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Abstract

With the recent trend in wearable technology adoption, the security of these wearable devices has been the subject of
scrutiny. Traditional cryptographic schemes such as key establishment schemes are not practical for deployment on the
(resource-constrained) wearable devices, due to the limitations in their computational capabilities (e.g. limited battery
life). Thus, in this study, we propose a lightweight and real-time key establishment scheme for wearable devices by
leveraging the integrated accelerometer. Specifically, we introduce a novel way for users to initialize a shared key using
random shakes / movements on their wearable devices. Construction of the real-time key is based on the users’ motion
(e.g. walking), which does not require the data source for key construction in different devices worn by the same user to
be matching. To address the known limitations on the regularity and predictability of gait, we propose a new quantization
method to select data that involve noise and uncertain factors when generating secure random number. This enhances
the security of the derived key. Our evaluations demonstrate that the matching rate of the shake-to-generate secret key
is up to 91.00% and the corresponding generation rate is 2.027 bit/sec, and devices worn on human participant’s chest,
waist, wrist and carried in the participant’s pocket can generate 4.405, 4.089, 6.089 and 3.204 bits random number per

second for key generation, respectively.
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1. Introduction

Advances in both hardware (e.g. embedded wireless
microelectronic components) and software have contribut-
ed to the popularity of wearable and embedded devices.
These devices typically offer ubiquitous computing. For
example, embedded sensors can be used to monitor the
real-time physiological status of users and can be applied
in a wide range of situations, such as in healthcare and
allied health services (e.g. counting of steps, tracking of
heart rate, and monitoring of glucose levels) [1, 2]. How-
ever, these devices are generally not designed with secu-
rity in mind [3, 4, 5, 6]. The amount and nature of da-
ta and services these wearable devices can have access to
(e.g. the user’s private data), as well as the limitation-
s of these devices (e.g. resource-constrained), require us
to rethink how we design security solutions for wearable
devices [7, 8, 9, 10].

Due to the limitations in the computational capability
of the underlying hardware, a number of existing cryp-
tographic solutions such as key establishment protocol-
s may not be fit-for-purpose. For example, the Diffie-
Hellman (DH) key exchange is usually employed in exist-
ing key management schemes. However, DH key exchange
implementations require complex cryptography computa-
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tions such as modular-exponentiation operation. Thus,
the overheads may be beyond the existing capability of
resource-constraint wearable devices.

It is important to be able to establish a secure ses-
sion between two devices particularly those worn by the
same user, as these wearable devices require frequent da-
ta exchange between devices (e.g. transmitting a user’s
health-related information such as glucose level and heart-
beat counts between the smartwatch to a paired mobile
device, so that the information can be sent to the hospital
network). A successful compromise could have real-world
implications. For example, if a malicious attacker success-
fully changes the glucose level or heartbeat counts of a
particular user, this would result in delivery of the wrong
medication or treatment plan and lead to fatality. Unde-
niably, security is an important factor to be considered in
wearable devices, particularly those deployed in real-world
applications. It is, therefore, unsurprising that designing
lightweight and real-time cryptographic solutions such as
key establishment protocols is of ongoing research interest
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

One challenge in designing lightweight cryptographic so-
lutions such as key establishment protocols is providing an
optimal security assurance without incurring excessive en-
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ergy consumption. Therefore, we examine the potential
of a lightweight key generation scheme designed for wear-
able devices, which provides real-time rekeying mechanism
without high computational complexity. Periodic rekey-
ing is introduced to increase the difficulties in successfully
conducting a cryptanalytic attack (in comparison to using
static key). In other words, a real-time key establishment
scheme is more likely to be capable of withstanding attacks
and providing long-term secure communication especially
in Body Sensor Networks (BSNs) [22, 23].

The integrated accelerometer is commonly found on or
can be easily integrated with most wearable devices. For
example, a self-contained wearable cuff-less photoplethys-
mographic (PPG) based blood pressure monitor was de-
veloped in [24] and was integrated with two MEMS ac-
celerometer to measure the hydrostatic pressure offset of
the PPG sensor relative to the heart [25]. Popular con-
sumer wearable devices (e.g. Apple watch, Garmin HRM-
Tri heart rate monitor!) have integrated accelerometer.
Thus, in this paper, we posit that the accelerometer em-
bedded in wearable devices can be leveraged in the design
of a lightweight and real-time key establishment scheme
(hereafter referred to as LiReK). Specifically, the contri-
butions of this paper are as follows:

1. We propose a novel method to generate a shared key
on wearable devices by users who wish to establish
a secure session by randomly shaking their devices
in concert without the need to extract features from
different dataset.

2. We design a lightweight bit-extraction algorithm
based on the value-difference of neighboring samples.
This allows us to correct the value deviation at the
devices to extract shared stochastic data from the in-
secure sensing data.

3. We introduce a real-time key establishment scheme
leveraging the original sensory data to generate secure
random number for key construction without using
any data transformation methods.

The organization of this paper is as follows. Related
work is introduced in Section 2. The system model and
adversary model are presented in Section 3. Section 4
describes our scheme, and its evaluation and analysis are
presented in Section 5. We conclude the paper in Section 6.

2. Related Work

Motivated by the resource-constrained nature of the
wearable devices, efforts have been devoted to designing
lightweight and efficient key establishment schemes for
such devices and BSNs in the literature. In [26], for ex-
ample, the authors proposed a cloud-assisted key manage-
ment scheme for BSNs, designed for both indoor and out-
door settings. The authors in [27] investigated the channel
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property by utilizing the signal strength fluctuation caused
by incidental motion of the devices to achieve efficient key
construction.

As integrated sensors in BSNs can be used to col-
lect a user’s physiological signals, such biometric mea-
surements can be utilized for key establishment [23, 28,
29, 30]. In [23], for example, the authors proposed
the Ordered-Physiological-Featured-based key agreemen-
t (OPFKA) scheme, which specifically employed the se-
cret features in the physiological signal collected by the
embedded sensors. Both studies in [28, 29] demonstrat-
ed how electrocardiogram (ECG) signals could be used as
shared secret for key generation. Similarly, in this study,
we leverage the accelerometer (also partly due to its broad-
er adoption, as compared to other sensors). For example,
Garmin HTM-Tri heart rate monitors are not integrated
with the ECG sensor; thus, the schemes in [28, 29] would
not be applicable for such devices.

