
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

MiCADO -Microservice-based Cloud Application-level Dynamic 

Orchestrator

Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A., Farkas, A., 

Gesmier, G. and Terstyanszky, G.

 

NOTICE: this is the authors’ version of a work that was accepted for publication in 

Future Generation Computer Systems. Changes resulting from the publishing process, 

such as peer review, editing, corrections, structural formatting, and other quality control 

mechanisms may not be reflected in this document. Changes may have been made to 

this work since it was submitted for publication. A definitive version was subsequently 

published in Future Generation Computer Systems, DOI: 10.1016/j.future.2017.09.050, 

2017.

The final definitive version in Future Generation Computer Systems is available online 

at:

https://dx.doi.org/10.1016/j.future.2017.09.050

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

https://dx.doi.org/10.1016/j.future.2017.09.050
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://westminsterresearch.wmin.ac.uk/


In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

repository@westminster.ac.uk


MiCADO –Microservice-based Cloud Application-level 

Dynamic Orchestrator 

Tamas Kissa, Peter Kacsuka,b, Jozsef Kovacsb, Botond Rakoczia, Akos Hajnalb, Attila 
Farkasb, Gregoire Gesmiera, Gabor Terstyanszkya 

a Centre for Parallel Computing, University of Westminster, London United Kingdom 
b MTA-SZTAKI, Budapest, Hungary 

Corresponding author: 
 Tamas Kiss 
 University of Westminster 
 115 New Cavendish Street 
 W1W 6UW London, United Kingdom 
 email: kisst@wmin.ac.uk 
 phone: +44-20-79115000  

 
Abstract: Various scientific and commercial applications require automated scalability and orchestration on 
cloud computing resources. However, extending applications with such automated scalability on an individual 
basis is not feasible. This paper investigates how such automated orchestration can be added to cloud 
applications without major reengineering of the application code. We suggest a generic architecture for an 
application level cloud orchestration framework, called MiCADO that supports various application scenarios on 
multiple heterogeneous federated clouds. Besides the generic architecture description, the paper also presents 
the first MiCADO reference implementation, and explains how the scalability of the Data Avenue service that is 
applied for data transfer in WS-PGRADE/gUSE based science gateways, can be improved. Performance 
evaluation of the implemented scalability based on up and downscaling experiments is presented. 

Keywords: cloud orchestration, science gateway, automated scalability, Data Avenue 

1. Introduction 
Many scientific and commercial applications require access to computation, data or network 
resources based on dynamically changing requirements. Applications running on distributed 
computing infrastructures, such as grids or clouds, typically fall into this category. End-users 
can access these applications via desktop or web-based high-level user interfaces, such as 
science/business gateways. When executing applications or accessing services via high-level 
user environments, users and providers both require these applications or services to 
dynamically adjust to fluctuations in demand and serve end-users at required quality of 
service (performance, reliability, security, etc.) and at optimized cost. 

Cloud computing has the potential to fulfil these requirements. In order to support the 
development of a large number of applications that are capable utilising the dynamic and 
scalable nature of IaaS (Infrastructure as a Service) clouds, advanced tools are required that 
support application developers. Custom developing cloud awareness to every single 
application is not a viable solution and would require significant training and development 
efforts that especially smaller organisations, such as SMEs (Small and Medium-sized 
Enterprises) cannot afford.  

One of well-documented benefits of cloud computing [1] is its ability to supply a variable 
amount of resources (computational power, storage, network capacity), which can scale 
dynamically up and down, forming the supply side of Figure 1. On the demand side, we can 
see applications that are likely to be formed of one or more services. Services can be either 
in-house developed or provided by external suppliers or open-source communities. Services 
could also be shared between applications. 

Services consume baseline and variable resources. Baseline resources can be defined as 
resources consumed by the component in idle state.  Variable resources are consumed when 



the component performs its duties. This can include heavy computation or storage utilisation 
based on application requirements, which can vary significantly based on the nature of the 
application. Overall resource demand of an application is the sum of baseline and variable 
resources.  

Application 1 Application 2 Application N

Service 1 Service 2 Service 3 Service 4 Service 5

Baseline resource consumption

Variable resource consumption

Cloud services

Dynamic 

demand
Manually 

adjusted 

supply

Resource requirements

To be replaced by 

automatically 

adjusted supply 

 

Fig. 1 Resource demand and supply of cloud applications 

On the resource provision side cloud computing already offers rapid elasticity and dynamic 
scalability. IaaS clouds can scale up or down on demand. However, the dynamic and 
intelligent utilisation of such scalability from the perspective of cloud applications is not 
trivial. Many legacy applications have been migrated to cloud infrastructures that only 
consume and run on a predefined static set of resources. More cloud-aware applications have 
also been developed that offer dynamic scalability based on user demands or application 
characteristics. However, these applications have typically been custom developed requiring 
significant effort and low level cloud computing expertise to implement. On the other hand, 
typical application patterns can be relatively easily identified that support a large number of 
similar applications and can use rather similar underlying mechanisms from dynamic clouds.  

As shown in Figure 1, cloud service providers are indifferent to the resource needs of 
applications since they have no means of predicting their capacity demand. In practice, the 
operator of an application requests cloud resources based on predictive estimates (typically, 
worst-case estimates), but after being commissioned, these resources remain static without 
operator intervention. If demand exceeds supply at a given point of time, applications do not 
function within their required parameters. If supply exceeds demand, resources are wasted, 
which generally has a cost impact.  

