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aYıldırım Beyazıt University, Graduate School of Natural Sciences, Computer Engineering Dept., Ankara, Turkey
b Ankara University, Faculty of Engineering, Computer Engineering Dept., Ankara, Turkey

cYıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Computer Engineering Dept., Ankara, Turkey

Abstract

In this paper, we proposed a new efficient sorting algorithm based on insertion sort concept. The proposed algorithm called Bidirec-
tional Conditional Insertion Sort (BCIS). It is in-place sorting algorithm and it has remarkably efficient average case time complexity
when compared with classical insertion sort (IS). By comparing our new proposed algorithm with the Quicksort algorithm, BCIS
indicated faster average case time for relatively small size arrays up to 1500 elements. Furthermore, BCIS was observed to be faster
than Quicksort within high rate of duplicated elements even for large size array.
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1. Introduction

Algorithms have an important role in developing process of
computer science and mathematics. Sorting is a fundamen-
tal process in computer science which is commonly used for
canonicalizing data. In addition to the main job of sorting al-
gorithms, many algorithms use different techniques to sort lists
as a prerequisite step to reduce their execution time [20]. The
idea behind using sorting algorithms by other algorithm is com-
monly known as reduction process. A reduction is a method
for transforming one problem to another easier than the first
problem [32]. Consequently, the need for developing efficient
sorting algorithms that invest the remarkable development in
computer architecture has increased.

Sorting is generally considered to be the procedure of reposi-
tioning a known set of objects in ascending or descending order
according to specified key values belong to these objects. Sort-
ing is guaranteed to finish in finite sequence of steps[8].

Among a large number of sorting algorithms, the choice of
which is the best for an application depends on several factors
like size, data type and the distribution of the elements in a data
set. Additionally, there are several dynamic influences on the
performance of the sorting algorithm which it can be briefed as
the number of comparisons (for comparison sorting), number of
swaps (for in-place sorting),memory usage and recursion [1].

Generally, the performance of algorithms measured by the
standard Big O(n) notation which is used to describe the com-
plexity of an algorithm. Commonly, sorting algorithms has
been classified into two groups according to their time complex-
ity. The first group is O(n2) which contains the insertion sort,
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selection sort, bubble sort etc. The second group is O(n log n),
which is faster than the first group, includes Quicksort ,merge
sort and heap sort [12]. The insertion sort algorithm can be
considered as one of the best algorithms in its family (O(n2)
group ) due to its performance, stable algorithm ,in-place, and
simplicity [34]. Moreover, it is the fastest algorithm for small
size array up to 28-30 elements compared to the Quicksort algo-
rithm. That is why it has been used in conjugate with Quicksort
[30, 31, 36, 4] .

Several improvements on major sorting algorithms have been
presented in the literature [22, 9, 29]. Chern and Hwang [7]
give an analysis of the transitional behaviors of the average cost
from insertion sort to quicksort with median-of-three. Fouz et
al [13] provide a smoothed analysis of Hoare’s algorithm who
has found the quicksort. Recently, we meet some investiga-
tions of the dual-pivot quicksort which is the modification of
the classical quicksort algorithm. In the partitioning step of the
dual-pivot quicksort two pivots are used to split the sequence
into three segments recursively. This can be done in different
ways. Most efficient algorithm for the selection of the dual-
pivot is developed due to Yaroslavskiy question [37]. Nebel,
Wild and Martinez [24] explain the success of Yaroslavskiy’s
new dual-pivot Quicksort algorithm in practice. Wild and Nebel
[35] analyze this algorithm and show that on average it uses
1.9n ln n + O(n) comparisons to sort an input of size n, beat-
ing standard quicksort, which uses 2n ln n + O(n) comparisons.
Aumüller and Dietzfelbinger [2] propose a model that includes
all dual-pivot algorithms, provide a unified analysis, and iden-
tify new dual-pivot algorithms for the minimization of the aver-
age number of key comparisons among all possible algorithms.
This minimum is 1.8n ln n + O(n). Fredman [14] presents a
new and very simple argument for bounding the expected run-
ning time of Quicksort algorithm. Hadjicostas and Lakshmanan
[17] analyze the recursive merge sort algorithm and quantify
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the deviation of the output from the correct sorted order if the
outcomes of one or more comparisons are in error. Bindjeme
and Fill [6] obtain an exact formula for the L2-distance of the
(normalized) number of comparisons of Quicksort under the
uniform model to its limit. Neininger [25] proves a central
limit theorem for the error and obtain the asymptotics of the
L3−distance. Fuchs [15] uses the moment transfer approach to
re-prove Neininger’s result and obtains the asymptotics of the
Lp − distance for all 1 ≤ p < ∞.

