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Abstract: Various scientific and commercial applicationgjuige automated scalability and orchestration on
cloud computing resources. However, extending appitins with such automated scalability on an izl
basis is not feasible. This paper investigates lmmeh automated orchestration can be added to cloud
applications without major reengineering of the laygion code. We suggest a generic architectureafo
application level cloud orchestration frameworkjezh MiCADO that supports various application sagpson
multiple heterogeneous federated clouds. Besidegémeric architecture description, the paper pissents

the first MICADO reference implementation, and eip$ how the scalability of the Data Avenue sertic is
applied for data transfer in WS-PGRADE/QUSE base@nge gateways, can be improved. Performance
evaluation of the implemented scalability basediprand downscaling experiments is presented.

Keywords: cloud orchestration, science gateway, automated scalability, Data Avenue

1. Introduction

Many scientific and commercial applications requaoeess to computation, data or network
resources based on dynamically changing requiresnéqmiplications running on distributed
computing infrastructures, such as grids or clotygscally fall into this category. End-users
can access these applications via desktop or webdbhigh-level user interfaces, such as
science/business gateways. When executing applisatr accessing services via high-level
user environments, users and providers both reqginese applications or services to
dynamically adjust to fluctuations in demand andveeend-users at required quality of
service (performance, reliability, security, et at optimized cost.

Cloud computing has the potential to fulfil thessguirements. In order to support the

development of a large number of applications Hrat capable utilising the dynamic and

scalable nature of laaS (Infrastructure as a Serdlouds, advanced tools are required that
support application developers. Custom developitgudc awareness to every single

application is not a viable solution and would riegsignificant training and development

efforts that especially smaller organisations, sash SMEs (Small and Medium-sized

Enterprises) cannot afford.

One of well-documented benefits of cloud compufibpis its ability to supply a variable
amount of resources (computational power, storagéwork capacity), which can scale
dynamically up and down, forming the supply sidd-@jure 1. On the demand side, we can
see applications that are likely to be formed of on more services. Services can be either
in-house developed or provided by external supplegropen-source communities. Services
could also be shared between applications.

Services consumbaseline and variable resources. Basdline resources can be defined as
resources consumed by the component in idle si#ei.able resources are consumed when



the component performs its duties. This can inclugi@vy computation or storage utilisation
based on application requirements, which can vagwificantly based on the nature of the
application. Overall resource demand of an appboais the sum of baseline and variable
resources.

Variable resource consumption

Manually

adjusted
supply

Fig. 1 Resource demand and supply of cloud applications

On the resource provision side cloud computingaalyeoffers rapid elasticity and dynamic
scalability. laaS clouds can scale up or down omatel. However, the dynamic and
intelligent utilisation of such scalability from @hperspective of cloud applications is not
trivial. Many legacy applications have been migdate cloud infrastructures that only
consume and run on a predefined static set of reesuMore cloud-aware applications have
also been developed that offer dynamic scalabbiged on user demands or application
characteristics. However, these applications hgpiedlly been custom developed requiring
significant effort and low level cloud computingpextise to implement. On the other hand,
typical application patterns can be relatively wasientified that support a large number of
similar applications and can use rather similarantlythg mechanisms from dynamic clouds.

As shown in Figure 1, cloud service providers ardifferent to the resource needs of
applications since they have no means of predidtieg capacity demand. In practice, the
operator of an application requests cloud resoupesed on predictive estimates (typically,
worst-case estimates), but after being commissiotiexse resources remain static without
operator intervention. If demand exceeds suppby given point of time, applications do not
function within their required parameters. If syppkceeds demand, resources are wasted,
which generally has a cost impact.

This work investigates possibilities of replacingmmally adjusted supply of cloud services
with an automatically adjusted supply, as alscsitlated in Figure 1. The aim is to create a
framework, where automatically adjusted cloud seErnsupply can be arranged, based on
application demands. Such framework would allowudlapplication developers to build cost
and performance optimization mechanisms into thpplication code through a high-level
API (Application Programming Interface). The suggdssolution is based on microservices
[8] and their dynamic orchestration in a cloud comnpy environment.