This work investigates possibilities of replacing manually adjusted supply of cloud services 
with an automatically adjusted supply, as also illustrated in Figure 1. The aim is to create a 
framework, where automatically adjusted cloud service supply can be arranged, based on 
application demands. Such framework would allow cloud application developers to build cost 
and performance optimization mechanisms into their application code through a high-level 
API (Application Programming Interface). The suggested solution is based on microservices 
[8] and their dynamic orchestration in a cloud computing environment. 

The rest of this paper defines a generic microservices-based architecture for application-level 
cloud orchestration, called MiCADO (Microservices-based Cloud Application level Dynamic 



Orchestrator), and describes its first reference implementation utilizing container-based open 
source cloud technologies. In order to illustrate how to handle such variable resource demand, 
the example of a science gateway supported by the first version of the MiCADO architecture 
is introduced. The scalability problem is investigated and solved in connection with the WS-
PGRADE/gUSE [2] gateway framework, and its particular service that needs such scalability 
is data staging. This example is generic enough to appear in many different science gateways, 
and also the MiCADO approach created to solve this problem is sufficiently generic to 
support a large class of application types. The paper significantly extends the MiCADO 
concept first described in [17], and presents its first implementation and benchmarks.  

2. Related Work 
The problem of application-level orchestration has been recognized and a number of 
solutions have been designed and implemented. A short overview is provided below 
highlighting the current limitations of these solutions. 

Marpaung et al. [3] discuss Altocumulus, AppScale, Cloudify and mOSAIC. Altocumulus 
focuses on deploying web applications to a variety of public clouds, which limits its usability 
in private or hybrid clouds. It does not provide monitoring or dynamic changes to services. 
AppScale is an open-source product that supports execution of Google Application Engine 
applications and therefore restricted to this particular technology. mOSAIC provides a set of 
APIs to application developers to tackle cloud deployment issues. The limitation of mOSAIC 
is the implementation of these APIs as the application developer needs to integrate these to 
application components.  

Cloudify [4] combines a TOSCA (Topology and Orchestration Specification 
for Cloud Applications) editor with deployment and orchestrator. It provides access to 
multiple clouds and a complete framework to describe microservices and execute them either 
in Docker containers or on cloud metal. Cloudify also provides dynamic service upscaling 
and downscaling based on microservice dependent parameters, for example number of 
transactions, number of threads, etc. Cloudify does not provide a container portability 
framework, nor do its metrics span dockerised microservices and the cloud metal executing 
them.  

Pham, Tchana et al. discuss the problem of distributed applications [5]. They focus on 
application orchestration that can span several different clouds. They recognize the need to 
deliver microservice-specific parameters, for example port numbers and IP addresses, to 
other microservices, and provide a description language framework to do this. However, this 
solution does not support service discovery tools and dynamic relocation of microservices.  

Amazon CloudFormation [6] provides to system administration developers an easier way for 
the collection, creation and management of related AWS (Amazon Web Services) resources 
through templates. These templates describe the AWS resources and associated 
dependencies. After the deployment of AWS resources, CloudFormation ensures the start of 
services in the correct order. As limitation, CloudFormation is specific to AWS and does not 
support run-time orchestration. 

OpenTosca [7] provides an open source ecosystem for the Topology and Orchestration 
Specification for Cloud Applications (TOSCA) developed by Stuttgart University. 
OpenTosca is divided into three parts: a TOSCA runtime environment (OpenTosca 
container), a graphical modelling TOSCA tool (Winery) and a self-service portal for the 
application available in the container (Vinothek). Although OpenTosca is a generic 
framework, it does not support run-time orchestration.  



Although effective in particular narrow circumstances, none of these systems provide fully-
automated, cloud-agnostic solution for a wide range of applications and for wide variety of 
clouds in a way that MiCADO aims. 

3. MiCADO concept and architecture 
The generic life-cycle of cloud-aware applications based on the MiCADO concept is 
illustrated on Figure 2. The aim is to provide dynamic and automated resource supply for 
applications, as it was described in Section 1. This process can be divided into two major 
phases: optimised deployment (1) and run-time orchestration (2).  

In phase 1, application developers/operators need to provide a high-level description of their 
applications. This description, besides application topology, also includes various QoS 
(Quality of Service) parameters such as cost and performance requirements, and desired 
security policies. This description is passed on to the Coordination/Orchestration component 
of MiCADO. This component collaborates with the Security facilitator in order to translate 
user defined security policies into specific security solutions, and also with the Optimisation 
decision maker in order to translate performance and cost related parameters into actual 
deployment values. Following this, the Coordination/Orchestration component passes on the 
deployment instructions to MiCADO’s Deployment executor that deploys the services 
required to run the application on the targeted cloud infrastructure.   

Once the application is deployed in the cloud, run-time orchestration (phase 2) starts. 
MiCADO continuously collects various metrics from the running application and passes it on 
to the Coordination/orchestration component. This data is analysed from performance/cost 
aspects by the Optimisation decision maker and from security enforcement point of view by 
the Security facilitator. If adjustment is required, the Deployment executor is called to scale 
up or down the infrastructure, and to execute the required changes.  

Users also have the possibility to adjust any requirement, either security or performance/cost 
related, during runtime. If the user provides a modified description with updated QoS 
parameters, then it is passed on to the Coordination/Orchestration component that analyses 
the received data and instructs the Deployment executor to modify the infrastructure.  