Grabowski and Strzalka [16] investigate the dynamic behav-
ior of simple insertion sort algorithm and the impact of long-
term dependencies in data structure on sort efficiency. Bier-
nacki and Jacques [5] propose a generative model for rank data
based on insertion sort algorithm. The work that presented
in [3] is called library sort or gapped insertion sort which is
trading-off between the extra space used and the insertion time,
so it is not in-place sorting algorithm. The enhanced insertion
sort algorithm that presented in [33] is use approach similar to
binary insertion sort in [27], whereas both algorithms reduced
the number of comparisons and kept the number of assign-
ments (shifting operations) equal to that in standard insertion
sort O(n2). Bidirectional insertion sort approaches presented in
[8, 11]. They try to make the list semi sorted in Pre-processing
step by swapping the elements at analogous positions (position
1 with n, position 2 with (n-1) and so on). Then they apply the
standard insertion sort on the whole list. The main goal of this
work is only to improve worst case performance of IS [11] . On
other hand, authors in[34] presented a bidirectional insertion
sort, firstly exchange elements using the same way in [8, 11]
, then starts from the middle of the array and inserts elements
from the left and the right side to the sorted portion of the main
array. This method improves the performance of the algorithm
to be efficient for small arrays typically of size lying from 10-50
elements [34] . Finally, the main idea of the work that presented
in [23], is based on inserting the first two elements of the un-
ordered part into the ordered part during each iteration. This
idea earned slightly time efficient but the complexity of the al-
gorithm still O(n2) [23] . However, all the cited previous works
have shown a good enhancement in insertion sort algorithm ei-
ther in worst case, in large array size or in very small array size.
In spite of this enhancement, a Quicksort algorithm indicates
faster results even for relatively small size array.

In this paper, a developed in-place unstable algorithm is pre-
sented that shows fast performance in both relatively small size
array and for high rate duplicated elements array. The proposed
algorithm Bidirectional Conditional Insertion Sort (BCIS) is
well analyzed for best, worst and average cases. Then it is com-
pared with well-known algorithms which are classical Insertion
Sort (IS) and Quicksort. Generally, BCIS has average time
complexity very close to O(n1.5) for normally or uniformly dis-
tributed data. In other word, BCIS has faster average case than
IS for both relatively small and large size array. Additionally,
when it compared with Quicksort, the experimental results for
BCIS indicates less time complexity up to 70% -10% within
the data size range of 32-1500. Besides, our BCIS illustrates
faster performance in high rate duplicated elements array com-
pared to the Quicksort even for large size arrays. Up to 10%-

50% is achieved within the range of elements of 28-more than
3000000. The other pros of BCIS that it can sort equal elements
array or remain equal part of an array in O(n) .

This paper is organized as follows: section-2 presents the
proposed algorithm and pseudo code, section-3 executes the
proposed algorithm on a simple example array, section-4 illus-
trates the detailed complexity analysis of the algorithm, section-
5 discusses the obtained empirical results and compares them
with other well-known algorithms, section-6 provides conclu-
sions. Finally, you will find the important references.

2. The proposed algorithm BCIS

The classical insertion sort explained in [23, 19, 26] has one
sorted part in the array located either on left or right side. For
each iteration, IS inserts only one item from unsorted part into
proper place among elements in the sorted part. This process
repeated until all the elements sorted.

Our proposed algorithm minimizes the shifting operations
caused by insertion processes using new technique. This new
technique supposes that there are two sorted parts located at the
left and the right side of the array whereas the unsorted part
located between these two sorted parts. If the algorithm sorts
ascendingly, the small elements should be inserted into the left
part and the large elements should be inserted into the right
part. Logically, when the algorithm sorts in descending order,
insertion operations will be in reverse direction. This is the idea
behind the word bidirectional in the name of the algorithm.

Unlike classical insertion sort, insertion items into two sorted
parts helped BCIS to be cost effective in terms of memory
read/write operations. That benefit happened because the length
of the sorted part in IS is distributed to the two sorted parts in
BCIS. The other advantage of BCIS algorithm over classical
insertion sort is the ability to insert more than one item in their
final correct positions in one sort trip (internal loop iteration).

Additionally, the inserted items will not suffer from shift-
ing operations in later sort trips. Alongside, insertion into both
sorted sides can be run in parallel in order to increase the algo-
rithm performance (parallel work is out of scope of this paper).

In case of ascending sort, BCIS initially assumes that the
most left item at array[1] is the left comparator (LC) where
is the left sorted part begin. Then inserts each element into
the left sorted part if that element less than or equal to the LC.
Correspondingly, the algorithm assumes the right most item at
array[n] is the right comparator (RC) which must be greater
than LC. Then BCIS inserts each element greater than or equal
to the RC into the right sorted part. However, the elements that
have values between LC and RC are left in their positions dur-
ing the whole sort trip. This conditional insertion operation is
repeated until all elements inserted in their correct positions.

If the LC and RC already in their correct position, there are
no insertion operations occur during the whole sort trip. Hence,
the algorithm at least places two items in their final correct po-
sition for each iteration.

