers investigated the problem of summarizing the workflow
execution graph by exploiting information in the workflow specification. For
example, the Zoom system [66] allows the user to identify the elements in the
workflow specifications that are of interest. A smaller graph representing the
workflow specification is then induced based on the selection made by the
user, and utilized to reduce the size of the workflow execution graph. Alper
et al. [67] developed a similar approach that exploits semantic annotations
describing the steps of the workflow specification. They apply reduction rules
to summarize the workflow specification by abstracting away steps that are
not relevant from the scientific point-of-view. Other approaches have been
proposed in the same spirit, such as [68]. While these three approaches have
all the same goal, they use very different techniques, from graph algorithms
to web semantics, demonstrating the wide spectrum of research domains that
can be used to tackle the problem of workflow reduction.

6.1.2. On sharing workflows and tools (Reuse)

As for how tools and workflows can currently be designed and shared and
what kind of annotation (from which ontologies) can be provided on workflow
specification and provenance (as in the transcriptomic use case), elements of
solution are available. The collection of Research Objects Ontologies and the
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EDAM ontology, designed in very large collaborative projects, are elements
of solution to annotate large amount of tools, workflows and their executions.
Such ontologies are currently used in large sharing platforms such as bio.tool
and myExperiment. However, for enhancing reuse based on these elements
of solutions, several open challenges need to be overcome

Need for approaches to (semi-)automatically annotate tools and workflows
with ontology terms. While several ontologies have been designed, there is
currently no powerful approach able to assist users in annotating their work-
flows. Text-mining approaches, in the spirit of [69] would be very helpful to
help the annotation task. The challenge lies in designing text-mining and
data-mining tools able to make the most of the various facets of workflow’s
metadata, including the tools used in the workflow, the text-based descrip-
tions of the workflow but also the profile of the workflow uploader (possibly
including his/her social network on the sharing platforms, the other work-
flows s/he may have used or liked in the past).

Need for workflow citation process. Another key need, expressed in the plant
use case, is that workflows should be citeable, to be referenced when they
are reused. Similarly to papers, data sets, or software, several initiatives
have actually reached the same conclusion: Workflows, which encapsulate
the computational methodology followed to conduct an experiment, should
be citeable objects. While connected to the problem of history record (a
key feature of the VisTrails system), the problem of workflow citation is
different especially because the workflows to be considered may be i) very
complex graphs, ii) composed of nested workflows and (iii) the result of a
combination of several reused workflows (the workflow history is not seen
in isolation). While VisTrails focuses on tree structures, one of the key
challenge in workflow citation is to consider (possibly arbitrarily complex)
acyclic graphs.

6.2. Open Challenges

Several solutions are now available to allow repeating an in silico exper-
iment. However, enhancing replication, reproducibility and reuse depends
on progress made in several fields of computer science, including databases,
knowledge representation but also graph algorithmics, software engineering
and systems. While the previous subsection have presented contexts where
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elements of solutions were available and have started to highlight both tech-
nical and fundamental challenges, the remainder of this section focused on
even more open problems.

6.2.1. On Workflow Replication

Workflow maintenance. The NGS use case is related to the major problem
of reruning a given workflow in an runtime environment which may have
changed. As introduced in 5.1, virtualization techniques are particularly
well-suited to repeat an experiment. However, due to the changing nature of
the computational experiments, workflows with their dependencies need to
be updated to take into account newer versions to benefit of improvements,
but also bug and security fixes. Nevertheless, updating a virtual machine is
as complex as updating any machine, compatibility of versions between the
different tools have to be manually checked. No support is currently provided
to automatically select the last working set of dependencies while this is a
key point to go from repeat to replicate and reproduce levels.

This point is actually related to the fact that in various workflow systems
(such as Galaxy, VisTrails or OpenAlea), providers of tools have no way to
know which workflows use their tools. Obviously, good practices from the
software community have their role to play here such as pack versions using
Giit, make systematic unit and functional tests on packages, and follow a con-
tinuous integration approach to guaranty the quality of packages. However,
there is a need for more general algorithms able to determine as efficiently
as possible how to update an environment given a set of incompatibilities
between packages. Solving this kind of issues may involve research both
in algorithmic (to reduce the very large set of compatible environments to
consider) and software engineering and language (e.g., software product line
approaches, etc.).

6.2.2. On workflow reuse and reproducibility

Allowing users to test and verify workflows. As for reuse, the transcriptomic
and NGS use cases have introduced requirements which may be part of the
good practices to be followed for workflow to be reused. Interestingly, provid-
ing sample data (which is the focus of the NGS use case) appears to be part of
several (high level) good practices and guidelines when designing workflows:
in the workflow4ever project [70] the workflow designer is strongly encour-
aged to "Provide example inputs and outputs” (rule # 4) and ”Test and
validate” (rule # 9). Very large sharing repositories like BioSharing, as well
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as recent FAIR principles [71], have the same kind of expectations (each tool,
workflow, standard should be provided with sample data and gold standards).