App1 App2 App3

Developer produces

Security facilitator Coordination/Orchestration
Optimisation 

decision maker

Deployment 

instruction Data

Deployment executor
Measurement & metrics 

collection

Cloud

 

Fig. 2 Generic life-cycle of cloud-aware applications orchestrated by MiCADO 

Based on the above described life-cycle model, a layered MiCADO architecture is defined 
below. This infrastructure framework is generic in the sense that we do not specify the actual 



components required and do not discuss their specific implementation here. The identified 
layers and their desired functionality can be implemented in various ways using different 
technologies and services that may already exist. Our aim with the generic architecture 
definition is to identify a modular and pluggable framework where different functionalities 
can be delivered by different components on-demand, and where these components can be 
easily substituted. The resulting solution will be technology neutral that will not be depending 
on one particular component implementation. 

The layers of such framework that support the dynamic application level orchestration of 
cloud applications are illustrated in Figure 3. The suggested generic framework is based on 
the concept of microservices, as defined for example by Balalaie [8]. Cloud computing is a 
natural platform for microservices that provide decoupling of independent components from 
a monolithic application. Cloud enables execution and resource allocation of these 
independent components based on their specific needs. One microservice might require a lot 
of storage while another could be CPU intensive. Cloud execution offers the possibility to 
optimise resource allocation and thus resource cost dynamically. The alternative would be to 
allocate a monolithic infrastructure, the size of which large enough to be sufficient for worst-
case requirements scenario. However, most of the time, the worst case scenario is not present 
and allocated resources of the monolithic infrastructures are wasted. 

Cloud interface 

Coordination interface 

Microservices discovery and execution layer

Microservices coordination logic layer

Cloud access API (direct cloud APIs or CloudBroker API)

Worker node 1

Contai

ner

Contai

ner

Contai

ner

Worker node 2

Contai

ner

Contai

ner

Contai

ner

Worker node N

Contai

ner

Contai

ner

Contai

ner

Infrastructure and security requirement  

definition 1

Infrastructure and security requirement 

definition 2

App1 App2 App4
Application 

layer

Application 

definition layer

Orchestration 

layer

Cloud interface 

layer

Cloud instance 

layer

S
e

cu
ri

ty
, 

p
ri

va
cy

 

a
n

d
 t

ru
st

 s
e

rv
ic

e
s

App3

 

Fig. 3 MiCADO generic architecture framework 

The layers of the MiCADO generic architecture (from top to bottom), based on the above 
described microservices-based concept are as follows: 

1. Application layer. It contains actual application code and data to make an application 
definition (layer 2) functioning in such a way that a desired functionality is reached. For 
example, this layer could populate database with initial data, and configure HTTP server 
with look and feel and application logic. 

2. Application definition layer. This layer forms the basis to define a functional 
architecture of the application using application templates. At this level software 
components and their requirements (both infrastructure and QoS specifications) as well as 
their interconnectivity are defined using application descriptions uploaded to a public 
repository. As the infrastructure is agnostic to the actual application using it, the 



application template can be shared with any application that requires such an 
environment. 

3. Orchestration layer 
This layer is divided into four horizontal and one vertical sub-layers. The horizontal sub-
layers are: 

a. Coordination interface API. It provides access to orchestration control and 
decouples the orchestration layer from the application definition. This set of APIs 
enables application developers to utilise the dynamic orchestration capabilities of 
the underlying layer and supports the convenient development of dynamically and 
automatically scalable cloud-based applications by embedding these API calls into 
application code. 

b. Microservices discovery and execution layer. This layer manages the execution 
of microservices and keeps track of services running. Execution management 
combines both start-up and shut down of microservices. Service management 
gathers information about currently running services, such as service name, IP 
address and port where the service is reachable and optional service tags to help in 
service coordination. 

c. Microservices coordination logic layer. With large infrastructures and to reap 
the benefits from cloud-based execution, it becomes necessary to understand how 
the current execution environment is performing. Information needs to be 
gathered and processed. If bottlenecks are detected or the currently running 
infrastructure appears underutilised, it may be necessary to either launch or shut 
down cloud instances, and possibly move microservices from one physical worker 
node to another. 

d. Cloud interface API is to abstract cloud access from layers above. Cloud access 
APIs can be complex interfaces, as they typically cater for a large number of 
services provided by the cloud provider. On the other hand, the microservices 
execution and coordination logic layers (see 3b and 3c) only need to shut down 
and start instances. Abstracting this to a cloud interface API simplifies 
implementation of aforementioned layers, and if new Cloud access APIs are 
implemented, only this layer needs to change.  

e. Security, privacy and trust services: The orchestration layer also includes a 
vertical sub-layer that deals with security, privacy and trust related services for 
advanced security policy management. These services span multiple levels of the 
orchestration layer, as it is illustrated on Figure 3. The main aim is to shield 
application developers from detailed security management. To achieve this, the 
security, privacy and trust services of the orchestration layer take the general 
security policies defined at the Application definition layer, as well as security 
credentials for the application domain. These inputs will then be used by the 
special purpose security policy enforcement services to enforce the security 
policies at orchestration level.  

4. Cloud interface layer. This layer provides means to launch and shut down cloud 
instances. There can be one or more cloud interfaces to support multiple clouds. 
Besides directly accessing cloud APIs, generic cloud access services, such as the 
CloudBroker platform [18] can also be used at this layer to support accessing 
multiple, heterogeneous and distributed clouds via a uniform access layer.  

5. Cloud instance layer. It contains cloud instances provided by IaaS cloud providers. 
These instances can run various containers that execute actual microservices. This 
layer typically represents state-of-the-art of cloud technology, as provided by various 
public or private cloud providers.  



