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Abstract

High-performance computing of atmospheric general circulation models (AGCMs) has been receiving increasing attention in
earth science research. However, when scaling to large-scale multi-core computing, the parallelization of an AGCM which demands
fast parallel computing for long-time integration or climate simulation becomes extremely challenging due to its inner complex
numerical calculation. The previous Institute of Atmospheric Physics of the Chinese Academy of Sciences Atmospheric General
Circulation Model version 4.0 (IAP AGCM4.0) with one-dimensional domain decomposition can only run on dozens of CPU cores,
so the paper proposes a two-dimensional domain decomposition parallel algorithm for it. In the parallel implementation of the IAP
AGCM4.0, its dynamical core utilizes a hybrid form of latitude/longitude decomposition and vertical direction/longitude circle
direction decomposition. Through experiments on multi-core clusters, we confirmed that our algorithm is efficient and scalable.
The parallel efficiency of the IAP AGCM4.0 can reach up to 50.88% on 512 CPU cores, and the IAP AGCM4.0 can be run long-term
simulations for climate change research.

Keywords: high performance computing, parallel algorithm, domain decomposition, atmospheric general circulation model.

1. Introduction

Atmospheric general circulation models (AGCMs) are im-
portant tools for weather forecasts and climate change research
[? ? ? ? ]. An AGCM is also one of the most important
components of an earth system model. Because of the impor-
tance of AGCMs for climate research, the Institute of Atmo-
spheric Physics (IAP) of the Chinese Academy of Sciences At-
mospheric General Circulation Model (IAP AGCM) has been
developed since the 1980s [? ? ? ]. As the atmospheric com-
ponent, the fourth version of the IAP AGCM (IAP AGCM4.0)
[? ] has been used in the Chinese Academy of Sciences-Earth
System Model (CAS-ESM) [? ? ? ].

To conduct climate simulation, AGCMs usually need to be
integrated for multiple years or decades [? ]. Wehner et al. con-
ducted a 27-year simulation using the Community Atmosphere
Model version 5.1 (CAM5.1) [? ]. Nakaegawa et al. used the
Meteorological Research Institute AGCM3.1 model to perform
25-year simulations for the present-day and future climate [? ].
In short, AGCMs usually involve a large amount of calculation
and a long computing time. Therefore, AGCMs have to be run
on a high-performance computing resource in order to meet the
real-time requirements of weather forecasting and climate re-
search. Wehner et al. utilized 7680 processing cores to perform
the Atmospheric Model Intercomparison Project simulations on
a CRAY XE-6 supercomputer [? ]. Meanwhile, with the rapid

development of supercomputers and high-performance com-
puting technology, AGCMs can have higher resolution [? ].
Miyamoto et al. used a nonhydrostatic icosahedral atmospheric
model to conduct a sub-kilometre global simulation on the K
computer [? ].

Before an AGCM is run on a high-performance computing
platform, it is necessary to develop a parallel version of the
AGCM. Parallel algorithms of AGCMs were studied by cli-
mate scientists and computer scientists. Wehner et al. used
a two-dimensional latitude/longitude domain decomposition
message-passing strategy to implement the UCLA AGCM in
a portable parallel form [? ]. Mechoso et al. later optimized the
parallel UCLA AGCM code, after which the UCLA AGCM
was about nine times faster [? ]. Drake et al. designed a par-
allel global atmospheric circulation model, PCCM2. During
this development, parallel spectral transform, semi-Lagrangian
transport, and load balancing algorithms were researched [? ].
Mirin and Sawyer used a message passing interface (MPI) +

OpenMP hybrid paradigm to perform a parallel implementa-
tion of a finite-volume dynamical core in the CAM. A one-
sided communication technique was utilized in the parallel im-
plementation [? ]. Similarly, the parallelization of the IAP
AGCM4.0 also needed to be studied and implemented.

At first, the IAP AGCM4.0 used one-dimensional domain
decomposition, where each subdomain contained all longitude
lines but only a subset of latitude lines. Obviously, it is easy
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to develop a parallel code for the model by using this method.
However, the decomposition strategy limits the maximum num-
ber of subdomains and CPU cores which may be exploited.
The previous IAP AGCM4.0 can only run on dozens of CPU
cores, which is not sufficient to meet the real-time computing
demand of climate simulations. Therefore, it is necessary to
study more efficient parallel algorithms of the IAP AGCM4.0.
To realize this goal, this paper designs and implements a two-
dimensional domain decomposition parallel algorithm for the
IAP AGCM4.0. The two-dimensional decomposition includes
two types, latitude/longitude decomposition and vertical direc-
tion/longitude circle direction decomposition, which are both
used in the implementation of the parallel algorithm. It is ob-
vious that you must switch from one decomposition to another
during the parallel computing of the model. Using the two-
dimensional domain decomposition strategy, the global domain
is decomposed into more subdomains, which are assigned to
each process (or MPI rank). Hence, the IAP AGCM4.0 can be
processed by more than one thousand processes. Because the
IAP AGCM4.0 uses the physics package of CAM3.1, the fo-
cus of our research is mainly on the parallel implementation of
the dynamical core. Based on a 61-day climate experiment, we
evaluate the parallel performance of the IAP AGCM4.0. The re-
sults indicate that the IAP AGCM4.0 scales reasonably to 3120
CPU cores and has a desirable parallel performance.