One requirement is to equip sharing platforms with simple user interfaces
allowing users to deposit data sets. However, two important points should
be emphasized.

First, one of the most important and open emerging challenges consist in
providing techniques to automatically generate small representative data sets
(to be provided in the platform) from the possibly huge data sets on which
the experiment has been initially run. Carefully extracting representative
data samples and possibly dealing with privacy issue (that is, considering
only a subpart of the data set) may relies on powerful and fine statistical and
data mining techniques.

Second, on a more general point-of-view, approaches and tools for system-
atically allowing workflows to be tested and validated are obviously missing.
One of the key point to consider is to better formalize the relationships be-
tween workflow systems and scripts. Classical software engineering practices,
that are commonly used in software development and popularized recently
with initiatives like Software carpentry [12], should be used systematically to
ensure repeatability of workflow execution. Systematic Unit and functional
test on workflow repository as well as continuous integration would provide
a measure of the repeatability. Such concepts have to be properly defined
in the context of scientific workflows. In the same spirit, methodology of
software quality assurance in the context of the entire life cycle of scientific
workflow development process need to be envisioned.

Guiding workflow design. Designing user-friendly workflows, which are easy-
to-use and understand is a need appearing in all use cases. We consider
this problem following two directions, both directly related to the problem
of workflow design.

First-of-all, in the previous section, approaches such as [66, 67, [68] have
been mentioned as possibilities to reduce the complexity of workflows and
make them easier to understand, allowing to hide over technical parts of work-
flows. Other approaches either reduce the (structural) complexity of work-
flows, by detecting fragments to be modified such as DistillFlow [73](dedicated
to Taverna) or have mined workflow fragments to be reused [74]. More
generally speaking, there is a crucial need to imagine approaches and pro-
vide concrete tools able to guide workflow design, with the aim of providing
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reproducible-friendly workflows that are reusable. While very interesting
hints have been discussed in the past [75, [76], no concrete solution is cur-
rently in use. Challenges are again numerous and intrinsically involve de-
veloping data mining, graph algorithmics and software engineering research
approaches to come up with workflow design patterns.

Second, workflow design should also be considered in relationship with
programming languages, or electronic notebooks (e.g. IPython [77], Rstu-
dio [78] and more recently Jupyter [79]), which are largely used in the bioin-
formatics community to perform in silico experiments. Bridging the gap be-
tween the use of scripts and workflows is of paramount importance and would
have huge impact on reuse. Projects such as noWorkflow [80] and YesWork-
flow [81] have started digging in this direction and have provided interesting
elements of solutions (as the notion of the provenance of a script).

Workflow Similarity. Last but not least, the ability to discover alternative
workflows able to reach the same biological conclusion as the original work-
flow (expressed in the NGS use case) is of paramount importance. Repro-
ducibility, in the broader sense of the term, is directly expressed here. The
central aspect of this question is the definition of similarity in scientific work-
flows, to enable determining automatically that several workflows have the
same kind of functionality. This topic of workflow similarity has been exten-
sively studied in the last years and the concept of workflow similarity is now
well understood [82, [83], 84],85]. However, while a few new efficient algorithms
have been designed to search for workflows by similarity in large reposito-
ries [86] or to cluster similar workflows, none of them have been deployed in
workflow sharing platforms.

7. Conclusion

Reproducibility of in silico experiments analyzing life science data is rec-
ognized to be a major need. As they provide a means to design and run
scientific experiments, scientific workflow systems have a crucial role to play
to enhance reproducibility. In this context, the contributions of this paper
are five-folds. First, we introduce a set of three use cases, highlighting re-
producibility needs in real contexts. Second, we provide a terminology to
describe reproducibility levels when scientific workflows are used. Third, we
introduce a set of criteria to define reproducibility-friendly workflow systems.
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Fourth, we have carefully reviewed the literature and evaluated workflow sys-
tems and companion tools based on such criteria. Last, we have highlighted
challenges of research in this domain.

Ensuring reproducibility and reuse has obviously to face with numer-
ous social issues (willingness to share, following good practices...). However,
and most importantly, we have identified key issues, proper to reproducibil-
ity and reuse with scientific workflows, which highly depend on progress
made in several research fields of computer science. Scientific workflows and
their executions have very complex graph structures. Comparing workflows
or executions, storing the history of workflows (e.g., to cite the workflows
reused ), reducing the structure of such graphs to make them more reusable,
are directly related to the design of efficient graph algorithms which are key
challenges in graph algorithmics and databases. As for chaining the use of
workflows (possibly coming from different systems), rewriting a workflow into
another equivalent (but more simple) workflow, optimizing a workflow exe-
cution while ensuring its repeatability relies on key issues of languages theory
and software engineering. Concerning maintainability of pieces of software
in the workflow environment, it relies on progress made on software engi-
neering but also possibly in combinatorial algorithmics since the number of
combinations of possible new environments may be huge. Last but not least,
designing systems to annotate such complex workflows and their executions
and then be able to efficiently retrieve, query and compare them based on
their annotations relies on progress made in the semantics web, text mining,
and database communities.
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