The rest of this paper defines a generic microses¢based architecture for application-level
cloud orchestration, called MiCADO (Microservicessed Cloud Application level Dynamic



Orchestrator), and describes its first referengalementation utilizing container-based open
source cloud technologies. In order to illustratevlio handle such variable resource demand,
the example of a science gateway supported byirsteveérsion of the MiCADO architecture
is introduced. The scalability problem is investeghand solved in connection with the WS-
PGRADE/QUSE [2] gateway framework, and its parécidervice that needs such scalability
is data staging. This example is generic enougtppear in many different science gateways,
and also the MICADO approach created to solve ggblem is sufficiently generic to
support a large class of application types. Theepagignificantly extends the MiIiCADO
concept first described in [17], and presentsiigs implementation and benchmarks.

2. Redated Work

The problem of application-level orchestration Hasen recognized and a number of
solutions have been designed and implemented. At sheerview is provided below
highlighting the current limitations of these sabuts.

Marpaung et al. [3] discuss Altocumulus, AppSc&&udify and mOSAIC. Altocumulus
focuses on deploying web applications to a varmdtyublic clouds, which limits its usability
in private or hybrid clouds. It does not providemtoring or dynamic changes to services.
AppScale is an open-source product that suppodsution of Google Application Engine
applications and therefore restricted to this paléir technology. mOSAIC provides a set of
APIs to application developers to tackle cloud dgplent issues. The limitation of mMOSAIC
is the implementation of these APIs as the apptinaieveloper needs to integrate these to
application components.

Cloudify [4] combines a TOSCA (Topology and Orchasbn Specification
for Cloud Applications) editor with deployment arachestrator. It provides access to
multiple clouds and a complete framework to descnibicroservices and execute them either
in Docker containers or on cloud metal. Cloudifgaaprovides dynamic service upscaling
and downscaling based on microservice dependeraneders, for example number of
transactions, number of threads, etc. Cloudify donet provide a container portability
framework, nor do its metrics span dockerised nseraices and the cloud metal executing
them.

Pham, Tchana et al. discuss the problem of diggthwpplications [5]. They focus on
application orchestration that can span sever&tréifit clouds. They recognize the need to
deliver microservice-specific parameters, for exmport numbers and IP addresses, to
other microservices, and provide a description Uaigg framework to do this. However, this
solution does not support service discovery tonts@d@namic relocation of microservices.

Amazon CloudFormation [6] provides to system adstiation developers an easier way for
the collection, creation and management of rel&@t (Amazon Web Services) resources
through templates. These templates describe the AWSources and associated
dependencies. After the deployment of AWS resourCésudFormation ensures the start of
services in the correct order. As limitation, Cléadmation is specific to AWS and does not
support run-time orchestration.

OpenTosca [7] provides an open source ecosystenthéorTopology and Orchestration
Specification for Cloud Applications (TOSCA) devednl by Stuttgart University.
OpenTosca is divided into three parts: a TOSCA immt environment (OpenTosca
container), a graphical modelling TOSCA tool (Wijeand a self-service portal for the
application available in the container (Vinothelkjlthough OpenTosca is a generic
framework, it does not support run-time orchesbrati



Although effective in particular narrow circumstasc none of these systems provide fully-
automated, cloud-agnostic solution for a wide raafapplications and for wide variety of
clouds in a way that MiCADO aims.

3. MICADO concept and architecture

The generic life-cycle of cloud-aware applicationased on the MICADO concept is
illustrated on Figure 2. The aim is to provide dymaand automated resource supply for
applications, as it was described in Section 1sTdbcess can be divided into two major
phases: optimised deployment (1) and run-time @tcagon (2).

In phase 1, application developers/operators neguidvide a high-level description of their
applications. This description, besides applicattopology, also includes various QoS
(Quality of Service) parameters such as cost antbipeance requirements, and desired
security policies. This description is passed oth&gCoordination/Orchestration component
of MICADO. This component collaborates with tBecurity facilitator in order to translate
user defined security policies into specific setyusolutions, and also with tH@ptimisation
decision maker in order to translate performance and cost relg@@meters into actual
deployment values. Following this, tki®ordination/Orchestration component passes on the
deployment instructions to MICADO'®eployment executor that deploys the services
required to run the application on the targeteddlmfrastructure.

Once the application is deployed in the cloud, tiove orchestration (phase 2) starts.
MiCADO continuously collects various metrics frohretrunning application and passes it on
to the Coordination/orchestration component. This data is analysed from performaose/
aspects by th®ptimisation decision maker and from security enforcement point of view by
the Security facilitator. If adjustment is required, tHaeployment executor is called to scale
up or down the infrastructure, and to execute ¢ggiired changes.

Users also have the possibility to adjust any meaqouent, either security or performance/cost
related, during runtime. If the user provides a ifed description with updated QoS
parameters, then it is passed on to @oeerdination/Orchestration component that analyses
the received data and instructs Deployment executor to modify the infrastructure.

