
06 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A distributed approach to compliance monitoring of business process event streams / Loreti, Daniela;
Chesani, Federico; Ciampolini, Anna; Mello, Paola. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN
0167-739X. - STAMPA. - 82:(2018), pp. 104-118. [10.1016/j.future.2017.12.043]

Published Version:

A distributed approach to compliance monitoring of business process event streams

Published:
DOI: http://doi.org/10.1016/j.future.2017.12.043

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/615712 since: 2018-01-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2017.12.043
https://hdl.handle.net/11585/615712

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Loreti, D., Chesani, F., Ciampolini, A., & Mello, P. (2018). A distributed approach to
compliance monitoring of business process event streams. Future Generation
Computer Systems, 82, 104-118.

The final published version is available online at:
http://dx.doi.org/10.1016/j.future.2017.12.043

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.future.2017.12.043

A Distributed Approach to Compliance Monitoring of

Business Process Event Streams

Daniela Loretia,∗, Federico Chesanib, Anna Ciampolinib, Paola Mellob

aCIRI - Health Sciences & Technologies. Via Tolara di Sopra, 41/E,
Ozzano dell’Emilia (BO), Italy

bDISI - Department of Computer Science and Engineering, University of Bologna.
Viale del Risorgimento 2, Bologna, Italy

Abstract

In recent years, the significant advantages brought to business processes by
process mining account for its evolution as a major concern in both industrial
and academic research. In particular, increasing attention has been turned to
compliance monitoring as a way to identify when a sequence of events deviates
from the expected behaviour. As we are entering the IoT era, an increasing
variety of smart objects can be introduced in business processes (e.g., tags
to track products in a plant, smartphones and badge swiping to draw the
activities of customers and employees in a shopping center, etc.). All these
objects produce large volumes of log data in the form of streams, which need
to be run-time analysed to extract further knowledge about the underlying
business process and to identify unexpected, non-conforming events.

Albeit rather straightforward on a small log file, compliance verification
techniques may show poor performances when dealing with big data and
streams, thus calling for scalable approaches.

This work investigates the possibility of spreading the compliance mon-
itoring task over a network of computing nodes, achieving the desired scal-
ability. The monitor is realised through the existing SCIFF framework for
compliance checking, which provides a high level logic-based language for ex-
pressing the properties to be monitored and nicely supports the partitioning

∗Corresponding author
Email addresses: daniela.loreti@unibo.it (Daniela Loreti),

federico.chesani@unibo.it (Federico Chesani), anna.ciampolini@unibo.it (Anna
Ciampolini), paola.mello@unibo.it (Paola Mello)

Preprint submitted to Future Generation Computing Systems December 28, 2017

of the monitoring task. The distributed computation is achieved through a
MapReduce approach and the adoption of an existing general engine for large
scale stream processing. Experimental results show the feasibility of the ap-
proach as well as the advantages in performance brought to the compliance
monitoring task.

Keywords:
Business Process Management, Distributed Compliance Monitoring, Stream
Processing, MapReduce

1. Introduction

During the last few years, Business Process Management (BPM), a novel
research area focused on the management of process execution quality, has
gained increasing interest in both industry and academia. In particular, a
set of log analysis techniques commonly addressed with the name of pro-
cess mining has made digital event data the new crucial raw material for
business. As stated in the Process Mining manifesto [1], this research area
includes process discovery, conformance checking, predictive analytics, pro-
cess optimisation and many other techniques that start from the observation
of a set of occurred events to extract further crucial information about the
business process evolution.

In particular, detecting when a sequence of events deviates from the ex-
pected behaviour is a crucial activity for business. It can reveal unwanted
deviations (and the consequent need for a better control of the process)
or desirable circumstances not yet foreseen (which require a model refine-
ment/update). In this study, we adopt the nomenclature of the work by Ly
et al. [2], which uses the terms compliance monitoring/online auditing to
address the runtime detection (or prediction) of compliance violations, while
the terms offline/post mortem analysis are employed for a diagnosis that is
conducted after the process execution has concluded.

As BPM typically refers to large interconnected environments, the nature
of the concepts and properties that needs to be monitored is often very com-
plex, demanding a highly expressive notation to represent the behavioural
model. Many approaches for process model definition have been proposed:
some of these involve procedural techniques [3, 4, 5, 6] , while some others
are based on more declarative approaches [7, 8] . Additionally, some hybrid

2

solutions have been proposed [9] that combine procedural and declarative
notations in order to take advantage of both the approaches.

Irrespective of the chosen method, BPM techniques ask for model def-
inition languages with a high level of expressiveness. Unfortunately, it is
often the case that a highly expressive notation increases the complexity of
the overall compliance checking system. Such complexity might become an
issue when dealing with huge event logs or high data rate streams, as it is in
Internet of Things (IoT) application fields. For example, automated identifi-
cation and data collection technologies (like for example RFID and sensors)
together with online stream auditing, allow the companies to better under-
stand what is actually happening in their business processes (e.g., how the
plant is performing, what is the current location of assets and products in
the supply chain, etc.) [10, 11]. As the data rate of the log streams produced
by these devices can vary over time according to several factors, the demand
for runtime compliance analysis further exacerbates the need for high perfor-
mance infrastructures, making scalability a mandatory requirement for any
monitoring approach.

Hence, we can identify two crucial and contrasting features that a com-
pliance monitoring system for business process must provide:

(i) high expressiveness of the notation, to provide a rich set of “building
blocks” to represent the behavioural model;

(ii) good performance and scalability, to support runtime monitoring of the
event streams coming from the business environment.

In order to provide (i), in this work we adopt the Social Constrained
IFF (SCIFF) framework [12], a logic-based proof procedure that has been
previously applied to the monitoring of various systems and environments
[13, 14]. The adoption of this tool brings us a number of advantages. First,
thanks to its highly expressive notation, SCIFF is able to operate with both
procedural and declarative formalisms to express the behavioural model. Sec-
ond, since it was originally conceived for runtime checking of agents behaviour
to interaction protocols, it already provides many features required for run-
time monitoring (for example, it natively support the concept of time, tem-
poral deadlines and constraints referring to data). Third, the monitoring
procedure adopted in SCIFF already enjoys a property of compositionality,
thus paving the way for distributed computing and scalability.

3

Daniela Loreti

Daniela Loreti

Traditional approaches to online auditing envisage the execution of a
compliance monitoring framework on a single node receiving and analysing
all the event logs regarding the business process. The execution of complex
conformance verification tasks on a single computing node my experience
poor performance. For this reason, in order to provide (ii), we consider the
adoption of a distributed infrastructure. As pointed out in [15], business pro-
cess analysis techniques dealing with big data need to resort to distributed
computing, through the adoption of multi-core systems, grid computing or
virtualisation in cloud environments. Nevertheless, the execution of a com-
pliance monitoring task on a distributed network of computers requires to
face additional issue when compared with a single-node execution. First of
all, a method is needed to exactly define how the work – in terms of input
log and business constraints to be checked – must be subdivided between the
nodes. Secondly, a distributed approach needs a mechanism to coordinate
the various parts in which the job has been splitted. The need to bridge
process mining techniques with big data techniques and infrastructures is
clearly highlighted by Van der Aalst and Damiani [16] and further confirmed
by various works in this field [17, 18, 19, 20]. However, the adoption of dis-
tributed computing frameworks in the field of business process compliance
monitoring is still at initial stage and cannot disregard the formal definition
of the algorithms and methods applied.

An infrastructure for compliance monitoring should support large-scale
distributed stream processing at runtime, while providing scalability and
fault tolerance. In this regard, during the last years, MapReduce [21] dis-
tributed programming model has gained significant diffusion in the big data
research community, primarily due to its simplicity and intrinsic scalability.
The latest evolutions of distributed computing frameworks, such as Apache
Storm [22], Apache Flink [23] and Apache Spark [24], give support to stream
processing, thus simplifying the implementation of efficient applications deal-
ing with big data flows. These frameworks allow the developer to implement
different distributed models, included but not limited to, MapReduce, while
providing autonomous fault tolerant mechanisms as well as runtime infras-
tructure scaling capabilities.

In this work (representing an evolution of the preliminary ideas presented
in [25]), we investigate the issue of implementing the monitoring task over
a cluster of computing nodes. In particular, we generalise vertical and hor-
izontal partitioning, two techniques for distributing the monitoring task in-
troduced by Van der Aalst in [15]. We prove that, under certain conditions,

4

the SCIFF framework can suitably support these techniques.
Moreover, we consider the case of online stream auditing, as it repre-

sents the most frequent (and challenging) scenario in IoT applications. In
particular, we discuss how the MapReduce programming model can be em-
ployed to efficiently handle different partitioning techniques at runtime over
a distributed stream processing engine.