In the pseudo code (part 1& 2), the BCIS algorithm is pre-
sented in a format uses functions to increase the clarity and
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traceability of the algorithm. However, in statements (1 & 2)
the algorithm initially sets two indexes, SL for the sorted left
part and SR for the sorted right part to indicate on the most left
item and the most right item respectively.

Algorithm BCIS Part 1 (Main Body)
1: S L← le f t
2: S R← right
3: while S L < S R do
4: SWAP(array, S R, S L +

(S R−S L)
2 )

5: if array[S L] = array[S R] then
6: if ISEQUAL(array, S L, S R)=-1 then
7: return
8: end if
9: end if

10: if array[SL] > array[SR] then
11: SWAP (array, SL , SR)
12: end if
13: if (S R − S L) ≥ 100 then
14: for i← S L + 1 to (S R − S L)0.5 do
15: if array[SR] < array[i] then
16: SWAP (array, SR, i)
17: else if array[SL] > array[i] then
18: SWAP (array, SL, i)
19: end if
20: end for
21: else
22: i← S L + 1
23: end if
24: LC ← array[S L]
25: RC ← array[S R]
26: while i < S R do
27: CurrItem← array[i]
28: if CurrItem ≥ RC then
29: array[i]← array[S R − 1]
30: INS RIGHT (array,CurrItem, S R, right)
31: S R← S R − 1
32: else if CurrItem ≤ LC then
33: array[i]← array[S L + 1]
34: INS LEFT (array,CurrItem, S L, le f t)
35: S L← S L + 1
36: i← i + 1
37: else
38: i← i + 1
39: end if
40: end while
41: S L← S L + 1
42: S R← S R − 1
43: end while

The main loop starts at statements(3) and stops when the left
sorted part index (SL) reaches the right sorted part index (SR).

The selection of LC and RC is processed by the statements
(4-25). In order to ensure the correctness of the insertion op-
erations LC must be less than RC, this condition processed in
statement (5). In case of LC equal to RC, the statement (6), us-
ing ISEQUAL function, tries to find an item not equal to LC and

Algorithm BCIS Part 2 (Functions)
44: function ISEQUAL(array, S L, S R)
45: for k ← S L + 1 to S R − 1 do
46: if array[k]! = array[S L] then
47: S WAP(array, k, S L)
48: return k
49: end if
50: end for
51: return − 1
52: . End the algorithm because all scanned items are equal
53: end function
54: function InsRight(array,CurrItem, S R, right)
55: j← S R
56: while j ≤ right and CurrItem > array[ j] do
57: array[ j − 1]← array[ j]
58: j← j + 1
59: end while
60: Array[ j − 1]← CurrItem
61: end function
62: function InsLeft(array,CurrItem, S L, le f t)
63: j← S L
64: while j ≥ le f t and CurrItem < array[ j] do
65: array[ j + 1]← array[ j]
66: j← j − 1
67: end while
68: Array[ j + 1]← CurrItem
69: end function
70: function SWAP(array,i,j)
71: Temp← array[i]
72: array[i]← array[ j]
73: array[ j]← Temp
74: end function

replace it with LC. Otherwise, (if not found) all remaining ele-
ments in the unsorted part are equal. Thus, the algorithm should
terminate at the statement (7). Furthermore, this technique al-
lows equal elements array to sort in only O(n) time complexity.
Statements (4 & 13 – 20) do not have an effect on the correct-
ness of the algorithm, these statements are added to enhance
the performance of the algorithm. The advantage of these tech-
niques will be discussed in the analysis section (section-4).

The while statement in (26) is the beginning of the sort trip,
as mentioned previously, conditional insertions occur inside
this loop depending on the value of current item (CurrItem)
in comparison with the values of LC and RC. Insertion opera-
tions are implemented by calling the functions INSRIGHT and
INSLEFT.

3. Example

The behavior of the proposed algorithm on an array of 15
elements generated randomly by computer is explained in Fig-
ure(1). In order to increase the simplicity of this example, we
assumed the statements (4 & 13-20) do not exist in the algo-
rithm. For all examples in this paper we assumed as follows:
Items in red color mean these items are currently in process.
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Bolded items represent LC and RC for current sort trip. Gray
background means the position of these items may change dur-
ing the current sort trip. Finally, items with green background
mean these items are in their final correct positions.

First sort trip starts here 

 Insert into the left      

 No insertion  

 No insertion  

No insertion 

No insertion 

 Insert into the right 

 Insert into the right 

 No insertion 

Insert into the right 

No insertion  

Insert into the right 

No insertion 

 Insert into the left         

End of first sort trip. 