Appl App2 App3

Developer produces
. s . . Optimisation
Security facilitator Coordination/Orchestration p "
decision maker
Deployment
instruction
Measurement & metrics
Deployment executor :
collection

Fig. 2 Generic life-cycle of cloud-aware applicationstastrated by MiCADO

Based on the above described life-cycle modelyaréal MiCADO architecture is defined
below. This infrastructure framework is generiche sense that we do not specify the actual



components required and do not discuss their spaniblementation here. The identified
layers and their desired functionality can be impated in various ways using different
technologies and services that may already exist. &m with the generic architecture
definition is to identify a modular and pluggabtarhework where different functionalities
can be delivered by different components on-demand, where these components can be
easily substituted. The resulting solution willteehnology neutral that will not be depending
on one particular component implementation.

The layers of such framework that support the dyoaapplication level orchestration of
cloud applications are illustrated in Figure 3. Buggested generic framework is based on
the concept of microservices, as defined for exanyyl Balalaie [8]. Cloud computing is a
natural platform for microservices that provide algaling of independent components from
a monolithic application. Cloud enables executiomd aresource allocation of these
independent components based on their specificsn€xte microservice might require a lot
of storage while another could be CPU intensiveu@lexecution offers the possibility to
optimise resource allocation and thus resourcedpsimically. The alternative would be to
allocate a monolithic infrastructure, the size diieh large enough to be sufficient for worst-
case requirements scenario. However, most of the, the worst case scenario is not present
and allocated resources of the monolithic infragtites are wasted.

Application
layer Appl App2 App3 App4

Application Infrastructure and security requirement [ Infrastructure and security requirement
definition layer definition 1 definition 2

Coordination interface

Microservices discovery and execution layer

Orchestration

layer Microservices coordination logic layer

Cloud interface

Cloud interface
layer Cloud access API (direct cloud APIs or CloudBroker API)

Worker node 1 Worker node 2 Worker node N

layer Contai Contai Contai Contai Contai Contai Contai Contai Contai
ner ner ner ner ner ner ner ner ner

Security, privacy
and trust services

Cloud instance

Fig. 3 MiCADO generic architecture framework

The layers of the MICADO generic architecture (fréop to bottom), based on the above
described microservices-based concept are as fallow

1. Application layer. It contains actual application code and data &kenan application
definition (layer 2) functioning in such a way theatlesired functionality is reached. For
example, this layer could populate database withairdata, and configure HTTP server
with look and feel and application logic.

2. Application definition layer. This layer forms the basis to define a functional
architecture of the application using applicatimmplates. At this level software
components and their requirements (both infrastrecaind QoS specifications) as well as
their interconnectivity are defined using applioatidescriptions uploaded to a public
repository. As the infrastructure is agnostic te thctual application using it, the



application template can be shared with any appdicathat requires such an
environment.
3. Orchestration layer
This layer is divided into four horizontal and owertical sub-layers. The horizontal sub-
layers are:

a.

Coordination interface API. It provides access to orchestration control and
decouples the orchestration layer from the apptioadefinition. This set of APIs
enables application developers to utilise the dynarchestration capabilities of
the underlying layer and supports the convenienéld@ment of dynamically and
automatically scalable cloud-based applicationsipedding these API calls into
application code.

Microservices discovery and execution layer. This layer manages the execution
of microservices and keeps track of services rupnlxecution management
combines both start-up and shut down of microsesvicService management
gathers information about currently running sersjceuch as service name, IP
address and port where the service is reachableiahal service tags to help in
service coordination.

Microservices coordination logic layer. With large infrastructures and to reap
the benefits from cloud-based execution, it beconsegssary to understand how
the current execution environment is performingfoimation needs to be
gathered and processed. If bottlenecks are detemtetthe currently running
infrastructure appears underutilised, it may beessary to either launch or shut
down cloud instances, and possibly move microsesvicom one physical worker
node to another.

Cloud interface API is to abstract cloud access from layers aboveudCaxcess
APIs can be complex interfaces, as they typica#liec for a large number of
services provided by the cloud provider. On theepthand, the microservices
execution and coordination logic layers (see 3b 3e)donly need to shut down
and start instances. Abstracting this to a clouterface APl simplifies
implementation of aforementioned layers, and if n€leud access APIs are
implemented, only this layer needs to change.