In summary, the contributions of the work at hand are:

• a detailed description of the proposed distributed system for compliance
monitoring as well as of its underlying components;

• a theoretical study of the partitioning methodologies that can be ap-
plied in order to subdivide the compliance monitoring task over a set
of computing nodes;

• an in-depth investigation of the most interesting partitioning strate-
gies identified as well as a detailed description of their implementation
through a MapReduce-oriented algorithm;

• an evaluation of the proposed distributed approach through a compar-
ative performance study of the different partitioning methodologies.

The remain of this paper is structured as follows. Section 2 presents a
classification and description of other relevant works in the field of BPM and
event stream monitoring. Section 3 provides a first insight of the proposed
system architecture as well as details of its founding concepts. In Sections 4
and 5 we focus on the implementation of different partitioning methodologies
over a distributed platform for stream processing. Section 6 presents an
evaluation of the system performance and scalability. Conclusion follows.

2. Related work

In this work, we propose a distributed system for business process com-
pliance monitoring. This term comes from the detailed survey of Ly et al.
[2], but other classifications are possible: according to van der Aalst [26],
this work operates on pre-mortem input logs (as they are referred to current
process instances that are ongoing) with a normative de jure model (using
constraints to specify how process instances should behave); while, consider-
ing the definition proposed by Leucker and Schallhart [27], the conducted log
analysis can be addressed with the term runtime verification, because it only

5

deals with the online detection of violations or satisfactions of correctness
properties.

Taking inspiration from [15], in our solution, the logged events coming
from various sources are online partitioned over a network of computing nodes
along two dimensions: the log and the model. The architecture leverages a
previously implemented proof-procedure called SCIFF [12] and starts from a
well known programming model for distributed computation, called MapRe-
duce [21]. From a practical point of view, Apache Spark [24] is employed in
order to give support to large-scale event stream processing.

As this short description underlines, the work at hand collects together
different orthogonal fields. So, without claiming to be complete, we can
compare it with various approaches classified in three categories:

(i) other significant formalisms to define the behavioural model and ap-
proaches tackiling compliance checking;

(ii) alternative approaches dealing with event stream monitoring;

(iii) distributed solutions to the compliance monitoring task.

As regards the adopted formalism for defining when a trace is compliant
(i), number of different approaches are available in literature [28, 29, 30, 31,
32].

In particular, approaches [33, 28, 29] based on Linear Temporal Logic
(LTL) have been investigated as regards the compliance of finite traces. Dif-
ferently from the SCIFF approach, the work of Maggi et al. [28] does not
support the definition of constraints referring to data and resources involved
in the business process. Furthermore, being based on LTL, it supports the
definition of temporal relations between events (to capture their ordering into
compliance roles), but, differently from SCIFF, cannot express quantitative
temporal distances between happening events (e.g., deadlines, delays and la-
tency constraints). Other relations between the SCIFF framework and LTL
for compliance have been examined in depth in [34].

The work of Basin et al. [29] propose a runtime verification frame-
work for security policies, specified through the Metric First-Order Tem-
poral Logic (MFOTL), which is a variant of Linear Temporal First-Order
Logic (LTL-FO) with metric time. The high expressiveness of this logic al-
lows the user to express compliance rules involving advanced temporal con-
straints, data- and resource- related conditions. To the best of our knowledge,

6

this approach still lacks a framework to support the execution of the provided
tool [35] on a distributed stream processing environment.

Other formalisms involve control patterns triggered by events [31] and
Supervisory Control Theory [32]. Differently from SCIFF, both these ap-
proaches cannot model quantitative time constraints. Besides, [32] lacks the
possibility to support the definition of constraints involving data.

The second dimension that should be considered addresses all those works
that treat compliance monitoring though the management of streams of
events (ii). The term stream data management refers to the processing of
data received as a realtime continuous sequence from one or more sources. As
underlined in [2], this research area is relevant for compliance monitoring as
regards the two aspects of collecting and querying the event streams related
to a certain process.

As regards event collection, in the last few years, Complex Event Pro-
cessing (CEP) [36, 37] has been proposed as a way to process a stream of
raw data from different sources and extract meaningful events from it. CEP
can be a support technology in the field of compliance monitoring for all
those systems where large amount of events must be analysed with realtime
requirements. The work of Awad et al. [38] for example, offers a framework
for the definition of compliance requirements in controlled natural language
and take advantage of CEP for the aggregation of significant events.

As regards querying the event stream, some approaches tackle compli-
ance monitoring by analysing the trace of events with special forms of query
expressing the compliance rules [39, 40]. These queries are continuously pro-
cessed on-the-fly involving temporal operators to correlate the events across
time. In particular, Mulo et al. [40] propose a method to build a compliance
monitoring infrastructure for process-driven SOA. Here, the conditions to be
checked over event streams can be filters (which narrow down the number of
analysed activities) and assertions (which specify the expected data values in
the stream). The work propose a prototype for generating queries in Esper
event processing engine [41].

A natural evolution of these CEP querying systems is the deployment
of distributed infrastructures able to partition the stream analysis on a col-
lection of nodes [42, 43, 44]. The encouraging results in this field has pro-
moted the usage of cloud environments and the development of simulators
to forecast the performance of a given infrastructure when a CEP workload
is executed [45].

The third category of approaches related to our work (iii) focuses on

7

distributed execution environments for compliance checking. One of the
most spread practice in this field is the adoption of MapReduce program-
ming model to enable the distribution of a compliance monitoring algorithm
over a network of compute nodes. Indeed, as pointed out in [16], MapRe-
duce looks particularly suitable for the implementation of distributed process
mining techniques. Some well known algorithms in this field have been al-
ready translated into MapReduce implementations. This is the case of the
Inductive Miner [46], Alpha Miner [47, 48] and Flexible Heuristic Miner [49].
Moreover, the problem of event correlation discovery has been studied using
a MapReduce implementation in the work of Reguieg et al. [17]. The pro-
posed two-stages approach shows good performance gain on both real and
synthetic event logs despite the overhead introduced by the shuffle and sort
operations executed by the MapReduce framework.

While all these works deal with process and event correlation discovery,
our contribution focuses on event logs in order to run-time identify devia-
tions from a predefined behavioural model. Nevertheless, the importance of
compliance monitoring in business is ascertained and further underlined by
the plenty of academic and industrial research in this field [2]. Furthermore,
differently form [46, 47, 48, 49, 17], we do not focus on a particular algo-
rithm, but we make an effort toward a general way to execute a compliance
monitoring framework on a MapReduce distributed architecture for stream
processing. In terms of implementation, a simple conformance checking task
can be easily translated into a Map function [16], but the conversion of more
complex checks in terms of map and reduce functions may result challenging:
IBM Business Insight Toolkit (BITKit) [50] was a first attempt to automate
the distribution of compliance checking tasks over a MapReduce architec-
ture (Apache Hadoop [51]). Indeed, this software allows the user to define
her business model in a pseudo-SQL language and make queries that are au-
tomatically translated into programs suitable for the execution of a Hadoop
infrastructure. However, the expressive power of this tool is restricted to
that of a pseudo-SQL language. Thanks to the expressiveness of SCIFF
framework, the range of compliance constraints that can be formulated in
our system is greatly extended.

Another relevant contribution in the field of compliance monitoring over
MapReduce has been brought by the work of Basin et al. [19]. The authors
propose two log partitioning techniques: one based on the trace identifier
(similar to the MapReduce implementation described later in Section 4.2)
and one based on time slices and volume of data.

8

The works of Barre et al. [20] and Bianculli et al. [52] focus on MapRe-
duce distribution of a conformance checking task expressed through temporal
logic. Differently from our solution, they leverage an iterative MapReduce
algorithm.

In [53, 54], the authors provide a centralised solution for the monitoring
of distributed MapReduce application based on a simple set of behavioural
declarative properties. Contrarily, the aim of the work at hand is to exploit
a distributed MapReduce architecture for the monitoring of business process
compliance.

An open issue in the field of business process over MapReduce is the
problem of load balancing. Indeed, as suggested by different surveys [18,
16], the overall performance of MapReduce depends on data balancing and,
ultimately, on the cardinality distribution of the extracted keys. In this work,
we aim to make the distribution of the keys (and load) smoother among the
computing nodes by proposing a methodology to combine different slicing
techniques for the compliance monitoring task.

Finally, it is important to notice that the scalability brought by a MapRe-
duce implementation to a compliance monitoring system can be fully ex-
ploited when a large distributed infrastructure is available, which is not al-
ways the case, even in modern companies. Fortunately, the advent of cloud
computing has brought the possibility to on-demand employ the computing
power of large scale data-centers in a transparent way. The work at hand
could take advantage of a cloud environment, such that the company can dis-
regard complex infrastructure management tasks [55, 56], and dynamically
scale the required computing power, eventually exploiting and combining the
big data analytics services offered by different clouds (as in the work [57]).
The tight relationship between cloud and business process is also highlighted
by the works [58, 59, 60], where a formal approach based on Situation Calcu-
lus is employed to translate service requirements into an Intention Workflow
Model, used to generate autonomic cloud service composition.

