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Abstract

In the Cloud Computing market, a significant number of cloud providers offer Infrastructure as a Service (IaaS),
including the capability of deploying virtual machines of many different types. The deployment of a service in a public
provider generates a cost derived from the rental of the allocated virtual machines. In this paper we present LLOOVIA
(Load Level based OpimizatiOn for VIrtual machine Allocation), an optimization technique designed for the optimal
allocation of the virtual machines required by a service, in order to minimize its cost, while guaranteeing the required
level of performance. LLOOVIA considers virtual machine types, different kinds of limits imposed by providers, and
two price schemas for virtual machines: reserved and on-demand. LLOOVIA, which can be used with multi-cloud
environments, provides two types of solutions: (1) the optimal solution and (2) the approximated solution based on a
novel approach that uses binning applied on histograms of load levels. An extensive set of experiments has shown that
when the size of the problem is huge, the approximated solution is calculated in a much shorter time and is very close to
the optimal one. The technique presented has been applied to a set of case studies, based on the Wikipedia workload.
These cases demonstrate that LLOOVIA can handle problems in which hundreds of virtual machines of many different
types, multiple providers, and different kinds of limits are used.
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1. Introduction

Cloud Computing is a well established industry ori-
ented to providing computing and storage resources to
support information technology services and applications.
Especially in the case of on-line services, which usually ex-
perience significant variations in their workload patterns,
Cloud Computing can provide the required flexibility in
resource provisioning to deploy fast and cost effective so-
lutions.

The Cloud Computing market is currently operated
by a significant number of companies, which are known as
public providers, because they offer their services to the
public in general. Notable examples of public providers
are Amazon Web Services (AWS) [1], Microsoft Azure [2]
and Google Cloud Platform [3].

The deployment of a service in a public provider is al-
ways supported by a group of virtual machines (VMs),
which host the required software for the service, and
are deployed on the virtualization infrastructure of the
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provider. The offer of VMs by a provider is usually known
as Infrastructure as a Service (IaaS). VMs can be deployed
using different combinations of computational resources
(such as virtual cores, memory, etc.), which are frequently
referred to as VM types. For example, Microsoft Azure
offers VM types such as the Standard D1 (providing 1
vCore and 3.5 GB of memory) and the Standard D4 (with
8 vCores and 28 GB of memory). Each VM type has an es-
tablished price per hour and can reach a determined level
of performance for a given application.

With regard to pricing, two categories of VMs can be
considered: on-demand VMs and reserved VMs. The on-
demand category, which is offered by all public providers,
implies that the user is only charged for the time the VM is
running. The reserved category is only supplied by some
public providers, such as Amazon EC2. Reserved VMs
establish a commitment between the user and the provider.
The user agrees to pay for the VM for a fixed term (a year,
for example), regardless of whether the VM is used or not.
As a compensation, the user obtains a significant discount
from the provider. The impact of using reserved VMs in
the cost of a service may be significant, so they should
be included as a possible alternative in the design of new
services.

A crucial aspect of a service design is the definition of
an allocation strategy for the VMs required to support the
service workload. To introduce the VM allocation prob-
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Figure 1: Example of workload evolution of a service and VM allo-
cations to support the workload

lem, a simple example, shown in Fig. 1, is used. The thick
line depicted in the figure represents the workload evolu-
tion of a service, measured, for instance, in requests per
second. As can be seen in the figure, the workload reaches
six different levels. In order to provide the required sup-
port for this workload, the service designer must define a
suitable allocation strategy for the VMs used in the imple-
mentation of the service. As shown in Fig. 1, in each time
slot ti, the allocation strategy must provide an allocation
Ai suitable for the workload level in that time slot. The
allocation Ai represents the number and types of the VMs
to be deployed at the corresponding time slot, as well as
the providers in which the VMs are deployed. A usual
objective for the allocation strategy is to provide the re-
quired computational power for the service in each time
slot, minimizing the cost.

In order to produce the allocation depicted in Fig. 1, a
possible solution would be to calculate each allocation Ai

on-line, by applying the allocation strategy at regular time
slots. In this way, suitable allocations would be generated
periodically during the operation of the service. This type
of allocation strategy is only appropriate when only on-
demand VMs are used, because machines can be started
and stopped as required, and the user is only charged when
the machines are in execution. However, this strategy lacks
the economic benefits that might be provided by reserved
VMs.

In order to take advantage of reserved VMs, other con-
siderations must be taken into account. Reserved VMs
are made available to users for long periods: one or three
years in the case of Amazon EC2 [4]. From an economic
perspective, reserved VMs are profitable when they are
in execution doing useful work for a major part of their
reservation period. Analyzing Fig. 1, several workload
levels can be observed. Considering the interval between
t0 and t10 as the reservation period, Level 1 is present for
90% of the time of this period (only in the interval be-
tween instants t5 and t6 this level is not present), Level 2
is present for 70% of the time, Level 3, for 50%, and so
on. Intuitively it is easy to see that reserved VMs would
definitively be profitable when they are used to support
Level 1 of the workload, and with high probability in the

case of Level 2. However, in the case of the workload lev-
els that occupy less time in the reservation period (Levels
3, 4, and so on), the possibility of obtaining profitability
with the use of reserved VMs is lower, because of the cost
of overprovisioning. These workload levels would probably
be better supported by on-demand VMs. From a general
point of view, for a long-running on-line service, a suitable
combination of on-demand and reserved VMs will generate
the most profitable VM allocation.

In order to use reserved VMs, a major problem to be
solved by an allocation strategy is the management of a
workload prediction for the whole reservation period, as
well as the calculation of an allocation for each time slot
of this period. If we consider a reservation period of one
year and a time slot of one hour, 8760 allocations must be
calculated, which implies solving a huge allocation prob-
lem.

Two other factors complicate the allocation strategy
even more: (1) the enormous number of VM types offered
in a multi-cloud environment, and (2) the limits imposed
by providers on the VMs running within a site (region or
availability zone). With regard to (1), it must be pointed
out that each public provider supplies dozens of VM types,
each one of them with a different price and level of perfor-
mance, and belonging to a different category (reserved or
on-demand); so the solution space to be explored by the
allocation strategy may be enormous. In relation to (2),
limits impose constrains on the allocation strategy, mak-
ing the obtaining of a solution more difficult. Limits are
defined in different forms such as the maximum number
of reserved VMs that can be launched in an availability
zone (20, in the case of Amazon EC2 [5]), or the maxi-
mum number of virtual cores to be used in a region (20,
as established by Azure [6]).

When multiple providers, VM types and limits exist,
finding which levels of workload should be supported by
reserved VMs and which others should be supported by on-
demand ones is a complex task. In this paper, we present
LLOOVIA (Load Level based OptimizatiOn for VIrtual
machine Allocation), an allocation strategy to determine
the optimal allocation of the VMs required by a service in
a multi-cloud environment. LLOOVIA is formulated as an
optimization problem that takes the level of performance
to be reached by the service as input and generates a VM
allocation as output. The calculated allocation minimizes
the service cost, guaranteeing the required performance for
the service, and complying with the limits imposed by the
provider.

LLOOVIA is designed to be applied in two different
timeframes, one of them corresponding to the long term,
and the other, to the short term. In the long-term pe-
riod, the optimal allocation of reserved VMs is determined.
Then, for each short-term period, the optimal allocation
of on-demand VMs (which are required to supplement
the computing capacity provided by the reserved VMs)
is calculated. The long-term and the short-term alloca-
tion strategies could be executed by a scheduler, whose
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implementation in not considered in this paper. The long-
term strategy is executed off-line, for example, before the
start-up of a service, or when a new reservation period
begins. The short-term one is executed on-line at regular
time intervals, for example, in periods of one hour, coin-
ciding with the billing period of some important providers,
such as Amazon EC2 [7].

LLOOVIA provides the following main contributions:

• To the best of our knowledge, LLOOVIA is the first
allocation strategy that takes into account the fol-
lowing three aspects simultaneously:

1. Using as input a service workload expressed in
a common performance metric, such as requests
per second, in contrast to other works that ex-
press the workload directly as the number of
required VMs ([8], [9], [10], [11] or [12]).

2. Managing an allocation space made up of any
number of VM types, supplied by any num-
ber of cloud providers, and considering regions,
availability zones and different kinds of limits
within providers.

3. Generating a VM allocation for a whole reser-
vation period, distributing the allocation in reg-
ular time slots.

• Two types of solutions are provided:

1. The optimal solution based on a novel approach
that uses histograms of load levels.

2. An approximated solution that groups load lev-
els in bins to compute the histogram. Using this
approximation, the size of the problem may be
significantly reduced, and a solution for the al-
location strategy may be obtained in a much
shorter time.