Security, privacy and trust services. The orchestration layer also includes a
vertical sub-layer that deals with security, prigaand trust related services for
advanced security policy management. These sersmas multiple levels of the
orchestration layer, as it is illustrated on Fig@eThe main aim is to shield
application developers from detailed security managnt. To achieve this, the
security, privacy and trust services of the ordlatisin layer take the general
security policies defined at the Application detiom layer, as well as security
credentials for the application domain. These iaputll then be used by the
special purpose security policy enforcement sesvit® enforce the security
policies at orchestration level.

4. Cloud interface layer. This layer provides means to launch and shut dolwod
instances. There can be one or more cloud intesfé@esupport multiple clouds.
Besides directly accessing cloud APIs, generic ¢tlaacess services, such as the
CloudBroker platform [18] can also be used at tlaiger to support accessing
multiple, heterogeneous and distributed cloudsawiaiform access layer.

5. Cloud instance layer. It contains cloud instances provided by laaS alptoviders.
These instances can run various containers thatuexectual microservices. This
layer typically represents state-of-the-art of ddechnology, as provided by various
public or private cloud providers.



The full MICADO framework is currently being invégated and implemented in the COLA
(Cloud Orchestration at the Level of Applicationyoject funded by the European
Commission [22]. This paper focuses on the horaosiib-layers of the orchestration layer,
and describes the first experiences when implemegmiiese layers of MiCADO.

4. MIiCADO prototypeimplementation

The MICADO prototype implementation targets to solv very wide class of application
types where a certain service is used by a varialneber of users for a variable amount of
data. As a result the load of the service rapitiignges in time. If the allocated resources do
not match the load requirements, either the ses/iesponse time will be too slow (too few
cloud resources are provided for the service)herdost to pay for the service will be much
more than it is necessary (too many cloud resouatesprovided for the service). Web
applications typically belong to this class of apgiions since the number of users visiting a
certain web page might be unpredictable and charagpadly.

Such a service where the usage dynamically chaeghe Data Avenue data staging service
[19]. Data Avenue enables transferring of fileseeen directories of files between different
data storages having various storage access platddee major storage access protocols
Data Avenue supports are HTTP, HTTPS, SFTP (SS#Transfer Protocol), GSIFTP (FTP
enhanced to use GSI — Grid Security InfrastruciUs®M (Storage resource Management),
IRODS (Integrated Rule-Oriented Data System), aBd/Anazon simple Storage Service).
Data Avenue also enables to upload and download &hd directories between the user’s
computer and a data storage (using the storagsspecetocols mentioned above). Currently
Data Avenue is a public service that is accessiole a web page ahttps://data-
avenue.eu/en_GB/Data Avenue is also used in gUSE/WS-PGRADE perather as a
portlet or inside WS-PGRADE workflows to enableefitransfer based communication
between workflow nodes. Data Avenue client is paftthe standard WS-PGRADE
distribution and used by more than 30 large prsj@ttEurope. For example, the Vialactea
project, that investigates the star formation psses of the Milky Way, deployed its own
Data Avenue server to support its WS-PGRADE gatewalata transfer [27]. The use of the
Data Avenue service makes WS-PGRADE workflows higidrtable across different DCls
(Distributed Computing Infrastructures) since DAtenue based data staging is independent
from where the data files are stored and wherevtthr&flow nodes are executed.

The original version of the Data Avenue service mid use cloud technology and it worked
fine as long as only a few users used it and ongmall number of file transfers were
initiated via the service. However, if a large n@nbf users want to use this service in a
large number of science gateways, it will be albo#éck. To avoid this problem we
developed a cloud version of the service basedhemMtiCADO concept. This version of the
service is highly scalable because it can be autoatly replicated whenever the usage of
the service exceeds a pre-defined threshold. Omedotd is reduced below this threshold,
under-loaded replicas can be removed from the cléudhis section we show how this
scalable version of the Data Avenue service has bemated and how this solution fits to the
concept of MiCADO.

The architecture of the scalable Data Avenue serngi@ three-layered architecture as shown
in Figure 4. The bottom layer contains the applocaitself that runs in the worker nodes of a

Docker Swarm cluster [14]. These are denoted aa bBatles in Figure 4 emphasizing that
this MICADO architecture can support not only that® Avenue application but any other

application having similar characteristics. Apptioas to be deployed in a scalable way in

the MiCADO architecture should be placed in Dodk@ntainers inside these Data nodes.