The full MiCADO framework is currently being investigated and implemented in the COLA 
(Cloud Orchestration at the Level of Application) project funded by the European 
Commission [22]. This paper focuses on the horizontal sub-layers of the orchestration layer, 
and describes the first experiences when implementing these layers of MiCADO.  

4. MiCADO prototype implementation 
The MiCADO prototype implementation targets to solve a very wide class of application 
types where a certain service is used by a variable number of users for a variable amount of 
data. As a result the load of the service rapidly changes in time. If the allocated resources do 
not match the load requirements, either the service’s response time will be too slow (too few 
cloud resources are provided for the service), or the cost to pay for the service will be much 
more than it is necessary (too many cloud resources are provided for the service). Web 
applications typically belong to this class of applications since the number of users visiting a 
certain web page might be unpredictable and changes rapidly. 

Such a service where the usage dynamically changes is the Data Avenue data staging service 
[19]. Data Avenue enables transferring of files or even directories of files between different 
data storages having various storage access protocols. The major storage access protocols 
Data Avenue supports are HTTP, HTTPS, SFTP (SSH File Transfer Protocol), GSIFTP (FTP 
enhanced to use GSI – Grid Security Infrastructure), SRM (Storage resource Management), 
iRODS (Integrated Rule-Oriented Data System), and S3 (Amazon simple Storage Service). 
Data Avenue also enables to upload and download files and directories between the user’s 
computer and a data storage (using the storage access protocols mentioned above). Currently 
Data Avenue is a public service that is accessible via a web page at https://data-
avenue.eu/en_GB/. Data Avenue is also used in gUSE/WS-PGRADE portals either as a 
portlet or inside WS-PGRADE workflows to enable file transfer based communication 
between workflow nodes. Data Avenue client is part of the standard WS-PGRADE 
distribution and used by more than 30 large projects in Europe. For example, the Vialactea  
project, that investigates the star formation processes of the Milky Way, deployed its own 
Data Avenue server to support its WS-PGRADE gateway in data transfer [27]. The use of the 
Data Avenue service makes WS-PGRADE workflows highly portable across different DCIs 
(Distributed Computing Infrastructures) since Data Avenue based data staging is independent 
from where the data files are stored and where the workflow nodes are executed. 

The original version of the Data Avenue service did not use cloud technology and it worked 
fine as long as only a few users used it and only a small number of file transfers were 
initiated via the service. However, if a large number of users want to use this service in a 
large number of science gateways, it will be a bottleneck. To avoid this problem we 
developed a cloud version of the service based on the MiCADO concept. This version of the 
service is highly scalable because it can be automatically replicated whenever the usage of 
the service exceeds a pre-defined threshold. Once the load is reduced below this threshold, 
under-loaded replicas can be removed from the cloud. In this section we show how this 
scalable version of the Data Avenue service has been created and how this solution fits to the 
concept of MiCADO. 

The architecture of the scalable Data Avenue service is a three-layered architecture as shown 
in Figure 4. The bottom layer contains the application itself that runs in the worker nodes of a 
Docker Swarm cluster [14]. These are denoted as Data nodes in Figure 4 emphasizing that 
this MiCADO architecture can support not only the Data Avenue application but any other 
application having similar characteristics. Applications to be deployed in a scalable way in 
the MiCADO architecture should be placed in Docker containers inside these Data nodes. 



The Central layer of the MiCADO prototype architecture contains those services that make 
the Data node application scalable. These services include: 

1. Swarm master node 
2. Consul [20] 
3. Prometheus [21] extended with an Alert manager and Alert 

executor service 

Occopus

Admin Users

1. HAProxy 2. HAProxy n. HAProxy

Distribution 

layer

- Consul

- Prometheus

- Alert manager

- Alert executor

- Docker master

Central 

layer

Application 

layer

1. Data 

node VM

2. Data 

node VM

n. Data 

node VM

Docker cluster

…

…

Build the 

infrastructure

User requests

Monitoring

Discovering

Application 

control

Deploy 

application
Create/delete 

node request

Create node

Create/delete 

node

 

Fig4 MiCADO prototype architecture 

An important design aspect of MiCADO was to use only open source tools that can be 
replaced later if needed by similar type of services with little effort. Therefore, all the 
services used in this prototype MiCADO architecture are based on open source solutions. 
Docker Swarm cluster is a widely used docker-based infrastructure-like service where the 
Docker master node is responsible for the dynamic creation and management of Docker 
containers at the worker nodes of the Swarm cluster. The registration of the workers into the 
cluster is done via the Consul discovery service that is another well-known and widely used 
open source service to organize Docker containers into a cluster. Every time a new node is 
created, first it is unknown to the other nodes. It is the Consul service that provides 
information about the active nodes to the central services of MiCADO.  

In order to take the decision when the number of workers in the Swarm cluster should be 
increased or decreased, we need a monitoring tool to observe the load of the worker nodes. 
Such mature monitoring tool is Prometheus that is responsible for collecting information 
about the load of the worker nodes. The collected data will be used to create alerts. These 
alerts are events which if triggered then they are sent out to other services of MiCADO. The 
alerts are generated by the Alert manager service. Prometheus provides only a framework to 
create the Alert manager service therefore it was our task to develop the alert conditions and 
code. Similarly the Alert executor service was developed by us based on the Prometheus 
framework concept. The Alert executor instructs the Occopus cloud orchestrator [25] to 
deploy new Swarm worker nodes or remove existing ones depending on the information 
provided by the Alert manager service. 