One of the first studies to use one’s gait characteristics
via embedded sensors in on-body devices to establish cryp-
tographic keys for these devices is that of Xu et al. [31].
To extract gait features from the sensing data in devices
located in different body areas, the authors used the blind
source separation techniques (e.g. Independent Compo-
nent Analysis (ICA) and Fast Fourier Transform (FFT))
to process the sensing data. The matched data were then
used to generate symmetric keys at both devices. Unlike
the scheme of Xu et al. [31], we do not extract features
from the sensory data to construct shared keys.

The use of gait characteristics for cryptographic key gen-
eration, such as the approach in [31], may not be suitable
in a number of applications (e.g. key establishment). This
is because gait features are generally associated with a us-
er’s habits (e.g. walking abnormalities may allow another
person to infer the user’s medical or health conditions, say
gout). In addition, an attacker who knows the user rea-
sonably well could have an advantage in “guessing” the
right key (e.g. due to the degree of regularity, such as in
the case of a person suffering from regular gout attack-
s). In the literature, researchers such as [32, 33, 34] have
studied the viability of imitation attacks (e.g. the proba-
bility of gait features to be imitated for attacks). While
the practicality of imitation attacks on real-world devices
is yet to be determined, it is important to propose schemes
resilient to imitation attacks. We remark that the scheme
in [31] is not designed to mitigate imitation attacks (and
we assume the possibility for a strong adversary to learn
the gait features of any users in this paper). Also, the
feature-extraction based methods in [31] may also impose
constraints on the sensing data on different on-body de-
vices. Once the users’ motion present a certain extent
of non-habitual (e.g. walking with sudden acceleration or
deceleration), the data on different devices (e.g. the data
from devices on the hand and on the waist, respectively)
may fail to construct shared features for key generation
(i.e. the study in [31] conducts experiments only on the
scenarios of users’ habitually walking).



An inter-device authentication mechanism that requires
users to shake their devices together was introduced by
Rene et al [35], which inspires this work. Specifically, we
explore the potential for generating symmetric key on user-
s’ devices from their arbitrary shaking. While Rene et
al mainly focused on inter-device authentication, we seek
to design a lightweight and real-time key establishment
scheme in this paper. Specifically, their scheme can differ-
entiate between devices shaken together by an individual
and devices shaken separately for authentication. One of
their proposed models, ShaVe, employs the DH key agree-
ment and it is not introduced in our scheme. The another
model, ShaCK, can be used to generate symmetric keys
using feature-extraction based methods such as exponen-
tially quantized FFT. Such an approach is similar to that
of Xu et al. [31].

Random number generation (RNG) plays an importan-
t role in cryptosystem and it can be achieved by lever-
aging the integrated sensors on mobile devices. In [36],
a sensor-based random number generator seeding scheme
was proposed. To achieve secure seeding, the predictable
(insecure) sensory data is removed and the data is then
transformed into complex exponentials using a FFT. Fi-
nally, the seed for the random number generator is pro-
duced. The authors in [37] built a framework called Sen-
soRNG to produce secure random number for mobile and
IoT devices. Basically, the mixing algorithm is based on
the analysis of data collected from the embedded sensors
in 37 Android devices. The non-random bits are stripped
before compressing the data into smaller data stream. The
design of the algorithm is inspired by “S-box” used in
asymmetric cryptography algorithms by further mixing
the data, making the input data irreversible after seed-
ing. Unlike the above mentioned schemes, the proposed
scheme in this paper uses kinetic sensory data from the
built-in accelerometer to provide secure random number
for key establishment.

Mathur [38] proposed a key-extraction algorithm, level-
crossing algorithm, for quantizing bit sequences from cor-
related stochastic data. Specifically, Mathur’s algorithm
computes two statistical thresholds. Samples above the
upper threshold or below the lower threshold can be quan-
tized into bits if they satisfy the defined requirement. Such
an approach is considered in the designs of several other
schemes such as [27, 31, 39]. In this paper, however, we
propose a bit-extraction scheme based on the value differ-
ence of the neighboring samples rather than on the statis-
tical analysis over the data as in [38].

3. Problem Formulation

In this section, we briefly describe how wearable devices
can implement our proposed scheme before discussing the
adversary model.

Let Alice and Bob denote two legitimate devices worn by
the same user, and multi-factor noise denotes all uncertain
factors contributing to the imprecision and randomness in

the sensing data (e.g. outer noise, the intrinsic inaccuracy,
and short-term deviation of the devices).

3.1. System Model

Generally, pre-shared based schemes relying on the pre-
deployment of secret on devices can provide convenience to
achieve end-to-end secure communication, which also eas-
es the task of initializing a shared key before secure com-
munication. However, in BSNs, using pre-shared keys may
not be a feasible solution; thus, we should not assume that
pre-shared keys are always available [40, 41]. When using
pre-shared schemes, it is also inconvenient when adding a
new device into BSNs that do not have a shared key with
other devices (i.e. cannot achieve plug-and-play usage)
[30].

While many wireless technology standards (e.g. Wi-Fi
Protected Access (WPA)) use pre-shared key in their se-
curity protocols, such schemes may not be applicable for
BSNs since there may not be a user-interface for users to
input the pre-shared secret (e.g. the input of personal
identification number (PIN) code in the 801.15.1 (Blue-
tooth) protocol).

Hence, it is reasonable that we do not assume the pre-
shared key to be available. This is the approach we use in
this paper.

Fig. 1 depicts a potential implementation model for
wearable device users. Basically, prior to using the wear-
able devices, a user first shakes the devices together in an
arbitrary pattern. The sensing data can then be utilized
for initializing a shared secret key on the respectively shak-
en devices. With the availability of a shared key on the
devices, the user can wear and begin using the devices, dur-
ing which the wearable devices generate real-time keys by
sensing the user’s motion to secure their communications.
We also remark that the data for real-time key construc-
tion in the different devices worn by the same user are not
required to be matching (as shown in Fig. 1).
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Figure 1: An implementation of the proposed scheme
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3.2. Adversary Model

In this section, we identify four potential vulnerabilities
that could be exploited by the adversary to compromise
our scheme; namely: 1) imitating users’ motion to coun-
terfeit secret keys; 2) eavesdropping the communications
between devices; 3) message modification and spoofing at-
tacks; and 4) knowledge of the procedures and methods of
the proposed scheme.