LLOOVIA is implemented as a Python module, which
is provided in the supplementary material. Likewise, the
data and the implementation of all the case studies pre-
sented in this paper are also provided, facilitating the re-
peatability of this research. LLOOVIA has been tested us-
ing real workloads encompassing a whole year, as is shown
in the case studies based on real traces from Wikipedia.

LLOOVIA has the following limitations:

• Variable prices for the VM types are not considered
for the long-term, that is, the prices of VM types
remain constant during the whole period for which
the long-term allocation strategy is applied.

• The service (or component of a service) to be al-
located with LLOOVIA must be considered as per-
fectly parallelizable, with infinite horizontal scalabil-
ity. Therefore, it must be composed of an arbitrary
number of identical tasks running on a mix of VM
types. This architecture perfectly matches with a

stateless component of a service (such as the stateless
web server component of an on-line service), which
is a common element in cloud computing patterns
[13].

The rest of this paper is organized as follows. Section 2
discusses the related work. In section 3, the model for the
cloud environment and the proposed solution for the allo-
cation strategy are explained, while section 4 explains the
methodology to use the strategy using a synthetic exam-
ple. Section 5 presents a set of experimental case studies
that show the benefits of the proposed approach. Finally,
Section 6 provides the main conclusions of the paper.

2. Related work

Cloud Computing has evolved quickly in recent years
and in that time it has developed broadly [14]. As a result,
the number of technical works in the literature is vast.
The problem considered in our paper is related to IaaS,
one of the fastest growing fields in Cloud Computing. In
[15] the authors present a survey on this subject and the
open challenges in resource management. Within the IaaS
field our paper focuses on an optimization problem of the
cloud resources, while taking into account the three factors
indicated below.

1. Our optimization problem is analyzed from the cloud
service user’s perspective, rather than the provider’s
point of view. A broad coverage of the cloud service
user’s perspective can be found in [16].

2. In the optimization problem considered in our work,
the characteristics of the cloud application are known
and the analysis is focused on obtaining the best al-
location of VMs in the cloud providers. Several ap-
proaches to solve this kind of problem are analyzed in
[17]. A different strategy, not considered in our work,
would consist of analyzing the profile and character-
istics of the cloud applications in order to find the
resources required. A survey on this type of strategy
can be found in [18].

3. Our optimization problem considers economic cost
as the objective in the optimization analysis. Other
works use other requeriments as the objectives of
their optimization problems, such as task execu-
tion time, resource utilization, energy consumption
or availability. When more than one requirement
must be met simultaneously the multi-criteria anal-
ysis must be used, as explained in [19] and [20]. Some
examples where this kind of analysis is used for VM
allocation are [21], [22] or [23].

The optimization problem treated in our paper focuses
on cost, while guaranteeing the fulfillment of performance
requirements. Cost is one of the most important factors
from the user’s perspective. This factor is complex enough
because in the cloud market it is possible to find many
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cloud providers who offer different types of VM both in
performance and price. Furthermore, there are several
types of pricing policies and discounts. All these factors
make it difficult for the user to find the most cost-effective
VM selection and allocation.

In the literature, there are several papers that approach
the optimization problem of VM allocation in a similar way
to our paper, considering also the three factors indicated
above. These papers are enumerated in Table 1. This
table also classifies and compares the related works with
the work done in our paper. The aspects considered are
the following:

• Multi-cloud. Whether the method can be applied to
several cloud providers simultaneously.

• Richness of the proposed method. This topic in-
volves the following elements: whether the method
can support different types of applications all of them
with different resource requirements; whether the
method can manage different VM types, or it is lim-
ited to a unique type; whether the method considers
limits imposed by the cloud provider; and finally,
whether the method supports reserved VMs in addi-
tion to on-demand ones.

• Optimality of the result obtained. This aspect indi-
cates whether the method provides the optimal num-
ber of reserved and/or on-demand VMs needed.

• When the analysis is carried out. Whether the
method is applied before the execution of the real
workload (offline analysis) or while the real workload
is being served (on-line analysis).

• Workload. How the workload is expressed, and
whether the method has been validated using real
workloads, and if so what their extension was.

In Table 1 a black circle means that the work fulfills the
corresponding characteristic, a white circle that it misses
it and a half-filled circle that the characteristic is partially
supported. Finally, the papers in Table 1 are organized in
two groups according to the kind of workload they con-
sider.

The first group of papers analyzed ([8], [9], [10], [11]
and [12]) represents the workload as the number of VMs
requested in each period. In transactional applications, in
which the workload is typically represented in requests per
second, the approach of these works solves only part of the
problem, namely, to find the optimal allocation of VMs to
providers. However, this approach does not address the
issue of determining the appropriate type and number of
VMs. This issue in itself is another optimization problem
and the works in this group do not explain how to solve it,
so it is left to the analyst. In addition, if both optimization
problems are solved separately, the final solution might not
be globally optimal.

In [8] the authors propose an optimal cloud resource
provisioning algorithm to minimize the total cost for pro-
visioning resources in a certain time period. The authors
consider the cost resulting from both reserved and on-
demand resources from multiple clouds. This model is
able to manage different types of cloud applications, as
long as each application uses the same VM type, that is,
one application can not be supported simultaneously by
different VM types. Also, in this model, the VMs are
specified as a set of resources: computational power, stor-
age, network bandwidth and electricity power, and in the
same way, each cloud provider is represented as a pool of
these resources. However, this is not the way in which
VMs are really purchased: they are leased from a discrete
set of configurations called VM types. The algorithm pro-
ceeds in two steps: in the first step a prediction of the
VM demand is calculated, in the second step the number
of reserved VMs to hire is obtained. In the algorithm the
authors refer to a realization phase, when the real demand
is applied. In this phase the real demand is compared with
the number of reserved VMs and if more VMs are needed
they are hired on-demand. However, in [8] it is not clear
how this process is carried out.

In [9], the authors extend their previous work by apply-
ing heuristics instead of stochastic integer programming,
in order to reduce the resolution time. In this new work
they also consider several reservation periods. It is a more
general model, but the previous shortcomings remain.

While the previously cited articles use mainly linear
programming and some approximations to solve the prob-
lem in a reasonable time, the following articles rely on
heuristics as a way to reach a solution. In [10] and [11],
the authors have carried out a similar work, and follow the
model described in [9]. In both cases they minimize the
cost of a resource placement in a cloud environment. They
consider reserved and on-demand price schemes, and both
solve the problem in two phases, one of them to obtain the
prediction of the VM demand, and the other to find the
reserved and the on-demand requirements. The VMs are
again specified as a set of resources, rather than VM types.
The main difference between [10] and [11] is the heuristic
used to carry out the optimization process, and how they
make the demand prediction.

The last related work where the workload is given as
number of requested VMs is [12]. In this work, the authors
apply a stochastic model based on Inventory Theory to
find the optimal combination of reserved and on-demand
VMs which minimizes the cost. Applying the stochastic
model, the authors find an equation to calculate the num-
ber of reserved VMs to be leased. From this expression,
they apply a heuristic process to find a purchase plan.
In [31] the author explains the developed model in more
depth. The main drawback of this model is that it is lim-
ited to only one VM type and cloud provider, and the
model does not consider any limit in the number of VMs
that can be hired.

The second group of papers analyzed in the Table 1
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Chaisiri 2009 [8]   G# G#   G#  G# G# N/A VMs
Chaisiri 2012 [9]   G# G#   G#  G# G# N/A VMs
Mark 2011 [10]   G# G#   G#  G# G# 5 months VMs
Yousefyan 2013 [11]   G# G#   G#  G# # — VMs
Nodari 2016 / 2015 [12] # # G# #  G# #  # G# one month VMs

Tordsson 2012 [24]  #  # # #  #   N/A Jobs
Lucas-Simarro 2013 [25]  #  # # #  #  # — Req/seg
Wang 2015 [26] # # # #  G#  #   one month Jobs/resources
Bellur 2014 [27]  # # #  G#  #   N/A Req/seg
Srirama 2014 [28]  #   # #  #   one week Req/seg
Nan 2012 [29]  #  #  #  #  # — Req/seg
Kavitha 2015 [30] # # # # # #  #  # — Subtasks
LLOOVIA  #         one year Req/seg

Table 1: Comparison of LLOOVIA with the most related papers. The black circle means that the characteristic is reached, a white circle
that it is not reached and a half-filled circle that it is partially supported.

represents a more common problem of cloud resource op-
timization. In this case, the workload is represented as a
request arrival rate which must be served using the allo-
cated VMs ([24], [25], [26], [27], [28], [29] and [30]).