3. Overview of the System Architecture and Background

In Section 1, we introduced the expressiveness of the modelling language
and scalability of the overall architecture as two important requirements for
any BPM monitoring architecture. In this work, we adopt the SCIFF frame-
work for covering the former requirement: in previous articles we showed that
SCIFF is expressive enough to represent well-known formalisms, declarative

9

Figure 1: General Architecture of the Monitoring Framework. The platform for big data
analytics is employed to enable the implementation of a MapReduce algorithm (which
realizes the prescriptions of the Log/Model Partitioner component) and its deployment on
a distributed infrastructure. Once the compliance task is correctly subdivided, the system
takes advantage of the MapReduce algorithm to activate multiple instances of the SCIFF
framework.

[7, 13] as well as procedural [61, 14] ones. The latter requirement is covered
through the adoption of a distributed platform for big data analytics and the
application of a parallelisation method.

Fig. 1 illustrates the basic components of our monitoring architecture.
The event streams and the behavioural model are distributed over the net-
work of nodes according to the prescriptions of Log/Model Partitioner: this
component relays on a distributed platform that coordinates the nodes and
employs a MapReduce algorithm to subdivide the data according to the par-
titioning algorithm. The platform is also used to concurrently launch several
SCIFF proof procedures over the computing nodes.

In the following we provide further details of the founding elements of the
proposed monitoring system: the SCIFF proof procedure and its underlying
formalisation (Section 3.1); the MapReduce programming model (Section
3.2); and partitioning approach to compliance monitoring (Section 3.3).

3.1. The SCIFF Monitoring Framework

Compliance monitoring techniques start form the observation of an event
log. Each event reported in the log refers to an activity – i.e., a well-defined

10

step in the business process – and a case – i.e., an instance of the process.
A sequence of events belonging to the same case is called trace. In BPM,
the concept of trace is often used to identify a set of events reporting the
behaviour – i.e., sequence of carried out activities – of one or more business
actors (e.g., users, employees, factory machines, etc.).

The SCIFF constraint abductive logic programming framework [12] is an
extension of Fung and Kowalski’s IFF proof-procedure for abductive logic
programming [62]. In addition to the general notion of abducible, the SCIFF
framework also provides the concepts of happened event, positive/negative
expectation, and compliance of an observed trace of events with a set of
expectations. These notions make SCIFF particularly suitable for dealing
with compliance monitoring of event logs.

In SCIFF formalisation, the events are represented as H atoms, whereas
expectations are modelled by E/EN atoms. The following form

H(Ev, T) (1)

is an atom signifying that an event Ev Happens (i.e., occurs) at time T .
Differently, E(Ev, T) denotes that an event unifying with Ev is Expected to
occur at a time instant T . Finally, EN(Ev, T) suggests that all the events
unifying with Ev are Expected to Never occur at the time instant T . As in
Logic Programming [63], terms starting with a capital letter indicates vari-
ables. In SCIFF, variables can be also subject to constraints. For example,
the following:

EN(a, T) ∧ T ≥ 5 ∧ T ≤ 10. (2)

states that an activity named a is not expected to happen at any time T,
with T in the range [5 . . . 10]. Notice that implicitly, this would mean that
the activity a is not prohibited outside of the specified temporal interval.

Formally, a SCIFF specification is a triple 〈KB,A, IC〉, where KB is
a knowledge base (a Logic Program as for [63]), A is a set of abducible
predicates (predicates that can be hypothesized: among them, also E and
EN predicates), and IC is a set of Integrity Constraints (ICs).

The ICs are considered as reactive rules i.e., when the body of an im-
plication becomes true, then the rule fires and the expectations in the head
are generated with an abductive process. ICs usually have H atoms in the
body, and E/EN atoms in the head. Practically speaking, an IC trigger
when events mentioned in the body occur. Consider the example H(a, T)→

11

EN(b, T ′). This defines a constraint between the happening of actvitities
a and b: if a happens at time T , then b should not occur at any time
T ′. Obviously, other more complex constraints can be specified. For ex-
ample, if we want to express that an event b should occur within 300 time
units after the happening of another event a, this can be formalized with:
H(a, T) → E(b, T ′) ∧ T ′ > T ∧ T ′ ≤ T + 300. Informally, SCIFF supports
a notion of compliance in terms of expectations and happened events: a se-
quence of happened events is compliant with a model if for every expected
event (E) there is indeed a corresponding happened event (H) and, for every
negative expectation EN, there is no matching happened event. Expecta-
tions are generated as the consequence of the triggering of the ICs, that in
turn are activated by the happened events.

To further clarify the SCIFF monitoring framework, we provide two sim-
ple examples of workflow and their translation into SCIFF constraint formal-
ization. The model illustrated in Fig. 2 is in BPMN formalism and states
that “if an event referring to activity a is detected, b should follow” and “if an
event related to activity b is detected, c or d should follow.” As the gateway
between activities b, c and d is an exclusive or, only one of the two events
c or d is expected to be found in the trace. This can be translated into the
statements:

H(a, Ta)→E(b, Tb) ∧ Tb > Ta. (3)

H(b, Tb)→(E(c, Tc) ∧ Tc > Tb) ∨ (E(d, Td) ∧ Td > Tb). (4)

H(c,) ∨H(d,)→⊥. (5)

Constraint (5) ensures that the trace is considered non compliant if both the
two events c and d happens.

A slightly more complex example is shown in Fig. 3 through the formal-
ism described by Kumar et al. [61]. Activity A1 addresses the admission
of a patient at a hospital, while A2 refers to the collection of information
about the patient case. The model prescribes that activity A2 follows A1
(“Anamnesis and exams are conducted after the patient admission”), both
should last between 5 and 10 time units and it should not pass more than 30
time units between the beginning of A1 and the end of A2. As in this case
each activity is actually composed of an event start and an event end, the

12

Figure 2: A simple example of workflow expressed in BPMN formalism. The model states
that, if an activity unifying with a is detected, b should follow. If an activity b is detected,
an activity unifying with c x-or d should follow.

workflow translated into SCIFF constraints results as follows:

H(a1 end, Ta1 end)→E(a2 start, Ta2 start)∧ (6)

∧ Ta2 start > Ta1 end.

H(a1 start, Ta1 start)→E(a1 end, Ta1 end)∧ (7)

∧ Ta1 end ≥ Ta1 start + 5 ∧
∧ Ta1 end ≤ Ta1 start + 10.

H(a2 start, Ta2 start)→E(a2 end, Ta2 end)∧ (8)

∧ Ta2 end ≥ Ta2 start + 5 ∧
∧ Ta2 end ≤ Ta2 start + 10.

H(a1 start, Ta1 start)→E(a2 end, Ta2 end)∧ (9)

∧ Ta2 end ≤ Ta1 start + 30.

Equation (6) 1 imposes the sequence between activities A1 and A2. Equations
(7) and (8) ensures that the starting of an activity is always followed by its
ending. Finally, Equation (9) imposes the temporal constraint between the
start of the patient admission (activity A1) and the end of the anamnesis
(activity A2).

1Notice that, to not confuse activity names with Prolog variables, we substitute upper-
case capital letters to the corresponding lower-case letters. E.g., activity A1 depicted in
Fig. 2 becomes “a1” in Equations (6)–(9).

13

Figure 3: An example of workflow in the formalism of [61]. The model suggests that
activity A2 follows A1, both should last between 5 and 10 time units and it should not
pass more than 30 time units between the beginning of A1 and the end of A2 . Note that,
in this case, each box entails two events: the activity start and activity end.

3.1.1. Temporal Reasoning and Handling of out-of-order events

Out-of-order events are supported by SCIFF by default. Let us suppose
that our model is defined by Eq. (3), and that activities a and b are executed
in the right order (thus the timestamps satisfy the constraint Tb > Ta). Let
us suppose also that b is notified to the SCIFF Proof Procedure first, and a is
notified later. SCIFF establishes the fulfilment/violation of the expectation
generated by Eq. (3) by looking at the timestamps, and ignores when the
events have been notified to the proof procedure.

A first remark is about when violations are detected. Let us consider
again Eq. (3), and let us suppose that a is executed, but the execution of b
is not observed: when would it be possible to say that b did not happen, and
consequently detect a violation2? SCIFF Framework overcomes this issue
by supporting a special event close history, whose meaning is that “no more
events will ever happen”. Upon the observation of such special event, positive
expectations that do not have a matching observed event are recognized as
violated, while negative expectations (i.e., prohibitions) that do not have a
matching observed event are recognized as satisfied.