The Central layer of the MICADO prototype architget contains those services that make
the Data node application scalable. These serincisle:

1. Swarm master node

2. Consul [20]

3. Prometheus [21] extended with an Alert manager &bert
executor service

Build the
infrastructure

Occopus

Users
Create/delete Depll.oyt. User requests
node request application Distribution
1. HAProxy 2. HAProxy | -- | n. HAProxy | layer
Consul Monitoring
- Prometheus Discoverin Central
Create node | . Alert manager Aoolicati g |
Alert executor pplication ayer
control
Docker master
1. Data 2. Data n. Data Application

node VM node VM node VM

Create/delete layer

node

Docker cluster

Fig4d MiCADO prototypearchitecture

An important design aspect of MICADO was to useyoopen source tools that can be
replaced later if needed by similar type of servieath little effort. Therefore, all the
services used in this prototype MiCADO architectare based on open source solutions.
Docker Swarm cluster is a widely used docker-basé&dstructure-like service where the
Docker master node is responsible for the dynameatmn and management of Docker
containers at the worker nodes of the Swarm clu$tez registration of the workers into the
cluster is done via the Consul discovery servie th another well-known and widely used
open source service to organize Docker contaimgesd cluster. Every time a new node is
created, first it is unknown to the other nodesisltthe Consul service that provides
information about the active nodes to the centalises of MiCADO.

In order to take the decision when the number ofkets in the Swarm cluster should be
increased or decreased, we need a monitoring toobserve the load of the worker nodes.
Such mature monitoring tool is Prometheus thatesponsible for collecting information
about the load of the worker nodes. The collectaid avill be used to create alerts. These
alerts are events which if triggered then theysamt out to other services of MiCADO. The
alerts are generated by the Alert manager serRicametheus provides only a framework to
create the Alert manager service therefore it wastask to develop the alert conditions and
code. Similarly the Alert executor service was deped by us based on the Prometheus
framework concept. The Alert executor instructs Mecopus cloud orchestrator [25] to
deploy new Swarm worker nodes or remove existingsotepending on the information
provided by the Alert manager service.



Occopus is a cloud orchestrator service that caahogecomplex virtual infrastructures in
many different types of clouds including single drederogeneous multi-cloud systems. After
deploying the services it can also manage the cosmo services of the deployed
infrastructure, regularly checking their health dibions (responsiveness for various types of
messages). In MiCADO, Occopus has two major rdtast, Occopus is used to set up the
three-layer MiCADO infrastructure in a selectedudoOnce the infrastructure is created, the
next task of Occopus is to process the requestheofAlert executor and based on those
requests deploy new Swarm worker nodes or remogéirex ones.

The third layer of the MICADO prototype, the Disttion layer realizes load balancing
among the Data node services. It contains sevek&lrbky [24] services. This farm of nodes
shares the incoming traffic and routes it to theéaDaodes in a balanced way. This helps
managing traffic and spreading incoming traffickesi between the Data nodes. In this way
MICADO ensures that the Data nodes are well bathrzsel the load is equally shared by
every worker of the Swarm cluster. The current smhuuses round robin technique however
least connections or predictive node techniquesasn be used. This layer will remain
transparent from the users’ point of view and affadditional features such as caching, http
compression and SSL (Secure Socket Layer) offleadiie selected HAProxy, the high
performance TCP/HTTP load balancer because of dlsbility and well documented
features. Please notice that the Distribution ladistributes user data transfer requests only
and not the actual data to be transferred. As altré®e traffic and processing load of the
HAProxy services is much less than the load ofDhé& nodes. Nevertheless, if there are a
very large number of users, a single HAProxy serei&n be a bottleneck and hence the same
kind of scalability approach is applied for the HARy services as for the Data node
services. Prometheus collects load information okPHbXy services too and the Alert
Executor can instruct Occopus to deploy a new HAYs®rvice or remove an existing one.
The new ones are registered into MIiCADO via the <tibiservice as in case of the Swarm
worker nodes.

Comparing Figure 3 and 4 we can easily identify ltbex MICADO prototype in Figure 4
implements the MiCADO concept and architecture shanvFigure 3. TheMicroservices
discovery and execution layer that manages the execution of microservices apgsk&ack

of services running, is implemented by Occopuba#t these tasks combined with the start-up
and shut down of microservices (Data node and HABrdt gathers information about
currently running services, such as service nafegddress and port where the service is
reachable, and optional service tags to help micercoordination, as described in Section 3.