In our scheme, all of the secret keys are generated from
users’ motion or gestures. We assume that the users’ mo-
tion to generate the secret keys are not secret (e.g. anyone
in the vicinity of a user can observe the user’s shaking
of the devices). Thus, an adversary can observe users’
gestures or motion and attempt to fabricate keys by imi-
tation. While the adversary can imitate how users shake
their devices, it is unrealistic for the adversary (or any-
one) to reproduce the identical action (e.g. in terms of the
strength and the exact movement such as hand swing and
its angle), as unlike gait and other habitual motions, user-
s’ free-form shaking are arbitrary. However, we assume a
strong adversary in the sense that the adversary may be
able to successfully imitate users’ gait features using other
means (unlike the assumption in [31]).

During the reconciliation procedure when two shaken
devices need to reconcile with each other the position of
unqualified bits they have discarded, we assume their mu-
tual communication is performed in an insecure channel.
In other words, an adversary can eavesdrop on the mes-
sage and the adversary might attempt to parse knowledge
of the secret key from the captured message.

In addition to passive attacks, we assume that the ad-
versary can conduct active attacks, such as modifying mes-
sages and injecting fabricated messages into the reconcil-
iation message, to influence the outcome of the derived
key. However, the factors not directly associated with the
security during the generation of key (e.g. the adversary
interrupts the communication between the legitimate de-
vices and thus terminates the key establishment between
devices, the strength of the encryption protocol, etc.) are
outside the scope of this paper. In other words, the scheme
in this paper is deemed secure, if and only, if the generat-
ed keys are secure. Apart from false injection, we assume
that the adversary can perform man-in-the-middle (MIT-
M) attacks, and impersonate a legitimate user.

As we will introduce later in this paper, our secure real-
time key generation scheme is achieved using a combina-
tion of factors, each playing a different role in the imple-
mentation (e.g. the assignment of different thresholds to
select or filter specific sensory data). And we assume all
of these methods are not required to be kept secret, which
means the adversary can gain full knowledge of the proce-
dures and methods used in our scheme.

4. Proposed Scheme - LiReK

Our scheme is briefly depicted in Fig. 2 and the details
of our scheme are elaborated in the following.
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Figure 2: The proposed scheme — LiReK

4.1. Data Collection

Since all data are generated by the accelerometer in our
scheme, we first look at how they obtain the acceleration
data of devices. The underlying principle of the embedded
accelerometer in mobile devices is described in Fig. 3. The
acceleration in the motion direction is derived from the
combination of measurement in 3 axes. Outcome of the
measurement in the devices usually mix with a number of
other factors, and the measurement in the X-axis can be
expressed as [42]:

Gy = Gy + Spaz + By +ny (1)

where a, is the measurement in the X-axis provided by
accelerometer, a, are the applied acceleration acting along
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Figure 3: Underlying principle of accelerometer in mobile devices

in X-axis, S; is the scale factor error, By is the measure-
ment zero-offset bias and n, is the random noise. The
measurement in Y-axis and Z-axis can be computed simi-
larly. After obtaining the acceleration in 3-axis, the device
can compute the acceleration in the motion direction by:

ay = /a2 + a2 + a2, (2)

where a,, is the user driven acceleration, az,a, and a,
are the measurements provided by the accelerometer in 3
axes respectively. We observe from Equation 1 that the
acceleration measured by the sensors contains the original
acceleration in its direction, as well as other factors which
we denote as multi-factor noise. The latter affects the pre-
cision of the accelerometer’s output. To correct this, a
number of statistical and signal transformation methods
(e.g. Median Absolute Deviation - MAD, and FFT) can
be applied to extract the main features from the mixed
data. For example, in [31] these approaches were utilized
to extract features from data generated from human mo-
tion. However, such feature-selection based processes usu-
ally eliminate the influence of multi-factor noise during the
selecting of features because the presence and influence
of dominant features can outweigh those of multi-factor
noise.

Thus, in this paper, we propose a new solution to gener-
ate a shared secret key without using such statistical and
signal transformation methods to extract common features
from the sensing data. A downside of not using the above
mentioned statistical and signal transformation method-
s is the inability to acquire matching data in the devices
that moved in different patterns (e.g. when a user is walk-
ing, data obtained from devices worn on the user’s wrist
and waist can present obvious distinction and both data
will not be matching without feature selection). Compared
with extracting features, a more straightforward approach
to yield matching data in devices is to let the devices move
in a similar pattern. Thus, we allow the users to be ac-
tively involved in the generation of the initialization key.
To be specific, users first hold their devices together (on
the same hand), and then shake them in an arbitrary pat-
tern. The nearly same and random motion pattern can
be recorded, which can yield similar data in the shaken
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Figure 4: An example of original data recorded by the shaken de-
vices. The denoted areas indicate the temporary regularity on user’s
shaking.

devices for shared key establishment.

Since the wearable devices are generally portable (e.g.
Apple watch, Garmin HRM-Tri heart rate monitor?), such
operations will be trivial for the users to perform in almost
any situation. An example of the original sensing data in
different devices generated by a human’s arbitrary shaking
is shown in Fig. 4. Here, all original data discussed in our
study are assumed to have been processed by the high-pass
filter because the contribution of the force of gravity must
be eliminated in order to measure the real acceleration of
the devices [43]. And the sensing devices for all of the two-
end data (Alice and Bob) are the same (ZTE U817 and
Coolpad 5892). All the sampling data procedures given
as examples in the following are the random motions for
demonstration, unless otherwise specified.

Upon receiving the original data, a filter process is need-
ed in order to increase the matching rate of derived bit
sequence at both ends. We choose the simple Moving Av-
erage (MA) filter, which is a general filter method that
can be used to smooth out short-term fluctuations between
neighboring samples. It should not significantly affect the
value-difference relation of neighboring samples, which is
important during quantization. Therefore, we assign the
filter parameter to be 2, which means each sample is only
made an average smooth with its previous one. Fig. 5 de-
picts an implementation of MA filter over the sensing data
(Fig. 4 represents the original data).

Another necessity to introduce the MA filter is that it
enables our scheme to take into account the situation when
a user’s free-form shaking presents temporary regularity,
which is possible in actual scenarios (i.e. it is unrealis-
tic for users to always shake the devices in an arbitrary
pattern and temporarily regular shaking is a reasonable
assumption). However, this could be a vulnerability to
be exploited by the adversary, who can more easily mim-
ic the regular motion than other random motion. Such
short-term periodic motion patterns can be presented as
the samples denoted in bold lines in Fig. 4, where we can
see the patterns of those samples showing distinct regular-

ity.
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Figure 5: A comparative summary of sensing data at both ends after
the implementation of Moving Average filter. The denoted areas are
corresponding with that in the preceding figure.
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Figure 6: An implementation of the proposed value-difference based
quantizer

The MA filter can be use to mitigate such potential risk,
since the MA filter can smooth the value relation of the
neighboring samples. Therefore, the value relation of the
periodic samples becomes very similar and gentle after be-
ing processed (i.e. the value differences become trivial).
This is due to the complementary nature of the regular-
ity of the neighboring samples, which can be illustrated
as the denoted samples in Fig. 4 and Fig. 5. As we will
discuss in Section 4.3, these samples can be filtered during
the reconciliation procedure; thus, enabling our scheme to
generate a secure key even though the user has shaken the
devices in an imitable pattern temporarily.