The rest of this paper is organized as follows. The following
section introduces the IAP AGCM4.0 model and its dynami-
cal core. In section ??, we go into detail about the design and
implementation of the parallel algorithm with two-dimensional
domain decomposition. Section ?? discusses the experimen-
tal analysis of the parallel algorithm performance, and the last
section contains a summary.

2. Model description

2.1. IAP AGCM4.0 model
An AGCM usually consists of the “dynamics” (dynamical

core) and the “physics” (physical parameterizations). The dy-
namical core calculates the atmospheric flow and solves the hy-
drodynamic equations of the atmosphere. Then the physical
parameterizations for sub-grid phenomena such as long- and
short-wave radiation, moist process and gravity wave drag, are
approximated [? ]. The dynamical core and physical parame-
terizations are expressed according to the following formula:

∂ψ

∂t
= D(ψ) + P(ψ), (1)

where ψ is forecast variables such as temperature, surface pres-
sure, horizontal wind field and specific humidity, D is the ten-
dency generated by the dynamical core and P is the tendency
generated by the physical parameterizations. The tendencies
generated by the dynamical core and the physical parameteri-
zations are added to derive an overall tendency of ψ.

The IAP AGCM was developed by a group of atmospheric
scientists from the IAP. After decades of research and develop-
ment, the IAP AGCM has already shown a considerable capac-
ity for simulating climatic changes. The IAP AGCM4.0 uses

the CAM3.1 physics package, while its dynamical core was de-
veloped independently by the IAP. The IAP AGCM4.0 uses a
finite-difference scheme with a 1.4◦ × 1.4◦ or 0.5◦ × 0.5◦ hori-
zontal resolution and 26 levels in the vertical direction.

2.2. Dynamical core

The IAP AGCM4.0 uses a terrain-following σ coordinate [?
] in the vertical direction, so there are the following variable
definitions,

σ ≡
p − pt

pes
, pes = ps − pt, (2)

where p is the pressure, ps is the surface pressure and pt =

2.194 hPa is the pressure at the model’s top layer. The equations
of the dynamical core with the subtraction of standard stratifi-
cation and the IAP transformation are defined as follows

In the Eqs. (??), t is the time, δp = pt/p , f ∗ = 2Ω cos θ +

u cot θ/a, Ω is the Earth’s rotation angular velocity, θ is the co-
latitude, a as the Earth’s radius, λ is the longitude, b = 87.8
m/s, p0 = 1000 hPa, κ = R/Cp, R is the gas constant for dry
air, and Cp is the specific heat of dry air at constant pressure.
Here, δ = 0 represents the standard stratification approxima-
tion. If it is set to 1, the set of equations becomes the same
as the primitive equations that are commonly used. T̃ (p) is
the standard atmospheric temperature, T is the temperature,
T ′(θ, λ, p, t) = T (θ, λ, p, t) − T̃ (p). The IAP transformation pa-
rameter P ≡

√
pes/p0, (U,V,Φ) ≡ (Pu, Pv, PRT ′/b), U is zonal

wind velocity, V is meridional wind velocity, Φ is geopotential
field. κ∗ is the indication coefficient. The horizontal advection
operators L1, L2 and the vertical convection operator L3 are cal-
culated according to the following formulas:

L1(F) ≡
1

2a sin θ

(
2
∂Fu
∂λ
− F

∂u
∂λ

)
L2(F) ≡

1
2a sin θ

(
2
∂Fv sin θ

∂θ
− F

∂v sin θ
∂λ

)
L3(F) ≡

1
2

(
2
∂Fσ̇
∂σ
− F

∂σ̇

∂σ

) , (4)

where F is the diffusion operator, the vertical velocity on the σ
level is σ̇.