 Check LC and RC, swap   

Second sort trip starts here  

 Insert into the left 

 Insert into the right 

Insert into the left 

Insert into the right 

Insert into the left 

End of second sort trip, all items has been sorted 

17 19 22 28 52 53 56 57 59 65 67 72 73 78 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 17 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 80 78 73 19 53 28 65 72 67 

17 22 56 57 52 59 72 78 73 19 53 28 65 67 80 

17 22 56 57 52 59 65 78 73 19 53 28 67 72 80 

17 22 56 57 52 59 65 78 73 19 53 28 67 72 80 

17 22 56 57 52 59 65 28 73 19 53 67 72 78 80 

17 22 56 57 52 59 65 28 73 19 53 67 72 78 80 

17 22 56 57 52 59 65 28 53 19 67 72 73 78 80 

17 22 56 57 52 59 65 28 53 19 67 72 73 78 80 

17 19 22 57 52 59 65 28 53 56 67 72 73 78 80 

17 19 22 56 52 59 65 28 53 57 67 72 73 78 80 

17 19 22 52 56 59 65 28 53 57 67 72 73 78 80 

17 19 22 52 56 53 65 28 57 59 67 72 73 78 80 

17 19 22 52 53 56 65 28 57 59 67 72 73 78 80 

17 19 22 52 53 56 28 57 59 65 67 72 73 78 80 

Figure 1: BCIS Example

4. Analysis of The Proposed Algorithm

The complexity of the proposed algorithm mainly depends
on the complexity of insertion functions which is in turn de-
pends on the number of inserted elements in each function dur-
ing each sorting trip. To explain how the performance of BCIS
depends on the number of inserted element per each sort trip,
several assumptions are presented which revealed theoretical
analysis very close to experiential results that we obtained.

In order to simplify the analysis, we will concentrate on the
main parts of the algorithm. Assume that during each sort trip
(k) elements are inserted into both sides, each side get k/2.
Whereas insertion functions work exactly like standard inser-
tion sort. Consequently, time complexity of each sort trip equal
to the sum of the left and right insertion function cost which
is equal to Tis(k/2) for each function, in addition to the cost of
scanning of the remaining elements (not inserted elements). We
can express this idea as follows :-

T (n) = Tis(
k
2

) + Tis(
k
2

) + 2(n − k)

+ Tis(
k
2

) + Tis(
k
2

) + 2(n − 2k)

+ Tis(
k
2

) + Tis(
k
2

) + 2(n − 3k)

+ · · · + Tis(
k
2

) + Tis(
k
2

) + 2(n − ik)

BCIS stops when n − ik = 0 =⇒ i = n
k

T (n) =
n
k

[
Tis(

k
2

) + Tis(
k
2

)
]

+

n
k∑

i=1

(n − ik) (1)

=
n
k

[
Tis(

k
2

) + Tis(
k
2

)
]

+
n2

k
− n

=
n
k

[
Tis(

k
2

) + Tis(
k
2

) + n
]
− n (2)

Equation (2) represents a general form of growth function,
it shows that the complexity of the proposed algorithm mainly
depends on the value of k and the complexity of insertion func-
tions.

4.1. Average Case Analysis

The average case of classical insertion sort Tis(n) that ap-
peared in equation (2) has been well analyzed in terms of com-
parisons in [28, 21] and in [21] for assignments. However,
authors of the cited works presented the following equations
which represent the average case analysis for classical insertion
sort for comparisons and assignments respectively.

Tisc(n) =
n2

4
+

3n
4
− 1 (3)

Tisa(n) =
n2

4
+

7n
4

+ 3 (4)

The equations (3 & 4) show that the insertion sort has ap-
proximately equal number of comparisons (Tisc(n)) and assign-
ments (Tisa(n)). However, for BCIS, it is assumed that in each
sort trip k elements are inserted into both side. Therefore, the
main while loop executes n/k times that represent the number
of sort trips. Suppose each insertion function get k/2 elements
where 2 ≤ k ≤ n. Since both insertion functions (INSLEFT,
INSRIGHT) exactly work as a standard insertion sort, so the
average case for each function during each sort trip is .

Comp.#/S ortTrip/Function = Tisc(
k
2

)

=
k2

16
+

3k
8
− 1 (5)

BCIS performs one extra assignment operation to move the
element that neighbored to the sorted section before calling
each insertion function. Considering this cost we obtained as
follows: -

Assig.#/S ortTrip/Function = Tisa(
k
2

) + 1

=
k2

16
+

7k
8

+ 4 (6)
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In order to compute BCIS comparisons complexity, we
substituted equation (5) in equation (2) and we obtained as
follows:-

Tc(n) =
n
k

[
k2

8
+

3k
4
− 2 + n

]
− n (7)

Equation (7) shows that when k gets small value the algo-
rithm performance goes close to O(n2). For k = 2 the growth
function is shown below.