Cost optimization of VM allocation has often been in-
cluded as part of a brokerage strategy. The cloud broker
is the intermediary between the cloud user and the cloud
provider, and depending on the workload requirements of
the users, it applies the optimization algorithm in order to
find the most cost-effective VM allocation in the provider.
In [24] the authors present an approach for a brokerage ser-
vice that optimizes the placement of VMs in a multi-cloud
scenario. The authors consider a static situation where
user and provider conditions do not change over time, so
they obtain the number of required on-line VMs. Their
model supports different VM types, but it is limited to
on-demand VMs.

A similar approach is considered in [25]. In this paper,
the authors modified the broker architecture in order to
work with different scheduling strategies for optimal de-
ployment, while considering different optimization criteria
and constraints. The developed model makes a dynamic
decision every sample period in order to manage changing
conditions, such as user requirements and cloud provider
prices. In this work, a special price schema offered by
Amazon and based on a bidding process, called spot price,
is considered.

In [26] the authors propose a cloud brokerage service

that aggregates the cloud user demands to take advantage
of cheaper prices of reserved VMs. The service serves the
cloud user demands with a pool of VMs that are either re-
served or launched on-demand. The aim is to minimize the
cost using as few on-demand VMs as possible. This work
is limited to one VM type and only one cloud provider.

In [27] the authors present a model that optimizes the
cost of a deployment of a multi-site application in a multi-
cloud environment. The model considers both reserved
and on-demand VMs and their price schemes. However,
it only uses one VM type in the analysis. As the linear
programming model is NP-complete a greedy algorithm
is used as heuristic to find the optimal solution. The
algorithm proceeds by merging sites on candidate cloud
providers that meet the Quality of Service (QoS) require-
ments. In this way, the algorithm aggregates resource re-
quirements and maximizes the total number of reserved
VMs.

In [28] the authors present a resource provisioning pol-
icy that can find an optimal cost setup. They consider
different types of VMs and their performance properties.
In their model, the authors take into account the lifetime
of each running VM, which makes it possible to make deci-
sions about changing the state of the VM according to the
workload conditions, switching on a new VM or turning it
off. The authors also introduce the problem of VM limits,
that is, the maximum number of VMs that can be hired
from a cloud provider. The model only applies those limits
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to on-demand analysis, since it does not consider reserved
VM types.

In [29] the authors study the VM allocation problem
for multimedia application providers. The providers aim
to minimize the resource cost while meeting the round
trip time (RTT) requirements. They propose two optimal
schemes for VM allocation for both single-site and multi-
site clouds. The optimal schemes are NP-hard, so for each
case they provide a greedy algorithm that finds a subop-
timal solution within a short time. In this work, both re-
served and on-demand prices schemes are considered, but
the number of reserved VMs is known and fixed at the
beginning of the algorithm. The algorithm only decides
how many of them are used. This is not a valid approach
because reserved VMs imply an initial cost, whether the
VMs are used or not.

Finally, in [30] the authors propose a hybrid optimiza-
tion algorithm for dynamic resource allocation in cloud
computing. The main characteristic of this work is that
it divides the task in several subtasks which are assigned
to different independent resources. For these resources, it
considers two costs: economic cost, related to cloud main-
tenance, and computational cost. The optimal cost is ob-
tained by combining two optimization algorithms. In this
paper, the only resources considered are on-demand VMs;
reserved VMs are disregarded.

There are other less related works, not shown in Ta-
ble 1, where cost is not the main objective to minimize, but
it is also important. In [32] the authors analyze how im-
provements in workload prediction influence cost. In [33],
the authors investigate how the allocation of distributed
tasks to VMs influences the execution time and the cost it
implies. Finally, auto-scaling algorithms are another ex-
ample where the main target is to manage the workload
variations efficiently, where cost is also considered. These
algorithms determine when new VMs should be leased de-
pending on the workload evolution ([34] and [35]). How-
ever, the auto-scaling problem is based on increasing or
decreasing the number of the same VM type, but it may
be more cost-effective to change the type of the VM used.

As can be seen in Table 1, LLOOVIA approaches the
cost optimization problem in a more complete way than
previous works: it can be used in multi-cloud environ-
ments; it takes into account how cloud providers support
different VM types and resource limits for reserved and
on-demand price schemes; and it is the only work of those
that express the workload as arrival rates that provides
both the optimal number of reserved and on-demand VMs.
Finally, LLOOVIA is the only strategy that has been eval-
uated with a real workload for a whole reservation period
of one year.

3. Model and resolution

3.1. Overview

The problem to solve is to find the optimal allocation
of VMs for each time slot of the next reservation period

(usually, the reservation period is one year and the time
slot is one hour). A feasible allocation is a set of numbers
stating the number of VMs of each type, in each cloud
provider and each region, which does not exceed the lim-
its imposed by the cloud provider, and that is capable of
giving enough performance to serve the load for each time
slot. An optimal allocation is a feasible allocation with
minimum cost.

To solve this problem two phases are required. In
Phase I, the optimal allocation of reserved VMs is found
(the optimal allocation of on-demand VMs is also found,
but it is discarded). This phase requires a prediction of
the load for each time slot in the next reservation pe-
riod. We call this the “Long-Term Workload Prediction”,
or LTWP. For this phase, it is assumed that the types
of VMs, and their characteristics and prices do not vary
during the reservation period. This phase requires solv-
ing a problem with a huge number of variables, so some
strategies to reduce the problem size are presented, such
as histogramming and binning.

In Phase II the number of reserved VMs is fixed (by the
result of Phase I) and the optimal number of on-demand
VMs is found. This phase requires solving a much smaller
problem and no special strategy to reduce its size is re-
quired. In addition, Phase II does not require a long-term
prediction, but only a prediction for the next time slot,
which will be much more accurate. We call this the “Short-
Term Workload Prediction”, or STWP. Since Phase II is
carried out at each time slot, independently from previous
time slots (except for the reserved VMs which are fixed),
there is no need to assume that the types, characteristics
or prices of the on-demand VMs are fixed; they can be
different for each time slot.

Note that Phase I introduces several sources of error
(such as inaccuracy of the LTWP, simplifications and ap-
proximations), which can cause the solution to be sub-
optimal. Hence, the result of both phases as a whole will
produce a solution which is also globally sub-optimal, al-
though Phase II will produce an optimal solution for each
time slot, for the number of reserved instances given by
Phase I.

Table 2 summarizes the key differences between the two
phases of the resolution. In the next section we formally
define the kind of information required by each phase. The
concepts and notation are the same for both phases, al-
though the particular values of the parameters, as well as
the formulation of each optimization problem can be dif-
ferent at each phase.

3.2. Architecture and pricing models

Cloud providers generally offer different types of vir-
tual machines in different regions. Some providers (eg.,
Amazon) have two pricing schemes for most of their VM
types: on-demand VMs, with a pay-per-use schema whose
cost is proportional to the time the VM is allocated, and
reserved VMs with a much lower price, but one that must

6



Phase I Phase II

When Offline
(before deploying)

Online
(real-time)

VM properties Fixed Could vary
VM prices Fixed Could vary
Reserved alloc. Unknown Given (by Phase I)

In
p
u
ts

On-demand alloc. Unknown Unknown
Load prediction Whole year

(LTWP)
Next hour
(STWP)

Output
Allocation for
reserved VMs

Allocation for
on-demand VMs

Challenges LTWP accuracy
NP-hard
Huge problem size

STWP accuracy
NP-hard

Simplifications Histogram
Binning

None

Table 2: Summary of characteristics of Phases I and II

be paid even if the machines are not allocated. The pay-
ment of the reserved VMs can be divided into an upfront
amount to be paid in advance, plus a periodic payment
(which does not depend on the usage of those VMs, as
said).

In addition, most cloud providers impose limits on the
total number of VMs or cores in use in each region or
availability zone. For example, Microsoft Azure imposes a
limit on the total number of cores per region, Amazon EC2
imposes a limit on the total number of on-demand VMs
per region, and a different limit on the total number of
reserved VMs per availability zone. We unify these kinds
of constraints with the concept of “Limiting Set”, to be
defined later. Furthermore, they also limit the maximum
number of VMs for each VM type. All these limits have
default values which can be increased (but not removed)
by negotiating with the cloud provider.

The service to be run on that infrastructure is consid-
ered to be perfectly parallelizable, with infinite horizontal
scalability. It is thus composed of an arbitrary number of
identical tasks running on a mix of VM types, some re-
served and some on-demand, across different regions and
zones.