The Microservices coordination logic layer is realised by the Central and Distribution
layers of the MICADO prototype architecture. To arstand how the current execution
environment is performing the Central layer usestheus to collect information about the
various services. This information is processedths Alert manager. If bottlenecks are
detected or the currently running infrastructurpesgys underutilised, Alert Executor instructs
Occopus to launch or shut down cloud instancesalllyint is the task of the Swarm master to
move microservices from one physical worker nodanother.

The Cloud interface API of MiCADO is to abstract cloud access from laya@eve. This is
implemented by the different cloud handler plugofsOccopus. Currently the following
cloud interfaces are supported by Occopus: Cloud&jgAmazon EC2 (Elastic Compute
Cloud), OpenStack NOVA, OpenNebula EC2, OCCI (O@doud Computing Interface),
CloudBroker and Microsoft Azure. This has the adaga that Occopus can deploy the
newly required Data nodes in a cloud different frttva one where the MiCADO prototype
runs. In this way the MICADO prototype can explewen heterogeneous multi-cloud



systems. If the originally used cloud system isrmagled new Data nodes can be deployed
either on other clouds within a cloud alliance likee EGI FedCloud (European Grid
Initiative Federated Cloud) [26] system or on conuia cloud systems.

The Coordination interface APl of MICADO provides access to orchestration congodl
decouples the orchestration layer from the apphoatiefinition. This API is currently the
Occopus infrastructure descriptor language. Inrtbar future the COLA project considers
TOSCA to implement this layer.

There are several advantages of the developed M{TAbtotype. First, it can support a
large set of applications which have the commotufesof serving large, variable number of
users with variable size of data. To replace theeotly prototyped Data Avenue service
with any other similar type of services is extreynelsy since it is used inside a Docker
container and it does not require any changesarMiCADO architecture. The price for this
flexibility is that the application implementingehrequired service should be dockerized
before being used in MiCADO. Second, MiCADO guaeast that the service is optimised,
i.e. MICADO creates new service instances in Datdes when the load increases and
removes some of them if the load drops. Third, MBZAguarantees the well-balanced usage
of these service instances based on the Distribblgiger that directs user requests in an even
way to the different service instances.

Based on the MICADO concept, WS-PGRADE/QUSE gatewayning in clouds can be
extended with a scalable Data Avenue (DA) sendeh a DA service is installed within a
MICADO architecture that can be attached to thewgay. Occopus can be used to deploy
both the WS-PGRADE/gQUSE gateway and the attacheGAO with the DA service.
These set of services guarantee that the users S PBRADE/gQUSE can make any
necessary file transfer without performance losgndfthe number of users is increased in a
significant way.

5. Performance evaluation

In order to evaluate the performance of the MiCAp©Ototype implementation described in
Section 4, a set of experiments have been designddmplemented on the CloudSigma
public cloud. Different phases, including building the MiICADO infrastructure, and also
scaling up and down the application nodes have lmeasured using the Data Avenue
application. These experiments provided evidencgetlie automated scalability features
provided by MiCADO.

The first task is to build the MICADO infrastruceyrincluding Data nodes (the nodes that
host the Data Avenue application and a MySQL damabaode required by DA), load
balancers (HAProxy), and monitoring infrastructfifgometheus). This task is executed by
Occopus based on a pre-defined infrastructure igpéscifile. The operator first needs to
import the node descriptor files containing theudanterface type and endpoint of the target
Cloud API where the nodes should be built. Aftepariing the necessary files, MiCADO is
started through the Occopus-Rest-API by submittiveginfrastructure descriptor file which
specifies the relation between the virtual machiaes the number of instances that will be
created. Application specific variables such ag pombers and database credentials are also
defined in this file. Next, Occopus creates theehafastructure without the user application.
Overall, it took 320 seconds on our target cloudtdd the infrastructure, with Figure 5
illustrating how this time is broken down betweha tlifferent node types.

Once the components are successfully connecteddo @ther, the DA application can be
started. Since MiCADO works with Docker Swarm, #pplications can be started as Docker
services. To do so, the operator needs to starinDfdobal service mode through the Swarm



service locally or remotely. Global mode will assuhat every node in the Docker cluster
will start the application automatically in onetausce per node. This gives us the advantage
that when we scale up the application layer the nede will work just as the other ones in
the Docker cluster. Deploying the application instlway took 140 seconds in our
experiment.