Tc(n) =
n
2

[
4
8

+
3
2
− 2 + n

]
− n

=
n2

2
− n (8)

When k gets large value also the complexity of BCIS goes
close to O(n2). For k=n the complexity is:-

Tc(n) =
n
n

[
n2

8
+

3n
4
− 2 + n

]
− n

=
n2

8
+

3n
4
− 2 (9)

Hence, the approximate best performance of the average case
for BCIS that could be obtained when k = n0.5 as follows:-

Tc(n) =
n

n0.5

[
n
8

+
3n0.5

4
− 2 + n

]
− n

=
9n1.5

8
−

n
4
− 2n0.5 (10)

Equation(10) computes the number of comparisons of BCIS
when runs in the best performance of the average case. On other
hand, to compute the the number of assignments for BCIS in
case of best performance of average case. Since assignments
operations occur only in insertions functions, equation (6) is
multiplied by two because there are two insertion functions,
then the result is multiplied by the number of sort trip n

k . When
k = n0.5 we got as follows:

Ta(n) =
n

n0.5

[
n
8

+
7n0.5

4
+ 8

]
=

n1.5

8
+

7n
4

+ 8n0.5 (11)

The comparison of equation (10) with equation (11) proves
that the number of assignments less than the number of compar-
isons in BCIS. As we mentioned previously in equations(3 &
4), IS has approximately equal number of comparisons and as-
signments. This property makes BCIS runs faster than IS even
when they have close number of comparisons.

Hence, we wrote the code section in statements (13-20) to
optimize the performance of BCIS by keeping k close to n0.5

as possible. This code segment is based on the idea that en-
sures at least a set of length (S R − S L)0.5 not to be inserted
during the current sort trip (where sort trip size = SR-SL). This
idea realized by scanning this set looking for the minimum and

maximum element and replace them with LC and RC respec-
tively. However, this code does not add extra cost for the per-
formance of the algorithm because the current sort trip will start
where the loop in statement (14 ) has finished (sort trip will start
at (S R − S L)0.5 + 1). Theoretical results have been compared
with experimental results in section-5 and BCIS showed per-
formance close to the best performance of average case that
explained above.

In the rest part of this section, instruction level analysis of
BCIS is presented. We re-analyze the algorithm for average
case by applying above assumption to get more detailed anal-
ysis. However, the cost of each instruction is demonstrated as
comment in the pseudo code of the algorithm, we do not ex-
plicitly calculate the cost of the loop in statement (14), because
it is implicitly calculated with the cost of not inserted elements
inside the loop started in statement (25). Code segment within
statements (13-20) activates for sort trip size greater than 100
elements only. Otherwise, sort trip index i starts from the ele-
ment next to SL (statement 22).

The total number of comparisons for each insertion function
is calculated by equation(5) multiplied by the number of sort
trip (n/k) as following:-

n
k

(
k2

16
+

3k
8
− 1

)
=

nk
16

+
3n
8
−

n
k

(12)

The Complexity of the check equality function ISEQUAL is
neglected because if statement at (5) rarely gets true. The total
complexity of BCIS is calculated as following:-

Algorithm BCIS Average case analysis Part 1
1: S L← le f t . C1
2: S R← right . C2
3: while S L < S R do . C3( n

k + 1)
4: SWAP(array, S R, S L +

(S R−S L)
2 ) . C4( n

k )
5: if array[S L]= array[S R] then . C5( n

k )
6: if ISDUP(array, S L, S R)=-1 then
7: return
8: end if
9: end if

10: if array[SL] > array[SR] then . C6( n
k )

11: SWAP (array, SL , SR)
12: end if
13: if (S R − S L) ≥ 100 then . C7( n

k )
14: for i← S L + 1 to (S R − S L)0.5 do
15: if array[SR] < array[i] then
16: SWAP (array, SR, i)
17: else if array[SL] > array[i] then
18: SWAP (array, SL, i)
19: end if
20: end for
21: else
22: i← S L + 1
23: end if
24: LC ← array[S L] . C8( n

k )
25: RC ← array[S R] . C9( n

k )
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Algorithm BCIS Average case analysis Part 2

26: while i < S R do . C10
∑ n

k
i=1(n − ik)

27: CurrItem← array[i] . C11
∑ n

k
i=1(n − ik)

28: if CurrItem ≥ RC then . C12
∑ n

k
i=1(n − ik)

29: array[i]← array[S R − 1] . C13( n
2 )

30: INS RIGHT (array,CurrItem, S R, right) . C14
( nk

16 + 3n
8 −

n
k )

31: S R← S R − 1 . C15( n
2 )

32: else if CurrItem ≤ LC then . C16
(
∑ n

k
i=1(n − ik) − n

2 )
33: array[i]← array[S L + 1] . C17( n

2 )
34: INS LEFT (array,CurrItem, S L, le f t) . C14

( nk
16 + 3n

8 −
n
k )

35: S L← S L + 1 . C18( n
2 )

36: i← i + 1 . C19( n
2 )

37: else
38: i← i + 1 . C20(

∑ n
k
i=1(n − ik) − n)

39: end if
40: end while
41: S L← S L + 1 . C19( n

k )
42: S R← S R − 1 . C19( n

k )
43: end while

T (n) = C1 + C2 + C3

+ (C3 + C4 + C5 + C6 + C7 + C8 + C21 + C22)
n
k

+ (C10 + C11 + C12 + C16 + C20)

n
k∑

i=1

(n − ik)