The pressure gradient terms are defined by

P(1)
θ ≡ P

∂ø′

a∂θ

P(2)
θ ≡

bΦ(1 − δp)
pes

·
∂pes

a∂θ

P(1)
λ ≡ P

∂ø′

a sin θ∂λ

P(2)
λ ≡

bΦ(1 − δp)
pes

·
∂pes

a sin θ∂λ

, (5)

where φ′(θ, λ, p, t) = φ(θ, λ, p, t) − φ̃(p), φ = gz is the geopo-
tential, g is the gravity acceleration, z is the height, φ̃(p) is the
standard atmospheric geopotential.

The terms Ω and D are determined by
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∂U
∂t

= −

3∑
m=1

Lm(U) − P(1)
λ − P(2)

λ − f ∗V

∂V
∂t

= −

3∑
m=1

Lm(V) − P(1)
θ − P(2)

θ + f ∗U

∂Φ

∂t
= −

3∑
m=1

Lm(Φ) + (1 − δp)[b(1 + δc) + δ · κΦ/P](Ω(1) + Ω
(2)
θ + Ω

(2)
λ )

∂

∂t

(
p′sa

p0

)
+ D(P) +

∂P2σ̇

∂σ
= κ∗Dsa/p0

. (3)



Ω(1) ≡
Pσ̇
σ
−

1
P

[
D(P) +

∂P2σ̇

∂σ

]
Ω

(2)
θ ≡

V
pes
·
∂pes

a∂θ

Ω
(2)
λ ≡

U
pes
·

∂pes

a sin θ∂λ

, (6)


D(P) ≡

1
a sin θ

(
∂PU
∂λ

+
∂PV sin θ

∂θ

)
Dsa ≡

1
a sin θ

(
∂p̃saksaDsλ

∂λ
+
∂p̃saksaDsθ sin θ

∂θ

) , (7)

where 
Dsλ ≡

1
a sin θ

·
∂

∂λ

(
p′sa

ρ̃sa

)
Dsθ ≡

1
a
·
∂

∂θ

(
p′sa

ρ̃sa

) , (8)

the standard atmosphere density at the surface p̃sa = p̃s/RT̃s, p̃s

is the standard surface pressure, T̃s is the standard surface tem-
perature, and the dissipation coefficient ksa = 0.1. The equa-
tions of the dynamical core are described in detail in [? ].

3. Parallel algorithm

3.1. Spatial discretization scheme and time-integration algo-
rithm

The IAP AGCM4.0 uses the implicit finite difference dis-
cretization scheme; its vertical distribution of variables is
shown in Fig. ??. The forecast variables such as U, V , and
Φ are put on the integer layer (model layer), while the diagnos-
tic variables are put on the semi-integer layer (interface layer).
The IAP AGCM4.0 utilizes Arakawa’s C grid staggering [? ]
in its horizontal discretization. Fig. ?? illustrates the horizontal
distribution of the variables in the IAP AGCM4.0.

The differential form of Eqs. (??) under the standard stratifi-
cation approximation of δ = 0 and without considering energy
dissipation (κ∗ = 0) is written as

In the Eqs. (??), vertical velocity W = Pσ̇, α∗, β∗ and γ∗

are the flexible coefficients. Regardless of what values they are
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[
∂U
∂t

]
i′, j,k

=

− 3∑
m=1

α∗1mLm(U) − β∗1P(1)
λ − β

∗
22P(2)

λ − γ
∗ f ∗V


i′, j,k

, j ∈ [2, J − 1]

[
∂V
∂t

]
i, j′,k

=

− 3∑
m=1

α∗2mLm(V) − β∗1P(1)
θ − β

∗
21P(2)

θ + γ∗ f ∗U


i, j′,k

, j ∈ [1, J − 1]

[
∂Φ

∂t

]
i, j,k

=

− 3∑
m=1

α∗3mLm(Φ) + (1 − δp)[b(1 + δc) + δ · κΦ/P] · (β∗1Ω(1) + β∗21Ω
(2)
θ + β∗22Ω

(2)
λ )


i, j,k

, j ∈ [1, J]

[
∂

∂t

(
p′sa

p0

)]
i, j

= −

[
β∗1D(P) + β∗1

P(Wσ)k

∆σk
− κ∗Dsa/p0

]
i, j,k

, j ∈ [1, J]

. (9)

assigned, the Eqs. (??) are conserved. By assigning different
values to α∗, β∗ and γ∗, it is convenient to conduct numerical
experiments and design decomposition algorithms.

A nonlinear iterative time integration method is used in the
model. For the sake of simplicity, Eqs. (??) can be written as

∂F
∂t

+ A(F) = 0, F = (U,V,Φ, p′sa), (10)

where A is a nonlinear operator. The following formulas repre-
sent the integration from time n to time n + 1.