The performance of each VM type depends on aspects
such as memory, number of cores, kind of processor, etc.
These different aspects are summarized in a single number
(e.g., transactions per second), which is the performance
of the service when running in that kind of VM. These
numbers can be determined by benchmarking or monitor-
ing, and are considered to be known in advance for our
model. Usually the performance of each VM type does
not depend on the region or zone in which it exists, but
our model does not require this assumption.

Next, we provide some formal definitions and notation
about these architectural concepts. Table 3 summarizes
this notation and the one used in Subsections 3.3 and 3.4.

• LSj denotes a Limiting Set, with j = 1, . . . , NLS.
Each VM type is deployed within a limiting set which
imposes a limit on the maximum number of VMs
and/or cores which can be running simultaneously
inside that set. This concept translates to differ-
ent terms in different cloud providers. For example,
for Amazon on-demand VMs, LSj are regions, while
for Amazon reserved VMs, LSj are availability zones
(which are inside a region) [36]. In both cases, the
limit is on the total number of VMs deployed in the
corresponding set. For Microsoft Azure, LSj are re-
gions, and the limit is on the number of cores.

Each LSj defines thus two limits: LSvms
j , which is

the maximum number of virtual machines which can
run simultaneously in LSj , and LScores

j , which is the
maximum number of CPU cores which can run si-
multaneously in LSj . Note that both kinds of lim-
its could be used simultaneously, but usually cloud
providers enforce only one of them. In this case we
can assume the other to be infinite.

• ICi denotes Instance Class i. This represents a
type of VM on a particular cloud provider and partic-
ular limiting set, under a particular pricing schema
(reserved or on-demand). An on-demand c4.large
on Amazon EC2, on region us-east-2, or a reserved
c4.large on Amazon EC2, on availability zone us-
east-1b are examples of different Instance Classes.
Each Instance Class defines the following attributes:

– pi is the price per time slot of the class. For
reserved VMs this price should include the up-
front payment prorated over the duration of the
reservation period, and the per-hour cost.

– perfi is the performance of that class under the
considered kind of load, and expressed in the
same units as the load. For example, if the load
is measured in “requests per second”, the per-
formance is the requests per second which this
class can serve. As said before, this value can
be obtained via benchmarking or monitoring.

– rsvi is a boolean denoting whether this instance
class is reserved or not.

– ci is the number of CPU cores provided by this
class.

– lsi is the index of the limiting set LSj to which
this instance class belongs.

– typei is the VM type of this class, for example
c4.large.

– maxi is the maximum number of VMs of this
class which can be instantiated in its limiting
set. Some cloud providers also impose this kind
of restriction, especially for high performance
VM types.
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Symbol Meaning

LSj Limiting Set (j = 1, . . . , NLS)
LSvms

j Limit on the number of running VMs
LScores

j Limit on the number of cores in use

ICi Instance Class (i = 1, . . . , N IC)
pi Price of ICi

perfi Performance of ICi

rsvi Boolean. True if ICi is reserved, false other-
wise

ci Cores provided by ICi

lsi Limiting set to which ICi belongs
typei VM type of ICi

maxi Limit on the number of typei VMs in lsi
#dem Superindex denoting on-demand ICs
#res Superindex denoting reserved ICs

T Reservation period (typically one year)
t Time slot length (typically one hour)
ti i-th time slot
li Workload for timeslot ti
hl Number of time slots in which load level l

appears
L Effective load levels: set of l for which hl > 0

Yi Number of reserved VMs of class ICi in the
solution, for any load level

Xil Number of on-demand VMs of class ICi in
the solution, for the load level l

C Cost of the solution

Table 3: Summary of the notation used in the model and optimiza-
tion problem

To improve readability, the set of all possible instance
classes can be split into two disjointed subsets: the re-
served instances (those with attribute rsvi true) and the
on-demand instances (those with attribute rsvi false),
renumbering the indexes in each subset. We introduce
new notation to refer to these subsets.

• Let N res be the total number of reserved instance
classes, and ICres = {ICres

i }, i = 1, . . . , N res the
set of all reserved instance classes. All the attributes
of these instance classes have res as a superindex. For
example presi is the price of the i-th reserved instance
class, perf resi is its performance, lsresi is its limiting
set, and so on.

• Let Ndem be the total number of on-demand instance
classes and ICdem = {ICdem

i }, i = 1, . . . , Ndem

the set of all on-demand instance classes. All the
attributes of these instance classes have dem su-
perindexes.

3.3. Load model

The model does not make any assumption about the
kind of workload, as long as it is expressed in the same

units as the performance of the instance classes. For ex-
ample, if the performance is measured with a benchmark
like OLDIsim, part of PKB [37], which can give a “re-
quests per second” metric, the load will also be expressed
in requests per second.

We assume time divided into slots of length t (e.g., 1
hour), and denote each of these time slots by ti.

For Phase I, we consider a reservation time T (e.g.,
one year), and a prediction of the load is assumed to be
known in advance for all time slots in T (e.g., for all hours
in a year). As stated before, we call this the Long-Term
Workload Prediction (LTWP). This paper does not de-
scribe nor assume any way to predict this workload; any
of the methods mentioned in the related work section can
be used.

The LTWP is a set of numbers, LTWP = {li}, each
one representing the predicted load for time slot ti. The
size of this set is equal to the number of time slots in T ,
i.e: T/t, for example 8760 when t = 1 hour and T = 1
year.

In order to reduce the problem size, we propose rep-
resenting the LTWP as a histogram, which is a novel ap-
proach for this kind of problem. We denote this histogram
by H = {hl}, hl being the number of different slots in
which the load l appears in the LTWP. We keep only
the load levels which appear at least once, and denote
that set by L, the set of effective load levels. Formally,
L = {l : hl > 0}.

For Phase II, once the optimal number of reserved in-
stances has been determined, we do not need the predicted
load of all future slots, but only the expected load for the
next slot. As stated before, this prediction will be called
the Short-Term Workload Prediction (STWP), and can
be computed by different means, more accurate, than the
LTWP.

For comparison against the theoretical optimum, we
will refer sometimes to the concept of a “Perfect Predic-
tion”. This is a LTWP given by an “oracle” which has
perfect knowledge of the future, which means that the
STWP is the same as the LTWP for each time slot. If
such a perfect prediction were available, Phase II would
not be neccessary, because, as we will see in next section,
Phase I also produces the optimal number of on-demand
VMs as output. However, since the perfect prediction is
only a theoretical construct, Phase II is used to refine the
results of Phase I using a more precise STWP.

3.4. Optimization problem for Phase I

The optimization problem can be formulated as an in-
teger linear programming problem, with the following un-
known variables:

• Yi is an integer representing the number of reserved
VMs of class ICres

i to be purchased at the beginning
of the reservation period T . Since they are paid even
when deallocated, we will consider these VMs always
active, even when the load is low and they are not
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required. Therefore, they are active for any possible
load level l.

• Xil is an integer representing the number of on-
demand VMs of class ICdem

i to be purchased at any
time slot for which the predicted load is l. Thus,
this number can be different for each time slot, as
the predicted load varies.

Although the objective of Phase I is to find out the
optimal number of reserved VMs (Yi), it is also necessary
to introduce Xil because the optimal number of reserved
VMs also depends on the characteristics (price and perfor-
mance) of on-demand VMs. So, solving Phase I will also
produce the optimal number of on-demand VMs at each
time slot. However, this number would only be valid if
the LTWP were a perfect prediction, which it is not, and
if no simplifications or approximations were introduced in
Phase I, which is not usually the case.

The cost of a given allocation is composed of the cost
of the reserved VMs, which is a fixed amount for each
time slot, plus the cost of the on-demand VMs, which is
in general different for each time slot.

The cost of the reserved VMs is simple to compute,
given the price per slot of each reserved VM, since they

are paid for all slots: Cres =
∑Nres

i=1 Yip
res
i T/t, T/t being

the number of time slots in the reservation period (e.g.,
8760 hours in a year).