+ (C13 + C15 −C16 + C17 + C18 + C19)
n
k

+ C14 ∗ 2
(

nk
16

+
3n
8
−

n
k

)
−C20n

a = (C3 + C4 + C5 + C6 + C7 + C8 + C21 + C22)
b = C14
c = (C10 + C11 + C12 + C16 + C20)
d = (C13 + C15 −C16 + C17 + C18 + C19)
e = C20
f = (C1 + C2 + C3)

T (n) = a
n
k

+ b
(

nk
8

+
3n
4
−

n
k

)
+ c

n
k∑

i=1

(n − ik)

+ d
n
2
− en + f

= a
n
k

+ b
(

nk
8

+
3n
4
−

n
k

)
+ c

(
n2

2k
−

n
2

)
+ d

n
2
− en + f

=
n
k

[
a + b

(
k
8

+
3k
4
− 2

)
+ c

n
2

]
− c

n
2

+ d
n
2
− en + f (13)

We notice that equation (13) is similar to equation (7) when
constants represent instructions cost.

4.2. Best Case Analysis

The best case occurs in case of every element is placed in its
final correct position consuming a limited and constant num-
ber of comparisons and shift operations at one sort trip. These
conditions are available once the first sort trip starts while the
RC and LC are holding the largest and second largest item in
the array respectively, and all other elements are already sorted.
The following example in Figure(2) explains this best case (the
element 15 will replaced with 7 by the statement 4).

 14 1 2 3 4 5 6 15 8 9 10 11 12 13 7 

Figure 2: Best case example for array less than 100 elements

For this best case, we note that all insertions will be in the
left side only with one shifting operation per each insertion.
That means the cost of insertion each item is O(1). Therefor,
the total cost of the left insertion function is Tis(n) = n. Also
all elements will inserted in one sort trip so that k = n .These
values is substituted in equation(1) as follows:-

T (n) =
n
k

[Tis(n)] +

n
k∑

i=1

(n − ik)

where k = n

T (n) =n (14)

Hence, the best case of BCIS is O (n) for n < 100. Otherwise,
(for n ≥ 100) the loop started in statement (14) always prevents
this best case occurred because it only put LC and RC in their
correct position and disallow insertions during all sort trips. As
result, the loop in statement (14) forces the algorithm running
very slow on already sorted or revers sorted array.

Generally, already sorted and reverse sorted arrays are more
common in practice if compared with the above best case ex-
ample. Therefore, statement (4) has been added to enhance the
performance of best case and worst case when BCIS run on
sorted and revers sorted arrays. In case of already sorted array,
this statement makes the BCIS, during each sort trip, inserts
half of (SR-SL) in least cost.

The following example in Figure (3) explains how BCIS runs
on already sorted array. For simplicity not inserted elements are
not represented in each sort trip during the demonstration of this
example.
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Original array. 

Statement 4. 

1st sort trip. 

Insertions started. 

 

 Statement 4. 

2nd sort trip.  

Insertions started. 

 

 

Statement 10, no swap. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 16 10 11 12 13 14 15 9 

1 2 3 4 5 6 7 8 16 10 11 12 13 14 15 9 

1 2 3 4 5 6 7 8 15 10 11 12 13 14 9 16 

1 2 3 4 5 6 7 8 14 10 11 12 13 9 15 16 

1 2 3 4 5 6 7 8 13 10 11 12 9 14 15 16 

1 2 3 4 5 6 7 8 12 10 11 9 13 14 15 16 

1 2 3 4 5 6 7 8 11 10 9 12 13 14 15 16 

1 2 3 4 5 6 7 8 10 9 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 8 6 7 5 9 10 11 12 13 14 15 16 

1 2 3 4 7 6 5 8 9 10 11 12 13 14 15 16 

1 2 3 4 6 5 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 3: Example of running BCIS on already sorted array

For already sorted array, BCIS scans the first half consuming
two comparisons per item (no insertions), then inserts the sec-
ond half of each sort trip consuming two comparisons per item
too. Because the sort trip size is repeatedly halved. Hence, it
can represent as following.

T (n) =

(
2

n
2

+ 2
n
2

)
+

(
2

n
4

+ 2
n
4

)
+

(
2

n
8

+ 2
n
8

)
+ ..... +

(
2

n
2i + 2

n
2i

)
stop when 2i = n =⇒ i = log n

T (n) =

log n∑
i=1

(2
n
2i + 2

n
2i ) = 4n (15)

Equations (14 & 15) represent the best case growth functions
of BCIS when run on array size less than 100 and greater than
and equal to 100 respectively.

4.3. Worst Case Analysis

The worst case happens only if all elements are inserted in
one side in reverse manner during the first sort trip. This con-
dition provided when the RC and LC are the largest and second
largest numbers in the array respectively, and all other items
are sorted in reverse order. The insertion will be in the left side
only. The following example in Figure(4) explains this worst
case when n < 100.