A second remark is about run-time detection of violations: in several
application domains, waiting for a close history event would not be enough,
and a more responsive (as soon as possible) detection of violations would be
desirable. Let us consider the following IC:

H(a, Ta)→E(b, Tb) ∧ Tb > Ta ∧ Tb ≤ Ta + 10 (10)

2Notice that while we know that Tb > Ta, no upper limit has been stated on Tb: thus,
activity b is expected at any time in the future.

14

whose intended meaning is that upon the execution of an activity a, the
execution of an activity b is expected to happen after, and within 10 time
units from the execution of a. In case a is executed and b is not, a violation
would be expected asap, i.e. at 11 time units from the observation of a.

The SCIFF framework is not equipped with any sort of “internal clock”,
but rather relies on special events named current time. Upon the notification
of a current time event, a constraint is added: all time variables must be
greater than the timestamp of the current time event. In other words, the
notification of a current time event tells the SCIFF Proof Procedure that all
the following events will happen in the future. Let us consider Eq. (10), and
let us suppose that event H(a, 27) is observed: then, an expectation E(b, Tb)
is generated, with 27 < Tb ≤ 37. When the event H(current time, 37) is
notified to the Proof Procedure, a further constraint Tb > 37 is added: Tb

cannot be at the same time less or equal, and greater than 37, and the
expectation is detected as violated.

Summing up, two different behaviours are supported by the SCIFF Frame-
work:

(a) No current time event is provided: SCIFF supports events that
happened in the right order but are notified out-of-order. The dis-
advantage is that violation detection is not performed run-time, but
possibly only at the notification of the close history event.

(b) Current time events are generated by an external applica-
tion: SCIFF detects violations asap, but out-of-order events are not
supported.

A final remark is about the notion of trace, since in the SCIFF events do
not have an explicit placeholder for a trace identifier. However, the user is
free to provide an event description with more structured information such
as, for example, a trace identifier. It would be possible then to both monitor
the compliance of each trace (by partitioning the log events by trace identi-
fier and running a trace-agnostic SCIFF proof procedure for each) or check
constraints among different traces (by wisely partitioning the log into groups
of traces and monitor inter-trace constraints, launching a SCIFF for each
group). To better clarify this point, consider the example of a compliance
monitor that analyses all the loans asked to a bank. A trace represents all
the events related to a single loan request from a client. For the granting
process, it is important to ensure that: (i) the loan process is compliant with

15

a model (e.g., all the documentation provided, the solvency probability is
over a threshold, etc.); (ii) the bank has not already received another loan
request from the same client. Since the SCIFF framework does not require
each event to be associated with its trace identifier, it can check constraints
(i) by considering the events of a single loan request. At the same time,
providing the SCIFF with all the events, each reporting the information of
the related trace, it is also able to check the inter-trace constraint (ii).

3.2. The MapReduce programming model

MapReduce is a well know and widespread programming model for dis-
tributed computation, which allows the programmer to control the complex-
ity of parallelisation.

According to the MapReduce approach, a large input dataset can be
partitioned into an arbitrary number of parts, each exclusively processed by
a different computing task, the mapper. Each mapper produces intermediate
results (in the form of key/value pairs) that are collected and processed
by other tasks, called reducers, in charge of calculating the final results by
merging the values associated to the same key.

The developer is only asked to reformulate her software in terms of these
two functions map and reduce. Indeed, the programs implemented accord-
ing to the MapReduce model can be automatically parallelised and easily
executed on a distributed infrastructure.

Over the last few years, several platforms for MapReduce and big data
analytics in general have been proposed [64]. The aim of these platforms
is to provide the developer with a distributed infrastructure able to auto-
matically spread the tasks across the computing nodes, detect and recover
from failures, supply mechanisms to scale-up/-down the infrastructure (i.e.,
adding/removing nodes) when variations in the computing power are needed
(e.g., to face an increase of the input data rate, or a strict deadline when
analysing large batches of data).

These features offered by the distributed platforms make the employment
of MapReduce programming model the best candidate to satisfy the perfor-
mance and scalability requirement of our the online compliance monitor.

3.3. Partitioning the compliance monitoring task

Given a small log file recording the significant traces happened during
a business process, compliance analysis is straightforward. However, in real

16

business cases, the behavioural model may be composed of hundreds of dif-
ferent activities and the log stream may contain millions of events and traces.
In this cases, process mining tasks executed on a single computing node may
be slow in producing meaningful results; while decomposing the compliance
checking task into smaller problems (that can be distributed on a network of
computers), can significantly improve the performance.

Van der Aalst [15] suggests two basic ways to distribute a conformance
checking task depending on the slicing technique applied to the event log:

• Vertical partitioning. The log is partitioned considering the trace iden-
tifier of each event so that the events are grouped into their correspond-
ing traces. The model instead is not partitioned. Thus, each computing
node receives the complete model and a subset of the whole log (i.e.,
all the events referring to one or more traces).

• Horizontal partitioning. The traces are partitioned such that, some
events of each trace are processed by a node, whereas another part of
the same trace is analysed by another node. In this way, each node
needs to check all the traces but just focusing on the constraints im-
posed by a portion of the whole model.

Finally, in both partitioning cases, the results from each node are collected
together, and the event log is considered compliant w.r.t. the model by ap-
plying a function to the partial results. In our vision, vertical and horizontal
methods can be combined together, such that each node checks a subset of
all the traces (by trace identifier) against a subset of all the constraints that
compose the model. In practice, Van der Aalst’s classification of log slicing
methodologies can be generalised considering two different dimensions for
partitioning: the event log and the business model (see Table 1).

Log partitioning refers to the possibility to cut the event log into groups of
traces (similarly to vertical partitioning), whose compliance with the model
can be checked on different computing nodes. Obviously, different degrees of
partitioning are possible in this case, from one – i.e., the log is not divided
– to the number of traces in the log – i.e., each node is responsible for the
compliance monitoring of one trace: Fine-grain Log partitioning.

On the other dimension, model partitioning prescribe to cut the model
into a number of sub-models. Each sub-model is distributed to a different
computing node, which takes care of verifying if the log is compliant with
that specific sub-model. In this case, the maximum degree of partitioning

17

corresponds to the number of constraints that constitute the model i.e., each
node is responsible for the compliance monitoring of the whole log with one
specific constraint. We address this as Fine-grain Model partitioning3.

As Table 1 suggests, the compliance monitoring task can be either applied
considering only one dimension (plain partitioning strategies are reported
in blue cells) or mixing the two dimensions (red cells in Table 1). The
Finest possible partitioning consists of assigning to each machine the task
of checking the compliance of a specific trace with a single constraint. The
maximum possible degree of parallelism is therefore limited to the product
#traces×#constraints.

A key point for both log and model partitioning is the function that,
given the partial compliance results of each single node, computes the log
compliance w.r.t. the model. Let us consider first the log partitioning. As
an example, such a function might be seen as a logical AND of the partial
compliance results: the log is compliant to the model if all the traces are
compliant to the model. Of course, depending on the specific domain, alter-
natives can be imagined: for example, the log might be deemed as compliant
if at least 95% of the traces are compliant, etc.. Whatever function is chosen,
such approach is possible if we hypothesise that the partitioning of the log
into traces is completely orthogonal and independent from the compliance
task. For example, suppose that the model contains constraints involving dif-
ferent execution traces: the log partitioning using the trace criteria cannot
be applied, due to the presence of such constraints and the need for keeping
the related traces together. In other words, the partitioning function must
exhibit a property, that we will call compositionality of the log partitioning
function.

In the model-oriented approach instead, the partitioning function gener-
ates a number of sub-models. Again, one might wonder how is made the
function that takes partial results (concerning the compliance against each
sub-model), and provides the compliance of the log with the complete model.
An immediate answer would be that a logical AND is applied to the partial
results: a log is compliant to a model if it is compliant to all sub-models. This

3We might notice however that distributing the whole log to each node might not be
significant, nor efficient: intuitively, each node is interested in the portion of log that is
related to the sub-model under verification. For example, it is not efficient to send the
complete trace of events “abc” in Fig. 2 to the node that checks only the constraint “if a
happens, b should follow”. The part “ab” of the trace is sufficient.

18

Log partitioning

M
o
d
e
l

p
a
rt

it
io

n
in

g

par-
titions

1
groups of

traces
traces

1
No parti-
tioning

. . . Plain Log (PL) . . .
Plain

Fine-grain
Log (PFL)

...
.

sub-
models

Plain
Model
(PM)

Coarse-grain
Log

Coarse-grain
Model

(CLCM)

Fine-grain
Log

Coarse-
grain
Model

(FLCM)
...