The cost of the on-demand VMs depends on the cost of
the allocation for each particular slot with predicted load

l, which is
∑Ndem

i=1 Xilp
dem
i , multiplied by the number of

times that the predicted load l is repeated in all time slots,
i.e., the value of the histogram H(l) = hl. Note that this
computation assumes a fixed price for on-demand VMs,
but this assumption can be removed in Phase II. Adding
the costs of the on-demand VMs for every load l, the cost
of the on-demand VMs (Cdem) is calculated:

Cdem =

Ndem∑
i=1

∑
l∈L

Xilp
dem
i hl

The total cost of the allocation for the whole reserva-
tion period is:

C = Cres + Cdem

=

Nres∑
i=1

Yip
res
i T/t +

Ndem∑
i=1

∑
l∈L

Xilp
dem
i hl

(1)

Equation (1) is the function to minimize, subject to
the following restrictions:

• Performance restriction. The performance of the
allocation for each time slot should be enough to
fulfill the predicted workload for that time slot. Al-
ternatively, this can be formulated in terms of load
levels, i.e., the allocation for each predicted load level

should guarantee enough performance to serve that
load level. This can be expressed with the following
equation:

Nres∑
i=1

perf resi Yi +

Ndem∑
i=1

perf demi Xil ≥ l ∀l ∈ L (2)

• Maximum number of VMs restriction. The num-
ber of machines instantiated at each time slot (alter-
natively, for each predicted load level) must respect
the limits imposed by the cloud provider. This re-
striction is modelled with three different equations.

First, for each VM type the cloud provider can im-
pose a limit (in Amazon, this limit does not apply
to reserved VMs [5], so Eq. (3) would not be used):

Yi ≤ maxres
i ∀i = 1, . . . , N res (3)

Xil ≤ maxdem
i ∀l ∈ L, i = 1, . . . , Ndem (4)

Also, the total number of VMs active in a limiting
set, regardless of their type, has a maximum:

∑
i∈Sres

j

Yi +
∑

i∈Sdem
j

Xil ≤ LSvms
j

∀l ∈ L, j = 1, . . . , NLS (5)

Finally, the total number of cores active in a limiting
set can also have a limit:

∑
i∈Sres

j

Yici +
∑

i∈Sdem
j

Xilci ≤ LScores
j

∀l ∈ L, j = 1, . . . , NLS (6)

In the last two restrictions, some new notation is in-
troduced. Sres

j denotes the set of subindexes of all
reserved instance classes which share the same lim-
iting set LSj , or more formally Sres

j = {i : lsresi =
j}. Analogously for the on-demand instances classes
sharing limiting set LSj , Sdem

j = {i : lsdemi = j}.
These instance classes (reserved plus on-demand)
must not exceed the limit of running VMs nor the
limit of running cores for that limiting set LSj .

For Phase I, the problem to solve is to minimize the
cost given by Eq. (1) subject to the restrictions given in
Eqs. (2), (3), (4), (5) and (6).

Note that this phase usually deals with a large number
of variables. The actual number depends on the number
of different VM types, cloud providers, regions and zones
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and the number of different load levels in the LTWP. In
particular, the total number of variables is N res+Ndem|L|,
|L| being the size of set L, which in the worst case may be
as large as the number of time slots in the reservation pe-
riod. Since the problem of integer programming is already
NP-hard, the large number of variables may make the time
required to solve the problem unpractical. However, the
size of the problem can be reduced by reducing the size of
the set L. This involves reducing the number of possible
load levels in the LTWP, which in practice means simply
aggregating different load levels into the same class mark
when computing the histogram of the predicted workload.
We will refer to this technique as binning in the remain-
der of the paper. In order to guarantee the performance
restriction in Eq. (2) when binning is being used, all load
levels in the same bin must be represented by the right ex-
treme of the bin, i.e., they are represented by a worst-case
value.

By solving the integer programming problem, the val-
ues of variables Yi and Xil are found. If no binning has
been performed on the LTWP, the values of Yi represent
the optimal number of reserved VMs for each VM type and
each region and zone. If some kind of binning has been ap-
plied to the histogram of the LTWP, then the values of Yi

will be an approximation of this optimal number. The
accuracy of the approximation depends on the size and
number of bins. Their influence will be explored in the
experimental section.

The values of Xil of the solution represent the optimal
number (or an approximation if binning has been used)
of on-demand VMs to purchase for each VM type and
each predicted load level, but these are usually discarded
because the actual load levels to be observed in Phase II
will not be exactly those present in the LTWP. This is
especially true when binning is used.

3.5. Optimization problem for Phase II

For Phase II the same set of equations is used for each
time slot, but the inputs for this phase are different and
the problem is much simpler. For Phase II the set L is
composed of a single load-level, which is the STWP (the
workload expected for the next slot), so no histogram is
used and hence binning is not required. Additionally, the
values for Yi are known in this second phase, so these vari-
ables can be removed from the problem and the perfor-
mance restriction accordingly adjusted.

Let the performance given by all reserved VMs Yi be
denoted by Perf res. After Phase I, this is a known quantity,

given by Perf res =
∑Nres

i=1 Yiperf resi . Hence, if the predicted
load for the next time slot is l, the problem to solve for
that time slot is to minimize the cost:

C =

Ndem∑
i=1

Xilp
dem
i (7)

subject to restrictions:

Ndem∑
i=1

perf demi Xil ≥ l − Perf res ∀l ∈ L (8)

Xil ≤ maxdem
i i = 1, . . . , Ndem (9)

∑
i∈Sres

j

Yi +
∑

i∈Sdem
j

Xil ≤ LSvms
j

∀j = 1, . . . , NLS (10)

∑
i∈Sres

j

Yici +
∑

i∈Sdem
j

Xilci ≤ LScores
j

j = 1, . . . , NLS (11)

Note that in the last two restrictions, Yi is not part
of the problem to solve, but known constants, found in
Phase I. Also note that, if (l−Perf res) < 0, the solution is
trivially Xil = 0 ∀i, so this particular case does not need to
be solved. This represents the case in which the predicted
load is already fulfilled by the reserved VMs, and thus no
on-demand VMs are required. Note also that pdemi is the
price of the on-demand instances in the next time slot, and
it is not required to be the same for all time slots.

The above integer programming problem has to be
solved for each time slot in which (l − Perf res) > 0. All
these problems are independent of each other and the num-
ber of variables in each one is only Ndem, which means that
the size of the problem is small enough to be solved exactly
by branch-and-cut algorithms, typically implemented in
integer programming tools, such as CBC [38], without
needing to resort to heuristics or approximations.

The final solution for the allocation problem uses the
reserved VMs from Phase I and the on-demand VMs from
Phase II. The total performance and cost of each time slot
is the sum of the performances and costs of both reserved
and on-demand VMs.

4. Methodology and example

This section provides a simple example. More details
and explanations about it, along with the code to solve it
and generate the plots presented in the paper, can be found
in the Jupyter Notebook called Example.ipynb provided
in the additional material accompanying this paper.

4.1. Required inputs

The input data for both Phases in this example con-
sists of a subset of regions and availability zones (Limiting
Sets) from one imaginary cloud provider (see Table 4),
and a subset of two VM types (“small” and “large”) with
their characteristics and prices for all the limiting sets (see
Table 5).

https://github.com/asi-uniovi/lloovia
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j LSj LSvms
j LScores

j

0 Region1 15 ∞
1 Region2 15 ∞
2 Region2 Z1 12 ∞
3 Region2 Z2 12 ∞

Table 4: Limiting sets for the example
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Figure 2: Synthetic LTWP, in requests per hour (rph), for the whole
reservation period, with a zoom on a spike in the load

4.2. Solving Phase I

For Phase I, a prediction of the workload for each time
slot in a whole reservation period (LTWP) is required. Let
us use the one depicted in Fig. 2, which was synthetically
generated as a uniform random variable between 90 and
110, plus a sinusoid of amplitude 30 and period of one
week, to represent the variations among weekdays, plus
another sinusoid of amplitude 30 and period equal to 573
days, to represent slow variations between years. To make
the example more interesting, a spike was added around
time slot 5660 in which the load is 150 units larger than
usual. The lower part of the same figure zooms on that
spike showing 200 time slots. This spike makes it more
difficult to intuitively see the “base load” to be covered by
reserved VMs.

The histogram of this LTWP example is depicted in
Fig. 3. Even without binning, the effective number of load
values is 139 in this example, which shows one of the ad-
vantages of switching from the time-slot domain to the
load-level domain. The size of the input data is reduced
from 8760 to 139 in this example. A second advantage is
that we have control over the size of the input, which can
be further reduced by using binning when computing the
histogram. Fig. 4 shows the histogram with 12 bins for
this example. The ticks on the x-axis correspond to the
values for the eight effective load levels which appear in
this case.