Occopus is a cloud orchestrator service that can deploy complex virtual infrastructures in 
many different types of clouds including single and heterogeneous multi-cloud systems. After 
deploying the services it can also manage the component services of the deployed 
infrastructure, regularly checking their health conditions (responsiveness for various types of 
messages). In MiCADO, Occopus has two major roles. First, Occopus is used to set up the 
three-layer MiCADO infrastructure in a selected cloud. Once the infrastructure is created, the 
next task of Occopus is to process the requests of the Alert executor and based on those 
requests deploy new Swarm worker nodes or remove existing ones. 

The third layer of the MiCADO prototype, the Distribution layer realizes load balancing 
among the Data node services. It contains several HAProxy [24] services. This farm of nodes 
shares the incoming traffic and routes it to the Data nodes in a balanced way. This helps 
managing traffic and spreading incoming traffic spikes between the Data nodes. In this way 
MiCADO ensures that the Data nodes are well balanced and the load is equally shared by 
every worker of the Swarm cluster. The current solution uses round robin technique however 
least connections or predictive node techniques can also be used. This layer will remain 
transparent from the users’ point of view and offers additional features such as caching, http 
compression and SSL (Secure Socket Layer) offloading. We selected HAProxy, the high 
performance TCP/HTTP load balancer because of its reliability and well documented 
features. Please notice that the Distribution layer distributes user data transfer requests only 
and not the actual data to be transferred. As a result the traffic and processing load of the 
HAProxy services is much less than the load of the Data nodes. Nevertheless, if there are a 
very large number of users, a single HAProxy service can be a bottleneck and hence the same 
kind of scalability approach is applied for the HAProxy services as for the Data node 
services. Prometheus collects load information on HAProxy services too and the Alert 
Executor can instruct Occopus to deploy a new HAProxy service or remove an existing one. 
The new ones are registered into MiCADO via the Consul service as in case of the Swarm 
worker nodes. 

Comparing Figure 3 and 4 we can easily identify how the MiCADO prototype in Figure 4 
implements the MiCADO concept and architecture shown in Figure 3. The Microservices 
discovery and execution layer that manages the execution of microservices and keeps track 
of services running, is implemented by Occopus. It has these tasks combined with the start-up 
and shut down of microservices (Data node and HAProxy). It gathers information about 
currently running services, such as service name, IP address and port where the service is 
reachable, and optional service tags to help in service coordination, as described in Section 3.  

The Microservices coordination logic layer is realised by the Central and Distribution 
layers of the MiCADO prototype architecture. To understand how the current execution 
environment is performing the Central layer uses Prometheus to collect information about the 
various services. This information is processed by the Alert manager. If bottlenecks are 
detected or the currently running infrastructure appears underutilised, Alert Executor instructs 
Occopus to launch or shut down cloud instances. Finally, it is the task of the Swarm master to 
move microservices from one physical worker node to another. 

The Cloud interface API of MiCADO is to abstract cloud access from layers above. This is 
implemented by the different cloud handler plugins of Occopus. Currently the following 
cloud interfaces are supported by Occopus: CloudSigma, Amazon EC2 (Elastic Compute 
Cloud), OpenStack NOVA, OpenNebula EC2, OCCI (Open Cloud Computing Interface), 
CloudBroker and Microsoft Azure. This has the advantage that Occopus can deploy the 
newly required Data nodes in a cloud different from the one where the MiCADO prototype 
runs. In this way the MiCADO prototype can exploit even heterogeneous multi-cloud 



systems. If the originally used cloud system is overloaded new Data nodes can be deployed 
either on other clouds within a cloud alliance like the EGI FedCloud (European Grid 
Initiative Federated Cloud) [26] system or on commercial cloud systems.  

The Coordination interface API of MiCADO provides access to orchestration control and 
decouples the orchestration layer from the application definition. This API is currently the 
Occopus infrastructure descriptor language. In the near future the COLA project considers 
TOSCA to implement this layer. 

There are several advantages of the developed MiCADO prototype. First, it can support a 
large set of applications which have the common feature of serving large, variable number of 
users with variable size of data. To replace the currently prototyped Data Avenue service 
with any other similar type of services is extremely easy since it is used inside a Docker 
container and it does not require any changes in the MiCADO architecture. The price for this 
flexibility is that the application implementing the required service should be dockerized 
before being used in MiCADO. Second, MiCADO guarantees that the service is optimised, 
i.e. MiCADO creates new service instances in Data nodes when the load increases and 
removes some of them if the load drops. Third, MiCADO guarantees the well-balanced usage 
of these service instances based on the Distribution layer that directs user requests in an even 
way to the different service instances. 

Based on the MiCADO concept, WS-PGRADE/gUSE gateways running in clouds can be 
extended with a scalable Data Avenue (DA) service. Such a DA service is installed within a 
MiCADO architecture that can be attached to the gateway. Occopus can be used to deploy 
both the WS-PGRADE/gUSE gateway and the attached MiCADO with the DA service. 
These set of services guarantee that the users of WS-PGRADE/gUSE can make any 
necessary file transfer without performance loss even if the number of users is increased in a 
significant way. 

5. Performance evaluation 
In order to evaluate the performance of the MiCADO prototype implementation described in 
Section 4, a set of experiments have been designed and implemented on the CloudSigma 
public cloud. Different phases, including building up the MiCADO infrastructure, and also 
scaling up and down the application nodes have been measured using the Data Avenue 
application. These experiments provided evidence for the automated scalability features 
provided by MiCADO.  