.

con-
straints

Plain
Fine-grain

Model
(PFM)

. . .

Coarse-grain
Log

Fine-grain
Model (CLFM)

. . .
Finest

partitioning

Table 1: Classification of partitioning methods w.r.t. the Log and Model dimensions.

19

is possible if the partitioning function enjoys a property of compositionality
of the model partitioning function.

Albeit all the classes of partitioning methodologies in Table 1 are possible,
real cases often require to provide information about the compliance (or non-
compliance) of each trace in the log. In these cases the most interesting
approaches are those that apply a fine-grained log partitioning (i.e., the log
is subdivided with trace granularity as in the last column of Table 1). For this
reason, in the remain of this paper we focus on Plain Fine-grain Log (PFL),
Fine-grain Log Coarse-grain Model (FLCM), and Finest partitioning.

4. Plain Fine-grain Log partitioning

The PFL partitioning suggests to cut the input event log by grouping the
events on the base of the trace identifier, and distributing the traces over the
network of computers (i.e., all the events of a trace must be sent to the same
node for further processing). Moreover, the business process model that each
trace should follow is not partitioned, so all the constraints in the model must
be distributed to all the computing nodes.

Fig. 4 specifies the architecture of our distributed monitoring framework
in case of PFL partitioning.

We assume that each event in the log stream is expressed in the form:

tr : H(a, ts) (11)

where, tr is the unique identifier of the trace, a is the identifier of the
activity and ts is the timestamp of the event. In other words, the occurrence
of a record in the form (11) in the event log means that at time ts the system
has observed the execution of an activity a related to trace tr.

As detailed in Fig. 4, the input stream of events in the form (11) is sent
to a Log/Model partitioner component that implements PFL and therefore
cuts the stream by trace identifier. It sends all the events referring to a trace
to the same node in the network of computers.

The compliance of each trace to the business model is checked through
the SCIFF framework running on each node. The SCIFF program takes as
input the portion of event stream to check (one trace) and the behavioural
model. For example, the model in Fig. 4 is represented in SCIFF as the two
ICs (3) and (4). We refer these constraints with c1 and c2 in the following.

20

Figure 4: Example of conformance checking executed on a distributed architecture with
PFL partitioning.

4.1. Partitioning methodology

In the PFL partitioning all the ICs in the model are sent to all the com-
puting nodes executing a SCIFF. The output of the overall system is split
into files distributed over the network, but can be also collected together in
any order at a later time.

As discussed in Section 3.3, we are interested in log partitioning functions
that ensure a property of compositionality with respect to the notion of log
compliance. In this work we make the following assumption: the model will
contain only constraints about activities in the same trace. I.e., there will
not be inter-trace constraints. As a consequence, each single node can assess
the compliance of a trace w.r.t. a model by inspecting the model and that
trace alone. Under this condition, the compositionality property of the PFL

21

partitioning method is straightforward, since it guarantees that each node
will access exactly a model and a trace.

What if, for example, the model would contain inter-trace constraints
(i.e., constraints that involve two or more traces)? Obviously a computing
node, in order to assess the compliance, would need to access all the relevant
information. In such a case, a computing node would need to access all the
traces involved by the model constraints. I.e., PFL would not be applicable
anymore, but we would fall into the case of PL partitioning methodology, as
shown in Table 1.

4.2. MapReduce translation

The implementation of a monitoring system with PFL partitioning as
presented in Fig. 4 on a MapReduce architecture is rather straightforward.
Firstly, the input event stream is processed by a map function that extract
the important information from each logged record and emits a collection of
<key, value> pairs in the form <tr, h(a, ts)> . Later, the intermediate pairs
are sent to the reducers that call the SCIFF program (one compliance check-
ing procedure for each trace). The emitted results are again in the form of a
<key, value> pair where the key is the trace identifier and the value is the
indication of compliance/non-compliance of that trace. The map and reduce
procedures are further clarified though pseudo-code in Algorithm 1. Note
that the reduce function is a state-full operation and the SCIFF proof proce-
dure is not called if a previous reduce operation has already marked that trace
as non-compliant. Indeed, since a trace is compliant iff it is compliant with
all its ICs, if the SCIFF proof procedure has found a trace non-compliant,
there is no need to further check the remaining constraints.

As the Map function of Algorithm 1 considers all the events in the input
stream one by one and emits a <key, value> pair for each, its time complex-
ity as well as the cardinality of its output are O(E), where E is the total
number of events in the input stream. The complexity of the subsequent
Reduce function is instead dependent on the SCIFF proof procedure i.e., on
the complexity of the abduction reasoning process. It has been proven that
the complexity of the main abductive decision problem (i.e., to determine
wether an explanation exists) is located at the second level of the polyno-
mial hierarchy (ΣP

2 -complete) [65]. The reduce phase emits a number of
<key, value> pairs proportional to the total T of traces in the input stream
(O(T)).

22

Algorithm 1 PFL partitioning

Input: inputStream, a continuous stream of events in the form (11)
Output: a list <tr, result>pairs, where tr is the trace id and result is a
boolean value indicating weather tr is compliant with the model M .

1: procedure Map(inputStream)
2: for each event in inputStream do
3: <tr, a, ts> = parseEvent(event)
4: Emit <k, v> = <tr, h(a, ts)>
5: end for
6: end procedure
7:

Require: M = [c1...cn], list of model constraints broadcasted to all nodes
8: procedure Reduce(k = tr, values = [h(a1, ts1)...h(an, tsn)], state = s)
9: if s.get == false then

10: return <tr,false>
11: else
12: result = SCIFF (M, values)
13: s.update(result)
14: Emit <k, v> = <tr, result>
15: end if
16: end procedure

23

Figure 5: Example of conformance checking executed on a distributed architecture with
Finest partitioning.

5. Fine-grain Log Coarse-grain Model and Finest partitioning

The model partitioning focuses on the division of the model into sub-
models, that will be checked then by different machines. As real cases mostly
require a per trace compliance, in the following, we treat model partition-
ing associated with fine-grain log partitioning (last column of Table 1). The
result is FLCM (when the model is divided into sub-models) or Finest parti-
tioning (when model partitioning reaches also single constraint granularity).

As a straightforward optimisation, we partition also each trace, by group-
ing events on the basis of the sub-models: each computing node receives
just the fraction of each trace that contains the activities mentioned in the
assigned sub-model. Fig. 5 highlights an example of Finest partitioning (be-
cause sub-models sm1 and sm2 are both composed of a single constraint),
but the analogous for FLCM is straightforward.

Here, the first step of log slicing is not limited to a trace identifier-based
partitioning (as it was in Fig. 4) but a model subdivision is also taken into
account. Thus, each trace is sliced into sets of events according to the sub-
models they belong to.

24

Note that, this scenario entails the shipping of some events to more than
one node, when the correspondent activity is present in more than one con-
straint. This is typically the case of activities on the border of the sub-model
(e.g., activity b in Fig. 5: all the events referring to b are replicated and
paired with both sm1 and sm2).

As previously discussed, we focus on log partitioning with trace granular-
ity (last column of Table 1) and we deem a log compliant if all the contained
traces are compliant. Hence, without loss of generality, we further restrict
our attention on the compliance of a single trace.

Differently from Fig. 4, the results obtained after the SCIFF phase in
Fig. 5 are finally redirected to a module that performs a logical AND of
the results for each trace. Indeed, like in [15], a trace is compliant to a
model if it is compliant to all sub-models i.e., the compliance w.r.t. the
complete model is defined as the logical AND of the compliance of a trace
w.r.t. each sub-model. Such behaviour can be ensured by choosing a proper
model partitioning function that guarantees the compositionality property
introduced in Section 3.3.

5.1. Partitioning methodology

As discussed in Section 3.3, we are interested in model partitioning func-
tions that enjoy a property of compositionality with respect to the notion of
log compliance and, more in particular, w.r.t. the notion of trace compli-
ance. With this respect, the SCIFF framework enjoys a noteworthy result:
under specific syntactic conditions, any partitioning of the model ensures
the compositionality. To this end, we will briefly recall few Definitions and
Theorems from previous works. First of all, we formally define the notion of
compositionality for a SCIFF specification:

Definition 1 (Compositionality). (Definition 4.4.2 in [66], page 110) A
SCIFF specification 〈KB,A, IC〉 is compositional (modulo compliance) if and
only if for all traces T , ∀IC1 and ∀IC2 s.t. IC = IC1 ∪ IC2:

T is compliant with 〈KB,A, IC1〉
∧T is compliant with 〈KB,A, IC2〉 ⇐⇒ T is compliant with 〈KB,A, IC〉

Notice that this definition of compositionality is quite strong, since it requires
that compliance holds for any possible partition of the ICs set IC.