4.2. Quantization

We now describe our value-difference based quantiza-
tion method, which is based on the comparison of values
between a sample and its preceding sample, and we as-
sume that both devices (Alice and Bob) have collected the
same number of samples. The value of each bit extract-
ed from the samples is determined by the value difference
between each sample and its preceding sample. If the cur-
rent sample is smaller than its previous sample, then the
bit extracted from this sample is 1; otherwise, it is 0. Fig. 6
shows an implementation of our quantization method on
the data collected from a random shaking (using Coolpad
5892 as the sensing device), and the description is provided
in Algorithm 1.

The proposed quantization allows us to more concretely
determine the motion trend of the devices by investigat-
ing the value-difference relation of neighboring samples in
the sensing data. For example, if the value differences

Algorithm 1: Proposed value-difference based bit-
extraction algorithm

Data: cur_sample, pre_sample, new_sample
Result: Bit sequence

1 if sensor updates new_sample then
2 cur_sample = new_sample;

3 if cur_sample < pre_sample then
4 ‘ output 1;

5 end

6 else

7 ‘ output 0;

8 end

9 pre_sample = cur_sample;

10 end

of a series of successive samples with their previous ones
are positive, then we can interpret that the device had
been accelerating during that period. And the randomness
of users’ shaking devices can be perceived as the unpre-
dictable acceleration or deceleration of the shaken devices.
Thus, the extracted bit sequences are more related to the
unpredictability of users’ physical motion (i.e. the derived
sequences are more unpredictable).

In general, deviation caused by multi-factor noise will
not distinctly distort the value-difference relation of sam-
ples but only result in relative imprecision of the concrete
value as the presence and influence of noise cannot out-
weigh those of the dominant motion features. Thus, it
enables data at different ends to be extracted as the same
bits, as long as they have positive or negative value dif-
ferences with their previous samples (i.e. data in different
ends are not required to be highly matching).

On the other hand, while the value deviation resulting
from multi-factor noise generally causes indistinct influ-
ence, it also increases the difficulty to derive matching bit
sequence at different ends. This is because some devia-
tions are too trivial to be identified to have caused incon-
sistency in the bit sequence. For example, a trivial value
difference of a sample with its previous one can be posi-
tive at one end and be negative at the other end, and thus
the extracted bits will be 0 and 1, respectively. The user-
s’ shaking may also result in some small variation on the
respective data, which can result in the above mentioned
events (e.g. the variation on the shaken devices seen from
Fig. 5). Therefore, we introduce a calibration method to
filter these deviation, to be discussed next.

4.8. Reconciliation

A calibration filter process is introduced before the shak-
en devices can agree on a shared key. In Fig. 7, we depict
a comparison of a bit sequence derived before and after
the calibration filter. As observed from Fig. 7, the bit se-
quence extracted without calibration has some discrepancy
in both devices, which are mainly due to the presence of
multi-factor noise and they can draw stronger influence in
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Figure 7: An implementation of calibration filter to filter mismatched
bits in both ends. The bold lines denote the area(s) where errors are
likely to occur. The samples denoted in green circle are discarded
since their value differences with their previous ones are smaller than
the defined deviation threshold (0.15).

those samples with small value difference with their pre-
vious ones. As denoted in bold lines of Fig. 7, samples
that have indistinct value differences with their previous
samples are a likely cause of mismatch in the sequence at
both ends. Therefore, we define a deviation threshold to
filter these mismatched bits.

A deviation threshold is defined, and if the value differ-
ence of a sample with its previous sample is smaller than
the deviation threshold, then this bit would be discard-
ed. It can be easily observed that the assignment of the
threshold can influence both the bit matching rate and the
length of derived bit sequence. A larger threshold can fil-
ter more mismatched bits. However, the matched bits will
be discarded as well if their value differences with the pre-
vious samples are smaller than the defined threshold (as
shown in Fig. 7); thus, decreasing the length of derived se-
quence and vice versa for a small threshold. Therefore, a
moderate deviation threshold should be considered in or-
der to balance the key matching rate with the key length.
As the presence and influence of the deviation are unpre-
dictable, we conducted experiments to study the distribu-
tion of the value difference of mismatched bits. The exper-
iments were conducted by shaking in varying movements
to simulate the real scenarios (e.g. the shaking contained
relaxed movement, movements with temporary repeated-
ness, etc.). We collected the deviation value of 14100 mis-
matched bits and the range of the data was from 1.85x10~6
to 4.428378m/s?. The corresponding probability distribu-
tion is expressed as:

0.7357 deviation = 0.10
0.9130 deviation = 0.15
F(x) = ¢ 0.9499 deviation = 0.50 (3)
0.9913 deviation = 1.50
1.0000 deviation = 4.50,

where deviation is the defined deviation threshold, x

Table 1: Loss rate of the matched bits to be discarded under different
deviation threshold. The total amount of the matched bits is 9610
bits

Deviation | 0.10 | 0.15 | 0.50 | 1.50 | 4.50

Loss Rate (%) | 41.94 | 58.38 | 78.19 | 98.86 | 100.00

are the mismatched bits whose value differences with their
previous ones are smaller than deviation, and F() is the
function to compute the proportion of x in the mismatched
bits.

To evaluate the influence of different thresholds on the
key length, we computed the loss rate, which is the per-
centage of the matched bits to be discarded. The results
are shown in Table 1, where the data were ranged from
2% 107° to 4.278323m/s%. As observed from Table 1, the
threshold of 0.10 group can yield the longest sequence as
its loss rate is the lowest among the groups. However,
those mismatched samples with a value difference of small-
er than 0.10 comprise only 73.57%, which can lead to a low
key matching rate. Considering both the bit matching rate
and the length of derived sequence, we chose 0.15 as the
deviation threshold. Our evaluation given in Section 5.1
demonstrated that our scheme could maintain a stable and
high matching rate by using the defined threshold of 0.15.
A matched bit sequence after the implementation of the
calibration filter can be seen in Fig. 7.