Fn+1
(1) = Fn + ∆tA(Fn)

Fn+1
(2) = Fn + ∆tA(Fn+1

(1) )

Fn+1
(3) = Fn + ∆tA

Fn+1
(2) + Fn

2


...

Fn+1
(2m) = Fn + ∆tA(Fn+1

(2m−1))

Fn+1
(2m+1) = Fn + ∆tA

Fn+1
(2m) + Fn

2



, (11)

where m = 1, 2, 3, · · · . In the IAP AGCM4.0, the number of
iterative steps is 3 [? ].

Using Eqs. (??) with the differential form and the time in-
tegration algorithm, we can conduct numerical computing and
design parallel algorithms for the IAP AGCM4.0.

3.2. Two-dimensional domain decomposition

When running the IAP AGCM4.0 with a 1.4◦ × 1.4◦ hori-
zontal resolution in series, the computation time of all its com-
ponents is indicated in Fig. ??. The physical parameteriza-
tions account for 56.48% of all the computation time, and the
dynamic core accounts for 38.02%. Therefore, the physical pa-
rameterizations and dynamic core take most of the total compu-
tation time in the IAP AGCM4.0. By analysing their computing
characteristics, we design a two-dimensional domain decompo-
sition parallel algorithm for them.

The computation of the physical parameterizations in the IAP
AGCM4.0 features characteristics of a vertical single column
model. This means that the computation of the physical param-
eterizations on every grid point needs to use related data on the
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Fig. 3. Statistics about serial computing time of each component of the IAP
AGCM4.0.

grid points in the vertical direction k and has to be done in se-
quence, but it does not need related data on the grid points in
the horizontal direction. Therefore, the computation task of the
physical parameterizations can be decomposed in the horizon-
tal direction. In other words, the global domain is decomposed
by latitude and longitude, as shown in Fig. ??. Because there
is no data dependence in the entire computation, there exists no
data communication among processors in the physical parame-
terizations.

i

k

j

Fig. 4. Two-dimensional domain decomposition in the horizontal direction.

The computation of the dynamical core on each grid point
needs to use not only related data on the grid points in the ver-
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i

k

Fig. 5. Two-dimensional domain decomposition in the vertical direction.

tical direction k and the direction j of the longitudinal circle,
but also related data on the grid points in the direction i of the
latitudinal circle. Meanwhile, some computation in the direc-
tions i and k needs to be done in sequence. Therefore, when
the computation in the direction i needs to be done in sequence,
the task of the dynamic core is decomposed in the vertical di-
rection. This means that the global domain is decomposed by
latitude and level, as shown in Fig. ??. When the computa-
tion in the direction k needs to be done in sequence, the way
that the task is decomposed is shown in Fig. ??. For exam-
ple, the subroutine sltb in the one-dimensional decomposition
version of the IAP AGCM4.0 is designed to drive the semi-
Lagrangian transport algorithm on a given latitude slice in the
extended data arrays using information from the entire latitudi-
nal extent of the arrays. In the two-dimensional decomposition
of the IAP AGCM4.0, the sltb is decomposed into two subrou-
tines sltb1 and sltb2. The sltb1 with vertical direction/longitude
circle direction decomposition is used for the horizontal inter-
polation of scalar fields, and the sltb2 with latitude/longitude
decomposition is used for the vertical interpolation of scalar
fields. Obviously, it is necessary to convert the data from one
way of decomposition to another during the entire computation
of the dynamical core.

In the two-dimensional domain decomposition, the latitude
and longitude boundaries of each subdomain are both con-
strained to have no fewer than three latitude and longitude lines
to form a halo zone. The aim of this limitation is to reduce data
communication costs, because data communication among sub-
domains only occurs in the halo zone, not in the whole zone.
The same limitation also exists in the fvCAM [? ].

According to the parallel algorithm above, the latitude and
longitude boundaries of each subdomain must have no fewer
than three latitude and longitude lines, so the maximum num-
ber of processes (or MPI ranks) in the directions of latitudinal
circle and longitudinal circle is bmi/3c and bm j/3c, respectively,
where mi is the number of grid points in the direction of latitu-
dinal circle, mj is the number of grid points in the direction of
longitudinal circle. The maximum number of processes in the
vertical direction is mk, where mk is the number of grid points
in the vertical direction. In the decomposition strategy in Fig.
??, the maximum number of processes is bmi/3c×bm j/3c. Sim-
ilarly, in the decomposition strategy in Fig. ??, the maximum

number of processes is bm j/3c × mk. The two decomposition
strategies are both utilized in the model, so the maximum num-
ber of processes used to run the IAP AGCM4.0 is calculated by
the following formula:

bm j/3c ×min(mk, bmi/3c). (12)