Then, we define a syntactical property of the ICs:

25

Definition 2 (Unchained Specification). (Definition 4.4.3 in [66], page
111) A SCIFF specification 〈KB,A, IC〉 is unchained iff no IC in IC contains
an abducible in its body.

Finally, we report here the Theorem that ensure the compositionality of
the SCIFF specification4:

Theorem 1. [Compositionality of Unchained Specifications] (Theorem 4.4.1
in [66], page 111) If a SCIFF specification is unchained, then it is also com-
positional.

Theorem 1 ensures that upon given syntactical conditions on the SCIFF
specification, any model partitioning ensures the compositionality property.
This is an important feature of the SCIFF framework, since no matter how
the model will be partitioned, it will be possible to distribute it between dif-
ferent computing nodes. The partitioning functions envisaged by the FLCM
and Finest partitioning methods are simply two possible ways of partition-
ing a model, and thus they are compositional w.r.t. the notion of log/trace
compliance.

The reader might wonder the impact of the syntactic conditions to be met
to ensure unchained specifications. In previous works we discussed how dif-
ferent process modelling languages can be expressed formally in SCIFF: for
example, DecSerFlow was addressed in [67]; in [66] a further declarative lan-
guage for business process, CLIMB, was introduced; in [61, 14] we focused on
procedural languages for workflows. These languages have been all equipped
with SCIFF unchained specifications, thus ensuring the compositionality.

5.2. MapReduce translation

The implementation on a MapReduce architecture of a monitoring system
with mixed log/model partitioning as presented in Fig. 5 is not as simple as
the plain log partitioning is.

The following steps can be identified:

1. as for the plain log partitioning, the input event stream must be pro-
cessed by a map function that extracts the important information and
emits a collection of <key, value> pairs in the form <tr, h(a, ts)>;

4The interested reader can find the proof of the theorem in [66].

26

Algorithm 2 FLCM partitioning

Input: inputStream, a continuous stream of events in the form (11)
Output: a list <tr, finalResult> pairs expressing the compliance of the
trace tr to the model as a whole.

1: procedure Map(inputStream)
2: for each event in inputStream do
3: <tr, a, ts> = parseEvent(event)
4: Emit <k, v> = <tr, h(a, ts)>
5: end for
6: end procedure
7:

Require: SM=[sm1...smn], list of submodels, each is a list of constraints
8: procedure FlatMap(k = tr, v = h(a, ts))
9: submodelList = getSubmodels(a, SM)

10: for each sm in submodelList do
11: Emit <k, v> = <(sm, tr), h(a, ts)>
12: end for
13: end procedure
14:

15: procedure SciffReduce(k = (sm, tr),
values = [h(a1, ts1), ..., h(an, tsn)], state = s)

16: if s.get == false then
17: return <tr,false>
18: else
19: result = SCIFF (sm, values)
20: s.update(result)
21: Emit <k, v> = <tr, (sm, result)>
22: end if
23: end procedure
24:

25: procedure AndReduce(k = tr,
values = [(sm1, result1), ..., (smn, resultn)])

26: for each (sm, result) in values do
27: finalResult = finalResult && result
28: end for
29: Emit <k, v> = <tr, finalResult>
30: end procedure

27

2. the pairs are processed by a flatMap function that adds to each <tr, h(a,
ts)> the list of sub-models sm in which the event a is present. The
output of the flatMap function is a list of <(sm, tr), h(a, ts)> pairs.
This function is also responsible to replicate the events that occur in
different sub-models. For example, looking at Fig. 5, the record tr2 :
h(b, 2) generates two records: <(sm1, tr2), h(b, 2)> and <(sm2, tr2),
h(b, 2)> because the activity b is present in both the sub-models;

3. the reducers receive all the pairs with the same (sm, tr) key and pass
all the h(a, ts) values to a SCIFF proof procedure. The output of
this reduce phase is therefore a pair that expresses the compliance of
a specific trace with a specific sub-model: <tr, (sm, result)>. Analo-
gously to PFL, this operation is performed in a state-full fashion, so
that non-compliant cases are suddenly identified and no further useless
computation is performed;

4. the compliance results are grouped by tr key and the final reducers
perform an AND function of the results associated to each sm. The
output is therefore a <key, value> pair where the key is the trace
identifier and the value is the indication of compliance/non-compliance
of that trace with the model as a whole.

These four steps are further clarified though pseudo-code in Algorithm 2.
As regards the complexity of Algorithm 2, analogously to PFL in Algo-

rithm 1, the map phase has time complexity of order O(E) and emits O(E)
<key, value> pairs. Each subsequent flatMap considers an event and iter-
ates over the sub-models where the activity of that event is present. In the
worst case, when an activity is present in all the sub-models, the flatMap
complexity is O(|SM |) – where SM is the set of the sub-models, each one
is a list of constraints – and the number of emitted <key, value> pairs has
order of O(E|SM |).

Similarly to the Reduce procedure of Algorithm 1, the time complexity of
the SCIFFReduce procedure in Algorithm 2 is dependent on the abductive
task (ΣP

2 -complete) [65]. SCIFFReduce emits O(T |SM |) <key, value> pairs.
Finally the AndReduce iterates over the values in its input causing a time
complexity of order O(|SM |). The number of emitted pairs is O(T).

28

6. Experimental Evaluation

Recalling the two crucial features that a compliance monitoring system
for business process should expose, we can notice that, while the high ex-
pressiveness of SCIFF notation has been already studied in previous works
[13, 14], the scalability of the proposed distributed approach still need to be
investigated.

6.1. Simulation setup

In order to evaluate our distributed compliance monitoring approach we
need to resort to a MapReduce platform. The existing variety of big data
analytics platforms can be classified according to the characteristics of the
treated input: some focus on the analysis of large volumes of data in an of-
fline fashion [51], while some others deal with stream processing [22, 68, 69].
Moreover, some hybrid platforms are able to deal with both runtime and of-
fline analytics [24, 23]. Apache Spark [24] in particular, has gained increasing
attention thanks to the generality of the proposed approach (including but
not limited to the MapReduce paradigm) and the good performance shown
on both batch and stream processing benchmarks [70]. Although our work
mainly focuses on the runtime monitoring of streams of event log, confor-
mance checking techniques in BPM may also involve offline analysis. There-
fore, aiming to provide a general framework, we adopt the Apache Spark
platform.

We evaluate our architecture for distributed compliance monitoring on a
cluster of 80 physical machines (1 Spark master and 79 worker nodes). Each
one is equipped with 4 CPU, 8GB RAM and 400GB disk. The computing
nodes are interconnected with a 100Mbit network.

6.2. Comparison approaches

As we focus on runtime compliance monitoring of event streams, we as-
sume to have an input flow of events with a certain rate. In this scenario it
is important that the system is able to perform the monitoring computation
while keeping up with the input flow. Indeed, if the distributed compliance
monitor is slow w.r.t. the input stream, an increasing delay is introduced in
the computation making the overall processing system unstable. Further-
more, as the Spark platform stores the data waiting to be processed in a
buffer area (on memory or disk), a processing task always slower than the
input rate may also produce a saturation of the buffer.

29

In order to evaluate the scalability of our approach we test the perfor-
mance with an increasing number of physical nodes and we determine for
each case which is the maximum input rate that the monitoring system can
manage without exhibiting an increasing delay in computation.

The evaluation is conducted on three business process scenarios:

• Scenario A. Real-life model and artificial log. The input log for testing
is composed of a collection of synthetic traces previously generated
by the SCIFF itself, exploiting its abduction feature [71]. As a first
step, we generated 600 traces representing the treatment of a femoral
fracture compliant with the real-life business model proposed in Fig.
3 of the work [61]. The generated traces are used to foster an event
stream with configurable rate.

• Scenario B. Artificial model and log. We artificially create a model
composed of 810 subsequent activities, each one with a duration be-
tween 5 and 10 time units. Translating this model into SCIFF’s ICs,
we obtain the following constraints for each couple (Ai, Ai+1) of subse-
quent activities in the model:

H(ai start, Tai start)→E(ai end, Tai end)∧ (12)

∧ Tai end ≥ Tai start + 5 ∧
∧ Tai end ≤ Tai start + 10.

H(ai end, Tai end)→E(ai+1 start, Tai+1 start)∧ (13)

∧ Tai+1 start > Tai end.

As a consequence, the artificial SCIFF model is composed of 1619 ICs.
We use the SCIFF abduction feature to generate 5 very long traces, all
compliant with such model.