The first task is to build the MiCADO infrastructure, including Data nodes (the nodes that 
host the Data Avenue application and a MySQL database node required by DA), load 
balancers (HAProxy), and monitoring infrastructure (Prometheus). This task is executed by 
Occopus based on a pre-defined infrastructure descriptor file. The operator first needs to 
import the node descriptor files containing the cloud interface type and endpoint of the target 
Cloud API where the nodes should be built. After importing the necessary files, MiCADO is 
started through the Occopus-Rest-API by submitting the infrastructure descriptor file which 
specifies the relation between the virtual machines, and the number of instances that will be 
created. Application specific variables such as port numbers and database credentials are also 
defined in this file. Next, Occopus creates the base infrastructure without the user application. 
Overall, it took 320 seconds on our target cloud to build the infrastructure, with Figure 5 
illustrating how this time is broken down between the different node types.   

Once the components are successfully connected to each other, the DA application can be 
started. Since MiCADO works with Docker Swarm, the applications can be started as Docker 
services. To do so, the operator needs to start DA in global service mode through the Swarm 



service locally or remotely. Global mode will assure that every node in the Docker cluster 
will start the application automatically in one instance per node. This gives us the advantage 
that when we scale up the application layer the new node will work just as the other ones in 
the Docker cluster. Deploying the application in this way took 140 seconds in our 
experiment. 

 

DB Prometheus Application Load Balancer

0

5

10

15

20

25

30

35

40

MICADO build up time

Nodes

T
im

e
 p

e
rc

e
n

ta
g

e

 

Fig. 5: Time to build the MiCADO infrastructure 

After the MiCADO infrastructure was built and the DA application was successfully started, 
we tested and measured the automated scale-up and scale-down features of MiCADO. First, 
we put load on the cluster by transferring large volumes of data through the application nodes 
that run DA. To make the application cluster overloaded, 1 GB files from multiple different 
sources have been transferred. In the current MiCADO prototype there is an alert defined that 
in case the load in the Docker cluster exceeds 60% of the available resources, MiCADO 
automatically creates a new DA node to scale the infrastructure up. In our experiment, it took 
MiCADO approximately 300 seconds to connect this new node to the cluster and make the 
application available. On the other hand destroying existing virtual machines when 
decreasing the load on the cluster, took only 12 seconds in average. Figure 6 summarises the 
above described scale-up and down times and compares these to creating and destroying the 
complete infrastructure. 

 Operation time (sec)

create infrasturcture 320

destroy infrastructure 15

scale up app node 300

scale down app node 12  

Fig. 6 Infrastructure and node creation/destroy 

The next benchmark was designed to demonstrate MiCADO in actual usage, with scale-up 
and scale-down events. Figure 7 shows three graphs. These graphs were generated by 
Grafana [15] based on the input provided by the Prometheus monitor. On the top, the average 
CPU utilization in the application cluster is illustrated. In the middle graph, the CPU usage of 
the individual nodes in the application cluster are shown with different colours for each node 
(which in average gives us the upper graph). Finally, the bottom graph indicates the number 
of nodes in the Docker cluster. 

Overall, the figure illustrates how the number of application nodes changed depending on the 
actual load on the cluster. At the beginning (15:34) there was no load on the cluster which 
could serve user requests perfectly with the help of only one VM (Virtual Machine), shown in 



green on the middle graph. As the file transfers have started, the load soon reached 100% of 
CPU usage on the only available node. After MiCADO ascertained that the load remains high 
(the load needs to be constantly above the alert value of 60% for a certain amount of time, in 
our case for 180 seconds to avoid unnecessary scaling-up/down), it fired an alert which called 
Occopus to instruct scaling up the application cluster. The new node (blue) was connected to 
cluster at  15:43 and after the virtual machine finished the boot process it started the DA 
application automatically, to decrease the load on the first node that was previously 
overloaded (15:45). The same up-scaling event can be seen on the figure at 15:49 as two 
nodes still struggled to serve user requests, and an additional third node was connected to the 
Docker cluster.  

On the “CPU/node” graph we can check that the application nodes actually share the load 
between them, while their load are close to each other. Also worth mentioning that new nodes 
are connected to the cluster with instant 100% of load at the beginning. The reason for this is 
the boot process of the virtual machines. When the nodes are booting they are at full load, 
and when they finish starting the Docker containers, they remain on the actual load coming 
from the application.  

At the end of this test we successfully transferred 12GB of data using three DA services as 
maximum in parallel. The transfer took place between 15:36 and 15:56, as we can see in 
Figure 7. From that point, MiCADO started to scale down the application cluster. The 
number of nodes decreased by one every time when Prometheus fired up the alert telling 
Occopus that the cluster is under-loaded. At 16:06 the number of nodes decreased back to the 
minimum of one application node. It is important to note that while the under-loaded alert in 
Prometheus was still firing, Occopus did not scale below the minimum number of nodes, 
which was one in our case, to make sure that the application is reachable at any time.  

 

Fig. 7 Resource optimization, on both scale up and down events with MiCADO 

The above described experiment clearly illustrates that MiCADO works as it is expected. The 
application was scaled automatically on demand to adopt to actual load. In this experiment 
we adjusted the time interval which MiCADO had to wait between two scaling events before 



scaling again: 300 seconds for scaling up and 60 seconds for scaling down. These time ranges 
were selected to fit the DA application where large file transfers may require more time to 
finish, while after they finished, the load expected to drop dramatically allowing scaling 
down more quickly. As these numbers are application specific they can be set to make sure 
the scaling events happen in the expected time intervals. 