Therefore, when the horizontal resolution is 1.4◦ × 1.4◦, the
IAP AGCM4.0 can run on 1092 (b128/3c × min(26, b256/3c))
cores; when the horizontal resolution is 0.5◦ × 0.5◦, it can run
on 3120 (b361/3c × min(26, b720/3c)) cores. The maximum
number Py of processes in the direction of longitudinal circle
can be assigned the value 42 or 120 and the maximum num-
ber Pz of processes in the vertical direction can be assigned the
value 26. The processors in the physical parameterizations are
decomposed by Px × Py, where Px is the number of processes
used in the direction of latitudinal circle. The processors in the
dynamical core are decomposed by Py × Pz or Px × Py, and
Px × Py = Py × Pz, so the maximum value of Px is 26.

3.3. Algorithm implementation

Fig. ?? illustrates the running flow of the IAP AGCM4.0,
which mainly consists of the initialization and core phases. The
initializations for the parallel decomposition of the grid, data
structure, I/O management module and restarting management
module are performed at the initialization phase, where the ini-
tialization and restarting data is also read. The forward integrals
in the model time direction are mainly performed at the core
phase.

Initialization phase

initialize parallel 

decomposition

initialize meshes and data 

structure

initialize IO

read initialization data

initialize restart management 

module

read restart files

Core phase

physical parameterizations

p_d_coupling

dynamical core

d_p_coupling

write IO files

write restart files

Fig. 6. The whole running flow of the IAP AGCM4.0.

The dynamical core of the IAP AGCM4.0 also consists pri-
marily of the initialization and core phases, as indicated in Fig.
??. The subroutine spmd dyn in the initializing program is used
to decompose the grid of the dynamical core. The subroutine
p d coupling in the core program is used to couple from the
physical parameterizations to the dynamical core. In contrast,
the subroutine d p coupling is used to couple from the dynam-
ical core to the physical parameterizations. It is necessary to
create a transformation of variables between the physical pa-
rameterizations and the dynamical core while running the IAP
AGCM4.0. Generally, the variables transmitted include zonal
velocity U, meridional velocity V, temperature T, water vapour
field Q, vertical velocity W, the pressure at the bottom layer

5



PS, and the geopotential height PHIS. The subroutine dynpkg,
which mainly consists of the subroutines dyfram and qpdata, is
used to solve dynamic partial differential equations. The call
graph of the main subroutines in the IAP AGCM4.0 program is
described in Fig. ??.

Initialization program

spmd_dyn

initcom

register_dyn_fields

read_initdat

read_restart_dynamics

Core program

p_d_coupling

d_p_coupling

write_restart_dynamics

    dynpkg
dyfram

qpdata

Fig. 7. Running flow of the dynamical core.

In the parallelization of the dynamical core, the PILGRAM
library [? ] is used for the domain decomposition of mesh, and
the mod comm library [? ], which encapsulates MPI Send and
MPI Recv, is used for data communication among the subdo-
mains. The two libraries were used for the parallelization of the
dynamical core in the CAM [? ]. Similarly, they can be utilized
to parallelize other AGCMs.

The implementation of the two-dimensional domain decom-
position in Fig. ?? is shown in Algorithm 1, where npr y is
the number of subdomains in y (the direction of the longitudi-
nal circle), npr z is the number of subdomains in z (the vertical
direction), npes is the total number of MPI tasks, ydist(:) is
the number of latitudes per subdomain, nlat p(:) is the num-
ber of latitudes per subdomain, cut(:, :) is the partition for MPI
tasks, plat is the number of latitudes, myid y is the subdomain
index (0-based) in latitude (y), numlats is the number of lati-
tudes owned by a given MPI rank, beglatdyn is the starting lati-
tude for dynamical framework, endlatdyn is the ending latitude
for dynamical framework, beglatdynex is the extended starting
latitude for dynamical framework, endlatdynex is the extended
ending latitude for dynamical framework, and [loc JB, loc JE]
of a processor is related to [JB, JE]. The algorithm implemen-
tation of the decomposition in Fig. ?? is similar to Algorithm
1.