In this example, with 4 reserved instance classes and
4 on-demand instance classes, the integer problem to
solve will have 4 variables Yi, plus 4 × |H| integer vari-

4
8

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
5
0

2
6
4

Load level (rph)

0

20

40

60

80

100

120

140

C
o
u
n
t

Figure 3: Histogram of the example workload
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Figure 4: Histogram with 12 bins of the example workload

ables Xil (being |H| the number of non-empty bins in
the histogram). In our case, if no binning is performed,
|H| = 139, so the total number of variables in the LP prob-
lem is 560. If we use binning with 12 bins, then |H| = 8
as already shown, and the total number of variables is re-
duced to 36.

The number of constraints in the problem is also re-
lated to the size of |H|, since equations (2), (3), (4), (5)
and (6) have to be satisfied for each load level. In this
example, without binning, the total number of constraints
is 1251. Using 12 bins the number of constraints in the
problem is reduced to only 72.

Using Python and PuLP [39], and our Python mod-
ule lloovia, provided as part of the supplementary ma-
terial, the LP problem is generated, written in disk in lp

or mps formats, and solved by CBC [38] in 0.280 seconds
when no binning is used and in 0.032 seconds using 12
bins. The machine in which the analysis was run was an
Azure’s Standard D2 (2 cores, 7 GB memory), with CPU
reported as Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz.
In this small example, the solution for the problem with-
out binning is obtained in a very short time, so it is not
worthwhile to reduce it with binning. However, when the
complexity of the problems grows, the problem without
bins might not be solved in a reasonable time, as shown
in the next section, while with bins the solution can be
reached in seconds.

The solution from Phase I is the optimal number of
reserved and on-demand VMs that should be allocated
at each possible predicted load level to minimize the cost
while satisfying performance constraints and the limits en-
forced by the cloud provider. This solution is stored in a
table, whose index is all the possible load levels (in the
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i ICi identifier typei maxi lsi pi ($/h) perfi ci rsvi

0 small (Region1) [dem] small 10 0 0.050 5 1 False
1 large (Region1) [dem] large 10 0 0.110 10 2 False
2 small (Region2) [dem] small 10 1 0.052 5 1 False
3 large (Region2) [dem] large 10 1 0.120 10 2 False
4 small (Region2 Z1) [res] small ∞ 2 0.038 5 1 True
5 large (Region2 Z1) [res] large ∞ 2 0.090 10 2 True
6 small (Region2 Z2) [res] small ∞ 3 0.038 5 1 True
7 large (Region2 Z2) [res] large ∞ 3 0.090 10 2 True

Table 5: Instance Classes and their properties for the example

LTWP), and the rows store the optimal number of VMs
for each ICi to allocate for that load level. In addition, the
value of the objective function is the optimal cost, assum-
ing that LTWP is a perfect prediction. In this example
this cost is $9015.216.

This information can also be represented as a plot,
shown in Fig. 5. In this plot, the x-axis shows all pos-
sible load levels in the LTWP, and for each one of them
the optimal number of VMs is represented as a stacked
bar, using different colours for each IC (the legend for this
plot is shown separately in Fig. 7). The gaps in Fig. 5 cor-
respond to load levels which do not appear in the LTWP.
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Figure 5: Optimal solution from Phase I, no binning used
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Figure 6: Optimal allocations from Phase I for each time slot

If LTWP were a perfect prediction, then the solution
of Phase I would give the optimal allocation for each time
slot, shown in Fig. 6, and no Phase II would be required.
This figure was built using for each time slot the optimal

large (Region2) [dem]

small (Region2) [dem]

large (Region1) [dem]

small (Region1) [dem]

small (Region2 Z2) [res]

small (Region2 Z1) [res]

Figure 7: Legend for figures 5 and 6.

allocation given by the solution for the load level present
in that time slot.

4.3. Solving Phase II

The general procedure for Phase II is as follows:

• For each time slot, the number of reserved VMs de-
termined in Phase I is allocated.

• If the load l expected for the next time slot is be-
low the performance given by the reserved VMs, no
action is required.

• Otherwise the optimization problem described by
the equations in section 3.5 has to be generated and
solved.

If binning was used in Phase I the number of reserved
VMs obtained is no longer optimal, so the cost of Phase II
solution will be greater than the optimal obtained without
binning. However, it is our hypothesis that the number of
reserved VMs will be very close to the optimal one. In this
example, indeed, the difference is only one extra reserved
VM of type small in Zone 2, and the cost of Phase II for the
whole reservation period is $9031.700. This is very close to
the cost of the optimal solution, which was already shown
to be $9015.216.

5. Experimental results

5.1. Introduction

An extensive set of experiments has been carried out
with the following objectives: 1) to analyze the influence
of binning on the time required to solve the linear problem
and on the quality of the solution, 2) to study the influence
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of the prediction used in Phase I on the final cost of the
solution, 3) to analyze how LLOOVIA behaves with the
different kinds of workloads typically found in cloud com-
puting systems, 4) to demonstrate that LLOOVIA can be
applied to real large-sized cases and 5) to demonstrate that
it can work in multi-cloud environments.

In order to test the technique, the number of accesses
per hour in one year is required. There are few data
sets with this length publicly available so, in order to test
LLOOVIA under many different scenarios, part of the ex-
periments has been carried out using synthetic workloads
(Section 5.2) and the other part with access data to the
Wikipedia (Section 5.3).

All the case studies have been implemented in Python,
using PuLP as linear-programming modeler [39] and COIN
CBC [38] as solver. They were run in a Standard D2 ma-
chine deployed in Azure with the characteristics described
in the previous section. All the code and data to reproduce
the experiments is supplied in the additional material of
this paper.

5.2. Analysis with synthetic workloads

5.2.1. Input data

In [13], a characterization of the workloads typically
found in cloud computing is presented. Five patterns
are identified: static, periodic, once-in-a-lifetime, unpre-
dictable and continuously changing. In order to test
LLOOVIA under all these patterns, a set of synthetic
workloads has been generated. The generated traces are
grouped in seven types (Fig. 8). The “continuously chang-
ing” pattern from [13] has been subdivided in two: one
“increasing” following an exponential curve and another
“decreasing” following a linear relation. In addition, a
type that includes a sum of the variations has been added.
Gaussian noise is added to all cases.

The savings in cost that can be accomplished by us-
ing reserved instances depend on the average level of the
workload and the limits on the number of allowed instance
classes. Thus, to test LLOOVIA under different condi-
tions, all of the workload types have been generated using
four base levels: 5 · 104, 105, 106 and 3 · 106 requests per
hour. This results in 28 different scenarios.

While the workloads are synthetically generated, the
VMs required to support these workloads are selected from
a real provider: Amazon EC2. To determine the perfor-
mance of the selected machines, WikiBench [40], a bench-
mark that emulates the Wikipedia, has been used. Flux 7
has published [41, 42] an analysis of the performance of
several Amazon EC2 VM types under this benchmark.
From this data, the approximate number of requests that
each VM type can handle at the inflection point (where the
average latency starts to increase) was obtained (“Perf.”
column in Table 6).

For the limits and the prices, two Amazon regions (US
West Oregon and EU Ireland) were used. These two re-
gions have a limit of 20 VM per instance class for on-
demand instances and 20 reserved VMs in each availability
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Figure 8: Types of synthetic workloads used in the experimentation.
The figure only shows the case for base level = 3 · 106

Perf. Price ($/h)
Type (rph) Region On-demand Reserved

c3.large 18000 US 0.10500 0.06187
EU 0.12000 0.07660

c3.xlarge 27000 US 0.21000 0.12477
EU 0.23900 0.15422

c3.2xlarge 46000 US 0.42000 0.24772
EU 0.47800 0.30753

m3.medium 9000 US 0.06700 0.04030
EU 0.07300 0.04954

m3.large 11000 US 0.13300 0.08139
EU 0.14600 0.10011

m3.xlarge 39000 US 0.26600 0.16301
EU 0.29300 0.19932

Table 6: VM data for the experiments with synthetic load. The US
region is West Oregon and the EU region is Ireland
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zone. Each region has three availability zones. In total,
there are 12 on-demand and 36 reserved instance classes.
The prices and characteristics for each VM type in each
region can be obtained using an API provided by Amazon.
For reserved VMs, a period of one year with all upfront
payment was considered (Table 6).

5.2.2. Analysis of the influence of binning

The first set of experiments analyzes the influence of
binning on the time required to create and solve the prob-
lem and on the quality of the solution, under different
workloads.

As there are 36 different reserved instance classes (two
regions with three availability zones each and six VM types
in each availability zone), 12 on-demand instance classes
(two regions with six VM types each) and 8760 hours in a
year, the linear problem to solve is huge, with 36 + 12 ×
8760 = 105 156 variables. This makes the time required to
create (write a file with all the equations for the solver) and
solve the problem very long. Using bins, the 8760 factor
can be reduced, but the solution may be not optimal.