The situation when the motion pattern of the shaken de-
vices presents short-term regularity (as we have mentioned
in Section 4.1) can be addressed during this procedure. Be-
cause of the inter periodicity of the regular samples, the
value differences of these data with their preceding ones
become trivial after the implementation of the MA filter,
as observed from Fig. 5. While the proposed calibration
process can filter the samples with a value difference of
smaller than the defined threshold, these insecure samples
are discarded as well. Thus, we can ensure that the secret
key derived from users’ shaking are random (i.e. the de-
rived key only adopts the “stochastic” data in the shaken
devices while the “regular” data will be discarded).

After both devices have filtered their unqualified bits,
the devices need to agree on the filtered bits since the po-
sition of these bits may vary from each other. We can
simplify the procedure as follows: device 1 (Alice) locates
and records the indexes of the filtered bits and these in-
dexes will be sent as a filtering list to the other device
(Bob), who operates in a similar fashion. After both Alice
and Bob have sent and received a filtering list, they dis-
carded all the unqualified bits and the remaining bits can
form a shared key at both ends. However, as such proce-
dure involves mutual communication, the following attacks
should be considered. During reconciliation, an active at-
tacker might attempt attacks such as message modifica-
tion. To address such issues, we adopt the approach in
[38], which proposed a scheme incorporating data-origin



authentication and resilience to active attacks. Specifical-
ly, we modified the reconciliation procedure based on the
scheme outlined in [38], and the extended mutual agree-
ment is explained as follows:

1) After Alice has filtered the unqualified bits, she sends
a list containing the indexes of filtered bits to Bob.

2) On receiving Alice’s message, Bob is able to derive
a key after filtering the bits specified in Alice’s message.
Then, Bob checks whether the length of derived key is
sufficiently long. An agreed secure length threshold of se-
cret key is predefined and publicly available (e.g. this val-
ue would be 128 if AES-128 is the encryption algorithm).
Bob discards the received message and terminates the rec-
onciliation if the derived key does not satisfy the length
threshold (i.e. the derived key is insecure). Otherwise,
Bob sends his filtering list to Alice along with a message
authentication code (MAC), which envelopes Bob’s filter-
ing list and is encrypted using the derived key. MAC is
employed here to authenticate the message sent from Bob
and the keyed-hash message authentication code (HMACQC)
is preferred since it can verify both data integrity and data
origin.

3) After receiving Bob’s message, Alice can derive the
key by discarding the unqualified bits included in Bob’s
message. Then, Alice uses the derived key to decrypt the
received HMAC to verify the integrity of message and the
identity of message sender. Thus, Alice is able to deter-
mine whether her derived key is a legitimate shared key.

4.4. Real-time Key Establishment

To achieve a real-time rekeying mechanism, there should
be sufficient data (and sources) for session key generation.
The quality of sequence comprising the cipher keys is a key
factor for a secure cryptosystem as it determine the securi-
ty of the keys. Ideally, random number generation is based
on some physical processes with inherent randomness (e.g.
white noise). In this section, we propose a method that
utilizes the kinetic sensory data from sensing users’ phys-
ical motion to provide secure random number for session
key construction.

When a user is using the on-body devices, the user’s
motion can serve as a real-time data source for key con-
struction in the devices. With the establishment of shake-
to-generate key, we use the data generated from users’ mo-
tion to construct real-time keys directly without addition-
ally processing the sensing data. This avoids the overhead
associated with data processing.

We first investigate the original data obtained from user-
s’ walking. Fig. 8 gives an example of the data generated
from the sensing devices placed on four body areas dur-
ing a human’s regular walking (the pattern of the data
may vary between different people, and the placement and
types of the sensing devices are given in Section 5.1). In-
tuitively, there is no apparent regularity reported in these
sensing data, mainly due to the fact that the original data
were distorted by multi-factor noise; thus, concealing the
underlying periodicity and regularity of gait.
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Figure 8: An example of real-time sensing data recorded by ac-
celerometer in: (a) device worn on user’s chest; (b) device worn on
user’s waist; (¢) device worn on user’s wrist; and (d) device carried
in user’s pocket during a user’s regularly walking.

We used 6 of the NIST statistical tests (see Table 3 for
the name of each test) to quantize the randomness of the
bit sequence derived from these data [44]. We found that
the data failed to pass the tests, which indicated the da-
ta could not be considered random (i.e. cannot be used
for key generation). We attributed the failure to the in-
fluence of the features and regularity related to the gait.
This could outweigh that of multi-factor noise, whose in-
volvement in the derived key was indistinct by comparison.
Thus, not all data derived from users’ motion can be used
for generating random number directly.

To address the limitations on regularity of the sens-
ing data, we performed a specific data selection on the
insecure data to select the stochastic and secure data
for key establishment. As we have previously discussed,
multi-factor noise generally yield stronger influence in the
samples whose value differences with their preceding ones
are trivial. The data that are subjected to the influence
of multi-factor noise incorporate more randomness; thus,
they are suitable to be used for random number genera-
tion. We defined a selection threshold to choose such data,
whose value differences with their previous ones should be
smaller than the defined threshold. We denoted the select-
ed data as noise-dominance data where multi-factor noise
could draw more influence. Thus, the selected data could
not accurately reflect users’ actual motion (i.e. these data
remain more randomness). The remaining unselected da-
ta were not preferred since they mainly incorporated gait
characteristics, which were inherently insecure.

Essentially, a smaller selection threshold could help to
select data that have stronger entanglement with multi-
factor noise. However, such threshold should not be too
small, which might result in an increase in the randomness
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Figure 9: Distribution of value difference of the sensing data gener-
ated from devices located in different body areas

of the selected data while the amount of qualified data
could diminish as well (i.e. only a small amount of data in
the sensing data can be selected).

Based on the above, we performed the following experi-
ments to investigate the distribution of the value difference
between the sensing data to identify an optimal threshold.
Fig. 9 presents the distribution of value difference of the
data generated from human participant’s regular walking,
which was repeated 100 times and each experiment lasted
30s (the placement and types of the sensing devices are
given in Section 5.1). The sensing devices were placed in
four body areas, namely: chest, waist, wrist and pocket.

As mentioned before, the randomness of the derived se-
quence should be considered as well (e.g. a larger selection
threshold may result in the selected data incorporating
more data associated with gait features). Based on the
results in Fig. 9 and our experimental results from 6 of
the NIST randomness test suite over the data generated
using different thresholds (from 0.05 to 0.3), we defined
0.15 as the selection threshold. A detailed evaluation on
the data generating from using our defined threshold will
be discussed in Section 5.2.