In addition, there is Fourier filtering above 70 degrees to-
wards the poles. The FFT99 [? ? ], a commonly used software
package for the Fast Fourier Transform (FFT) in atmospheric
numerical models, works for any transform length of the form
N = 2p × 3q × 5r(p > 0, q > 0, r > 0; p, q, r ∈ Z). The previous
IAP AGCM4.0 also used the FFT99. To improve the compu-
tational efficiency of the polar filtering in the IAP AGCM4.0,
according to the special needs of atmospheric numerical mod-
els, we have designed and implemented a new package called
SC FFT, based on the Fastest Fourier Transform in the West
(FFTW) library [? ]. The FFTW takes account of the influence
of hardware configuration and FFT transformation parameters,
so the SC FFT is more efficient than the FFT99. Ideal experi-
ments show that the SC FFT is 2.5 to 3.5 times faster than the
FFT99. In the IAP AGCM4.0, it is 39% faster [? ]. The algo-

Algorithm 1: Implementation of the two-dimensional do-
main decomposition in the vertical direction
//Compute y decomposition
allocate (ydist(npr y));
allocate (nlat p(0:npes-1));
allocate (cut(2, 0:npes-1));
ydist(:) = 0;
nlat p(0:npes-1) = 0;
lat = plat / npr y;
workleft = plat - lat * npr y;
if lat < 3 then

call endrun (‘SPMDINIT DYN: less than 3 latitudes
per subdomain’);

for procid=1, npr y do
ydist(procid) = lat;

if workleft /= 0 then
procids = (npr y+1) / 2;
procidn = procids + 1;
while workleft /= 0 do

if procids == 1 then
procids = npr y;

ydist(procids) = ydist(procids) + 1;
workleft = workleft - 1;
if workleft /= 0 then

ydist(procidn) = ydist(procidn) + 1;
workleft = workleft - 1;

procidn = procidn + 1;
procids = procids - 1;

//Set the data structures
lat = 0;
for procid=0, npr y-1 do

cut(1, procid) = lat+1;
lat = lat + ydist(procid+1);
cut(2, procid) = lat;
nlat p(procid) = ydist(procid+1);
if myid y == procid then

beglat = cut(1, myid y);
endlat = cut(2, myid y);
numlats = ydist(procid+1);
beglatdyn = plat+1-endlat;
endlatdyn = plat+1-beglat;
beglatdynex = max(1, beglatdyn - 1);
endlatdynex = min(plat, endlatdyn + 1);
loc JB = max(2, beglatdyn);
loc JE = min(plat-1, endlatdyn);

for k = 1, npr z-1 do
for j = 0, npr y-1 do

procid = j + k∗npr y;
cut(1, procid) = cut(1, j);
cut(2, procid) = cut(2, j);
nlat p(procid) = nlat p(j);

//Compute z decomposition
The algorithm of the z decomposition is similar to that of
the y decomposition.
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Fig. 8. The call graph of the main subroutines in the IAP AGCM4.0.

rithm of the SC FFT is as follows.
(1) In the FFTW library, the planner is one of its three com-

ponents. In a FFT with a length N, the planner factors N in
various decomposition ways, or plans. Then, the planner uses
some measuring methods to determine which plan is the fastest
[? ]. Therefore, the plan is one parameter of subroutines for
fast fourier transform in the FFTW. Once a plan is produced, it
can be utilized for many times. In atmospheric models, a data
sequence may be processed by the FFT for many times. To pro-
duce such a plan for a data sequence of atmospheric models, we
create a subroutine or function called SC SETPLAN based on
the FFTW.

(2) Then, based on the FFTW, the subroutines SC FFT99 and
SC FFT991 with the same parameters of corresponding subrou-
tines in the FFT99 are created. Here, they can perform a number
of simultaneous real/half-complex periodic fourier transforms
or corresponding inverse transforms, using ordinary spatial or-
der of grid point values (SC FFT991) or explicit cyclic conti-
nuity in the grid point values (SC FFT99).

4. Result and discussion

4.1. Experimental setup

To evaluate the parallel performance of the IAP AGCM4.0,
an ideal climate simulation experiment for 61 model days is
designed. The time step of the IAP AGCM4.0 in the experi-
ment is 600 seconds. The simulating result is output once every
month. The initial conditions are from an earlier run of control
simulations, and boundary conditions (sea surface temperatures

and sea ice concentrations) are from the global Hadley Centre
Sea Ice and Sea Surface Temperature (HadISST) dataset [? ].
In the study, the IAP AGCM4.0 is tested and evaluated at both
1.4◦ × 1.4◦ and 0.5◦ × 0.5◦ horizontal resolutions.

The experimental platform for the simulation is the Sugon
TC4600H blade cluster in the Computer Network Information
Center of the Chinese Academy of Sciences, which now has
hundreds of compute nodes, each compute node having 20 or
24 CPU cores. The CPU is the Intel Xeon E5-2680 v2 or E5-
2680 v3 processor. In each compute node, CPU cores share a
64 or 128 GB DDR3 system memory through QuickPath Inter-
connect. As the basic compiler in the tests, we used an Intel
C/Fortran compiler version 13.1.3 with the optimizing level of
O1. For MPI communication routines, we used Intel MPI 4.1.3
implementation binding with the Intel compiler.