In order to analyze the relation between time and solu-
tion quality, each of the 28 combinations of workload types
and levels was used as LTWP and Phase I of LLOOVIA
was carried out using different number of bins: 5, 10, 20,
40, 80, 200, 400, 800, 1500, 3000 and 6000. In addition,
an experiment without using bins was carried out. The
solution to this experiment is the optimal solution so, in
order to assess the quality of the solutions with bins, their
cost is compared to the cost obtained without bins.

In order to remove the influence of the prediction in this
analysis, Phase II was applied using as STWP the same
workload used as LTWP (i.e., the LTWP was a perfect
prediction).

Fig. 9 shows the time to create and solve Phase I of
the problem with different numbers of bins. Notice that
both axes are in log scale. The figure shows that creation
time increases exponentially with the number of bins. The
solving time also increases at least exponentially in most
of the scenarios, although some of them (e.g., Everything
with level 1 000 000) present anomalies.

A time limit was set in the solver. If the limit is reached
and the solution was not found, Phase I is aborted. The
limit was set to 15 minutes for the experiments with bins
and to 1 hour for the experiments without bins. As can
be seen in Fig. 9, some of the experiments were aborted,
even for the case without bins.

Fig. 10 plots the increase in cost generated in Phase II
due to binning compared to the optimal solution obtained
with no bins. When the optimal solution could not be
found (because of the 1 hour limit), the lines are plotted
in a different style and the solutions are compared to the
best lower bound known, as provided by the solver; this
means that the plot actually shows an upper bound of the
cost increase. When Phase I with bins was aborted (e.g.,
1600 bins in the unpredictable workload) because of the

15 minute limitation, no point is plotted because Phase II
cannot be carried out for that number of bins.

This figure shows that in all the scenarios the increase
in cost is smaller than 2% if more than 20 bins are used.
This means that by using bins, a solution very close to op-
timal can be found in a much shorter time (under 1 second
for 20 bins in all of the cases, as seen in Fig. 9). Further-
more, even in cases where the optimal solution without
bins cannot be found in less than one hour, a solution
very close to optimal can be found with bins in less than
one second.

These results show that, leaving out the influence of
the prediction, using bins can have great advantages.

5.2.3. Analysis of the influence of the error in the predic-
tion

In the previous analysis, the same workload was used
as LTWP and STWP to remove the influence of the pre-
diction, as if the LTWP was a perfect prediction of the
STWP. In this section, new workloads are generated for
each scenario, using the same parameters as the original
workload. These new workloads are used in Phase II as
the STWP. This way, the case when the prediction is not
perfect is simulated. It is expected that Phase II compen-
sates for the errors in the prediction used in LTWP by
using a more precise prediction.

In order to evaluate the impact of the error on the
prediction, the optimal solution when the prediction is
perfect must be obtained. This has been done with an
experiment for each scenario that uses no bins and the
same LTWP and STWP. The solution of this experiment
represents the optimal solution that a perfect predictor or
“oracle” (which cannot exist in a real environment) would
find. Therefore, it is a limit for the best solution that can
exist. As in the previous analysis, sometimes the optimal
solution for the perfect predictor could not be found, and
a lower bound had to be used instead.

Table. 7 shows the percentage increase in cost using
LLOOVIA with 20 bins compared to the optimal solution
or the aforementioned lower bound. The increase in cost
is generally very small, under 1%. The pattern “Once-
in-a-lifetime”, which has a randomly generated peak, is a
little higher, but under 2%. The “Unpredictable” scenario
has a very large error because, as its name implies, it can
not be predicted, so the STWP is totally different to the
LTWP. The “Everything” scenario with an a base level
of 3 · 106 could not be computed because with the new
STWP the problem became unfeasible in Phase II, i.e.,
the capacity of the available on-demand instances is not
enough to support the workload in some time slots, due to
the limits imposed by the provider.

For the sake of brevity, the results for other bin sizes,
which are similar, are not presented here. They can be
found in the extra material.

This analysis shows that LLOOVIA obtains very good
solutions except when the workload can not be predicted.
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Figure 9: Solving time, depending on the number of bins, for the
different scenarios. The solver is aborted if it has not found a solution
in a fixed time limit (15m for binning cases, 1h for non-binning cases)
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Figure 10: % overcost respect optimal (or lower bound) cost, de-
pending on the number of bins for the different load scenarios

Base level → 5 · 104 105 106 3 · 106

Case

Static 0 % 0 % 0.14% 0.24%
Periodic 0 % 0 % 0.04% 0.20%
Increasing 0.04% 0.03% 0.21% 1.07%
Decreasing 0 % 0.10% 0.13% 0.04%
Unpredictable 11.67% 44.80% 63.94% 114.21%
Once 0 % 0 % 1.73% 0 %
Everything 0 % 0.13% 0.40% NA

Table 7: % increase in cost with respect to the optimal solution
obtained by a “perfect predictor”

5.3. Real workloads

5.3.1. Input data

To demonstrate that LLOOVIA works with real work-
loads, this section presents experiments carried out us-
ing the number of requests per hour to the English
Wikipedia [43] as workload. This workload has been cho-
sen because it is a publicly available source of accesses that
encompasses several years; thus, the impact of real daily,
weekly, monthly and yearly variations can be taken into
account.

5.3.2. Analysis of the influence of binning

In this section, an analysis similar to the one in Sec-
tion 5.2.2 is carried out, but this time using the request per
hour to Wikipedia in 2014 (Fig. 11), which was the year
Flux 7 obtained the performance data with Wikibench. In
addition, more regions and availability zones than in pre-
vious experiments are used. When the experimentation
was carried out, Amazon had 10 different regions available
for international commercial customers. The number of
availability zones in each region varies between 2 and 5
(see Table 8). This results in a total of 39 limiting sets.
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Figure 11: Requests to the English Wikipedia per hour in 2014

Region
Availability

zones

US East (N. Virginia) 5
US West (N. California) 3
US West (Oregon) 3
EU (Ireland) 3
EU (Frankfurt) 2
Asia Pacific (Tokyo) 3
Asia Pacific (Seoul) 2
Asia Pacific (Singapore) 2
Asia Pacific (Sydney) 3
South America (Sao Paulo) 3

Table 8: Regions and availability zones in Amazon EC2

Not all VM types of Table 6 are available in all re-
gions. Combining the on-demand and reserved VM types
available in each region, a total of 222 different instance
classes can be selected; 162 of them are reserved in-
stances and 60 are on-demand instances. The number
of variables for Phase I in the problem, without bins, is
162 + 60× 8760 = 525 762.

In order to test the capabilities of LLOOVIA to handle
different limits, this analysis uses a limit of 50 VMs per
type for on-demand VMs, with no more than 100 VMs
in total per region, and 100 VMs per availability zone for
reserved VMs.

Fig. 12 shows how the creation and solving time in-
creases with the number of bins. The rightmost point,
which corresponds to the case with no bins, is aborted be-
cause the optimal solution cannot be found before the time
limit, set to 1 hour. That means that without bins, the
optimal solution could not be found in the allotted time,
so we will use the best lower bound of the cost for the
comparison.

Phase II was carried out using the same access data
used as LTWP as load prediction for each slot (STWP).
Fig. 13 shows the increase in cost compared to the lower
bound of the optimal solution with the different number
of bins. Using as few as 20 bins, although the number
of reserved VMs is not optimal, the cost of this solution
is just 0.14% higher than the lower bound of the optimal
solution.

From Fig. 12, it can be seen that the creation and solv-
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Figure 12: Time to create and solve a problem using the Wikipedia
workload in 2014 with different numbers of bins
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Figure 13: Cost increase as the number of bins used changes in the
solution using the Wikipedia workload in 2014 with different numbers
of bins

ing time is significantly increased when more bins are used.
On the other hand, Fig. 13 shows that the cost of the solu-
tion with bins is very close to a lower bound of the optimal
solution obtained without bins when more than 20 bins are
used.

5.3.3. Analysis of the influence of error in the prediction

This analysis is similar to the one carried out in sec-
tion 5.2.3, but this time using the real workload from
Wikipedia and the same regions and limits as in Sec-
tion 5.3.2.

In the first experiment in this section, the Wikipedia
data for 2012 is used as a prediction of the load for 2013
(see Fig. 14, which shows the mean number of accesses
aggregated per year). This emulates a situation where
a site uses the load for the previous year as forecast for
the load of the following year. This can be considered
a naive predictor, which can be used in the absence of
more advanced prediction techniques that would obtain a
better forecast. Using such a naive predictor is an adverse
situation for LLOOVIA.