The above data selection is based on our proposed quan-
tization method, and the procedures of real-time key es-
tablishment can be expressed as follows:

1) Both devices (Alice and Bob) acquire data from sens-
ing the user’s motions, where samples with a value differ-
ence of smaller than 0.15 with their previous one will be
selected as noise-dominance data, which can be used for
key construction. Algorithm 2 is a modified quantization
method that can select and quantize the noise-dominance
data.

2) The extracted bit sequence will be encrypted using
the shared shake-to-generate key, before being sent to each
other along with a message digest containing the hash val-
ue of the exchanged data for verifying the data integrity.

3) After validating the integrity of the received message,
Alice and Bob can construct a new shared secret key to
be used in the next session by concatenating their own
sequence with the received authenticated sequence.

Under the assumption in this paper (i.e. the security

Algorithm 2: Modified value-difference based bit-
extraction algorithm to identify and quantize noise-
dominance data
Data: cur_sample, pre_sample, new_sample
Result: Bit sequence extracted from
noise-dominance data

1 if sensor updates new_sample then
2 cur_sample = new_sample;
if pre_sample — cur_sample <
0.15 && pre_sample > cur_sample then
‘ Output 1;
end
else if cur_sample — pre_sample <
0.15 && cur_sample > pre_sample then
‘ Output 0;
8 end
9 else
10 ‘ No bit is extracted from cur_sample;
11 end
12 pre_sample = cur_sample;
13 end

of our scheme is equivalent to the strength of all the keys
generated under the scheme, and other factors such as the
reliability of the encryption protocols are not within con-
sideration), once a secure shared session key has been suc-
cessfully established, both devices can communicate with
each other in an insecure channel using symmetric encryp-
tion algorithms such as AES-128. And the security during
the secret message exchange in this procedure is deter-
mined by the encryption key (i.e. the shake-to-generate
key), whose strength will be considered in Section 5.2.

Based on the above, our proposed key management
scheme is achieved by a combination of procedures, where
each procedure serves for different purposes (e.g. the rec-
onciliation procedure to agree on a shake-to-generate key,
the generation of noise-dominance data to provide the
source of real-time key). Evaluation and analysis on the
proposed scheme are to be discussed next.

5. Evaluation and Analysis

In this section, we first evaluate the utility of our scheme
by investigating the matching rate of shake-to-generate key
and, the generation rate of shake-to-generate key and ran-
dom number from devices on different body areas. We
then analyze the security and performance of the proposed
scheme.

5.1. Utility Study
5.1.1. Design and Procedure

The sampling rate of the accelerometer determines the
quality of the data stream (i.e. the performance of our
scheme), and thus a moderate sampling rate should be
considered.



In the procedure for constructing the shake-to-generate
key, a higher sampling rate can result in a higher key gener-
ation rate as more data can be obtained by the accelerom-
eter per second. However, an increase in the sampling rate
may also result in a lower key matching rate because the
sensors will be more sensitive to user motion. Thus, there
may be more fluctuations in the sensing data and thus de-
creasing the consistency of the data to be used for shared
key construction (i.e. the bit matching rate drops). If
the key matching rate is too low, then users may have to
repeatedly shake their devices to successfully establish a
symmetric key; thus, affecting users’ quality of experience.

Therefore, we need to strike a balance between data rich-
ness and useability. To choose a suitable sampling rate of
the devices during the shake-to-generation operation, we
evaluated the performance of the key generation rate and
matching rate under three sampling rates, namely: 5Hz,
10Hz and 20Hz, in the experiments.

During real-time key construction, the reconciliation
procedure is not required; hence, sampling rate in such
scenario can be increased. We evaluated the sequence gen-
erated by the sensors running under 10Hz, 20Hz and 40Hz,
respectively. Regardless of the generation rate, we first e-
valuated the security of data obtained from sensors work-
ing different sampling rates using 6 of the statistical tests
as used previously. However, we found that the result-
s from the groups of 20Hz and 40Hz were unsatisfactory
(i.e. cannot pass the randomness test). This was because
when the sampling rate was higher, the sensors could cap-
ture more detailed user motion information. For example,
the periodic features of hand swing could be divided into
successive samples captured by the sensors, which incorpo-
rated the characteristics of the motion into the data. And
because of the high sampling rate, the value differences of
neighboring samples were smaller comparing with using a
lower sampling rate for sensing (e.g. the acceleration of
a smartwatch has an increase of 1 m/s? in one second,
the average value difference of samples generated from de-
vice working under 5Hz is 0.2 (1/5) and this value is 0.025
(1/40) when the sampling rate of device is 40Hz). It al-
so echoed the findings from our experiments which showed
that the generated binary sequence increases with a higher
sampling rate. Thus, these samples suggested the regular-
ity of users’ motion were falsely chosen as noise-dominance
data, and the randomness of the derived keys diminished.
Therefore, we chose 10Hz as the sampling rate during the
real-time key establishment.

Based on the above, the procedure for the utility study
experiments were divided into two steps, as follows:

1. Human participant randomly shook devices together
to initialize a symmetric key on the devices. The shak-
ing movements were dynamic during which the shak-
ing may be slow, intense, or even present a short-term
repeatedness and the human participant could walk
during shaking. Each group (5Hz, 10Hz and 20Hz) in
the experiments had 50s, 25s and 10s of shaking for
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Devices

Figure 10: Demonstration of gestures to hold devices and placement
of sensing devices in different body areas

100 times.

2. Human participant worn the sensing devices and

walked for about 30s in a habitual manner for 100
times. Four typical body areas for placing wearable
devices were studied; namely: chest, waist, wrist and
pocket.
The motion of habitual walking was specifically eval-
uated as it was the most common motion for general
users and it is more likely to provide the weak data, in
terms of the features and regularity of gait, compared
with other types of motion (e.g. running).

Fig. 10 depicts how human participant held the devices
before shaking them together, as well as the placement of
the sensing devices located in different body parts during
the experiments. We used a ZTE U817, two Coolpad 5892
smartphones and a Aomizi smartwatch as the sensing de-
vices.

5.1.2. Findings

The bit matching rate of the key derived from random
shaking and the corresponding generation rate computed
in terms of our experimental results are presented in Ta-
ble 2. The acceleration data during the experiments were
recorded, where the acceleration ranged from 5.10%107% to
4.085041m/s* (5Hz), 1.05  10~* to 4.255811m//s? (10Hz)
and 8.04 x 1075 to 3.584016m/s? (20Hz), respectively.