• Scenario C. Real-life model and log. We consider the real-life input log
provided in eXtensible Event Stream (XES) format [72] for the Inter-
national Business Process Intelligence Challenge of 2012, an initiative
featured every year since 2011 by the BPI workshop [73]. The event
log [74] is taken from a Dutch Financial Institute and records a series
of application processes for loans and overdrafts. It contains 262,200
events referring to 36 different activities and belonging to 13,087 traces.
The model is composed of 30 ICs written in SCIFF formalism on the

30

basis of the 15 requirements expressed in natural language in the work
by Ly et al. (requirements from R17 to R31 in [2]).

6.3. Results

As regards Scenario A, Fig. 6 shows the performance of the distributed
infrastructure when checking the compliance of fracture treatment traces
employing PFL, FLCM and Finest partitioning. As prescribed by the model
in [61], the system must check 28 ICs for each of the 600 traces. As they
are all artificially generated from the same model, they are all compliant.
Therefore, the system cannot take advantage of the state-full reducers in
Algorithms 1 and 2 but must check each trace till the end before being able
to say that it is compliant. So, this always-compliant input stream allow us
to evaluate the performance of our system in the worst-case scenario from
the computational point of view.

FLCM is implemented by subdividing the model into 4 sub-models, while
Finest partitioning prescribes 28 sub-models (each one responsible for a sin-
gle constraint). Both PFL and FLCM methodologies exhibit good scalability
feature, because the maximum input stream rate managed by the architec-
ture is approximatively proportional to the number of infrastructure nodes.
Finest partitioning as well shows a proportionality of the maximum input
rate w.r.t. the number of nodes employed in computation, but the perfor-
mance is significantly lower when compared to PFL and FLCM.

Considering PFL, the compliance checking system on a single node is
able to keep up with an input stream rate of 500 Byte/s, approximately
correspondent to 1,4 fracture treatment traces arriving each second. When
executed on 79 workers the maximum stream rate is around 30000 Byte/s,
which is approximately 83 traces per second.

In this scenario, there is an evident difference in performance between
the partitioning methodologies: PFL always outperforms FLCM and Finest.
This can be explained considering that the traces in this example have a
limited length, such that a single node can process more than one complete
trace per second. In this case, there is no need to subdivide the compliance
task into sub-models. On the contrary, the model partitioning introduces
an unnecessary overhead of communication because the input events on the
border of the sub-models need to be replicated. The model subdivision in
fact, shows its advantages only on particular domains. For example, if the
number or traces to be considered is limited but there is a high number of

31

Figure 6: Performance of the PFL and FLCM and Finest partitioning on artificial traces
representing the workflow of fracture treatment as presented in Fig. 3 of [61]

constraints that have to be checked for each trace. In that case, adding model
partitioning to the PFL should improve the performance.

To verify this hypothesis, we repeat the experiment on Scenario B, where
the log is composed by 5 very long artificially generated traces, each one
to be checked for compliance against a model composed by 1619 ICs. The
performance of the system is reported in Fig. 7. In this case, PFL will launch
only 5 SCIFF proof procedures, each receiving all the events of the assigned
trace. On the same input, we repeat the experiments with both FLCM and
Finest partitioning. FLCM is implemented dividing the model into 15 sub-
models, while Finest prescribes to launch a SCIFF proof procedure for each
couple (trace,constraint) i.e., each SCIFF will check one single constraint of
the model on one single trace.

As expected, the scalability of the system is limited with PFL partitioning
(the maximum input rate manageable by the system cannot overcome 4000
Byte/s, even when employing all the 79 workers), while FLCM increases
its performance proportionally with the number of employed nodes. Finest
partitioning instead shows the worst performance because the compliance
monitoring task results divided into too many pieces, generating an overhead
of communication due to the replicated events.

Finally, we focus on Scenario C. The real-life log is analysed employing
all the nine partitioning methodologies highlighted in Table 1. Fig. 8 shows

32

Figure 7: Performance of the PFL, FLCM and Finest partitioning on a flow of 5 artificial
traces representing a synthetic model composed of 810 subsequent activities

three different graphs reporting the performance of the system when: • no
model partitioning is applied (Fig. 8a), • the model is cut into six sub-models
(Fig. 8b), each one responsible for five ICs, • the model is sliced into single
ICs generating 30 sub-models (Fig. 8c).

In all these three cases, we compare the performance of the system when:
• the log is sliced by trace identifier (orange solid lines in Fig. 8), • the log
is partitioned into groups of three traces each (red dashed lines), • no log
partitioning is applied (green dot-dashed lines).

In all the graphs, the best performance is reached when the log is sliced
into groups of traces. If the compliance checking is conducted by trace iden-
tifier, we observe a decrease in the maximum input rate that the monitor can
keep up with, while the worst case occurs when no log partitioning is applied.
So, contrary to what is expected, in this example, the best performance are
not reached when the log is partitioned at its finest grane (i.e., by trace id),
but when it is sliced into groups of traces.

This behaviour could be explained taking into account that the system
must face a constant time overhead when launching a SCIFF proof procedure.
In the case of the red dashed lines of Fig. 8, each trace is examined by
a dedicated SCIFF, while for orange solid lines, the number of launched
proof procedures decreases (as well as the time overhead they cause) because
we call a SCIFF every three traces. Obviously, this kind of performance

33

(a)

(b)

(c)

Figure 8: Performance comparison of all the partitioning methodologies highlighted in
Table 1 applied to the analysis of a real-life event log stream as described in Scenario C.

34

enhancement is not always possible. For example, if the business process
monitoring task requires to provide an information about the compliance of
each trace, partitioning the log into groups of traces – as in PL, CLCM and
CLFM of Fig. 8 – is not a good solution because the compliance results
would not have the desired single-trace grane.

Nevertheless, Fig. 8 shows that an extreme increase in the number of
traces processed by each SCIFF (as for series No Part., PM and PFM, where
each SCIFF receives all the traces in the input log) does not correspond to a
further increase in performance. Indeed, if no log partitioning is applied, the
maximum sustainable input rate does not augment with the number of nodes
employed in computation, but the scalability of the system results limited
to the number of model partitions. This behaviour could be caused by the
excessive number of compliance monitoring operations requested to a limited
number of SCIFF proof procedures.

In general, this experimental evaluation highlights that the performance
of a compliance monitoring system can be significantly enhanced through
the introduction of a mechanism to conveniently partition and distribute
the monitoring task over a network of computing nodes. For example, in
case of CLCM in Fig. 8b, the maximum input rate with one node is 1600
Byte/s, while on 79 nodes the system can keep up with a 47000 Byte/s
input stream. Although deciding which is the optimal number of log/model
partitions that brings the best performance might not be straightforward (it
requires a dedicated analysis, which is left for future work), it is interesting
to notice that – excluding the cases where partitioning results limited (e.g.,
PM) or absent (e.g., No Partitioning) – the performance of the proposed
solution increases with the number of employed computing nodes, showing a
remarkable scalability.

7. Conclusion

In this contribution, we present an approach to enhance the performance
of a business process compliance monitoring tool through the adoption of
a distributed architecture. In particular, we focus on the execution of the
SCIFF framework over a MapReduce environment.

Firstly, we propose a methodology for the repartition of the compliance
checking task that is based on two partitioning dimensions: the event log
and the business model. We highlight different possibilities to combine these
two dimensions and we propose a classification.

35

Secondly, we focus on the most common case in real business process, that
require to provide an information about the compliance of each trace and we
describe our MapReduce implementations together with a formal definition
of the properties that the partitioning function should exhibit.

The tests conducted on a Spark datacenter of 80 computing nodes show
promising results in terms of scalability for the proposed approach, albeit
in case of model partitioning, the communication overhead inevitably intro-
duced by data subdivision negatively influences the results.

In general, further investigation is needed to highlight the connections
between the log/model partitioning methodologies and the efficiency of the
distributed system, i.e., to determine the best number of sub-models and
constraints in each; and – if trace grouping is possible – decide the best car-
dinality of each set of traces. For this reason, we are currently focusing on
the definition of a reliable log/model partitioning method, that takes into
account several factors (including the number of possible paths in the model,
computational cost of each constraint, and specificities of the workflow, etc.)
and determines the optimal number of log/model partitions that should be
employed on a certain distributed infrastructure to obtain the best perfor-
mance.

Another interesting extension of the work is the implementation of the
proposed approach over a platform for big data analytics alternative to Spark.
In recent time indeed, among all the existing distributed platforms, Apache
Flink [23] has gained increasing interest in the research community, thanks to
promising preliminary performance tests and a more coherent management
of data in case of stream processing. The implementation of Log/Model
Partitioner over a Flink architecture is therefore matter of forthcoming work.

8. Acknowledgements

We thank Alessio Ferretti and Luca Ghedini (Computer Center of School
of Engineering and Architecture, University of Bologna) for the precious
assistance in the setup of the evaluation environment.