 
 

 
14 13 12 11 10 9 8 15 6 5 4 3 2 1 7 

Figure 4: Worst case example for array less than 100 elements

Since each element in the this example inserted reversely, the
complexity of left insertion function for each sort trip equal to
Tis(n) =

n(n−1)
2 . Also there is one sort trip so k = n, by substitute

these values in equation(1) as follows :-

T (n) =
n
k

[Tis(n)] +

n
k∑

i=1

(n − ik)

where k = n

T (n) =
n(n − 1)

2
(16)

Hence, the worst case of BCIS is O(n2) for n < 100 . Like-
wise the situation in the best case, the loop in statement (14)
prevent the worst case happen because LC will not take the
second largest item in the array. Consequently, the worst case
of BCIS would be when it runs on reversely sorted array for
n ≥ 100. The following example explains the behaver of the
BCIS on such arrays even the size of array less than 100.

 
Original array. Statement 4. Statement 11, swap. 
1st sort trip. 
Insertions started. 
 

 
Statement 4  
Statement 11, swap 
2nd sort trip 
insertions begins 

 
No change required 

 
 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
16 15 14 13 12 11 10 9 1 7 6 5 4 3 2 8 
16 15 14 13 12 11 10 9 1 7 6 5 4 3 2 8 
8 15 14 13 12 11 10 9 1 7 6 5 4 3 2 16 
1 8 14 13 12 11 10 9 15 7 6 5 4 3 2 16 
1 7 8 13 12 11 10 9 15 14 6 5 4 3 2 16 
1 6 7 8 12 11 10 9 15 14 13 5 4 3 2 16 
1 5 6 7 8 11 10 9 15 14 13 12 4 3 2 16 
1 4 5 6 7 8 10 9 15 14 13 12 11 3 2 16 
1 3 4 5 6 7 8 9 15 14 13 12 11 10 2 16 
1 2 3 4 5 6 7 8 15 14 13 12 11 10 9 16 

1 2 3 4 5 6 7 8 15 14 13 9 11 10 12 16 
1 2 3 4 5 6 7 8 12 14 13 9 11 10 15 16 
1 2 3 4 5 6 7 8 12 14 13 9 11 10 15 16 
1 2 3 4 5 6 7 8 9 12 13 14 11 10 15 16 
1 2 3 4 5 6 7 8 9 11 12 14 13 10 15 16 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 5: Example of running BCIS on reversely sorted array

In case of reversely sorted array, BCIS does not insert the
first half of the scanned elements, cost two comparisons per
each element, then insert the second half reversely for each sort
trip approximately. Considering the cost of reverse insertion
(for each sort trip) is Tis(k) =

k(k−1)
2 where k halved repeatedly.

Like already sorted array analysis, the complexity of BCIS can
be represented as follows.

T (n) =

2n
2

+
( n

2 )2 − n
2

2

 +

2n
4

+
( n

4 )2 − n
4

2


+

2n
8

+
( n

8 )2 − n
8

2

 + ........

+

2 n
2i +

( n
2i )2 − n

2i

2


stop when 2i = n =⇒ i = log n

T (n) =

i=log n∑
i=1

2 n
2i +

( n
2i )2 − n

2i

2


=

n2

6
+

3n
2

(17)

Equations (16 & 17) represent the worst case growth func-
tions of BCIS when run on array size less than 100 and greater
than and equal to 100 respectively.
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5. Results and comparison with other algorithms

The proposed algorithm is implemented by C++ using Net-
Beans 8.0.2 IDE based on Cygwin compiler. The measurements
are taken on a 2.1 GHz Intel Core i7 processor with 6 GB 1067
MHz DDR3 memory machine with windows platform. Exper-
imental test has been done on an empirical data (integer num-
bers) that generated randomly using a C++ class called uni-
form int distribution. This class generates specified ranged of
random integer numbers with uniform distribution[10].

5.1. BCIS and classical insertion sort

Figure 6 explains the average number of comparisons and
assignments (Y axis) for BCIS and IS with different list size
(X axis). The figure has been plotted using equations (3,4,10
& 11). This figure explains that the number of comparisons
and assignments of IS are approximately equal . In contrast,
in BCIS the number of assignments are less than the number of
comparisons. This feature show the better performance of BCIS
and support our claim that BCIS has less memory read/write
operations when compared with IS.
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Figure 6: No. of comparisons and assignments for BCIS and IS

Though the theoretical average analysis for BCIS and IS is
calculated in term of the number of comparisons and assign-
ments separately in equations (3,4,10 & 11). In order to com-
pare the results of these equations with experimental results of
BCIS and IS which are measured by execution elapsed time,
we represent these quantities as a theoretical and experimental
ratio of BCIS

IS . In theoretical ratio we assumed that the cost of an
operation of comparison and assignment is equal in both algo-
rithms. Therefor, equation (3) has been added to equation(4) to
compute the total cost of IS (IS total). Similarly, the total cost of
BCIS (BCIS total) is the result of add equation (10) to equation
(11).