We can see that while the sensors running under 10Hz
and 20Hz could yield a longer bit sequence per second,
the corresponding key matching rates are not satisfactory.
Thus, the sampling rate of 5Hz is more appropriate due to
the ability to achieve a higher bit agreement rate.

Fig. 11 presents the average generation rate of data from
the on-body devices during the human participant’s reg-
ular walking. The results varied between different body
parts for their different motion patterns. The generation
rates in the Chest group and Waist group were close, since
their motion patterns were relatively similar. Devices worn



Table 2: Generation rates and matching rates of the shake-to-
generate keys under different sampling rates

5Hz

Sampling Rate 10Hz 20Hz

Matching Rate (%)
Generation Rate (bit/sec)

91.00 79.00 61.00
2.027 5374 10.42

6.089

4.405 4089

Generation Rate (bit / sec)
N

Chest

Waist Poeckt Wrist

Figure 11: Generation rates of random binary sequence for real-time
key construction from devices placed in different body areas

on the user’s wrist could yield most noise-dominance data
for key construction among the four groups. The findings
in Fig. 11 also echoed those of Fig. 9 in Section 4.4, where
we studied the distribution of value difference of sensing
data to select a moderate selection threshold (e.g. 44.05%
of the bits were selected as noise-dominance data in the
Chest group as observed from Fig. 11, and this result was
corresponding with the proportion of 44.81% in the Chest
group in Fig. 9).

Apart from the above experiments, we also evaluated the
performance of our scheme under other scenarios (e.g. tak-
ing up or down stairs, running, walking irregularly which
included sudden acceleration or deceleration, etc.). The
findings from these additional evaluations indicated that
the on-body devices were able to generate the stochastic
data for key construction. We also remark that the more
non-habitual the users’ motion are, the more secure the
proposed scheme is as the real-time key is based on the
physical motion whose unpredictability can contribute to
the randomness of the derived key.

5.2. Security Analysis

We now demonstrate the security of our scheme in terms
of the adversary model, and the security properties (i.e.
imitation attacks, passive eavesdrop, active attacks and
knowledge of all the procedures and methods).

Imitation Attacks. The shake-to-generate keys are as-
sumed to be resilient to imitation attacks because the data
derived in the shaken devices are related to a user’s ran-
dom shaking, and the user’s active arbitrary motion are
more capable of withstanding imitation attacks compared
with walking or other habitual motion. The introduction
of the MA filter can also mitigate potential vulnerability
on users’ temporary regular shaking. It, thus, increases
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the difficulty for imitation attacks. We conducted exper-
iments to evaluate the possibility of counterfeiting a key
by imitation. Videos were recorded during the random
shaking. We then attempted to use the same motion pat-
tern to derive the same sequence (key). However, all these
attempts failed despite a few success in learning some tem-
porarily regular motion patterns. These regular samples
were discarded during the reconciliation procedure. In oth-
er words, the imitation attacks over the shake-to-generate
key were not successful.

Our specific noise-dominance data selection can miti-
gate the potential vulnerability of the original data de-
rived from users’ gait. Even in the unlikely event that an
adversary succeeds in reproducing the gait features of user-
s’ walking, the adversary is unable to compromise the key
composed of noise-dominance data, since the compromised
data related to the gait features have already been discard-
ed and the compromised data would not be included in-
to noise-dominance data. The generated noise-dominance
data are user-specific. Specifically, though the data are
noise-dominance, they are generated from specific user’s
motion and thus we can consider the users’ physical mo-
tion as the seed to generate the random number. It, thus,
can ensure the security of the session key, unless the adver-
sary is able to reproduce the same noise-dominance data
(i.e. the identical motion), which would be an unrealistic
assumption.

We also conducted experiments to evaluate the possi-
bility on gait imitation attacks, in the sense whether it
is possible for any parties (including the legitimate users
themselves) to fabricate or “guess” a secret key by imita-
tion. As we assume the possibility of a strong adversary
successfully imitating the gait characteristics, we specifi-
cally let the human participant serve as both a legitimate
user and an adversary trying to fabricate an identical key.
This is because a user is likely to be a strong imitator of
himself / herself. It can be realized that the requirement
for the strength of the evaluated data was stricter com-
pared with using a third party as the adversary.

The Phi coeflicient [45] was employed to measure the
association for the binary sequences extracted from the
noise-dominance data and it can help us to have a bet-
ter perception of the relationship between the successive
bit sequences that came from the same users’ walking. A
strong association between the evaluated data could infer
the possibility on the fabrication of secret key or leakage
of knowledge of the key. The Phi coefficient, represented
by the symbol ¢, can be expressed as:

X

2
¢ =2 (4)
where x? denotes the Pearson’s chi-squared statistic
[46], and n is the total number of observations.
Fig. 12 presents the findings of the data from the ex-
perimental devices placed on the four body areas. Each
group contains results of test over 100 data streams, whose

length were 130, 120, 180 and 97 bits, respectively.
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Figure 12: ¢ value of the Phi coefficient over the noise-dominance
data generated from devices placed on different body areas

Generally, the interpretation of the Phi coefficient is sim-
ilar to that of the Pearson correlation coefficient [45] and
we adopt the rule of thumb for interpreting the size of
correlation coefficient from [47]. If the absolute value of
the coefficient value ¢ is smaller than 0.3, then the as-
sociation between the variables would be interpreted as
negligible. When |¢| ranges from 0.3 to 0.5, there is low
positive (or negative) association between the data. The
association between the bit sequences would be considered
non-negligible if |¢| is larger than 0.5, which may indicate
the weakness of the data for the high association.

It could be observed from Fig. 12 that most of the results
were sampled from -0.2 to 0.2 and all of the them range
between -0.3 and 0.3. Therefore, there are only negligible
association between those sequences generated from the
same user’s regular walking. Based on the above results
that even the sequences generated from the same user were
negligibly associated, we can regard that any other parties
who attempt to imitate the users’ motion are likely to be
frustrated.

In the very unlikely occasion when a user’s gait was
“identically” imitated (i.e. the session key was compro-
mised), such security breach would not affect the next ses-
sion as the compromised key would be revoked.

Passive Favesdropping. When the reconciliation messages
are available to the adversary, the adversary might attemp-
t to parse knowledge of the derived key. The available in-
formation in the eavesdropped message is the position of
filtered bits in both the communicating devices. Howev-
er, these bits have been discarded and are not involved in
the derived key. We also remind the reader that data in
the reconciliation message originated from users’ random
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shaking; thus, such data are unpredictable (due to the ran-
domness of users’ physically arbitrary motion). In other
words, the adversary cannot gain any useful knowledge
from the eavesdropped information.