MICADO build up time

40

35

% 30
2 25
g 20
2 15
e 10
E 5
0

Prometheus Application Load Balancer
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Fig. 5: Time to build the MiCADO infrastructure

After the MICADO infrastructure was built and théA@pplication was successfully started,
we tested and measured the automated scale-upcaleddown features of MiCADO. First,
we put load on the cluster by transferring largkinees of data through the application nodes
that run DA. To make the application cluster ovaded, 1 GB files from multiple different
sources have been transferred. In the current MiOAbtotype there is an alert defined that
in case the load in the Docker cluster exceeds 60%he available resources, MiCADO
automatically creates a new DA node to scale tfrastructure up. In our experiment, it took
MiCADO approximately 300 seconds to connect thiz mede to the cluster and make the
application available. On the other hand destroymgsting virtual machines when
decreasing the load on the cluster, took only I2ms@s in average. Figure 6 summarises the
above described scale-up and down times and comffase to creating and destroying the
complete infrastructure.

Operation time (sec)
create infrasturcture 320
destroy infrastructure 15
scale up app node 300
scale down app node 12

Fig. 6 Infrastructure and node creation/destroy

The next benchmark was designed to demonstrate B{@TAn actual usage, with scale-up
and scale-down events. Figure 7 shows three grapimsse graphs were generated by
Grafana [15] based on the input provided by therfetbeus monitor. On the top, the average
CPU utilization in the application cluster is iltteted. In the middle graph, the CPU usage of
the individual nodes in the application cluster stnewn with different colours for each node
(which in average gives us the upper graph). Ringtle bottom graph indicates the number
of nodes in the Docker cluster.

Overall, the figure illustrates how the number pplcation nodes changed depending on the
actual load on the cluster. At the beginning (1p:B¥re was no load on the cluster which
could serve user requests perfectly with the hemty one VM (Virtual Machine), shown in



green on the middle graph. As the file transfergehstarted, the load soon reached 100% of
CPU usage on the only available node. After MiCABK@ertained that the load remains high
(the load needs to be constantly above the aléwewva 60% for a certain amount of time, in
our case for 180 seconds to avoid unnecessaryigagi/down), it fired an alert which called
Occopus to instruct scaling up the applicationtelusThe new node (blue) was connected to
cluster at 15:43 and after the virtual machinésfied the boot process it started the DA
application automatically, to decrease the loadtl@ first node that was previously
overloaded (15:45). The same up-scaling event easeen on the figure at 15:49 as two
nodes still struggled to serve user requests, aratlditional third node was connected to the
Docker cluster.

On the “CPU/node” graph we can check that the appptin nodes actually share the load
between them, while their load are close to eabhrofAlso worth mentioning that new nodes
are connected to the cluster with instant 100%oafl lat the beginning. The reason for this is
the boot process of the virtual machines. Whenntbaes are booting they are at full load,
and when they finish starting the Docker containgrgay remain on the actual load coming
from the application.

At the end of this test we successfully transfelt®B of data using three DA services as
maximum in parallel. The transfer took place betwé&&:36 and 15:56, as we can see in
Figure 7. From that point, MiCADO started to scalewn the application cluster. The
number of nodes decreased by one every time whemed®neus fired up the alert telling
Occopus that the cluster is under-loaded. At 1&herumber of nodes decreased back to the
minimum of one application node. It is importantrimte that while the under-loaded alert in
Prometheus was still firing, Occopus did not sdadéow the minimum number of nodes,
which was one in our case, to make sure that thkcagion is reachable at any time.

CPU utilization of the DA cluster

CPU/node

number of DA nodes

Fig. 7 Resource optimization, on both scale up and doxents with MiCADO

The above described experiment clearly illustrétas MICADO works as it is expected. The
application was scaled automatically on demanddtptito actual load. In this experiment
we adjusted the time interval which MiCADO had taitAbetween two scaling events before



scaling again: 300 seconds for scaling up and 60rgks for scaling down. These time ranges
were selected to fit the DA application where lafidge transfers may require more time to
finish, while after they finished, the load expect® drop dramatically allowing scaling
down more quickly. As these numbers are applicasjpecific they can be set to make sure
the scaling events happen in the expected timevialte

6. Industry relevance

As part of the COLA European project, several agpion scenarios are investigated and
large scale industry trials are being implementadolving SMEs and public sector
organisations. These trials are applying the MiCAB@mework in order to provide
automatic scalability of applications in the tasgktareas. The project develops three full
scale demonstrators and twenty further proof ofceph solutions. This section gives a short
overview of three of these trials in order to ithase the industry relevance and significance
of the developed solution. The implementation adsth trials is currently in progress and
detailed results will be reported in follow-up pegpe