6. Industry relevance 
As part of the COLA European project, several application scenarios are investigated and 
large scale industry trials are being implemented involving SMEs and public sector 
organisations. These trials are applying the MiCADO framework in order to provide 
automatic scalability of applications in the targeted areas. The project develops three full 
scale demonstrators and twenty further proof of concept solutions. This section gives a short 
overview of three of these trials in order to illustrate the industry relevance and significance 
of the developed solution. The implementation of these trials is currently in progress and 
detailed results will be reported in follow-up papers.  

Scalable evacuation planning service. One of the critical issues in developing evacuation 
simulations is speed. As the size and detail of a simulation increases so does the time taken to 
process each scenario. Saker Solutions is a UK based company with a mission to expand the 
benefits achieved from the use of simulation modelling. Saker developed SakerGrid [23], a 
Desktop Grid based solution to support the efficient execution of large scale simulation 
scenarios and significantly reduce the timeframe for users to undertake model 
experimentation. However, SakerGrid is limited by the number of physical ‘nodes’ that are 
present on the network. When decisions need to be taken in a short timeframe, or when there 
is a need to run a plethora of replications in order to obtain a statistically valid result, the 
ability to burst onto a cloud from SakerGrid would be highly beneficial. Within the COLA 
project Saker will use MiCADO to burst out to the cloud on demand for scaling up 
simulations if required, and also quickly scaling back when economic factors make it 
necessary.  

Social media data analytics for public sector organisations. The spread of Social Media 
created vast amount of information available in public sources regarding people’s preferences 
and opinions. Monitoring this information requires significant computation and storage 
resources and has become a critical aspect for both private companies and also for the public 
sector. Aragon Regional Government in Spain is willing to develop communication channels 
with citizens to become aware of their opinion about the local government’s services and the 
ways these can be improved. Authorities also want to offer entrepreneurs and companies in 
the region with information that can be used to improve business or develop new ones. To 
fulfil this objective, regional government uses Eccobuzz, a web application for Social Media 
data mining, competitive intelligence and brand and media management developed by 
Spanish Company Inycom. One of the challenges facing such application is fluctuation of 
computing load required. The information collected from the Internet grows exponentially 
and there is uncertainty regarding how much information will be collected by the crawlers to 
be processed later. Furthermore, end users can change the configuration of the system 
increasing unexpectedly the number of crawlers and their launching frequency. Within the 
COLA project Eccobuzz will be reengineered into microservices based architecture and 
extended with MiCADO to support dynamic resource demand.  

Scalable simulations for manufacturing SMEs. The European CloudSME project [9] 
developed a cloud-based platform to run computation and data intensive manufacturing and 
engineering simulations on heterogeneous cloud computing resources [10]. The solution is 



based on the CloudBroker multi-cloud platform and the gUSE science gateway framework 
[11]. Several industry applications, e.g. open source (OpenFoam) and proprietary (TransAT) 
fluid dynamics simulation software, design and validation of scanned foot images for foot 
insole production [12], and business process modelling applications [13] have been ported to 
and operated on the platform. During the COLA project, start-up company CloudSME UG 
will prototype several of these applications using MiCADO. In each scenario, the aim is to 
optimise resource consumption of the simulation application by minimising costs while still 
providing significantly enhanced performance for its clients.  

Industry partners of COLA estimate that utilising MiCADO they can increase the efficiency 
of their business processes by 20-70%, increase customer satisfaction by 20-60%, decrease 
time to product and market by 10-50%, and increase their profit by 10-100% (depending on 
application areas and company profiles).  

7. Conclusion and future work 
This paper described the generic concept and the first reference implementation of MiCADO 
that supports the automated scalability of cloud applications. Initial benchmarks and 
experiments were also successfully conducted using the Data Avenue file transfer application 
and demonstrating that the MiCADO is capable of scaling up and down the application 
cluster.  

Future work will be conducted on two fronts. On the one hand, MiCADO will be further 
developed within the European COLA project. The current implementation is only the very 
first prototype that handles only simple alerts and operates based on simple policies. In 
COLA, MiCADO will be significantly extended to provide scalability based on more 
complex optimisation scenarios, for example to optimise not only for performance but also 
for cost. COLA also considers complex user policy enforcement, for example orchestrating 
the application depending on security policy specifications. The Application Definition layer 
of MiCADO will be specifically developed based on COLA Application Description 
templates using the TOSCA standard [16].  

On the other hand, the scalability of the DA service and its usability in connection to science 
gateways will be further investigated. There are many projects and communities in Europe 
that actively use WS-PGRADE/gUSE gateways. For these communities the scalable Data 
Avenue service is a good candidate to improve their data staging mechanism. Furthermore, 
the scalable Data Avenue service can easily be connected to other kind of gateway services 
making them also capable of providing scalable data staging with good performance. 

As we showed in Section 4, Data Avenue can easily be replaced with other kind of services 
that are already used in existing gateways. This gives the opportunity that various gateways 
can significantly improve their services if they replace their current non-scalable services 
with scalable ones. The only task they have to do is to dockerize the application that 
implements the service. 

8. Acknowledgment 
This work was funded by the COLA Cloud Orchestration at the level of Applications Project 
No. 731574 project. 

References 
[1] Thomas, D. (2009). Cloud Computing — Benefits and Challenges! The Journal of Object Technology, 

8(3), 37. 
[2] P. Kacsuk et al., “WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user 

communities” J. Grid Comput., vol. 10, no. 4, pp. 601-630, Dec. 2012. 



[3] Marpaung, Sain, & Hoon-Jae Lee. (2013). Survey on middleware systems in cloud computing integration. 
Advanced Communication Technology (ICACT), 2013 15th International Conference on Advanced 
Communications Technology, 709-712. 