Active Attacks. The adversary may attempt to perform
active attacks by intercepting communications between le-
gitimate devices. During the reconciliation procedure, the
adversary may attempt to inject false message into the
data exchanged between the two communicating devices.
The qualified bits would be discarded if they were includ-
ed in the adversary’s injected message (thus resulting in a
short-length key). If such data modification is moderate
(i.e. not too much false message to be included in the ex-
change message), the length of the reconciled key should
not be too short, and the key can still be adopted if and
only, if the key is of sufficient length (i.e. over the thresh-
old length). However, immoderate data manipulation by
the adversary may result in a key with too short length,
which is vulnerable to attacks (e.g. brutal attack) and
thus the key in such case should be deemed useless. We
use the check-on on the key length to address the above
situation and thus only the key with sufficient length can
pass the mutual agreement procedure.

The adversary may also perform MITM attacks, whose
premise is that the adversary can successfully pretend as
a legitimate user. Impersonating a legitimate user to com-
municate with any of the communicating devices requires
the adversary to possess (i.e. fabricate) a list from which
the targeted communicating device or its partner device
can derive a secure key (i.e. a key with sufficient length)
according to their own derived sequence. Our solutions
are based on the solutions proposed in [38]: 1) check-on
on key length and 2) HMAC verification. The first solu-
tion can prevent the adversary from “guessing” a list, from
which the legitimate devices can generate a short-length
key (short length is due to the fact that the list is formed
by guessing). If a short-length key is passed, the adversary
can “communicate” with the legitimate parties using the
short-length key (i.e. the MITM attack succeeded). The
second solution can verify both the data authentication
and the identity of the message sender. Since the adver-
sary does not know the sequence of the targeted device or
its partner device, the above two measures ensure that the
adversary is unable to fabricate such a list that can derive
a shared long-length key, and the existence of a third party
will be detected due to the employment of HMAC.

Knowledge of Methodology. While quantization and other
procedures are crucial in constructing random and secure
keys, the security of our scheme relies on the randomness
in the data source for key construction, which come from
users’ physical motion. In other words, having knowl-
edge of these procedures will not weaken the security of
our scheme unless the adversary can produce the identical
sensory data stored in the legitimate devices by imitation,
which would be infeasible as discussed previously.



Randomness of Derived Key. The security of a crypto-
graphic key can be measured by its randomness, which
indicates the strength of the key statistically. We have
discussed how our scheme can withstand the potential at-
tacks and address the vulnerability of the insecure sensing
data. To further evaluate the security of the keys gener-
ated under our scheme, we conducted statistical tests to
validate the randomness of the key.

Specifically, we used the wide-adopted NIST statisti-
cal test suite for the validation of the random numbers
(see [31, 36, 37, 38, 39] for example). There are 16 tests
specified in this test suite and we ran 6 of them, namely:
Frequency (Monobit) test, Frequency test within a block,
Runs test, Serial test, Approximate entropy test and Cu-
mulative sums test. These tests evaluate the randomness
of the data from different aspects and we refer the inter-
ested reader to [44] for a detailed description of these test-
s. The test input followed the recommended input length
specified in [44] and the remaining tests were not selected
as the recommended length were too large (e.g. the Over-
lapping template matching test recommends a minimum
of 10% bits input). We plan to obtain larger data pool in
the future to complete the remaining tests.

The candidate sequence could be perceived as having
passed the test if the p-value, output of the test, is greater
than 0.01. Table 3 gives the percentage pass rate of the
tested data, including the shake-to-generate keys, the se-
lected sequence came from the devices carried in the pock-
et, worn on the wrist, waist and chest respectively.

Our experimental results in Table 3 and the above anal-
ysis could ensure the security of the key generated under
our scheme, which validated the security of the proposed
scheme to be used for key establishment for real-world ap-
plication.

5.8. Performance Analysis

Compared with existing key generation schemes, two
distinct features of our scheme are its lightweight design
and real-time property.

Compared with the work in [31], the data process pro-
cedure in our scheme is much simpler while maintaining
the strong security of the keys. We introduce a Moving
Average filter once only (while [31] employed a combina-
tion of data transformation methods) to smooth the da-
ta derived from users’ random shaking and the real-time
keys are established directly from the original sensing da-
ta without the need for additional processing. Compared
with Mathur’s level-crossing algorithm in [38], our bit-
extraction method is lightweight in terms of reducing stor-
age requirement for the data (in Mathur’s algorithm, all
data should be stored on the devices for statistical analysis
before quantization). The above design have contributed
to the lightweight property of our scheme.

The real-time key construction is based on sensing the
users’ physical motion (e.g. walking). The proposed
scheme is able to generate secure key continuously only
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if the accelerometer can sense the users’ real-time motion.
And thus the real-time key is available for the communi-
cation among the on-body devices.

6. Conclusion

Wearable device is a trend that is unlikely to fade any-
time soon in our increasingly interconnected society, also
evidenced by recent trends in smart cities, smart nation-
s, etc. Existing wearable devices are generally resource-
constraint and designing security solutions for these de-
vices remains an ongoing challenge.

In this study, we proposed a lightweight and real-time
key establishment scheme for wearable devices by leverag-
ing the accelerometer embedded in these devices. We first
introduced a novel shake-to-generation key establishment
method. Unlike the usual approaches to extract features
from the sensing data for key construction, our method can
“create” stochastic features in the sensing data to establish
secure keys by the users’ randomly shaking their devices
together. A lightweight value-difference based quantiza-
tion algorithm was then presented, which allowed us to
quantize the sensing data. The inter-relation of the data
can be studied by investigating the value-difference rela-
tion of neighboring samples. Thus randomness of physical
motion (e.g. users’ random shaking) can be reflected in the
derived bit sequence. The proposed data selection method
can mitigate the potential for exploitation due to regular-
ity and correlation in the sensing data.

Future work includes building a larger data pool. This
would allow us to generate a more robust evaluation
dataset (e.g. complete the remaining NIST tests). And
the alignment of the devices to collect the same amount of
data simultaneously will be further considered as well.

In the future, we also intend to extend the proposed
lightweight and real-time key establishment scheme to oth-
er Internet of Things devices, such as those deployed in
battlefields or military contexts (also known as Internet of
Battlefield Things and Internet of Military Things). For
example, can we leverage characteristics unique to the de-
vices or their movements to generate secure session keys,
which are also mission specific?
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