Figure(7) illustrates a comparison in performance of the pro-
posed algorithm BCIS and IS. This comparison has been rep-
resented in terms of the ratio BCIS/IS (Y axis) that required to

sort a list of random data for some list sizes (X axis). Theoret-
ically, this ratio is equal to( BCIS total

IS total
) . In opposition, the exper-

imental ratio computed by divide BCIS time over IS time, when
these parameters represent experimental elapsed running time
of BCIS and IS respectively.

In the experimental BCIS time
IS time

ratio, we noticed that the pro-
posed algorithm has roughly equal performance when com-
pared to classical insertion sort for list size less than 50
( BCIS time

IS time
= 1). However, the performance of BCIS increased for

larger list size noticeably. The time required to sort the same
size of list using BCIS begin in 70% then inclined to 4% of that
consumed by classical insertion sort for list size up to 10000.
Figure (8) explains the same ratio for n¿10000. This figure
shows that BCIS t ime

IS t ime is decreased when the list size increased.
For instance for the size 3,643,076 the experimental ratio equal
to 0.00128 that means BCIS 781 times faster than IS.

In conclusion, Figures (7& 8) show that the theoretical an
experimental ratio are very close especially for large size lists.
This means BCIS go close to the best performance of average
case for large size lists.
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5.2. BCIS and Quicksort

5.2.1. BCIS and Quicksort comparison for no duplicated-
elements data set

Figure (9) explains a comparison in experimental perfor-
mance of the proposed algorithm BCIS and Quicksort for small
size lists. Widely used enhanced version of Quicksort (median-
of-three pivots) is used, which is proposed by [30]. This com-
parison has been represented in terms of the experimental ratio

BCIS time
QuickS orttime

(Y axis) that required to sort a list with random data
for some list sizes (X axis). We remarked that BCIS is faster
than Quicksort for list size less than 1500 for most cases. The
time required to sort the same size of list using BCIS ranged be-
tween 30% and 90% of that consumed by Quicksort when list
size less than 1500.

Although theoretical analysis in all previous cited works that
have been explained in literature (section-1) show that Quick-
Sort has more efficient comparison complexity than BCIS. But
experimentally BCIS defeats QuickSort for relatively small ar-
ray size for some reasons. First the low number of assign-
ment operations in BCIS, second an assignment operation has
lower cost if compared with swap operation that used in Quick-
Sort, whereas each swap operation requires three assignments
to done. Finally, due to the nature of the cache memory
architecture[18], BCIS uses cache memory efficiently because
shifting operations only access to the adjacent memory loca-
tions while swap operations in QuickSort access memory ran-
domly. Therefore, QuickSort cannot efficiently invest the re-
markable speed gain that is provided by the cache memory.
However, Figure (10) shows experimental BCIS time

QuickS orttime
ratio for

array size greater than 2000 and less than 4,500,000.
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Figure 9: BCIS and Quick Sort performance n < 2000

5.2.2. BCIS and Quicksort comparison for high rate of dupli-
cated elements data set

Experimental test showed that BCIS faster than Quicksort
when running on data set has high rate of duplicated elements
even for large list size. Figure (11) explains the experimental ra-
tio BCIS

Quicksort when the used array has only 50 different elements.
The computer randomly duplicates the same 50 elements for ar-
rays that have size greater than 50. This figure shows that BCIS
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Figure 10: BCIS/Quicksort for n > 2000

consumes only 50% to 90% of the time consumed by Quicksort
when run on high rate of duplicated elements array. This vari-
ation in ratio is due to the random selection of LC and RC dur-
ing each sort trip. The main factor that make BCIS faster than
Quicksort for such type of array is that there a small number
of assignments and comparisons operations if there are many
numbers equal to LC or RC in each sort trip. This case could
occur with high probability when there is high rate of duplicated
elements in array.
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Figure 11: experimental BCIS/Quicksort ratio for 50 duplicated elements

6. Conclusions

In this paper we have proposed a new bidirectional condi-
tional insertion sort. The performance of the proposed algo-
rithm has significant enhancement over classical insertion sort.
As above shown results prove. BCIS has average case about
n1.5 . Also BCIS keeps the fast performance of the best case of
classical insertion sort when runs on already sorted array. Since
BCIS time complexity is (4n) over that array. Moreover, the
worst case of BCIS is better than IS whereas BCIS consumes
only n2

6 comparisons with reverse sorted array.
The other advantage of BCIS is that algorithm is faster than

Quicksort for relatively small size arrays (up to 1500). This fea-
ture does not make BCIS the best solution for relatively small
size arrays only. But it makes BCIS powerful interested algo-
rithm to use in conjugate with quick sort. The performance of

9



the sorting process for large size array could be increased using
hybrid algorithms approach by using Quicksort and BCIS. Ad-
ditionally, above results shown that BCIS is faster than quick
sort for arrays that have high rate of duplicated elements even
for large size arrays. Moreover, for fully duplicated elements
array, BCIS indicates fast performance as it can sort such array
in only O(n).
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