Phase I of LLOOVIA is applied to the load of 2012
grouped in 40 bins (because, as shown in previous analyses,
with this number of bins the problem is solved fast and
with good precision) and the number of reserved VMs is
obtained. Then, Phase II is applied using the load of 2013
as STWP, and the number of required on-demand VMs,
in addition to the previously computed reserved ones, is
computed.
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Figure 14: Mean number of requests per hour to the English
Wikipedia per year

Perfect
predictor

Naive
predictor

No
predictor

2012 to 2013 $418 067.59 $423 324.97 $716 580.40
2013 to 2014 $317 770.45 $363 389.28 $542 704.17

Table 9: Influence of LTWP on the costs of the Wikipedia case study

To compare the quality of the result obtained this way,
two other values are computed, also using 40 bins:

• Only on-demand: optimal cost using only on-
demand VMs. This emulates a situation where no
prediction is available, so it is not possible to find
the optimal number of reserved VMs. To compute
this value, only Phase II is applied, using zero re-
served VMs as the result of Phase I.

• Perfect predictor: optimal cost in 2013 if the load
were known. To compute it, Phase I and Phase II
are applied with the load of 2013 as both LTWP and
STWP to obtain the optimal number of VMs. In a
real scenario this value cannot be obtained because
the load is not exactly known beforehand.

The first row of Table 9 shows the results for this ex-
periment. The cost obtained with a naive predictor is very
close to the one obtained with the perfect predictor (only
1.25% higher) and almost half of using no predictor (i.e.,
only on-demand VMs), which is 71.40% higher than the
perfect predictor cost.

The second experiment in this analysis is similar to the
first one, but in this case the naive predictor uses the load
in 2013 to forecast the load in 2014 (see Fig. 14). This
allows studying an inverse relation between the forecast
and the real load: in the first experiment the real load
was higher than the forecasted one, while in the second
experiment the real load is lower than the forecasted one.
In addition, the change in the load is significantly bigger
and, as the load is smaller, fewer reserved VMs are needed,
so the savings are smaller.

The second row of Table 9 shows that the cost with the
naive predictor is 14.35% higher than the perfect predictor,
but much lower than using no predictor, which is 70.78%
higher than the perfect predictor.

These two experiments demonstrate that significant
savings can be obtained with LLOOVIA, even with naive
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Figure 15: Performance given by each cloud provider vs. workload,
in the multi-cloud scenario

forecasting techniques. It should be noted that the savings
could be improved if better load forecasting techniques
were used, but this is outside the scope of this paper.

5.3.4. Analysis in multi-cloud environment

This analysis shows how LLOOVIA performs in a
multi-cloud environment. Although the previous analyses
could be considered as multi-cloud environments, because
the virtual machines of different regions of Amazon EC2
have different prices and performances, this analysis in-
troduces another provider, Microsoft Azure, which adds a
different price schema and different ways of setting limits.

Regarding the price schema, Azure does not have re-
served VMs, but has a discount of 5% if a purchase larger
than $6000 is paid upfront for a 12-month term. To take
this into account, LLOOVIA can be applied with the dis-
count; if the total amount to purchase from Azure accord-
ing to the solution is less than the discount threshold, then
that solution is not valid and LLOOVIA should be applied
again with the non-discounted price to find the correct so-
lution.

Limits in Azure are based on the number of cores rather
than on the number of VMs, so this case study exercises a
part of LLOOVIA that was not tested in previous analyses.

As the performance data for WikiBench in Azure is
not available, a different benchmark was selected: specifi-
cally, OLDIsim, because it is a web benchmark integrated
in Perfkit Benchmarker [37], a tool that makes executing
benchmarks in several cloud providers easier. OLDIsim
is aimed at obtaining a scaling factor when increasing the
number of workers used. We modified it to report the num-
ber of queries per second (QPS) using only one worker and
executed it in different VM types of EC2 and Azure. The
performance obtained for each one is shown in Table 10.

The experiment uses two clouds: one region in Azure
and another region, with three availability zones, in EC2,
and uses the default limits set by the providers: 20 cores
in total in the Azure region, 20 machines of each type for

17



Provider VM type QPS

Amazon c4.2xlarge 2592.50
c4.xlarge 1468.00
m4.2xlarge 2510.00
m4.large 636.00
m4.xlarge 1316.00

Azure A5 260.67
A6 594.00
Basic A0 56.67
Basic A1 81.33
Basic A2 178.00
Basic A3 657.33
ExtraSmall 54.67
Large 561.33
Medium 299.00
Small 109.00
Standard D11 v2 660.00
Standard D12 v2 1621.67
Standard D1 v2 440.67
Standard D2 v2 682.33
Standard D3 v2 1560.00

Table 10: Number of queries per second (QPS) different Azure and
Amazon VM types can handle for OLDIsim

Cost ($)
% increase

(vs. multi-cloud)

Only Azure $3490.99 42.45%
Only Amazon $2582.30 5.37%
Multi-cloud $2450.69 -

Table 11: Comparison of costs with multi-cloud

on-demand VMs in the Amazon region, and 20 reserved
machines in each availability zone for reserved VMs in
Amazon.

The Wikipedia load of 2014 was used both as STWP
and LTWP. 40 bins were used in Phase I. To assess the
benefit of using a multi-cloud environment, tests using only
the Azure region and using only the Amazon region were
carried out in addition to the multi-cloud test. Table 11
shows that a multi-cloud solution is the most economical,
around 5% cheaper than using only Amazon and almost
42.5% cheaper than using only Azure. The reason for this
is that, in general, Amazon VMs are cheaper than Azure
VMs, especially the reserved VMs, which Azure does not
provide, so in the multi-cloud environment most of the
machines used are from Amazon and very few are from
Azure, as can be seen in Fig. 15, which shows the load
and the performance obtained from Amazon and Azure
machines in time slots of the year where the load is high
(between hour 6120 and 6200, considering hour 0 to be
the first hour of Jan 1 2014). For some time slots with low
load, only the reserved instances in Amazon were used.
With higher loads, LLOOVIA selects the best combina-
tions of machines, sometimes using only Azure or Amazon
on-demand VMs, sometimes using both.

This experiment shows that LLOOVIA is able to take
advantage of the varied types of machines offered by dif-
ferent cloud providers in multi-cloud environments, while
respecting the limits.

6. Conclusions and future work

Cloud Computing has evolved widely in the last years,
but the problem of how the user makes cost-effective use
of cloud services is still a very important subject. In this
paper we have presented LLOOVIA, an allocation strategy
which determines the number, type, price schema and the
optimal allocation of the VMs required by a service to
minimize cost in a multi-cloud environment.

The optimization problem was formulated using inte-
ger linear programming, where the number and the type
of VMs are unknown. The problem constraints were the
performance that the system has to meet and the maxi-
mum number of VMs that could be leased. The problem
was solved in two phases. Phase I determines the number
and type of the reserved VMs to lease at the beginning
of each reservation period; this phase is carried out of-
fline and working with a long-term workload prediction.
Phase II determines the number and type of on-demand
VMs to lease at each time slot; this phase is carried out
online for every time slot and working with a short-term
workload prediction.

LLOOVIA uses an approximation based on binning to
substantially reduce the size of the integer linear program-
ming problem to solve. A broad experimental work, using
seven kinds of workloads combined with four workload lev-
els, has been carried out to analyze the influence of binning
and the error in the workload prediction. The analysis has
shown that, with the exception of the unpredictable kind of
workload, the approximation is very effective: lower than
0.24% error in most of the analyzed cases using an aggre-
gation of as few as 20 bins. In addition, binning reduces
greatly the problem resolution time and makes it possible
to solve problems that could not be solved without it.

A similar experimental analysis was used to find an al-
location for the real workload represented by Wikipedia
for a reservation period of one year. In this case the bin-
ning approach produces an error lower than 0.14% using
as few as 20 bins. Finally using the OLDIsim benchmark,
LLOOVIA was tested in a multi-cloud environment with
the limits and price schemes used by different providers.
It was proved to be highly effective.

Future work has two main directions: firstly, to inves-
tigate new approximations and heuristics to avoid the lim-
itations of integer linear programming. Secondly, to fur-
ther increase the realistic working conditions of LLOOVIA.
This last aspect will take a twofold dimension: consider-
ing the allocation for applications made up of more than
one component (that is, different VM images), and tak-
ing into account extra requirements for the VMs, such as
type of operating system or amount of memory. All these
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working conditions will be incorporated into the model as
constraints to the problem.
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