4.2. Processors’ different ways of decomposition
When the number of processors used is constant, processors’

different ways of decomposition have an impact on the parallel
performance of a model. In this case, the computing time of
the IAP AGCM4.0 (1.4◦ × 1.4◦) is shown in Table ??. The
result indicates that the larger Py is, the more quickly the IAP
AGCM4.0 will run.

4.3. Parallel analysis
We conducted an experiment for the IAP AGCM4.0 on 32,

64, 128, 256 and 512 CPU cores respectively to test its paral-
lel computing performance. In these simulations, we employed
the processors’ optimal way of decomposition. The comput-
ing time and speedup of the IAP AGCM4.0 with increasing the
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Table 1
Computing time (s) of the IAP AGCM4.0 with processors’ different ways of
decomposition.

Cores IAP AGCM4.0 (Px × Py) Time

32

16 × 2 6198.94
8 × 4 4239.79
4 × 8 3525.89

2 × 16 2974.48
1 × 32 2787.82

64

16 × 4 3204.28
8 × 8 2368.41

4 × 16 1756.35
2 × 32 1577.49

128
16 × 8 2186.15
8 × 16 1259.12
4 × 32 1038.58

256 16 × 16 1125.78
8 × 32 739.07

512 16 × 32 775.03

number of cores are also plotted in Fig. ?? and Fig. ??. From
the two figures, the study can draw certain conclusions as fol-
lows.
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Fig. 9. Computing time of the IAP AGCM4.0.

First, when the resolution is 1.4◦ × 1.4◦, the parallelization
of the IAP AGCM4.0 with MPI reduces the computing time of
2787.82 seconds on 32 cores to 739.07 seconds on 256 cores,
for a speedup of about 3.8x. But the computing time on 512
cores begins to increase. This means that the IAP AGCM4.0
with 1.4◦ × 1.4◦ resolution on 256 cores has the fastest comput-
ing speed on the Sugon cluster.

Second, when the resolution is 0.5◦ × 0.5◦, in comparison
with the 32 CPU cores, the speedup of the IAP AGCM4.0 with
50.88% parallel efficiency on 512 CPU cores can reach 8.14x.
The computing time on 512 cores still reduces as well. There-
fore, the IAP AGCM4.0 with 0.5◦×0.5◦ resolution has stronger
scalability.
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Fig. 10. Speedup of the IAP AGCM4.0.

To discover the reason why the IAP AGCM4.0 with 1.4◦ ×
1.4◦ resolution slows down on 512 cores or more, we counted
the computing time and speedup of both the physical param-
eterizations and dynamical core, as indicated in Fig. ?? and
Fig. ?? respectively. From the curves, we know that the com-
puting time of the physical parameterizations decreases much
more quickly than does that of the dynamical core. The physi-
cal parameterizations can still speed up on 512 cores, while the
dynamical core cannot. There is no data communication during
the entire computation, so the physical parameterizations can
have a better speedup. Accordingly, it is the dynamical core
which results in the decline in the IAP AGCM4.0 computing
speed on 512 cores.
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Fig. 11. Computing time of the physical parameterizations and dynamical core.

There are two main reasons why the dynamical core has an
unsatisfactory speedup. The first reason is the small meshes
(128×256×26) of the IAP AGCM4.0. When running the model
on larger-scale cores, the data communication cost significantly
increases, and the computational advantage of nodes cannot be
well-represented. The second reason is that there are too many
small computing tasks in the dynamical core. They are not ap-
propriate for being computed on larger-scale CPU cores.
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Fig. 12. Speedup of the physical parameterizations and dynamical core.

Testing and analysing the code of the dynamical core have
shown that the subroutines tend lin and scanslt run take most
of the total computational time of the dynamical core, as shown
in Table ??. The former is designed to compute the tenden-
cies of P, T, U, and V, while the latter is designed to han-
dle semi-Lagrangian transport in the context of Eulerian spec-
tral dynamics. In the two subroutines, too many mp send3d
and mp recv3d operations, which encapsulate MPI Send and
MPI Recv, are called to transport some computing variables
and to communicate boundary information. In the meantime,
MPI Allgatherv is also invoked in the tend lin. In short, as
the computing time of the two subroutines on more CPU cores
increases, the computing speed of the dynamical core slows
down. When the resolution is 0.5◦ × 0.5◦, the computing mesh
is 361× 720× 26. However, the speedup of the dynamical core
slows down when the number of cores is more than 512. To
further speed up the dynamical core, the two subroutines can
continue to be optimized in the future.