Scalable evacuation planning service. One of the critical issues in developing evacuation
simulations is speed. As the size and detail amailsttion increases so does the time taken to
process each scenario. Saker Solutions is a UKdbasapany with a mission to expand the
benefits achieved from the use of simulation maagllSaker developed SakerGrid [23], a
Desktop Grid based solution to support the efficierecution of large scale simulation
scenarios and significantly reduce the timeframea fmsers to undertake model
experimentation. However, SakerGrid is limited hg number of physical ‘nodes’ that are
present on the network. When decisions need takentin a short timeframe, or when there
is a need to run a plethora of replications in pitdeobtain a statistically valid result, the
ability to burst onto a cloud from SakerGrid woudd highly beneficial. Within the COLA
project Saker will use MICADO to burst out to théowd on demand for scaling up
simulations if required, and also quickly scalingck when economic factors make it
necessary.

Social media data analytics for public sector organisations. The spread of Social Media
created vast amount of information available inljpuources regarding people’s preferences
and opinions. Monitoring this information requiregynificant computation and storage
resources and has become a critical aspect forgoothte companies and also for the public
sector. Aragon Regional Government in Spain isinglko develop communication channels
with citizens to become aware of their opinion altbe local government’s services and the
ways these can be improved. Authorities also wardffer entrepreneurs and companies in
the region with information that can be used torowe business or develop new ones. To
fulfil this objective, regional government uses &ogzz, a web application for Social Media
data mining, competitive intelligence and brand anddia management developed by
Spanish Company Inycom. One of the challenges dasuth application is fluctuation of
computing load required. The information collecfensin the Internet grows exponentially
and there is uncertainty regarding how much infdromawill be collected by the crawlers to
be processed later. Furthermore, end users cangehtne configuration of the system
increasing unexpectedly the number of crawlers taed launching frequency. Within the
COLA project Eccobuzz will be reengineered into mservices based architecture and
extended with MiCADO to support dynamic resourcedead.

Scalable simulations for manufacturing SMEs. The European CloudSME project [9]
developed a cloud-based platform to run computadiosh data intensive manufacturing and
engineering simulations on heterogeneous cloud atingp resources [10]. The solution is



based on the CloudBroker multi-cloud platform ahd gUSE science gateway framework
[11]. Several industry applications, e.g. open seyOpenFoam) and proprietary (TransAT)
fluid dynamics simulation software, design and datlion of scanned foot images for foot
insole production [12], and business process mindetipplications [13] have been ported to
and operated on the platform. During the COLA ppjstart-up company CloudSME UG
will prototype several of these applications usMiCADO. In each scenario, the aim is to
optimise resource consumption of the simulationliegpon by minimising costs while still
providing significantly enhanced performance ferdlients.

Industry partners of COLA estimate that utilisingQADO they can increase the efficiency

of their business processes by 20-70%, increageres satisfaction by 20-60%, decrease
time to product and market by 10-50%, and incre¢bsg profit by 10-100% (depending on

application areas and company profiles).

7. Conclusion and futurework

This paper described the generic concept and itsteréiference implementation of MiCADO
that supports the automated scalability of clougliaptions. Initial benchmarks and
experiments were also successfully conducted ubmdata Avenue file transfer application
and demonstrating that the MICADO is capable oflisgaup and down the application
cluster.

Future work will be conducted on two fronts. On thee hand, MICADO will be further
developed within the European COLA project. Therentr implementation is only the very
first prototype that handles only simple alerts apkrates based on simple policies. In
COLA, MICADO will be significantly extended to prae scalability based on more
complex optimisation scenarios, for example torapge not only for performance but also
for cost. COLA also considers complex user poliojoecement, for example orchestrating
the application depending on security policy speatfons. The Application Definition layer
of MICADO will be specifically developed based onOCA Application Description
templates using the TOSCA standard [16].

On the other hand, the scalability of the DA sex\and its usability in connection to science
gateways will be further investigated. There arenynprojects and communities in Europe
that actively use WS-PGRADE/gUSE gateways. Forehmsmmunities the scalable Data
Avenue service is a good candidate to improve thaia staging mechanism. Furthermore,
the scalable Data Avenue service can easily beeted to other kind of gateway services
making them also capable of providing scalable dttging with good performance.

As we showed in Section 4, Data Avenue can easilyeplaced with other kind of services
that are already used in existing gateways. Thisggthe opportunity that various gateways
can significantly improve their services if theyplace their current non-scalable services
with scalable ones. The only task they have to sldoi dockerize the application that
implements the service.
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