[4] Cloudify [online] Available from: <http://getcloudify.org> [Accessed 16/03/2016] 
[5] Manh Pham, L., Tchana, A., Donsez, D., Zurczak, V., Gibello, P., & De Palma, N. (2015). An adaptable 

framework to deploy complex applications onto multi-cloud platforms. The Institute of Electrical and 
Electronics Engineers, Inc. (IEEE) Conference Proceedings, 169-174. 

[6] AWS CloudFormation [online] Available from: <https://aws.amazon.com/cloudformation/> [Accessed 
16/03/2016] 

[7] Binz, Breiter, Leyman, & Spatzier. (2012). Portable Cloud Services Using TOSCA. Internet Computing, 
IEEE, 16(3), 80-85. 

[8] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015). Migrating to Cloud-Native Architectures Using 
Microservices: An Experience Report 

[9] Kiss, T, Dagdeviren, H, Taylor, JES, Anagnostou, A, Fantini, N. (2015). Business Models for Cloud 
Computing: Experiences from Developing Modeling & Simulation as a Service Applications in Industry, 
Proceedings of the 2015 Winter Simulation Conference, Pages 2656-2667, ISBN: 978-1-4673-9741-4, 
IEEE Press  

[10] Taylor SJE, Kiss T, Terstyanszky G, Kacsuk P, Fantini N. (2014). Cloud Computing for Simulation in 
Manufacturing and Engineering: Introducing the CloudSME Simulation Platform. Proceedings of the 2014 
Annual Simulation Symposium, ANSS ’14, Society for Computer Simulation International: San Diego, 
CA, USA, 2014; 12:1–12:8. 

[11] Balasko A, Farkas Z, Kacsuk P. Building Science Gateways by Utilizing the Generic WS-PGRADE/gUSE 
Workflow System, Computer Science Jun 2013; 14(2):307, doi:10.7494/csci.2013.14.2.307 

[12] Gabor Terstyanszky, Tamas Kiss, Simon Taylor, Anastasia Anagnostou, Miguel Subira, Giuseppe Padula, 
Enrique De Meer Alonso, Jose Manuel Martin Rapun: Validating Scanned Foot Images and Designing 
Customized Insoles on the Cloud, in proceedings of HICSS-49 2016, Havaii International Conference on 
System Sciences, January 5-8 2016, Pages 3288 – 3296, ISSN 1530-1605, DOI 10.1109/HICSS.2016.411, 
Published by IEEE 

[13] Terstyanszky, G., Kiss, T., Ozkok, A and Isler, V: Simulating Business Processes of Manufacturing SMEs 
on the Cloud. PeerJ. 4, p. e2509v1, 2016 

[14] Docker Documentation, [online] Available from: < https://docs.docker.com/> [Accessed 03/05/2017] 
[15] Grafana, the open platform for analytics and monitoring, [online] Available from: <https://grafana.com/> 

[Accessed 03/05/2017] 
[16] Pierantoni G, Kiss T, Terstyanszky G. Towards Application Templates Suporting Quality of Service, To be 

published in proceedings of IWSG 2017, 19-21 June, 2017, Poznan, Poland. 
[17] Visti H, Kiss T, Terstyanszky G, Gesmier G, Winter S: MiCADO – Towards a Microservice-based Cloud 

Application-level Dynamic Orchestrator, To be published in proceedings of IWSG 2016, 8-10 June, 2016, 
Rome, Italy 

[18] CloudBroker GmbH. “CloudBroker Platform”. [Online]. Available: http://cloudbroker.com/platform/. 
[Accessed: 7 Mar 2017] 

[19] Hajnal A, Farkas Z, Kacsuk P: Data Avenue, Remote Storage Resource Management in WS-PGRADE, in 
proceedings of IWSG 2014, 6th International Workshop on Science Gateways, IEEE, 25 August 2014, 
DOI: 10.1109/IWSG.2014.7 

[20] Consul web page [Online] Available: http://www.mammatustech.com/Microservice-Service-Discovery-
with-Consul [Accessed: 5 May 2017] 

[21] Prometheus web page [Online] Available: https://prometheus.io/  [Accessed: 5 May 2017] 
[22] COLA Project web page: [Online] Available: http://www.project-cola.eu/  [Accessed: 5 May 2017] 
[23] Kite S, Wood C, Taylor SJE, Mustafee N: Sakergrid: Simulation experimentation using grid enabled 

simulation software, Proceedings of the 2011 Winter Simulation Conference (WSC), 11-14 Dec. 2011, 
DOI: 10.1109/WSC.2011.6147939, Phoenix, AZ, USA, 9 February 2012, IEEE. 

[24] HAProxy web page: [Online] Available: http://www.haproxy.org/ [Accessed: 5 May 2017]  
[25] Kecskemeti G, Gergely M, Visegradi A, Nemeth Z, Kovacs J, Kacsuk P: One Click Cloud Orchestrator: 

Bringing Complex Applications Effortlessly to the Clouds, In: Euro-Par 2014. Lecture Notes in Computer 
Science (8806). Springer, Cham, pp. 38-49. ISBN 978-3-319-14312-5 10.1007/978-3-319-14313-2_4 

[26] EGI Cloud Compute: [Online] Available: https://www.egi.eu/services/cloud-compute/ [Accessed: 5 May 
2017] 

[27] The Vialactea Science Gateway, Available: http://vialactea-sg.oact.inaf.it:8080/ [Accessed: 17 July 2017] 
 

 