To improve fully the performance of the IAP AGCM4.0, the
cache miss rate of the parallel algorithm is evaluated by the Per-
formance Application Programming Interface (PAPI), a com-
monly used performance analysis tool [? ]. Fig. ?? shows that
the L2 cache miss rate of the algorithm ranges from 35 percent
to 60 percent, so the algorithm can be optimized on data locality
later.

4.4. Long-time integration simulation

To evaluate the performance of the IAP AGCM4.0 with
1.4◦ × 1.4◦ horizontal resolution for long-term climate change,
a numerical experiment simulating the global surface air tem-
perature (SAT) during the twentieth century is conducted. In
the experiment, the observed sea surface temperature and sea
ice during the twentieth century are used to drive the IAP
AGCM4.0; the observational dataset GISS [? ] is also used
in this study. The simulated and observed time series of the
global mean SAT anomaly are shown in Fig. ??. The corre-
lation coefficient (CC) between the observation and the simu-
lation is 0.89, so the IAP AGCM4.0 can simulate the global
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Fig. 13. Cache miss rate of the IAP AGCM4.0 with 0.5◦ × 0.5◦ resolution.

warming trend well. This means the model has good perfor-
mance for long-term climate change. It will take a lot of time to
simulate long-term climate change, so it makes sense to run the
model in parallel on a cluster. Therefore, the parallel algorithm
presented in the paper is valuable for long-time integration sim-
ulations of the IAP AGCM4.0.

Fig. 14. Time series of the SAT anomaly during the twentieth century for the
simulation (red solid line) and observation (black solid line) (units: K).

5. Conclusions and future work

The scalable parallelization of an AGCM turns out to be
quite challenging for atmospheric scientists. It needs not only
many parallel algorithms of numerical computing but also huge
amounts of code implementation. Therefore, computer sci-
entists or software engineers are needed to provide profes-
sional help during the design and development of an AGCM.
As demonstrated above in this paper, we put forward a two-
dimensional domain decomposition parallel algorithm for the
IAP AGCM4.0. The algorithm is mainly used in the paralleliza-
tion of the dynamical core implemented with MPI. After the
parallelization, the IAP AGCM4.0 can run on 3120 CPU cores.
The speedup of the IAP AGCM4.0 with 50.88% parallel effi-
ciency on 512 CPU cores can reach 8.14x. The experimental
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Table 2
Computing time (s) of dynamical core, tend lin and scanslt run.

Resolution Cores IAP AGCM4.0 (Px × Py) Dynamical core tend lin scanslt run

1.4◦ × 1.4◦

32 1 × 32 1223.31 403.04 293.16
64 2 × 32 685.93 259.84 157.68
128 4 × 32 516.16 224.36 95.04
256 8 × 32 439.79 190.56 76.41
512 16 × 32 537.98 264.98 95.85

0.5◦ × 0.5◦

32 1 × 32 28195.02 11271.45 7005.48
64 1 × 64 14980.62 6520.45 3353.91
128 2 × 64 7351.81 3457.66 2003.58
256 4 × 64 4723.65 2274.81 1145.48
512 8 × 64 3739.79 1889.30 894.67

1024 16 × 64 3421.69 1646.44 916.00

result shows that our parallel algorithm is efficient and scalable,
and it will show a more desirable parallel performance in the
model with higher resolution and with longer-time integration.
Our work is meaningful for real-time climate simulation. The
parallel algorithm can also be used in the parallelization of other
AGCMs, because their parallel ideas are all similar. Although
the IAP AGCM4.0 does not have very high parallel efficiency
on thousands of cores, we have created a precedent which will
promote the development of climate simulation with comput-
ing on thousands of cores. We will continue to optimize the
IAP AGCM4.0.

The dynamical core has many small computing tasks, so its
parallelization can be implemented with OpenMP in the fu-
ture. In this way, the IAP AGCM4.0, implemented with the
MPI + OpenMP hybrid paradigm which exploits two-level par-
allelism, will run more quickly on a multi-core cluster. The
physical parameterizations have quite a good parallel perfor-
mance, so we can expect to assign more processors to the phys-
ical parameterizations in long-time computing with large-scale
cores. At present, some physical parameterization schemes
of the Weather Research and Forecasting model (WRF) with
a Graphics Processing Unit (GPU) version have been imple-
mented [? ? ? ? ? ]. The IAP AGCM4.0 shares physi-
cal parameterization schemes that are similar to the WRF, so
running the physical parameterizations on the GPU cores may
also be considered. In other words, the GPU version of the
physical parameterizations may be developed later. Moreover,
a parallel I/O strategy with high data throughput [? ] for the
IAP AGCM4.0 should be also researched. In this way, the
IAP AGCM4.0 will be more efficient and scalable in large-scale
multi-core computing.
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