9. References

[1] W. Van Der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, Pro-
cess mining manifesto, in: Business Process Management Workshops,
Springer Berlin Heidelberg, 2012.

36

[2] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, W. M. P.
van der Aalst, Compliance monitoring in business processes: Func-
tionalities, application, and tool-support, Inf. Syst. 54 (2015) 209–234.
doi:10.1016/j.is.2015.02.007.
URL http://dx.doi.org/10.1016/j.is.2015.02.007

[3] A. H. M. ter Hofstede, W. M. P. van der Aalst, M. Adams, N. Russell
(Eds.), Modern Business Process Automation - YAWL and its Support
Environment, Springer, 2010.
URL http://www.yawlbook.com/home/

[4] W. M. P. van der Aalst, Verification of workflow nets, in: P. Azéma,
G. Balbo (Eds.), Application and Theory of Petri Nets 1997, 18th Inter-
national Conference, ICATPN ’97, Toulouse, France, June 23-27, 1997,
Proceedings, Vol. 1248 of Lecture Notes in Computer Science, Springer,
1997, pp. 407–426. doi:10.1007/3-540-63139-9 48.
URL http://dx.doi.org/10.1007/3-540-63139-9_48

[5] W. M. P. van der Aalst, The application of petri nets to workflow man-
agement, Journal of Circuits, Systems, and Computers 8 (1) (1998) 21–
66. doi:10.1142/S0218126698000043.
URL http://dx.doi.org/10.1142/S0218126698000043

[6] BPEL: Business Process Execution Language, https://www.

oasis-open.org/committees/tc_home.php\?wg_abbrev=wsbpel

(accessed 06.08.2017).

[7] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, Declarative workflow,
in: ter Hofstede et al. [3], pp. 175–201. doi:10.1007/978-3-642-03121-2 6.
URL http://dx.doi.org/10.1007/978-3-642-03121-2_6

[8] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative work-
flows: Balancing between flexibility and support, Computer Science -
R&D 23 (2) (2009) 99–113. doi:10.1007/s00450-009-0057-9.
URL http://dx.doi.org/10.1007/s00450-009-0057-9

[9] BPMN: Business Process Model and Notation, http://www.bpmn.org/
(accessed 06.08.2017).

[10] S. Haller, S. Karnouskos, C. Schroth, The internet of things in an en-
terprise context, in: J. Domingue, D. Fensel, P. Traverso (Eds.), Future

37

Internet - FIS 2008, First Future Internet Symposium, FIS 2008, Vi-
enna, Austria, September 29-30, 2008, Revised Selected Papers, Vol.
5468 of Lecture Notes in Computer Science, Springer, 2008, pp. 14–28.
doi:10.1007/978-3-642-00985-3 2.
URL http://dx.doi.org/10.1007/978-3-642-00985-3_2

[11] S. Meyer, A. Ruppen, C. Magerkurth, Internet of things-aware pro-
cess modeling: Integrating iot devices as business process resources,
in: C. Salinesi, M. C. Norrie, O. Pastor (Eds.), Advanced Information
Systems Engineering - 25th International Conference, CAiSE 2013, Va-
lencia, Spain, June 17-21, 2013. Proceedings, Vol. 7908 of Lecture Notes
in Computer Science, Springer, 2013, pp. 84–98. doi:10.1007/978-3-642-
38709-8 6.
URL http://dx.doi.org/10.1007/978-3-642-38709-8_6

[12] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,
P. Torroni, Verifiable agent interaction in abductive logic program-
ming: The SCIFF framework, ACM Trans. Comput. Log. 9 (4).
doi:10.1145/1380572.1380578.
URL http://doi.acm.org/10.1145/1380572.1380578

[13] F. Chesani, P. Mello, M. Montali, S. Storari, P. Torroni, On the integra-
tion of declarative choreographies and commitment-based agent societies
into the SCIFF logic programming framework, Multiagent and Grid Sys-
tems 6 (2) (2010) 165–190. doi:10.3233/MGS-2010-0147.
URL http://dx.doi.org/10.3233/MGS-2010-0147

[14] F. Chesani, R. De Masellis, C. D. Francescomarino, C. Ghidini, P. Mello,
M. Montali, S. Tessaris, Abducing compliance of incomplete event logs,
in: AI*IA 2016: Advances in Artificial Intelligence, 2016, pp. 208–222.
doi:10.1007/978-3-319-49130-1 16.
URL http://dx.doi.org/10.1007/978-3-319-49130-1_16

[15] W. M. P. van der Aalst, Distributed process discovery and conformance
checking, in: de Lara and Zisman [75], pp. 1–25. doi:10.1007/978-3-642-
28872-2 1.
URL http://dx.doi.org/10.1007/978-3-642-28872-2_1

[16] W. M. P. van der Aalst, E. Damiani, Processes meet big data: Connect-
ing data science with process science, IEEE Trans. Services Computing

38

8 (6) (2015) 810–819. doi:10.1109/TSC.2015.2493732.
URL http://dx.doi.org/10.1109/TSC.2015.2493732

[17] H. Reguieg, F. Toumani, H. R. M. Nezhad, B. Benatallah, Using mapre-
duce to scale events correlation discovery for business processes mining,
in: A. P. Barros, A. Gal, E. Kindler (Eds.), Business Process Man-
agement - 10th International Conference, BPM 2012, Tallinn, Esto-
nia, September 3-6, 2012. Proceedings, Vol. 7481 of Lecture Notes in
Computer Science, Springer, 2012, pp. 279–284. doi:10.1007/978-3-642-
32885-5 22.
URL http://dx.doi.org/10.1007/978-3-642-32885-5_22

[18] A. Azzini, E. Damiani, Process mining in big data scenario, in: P. Cer-
avolo, S. Rinderle-Ma (Eds.), Proceedings of the 5th International Sym-
posium on Data-driven Process Discovery and Analysis (SIMPDA 2015),
Vienna, Austria, December 9-11, 2015., Vol. 1527 of CEUR Workshop
Proceedings, CEUR-WS.org, 2015, pp. 149–153.
URL http://ceur-ws.org/Vol-1527/paper14.pdf

[19] D. A. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, H. Mantel,
Scalable offline monitoring of temporal specifications, Formal Methods
in System Design 49 (1-2) (2016) 75–108. doi:10.1007/s10703-016-0242-
y.
URL http://dx.doi.org/10.1007/s10703-016-0242-y

[20] B. Barre, M. Klein, M. Soucy-Boivin, P. Ollivier, S. Hallé, Mapreduce
for parallel trace validation of LTL properties, in: S. Qadeer, S. Tasiran
(Eds.), Runtime Verification, Third International Conference, RV 2012,
Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, Vol.
7687 of Lecture Notes in Computer Science, Springer, 2012, pp. 184–
198. doi:10.1007/978-3-642-35632-2 20.
URL http://dx.doi.org/10.1007/978-3-642-35632-2_20

[21] J. Dean, S. Ghemawat, Mapreduce: Simplified data process-
ing on large clusters, Commun. ACM 51 (1) (2008) 107–113.
doi:10.1145/1327452.1327492.
URL http://doi.acm.org/10.1145/1327452.1327492

[22] Apache Storm, http://storm.apache.org (accessed 06.08.2017).

39

[23] Apache Flink, https://flink.apache.org (accessed 06.08.2017).

[24] Apache Spark, http://spark.apache.org (accessed 06.08.2017).

[25] D. Loreti, F. Chesani, A. Ciampolini, P. Mello, Distributed compliance
monitoring of business processes over mapreduce architectures, in: Pro-
ceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering Companion, ICPE ’17 Companion, ACM, New
York, NY, USA, 2017, pp. 79–84. doi:10.1145/3053600.3053616.
URL http://doi.acm.org/10.1145/3053600.3053616

[26] W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011. doi:10.1007/978-3-
642-19345-3.
URL http://dx.doi.org/10.1007/978-3-642-19345-3

[27] M. Leucker, C. Schallhart, A brief account of runtime ver-
ification, J. Log. Algebr. Program. 78 (5) (2009) 293–303.
doi:10.1016/j.jlap.2008.08.004.
URL http://dx.doi.org/10.1016/j.jlap.2008.08.004

[28] F. M. Maggi, M. Westergaard, M. Montali, W. M. P. van der Aalst,
Runtime verification of ltl-based declarative process models, in: Khur-
shid and Sen [76], pp. 131–146. doi:10.1007/978-3-642-29860-8 11.
URL http://dx.doi.org/10.1007/978-3-642-29860-8_11

[29] D. A. Basin, F. Klaedtke, S. Müller, B. Pfitzmann, Runtime mon-
itoring of metric first-order temporal properties, in: R. Hariharan,
M. Mukund, V. Vinay (Eds.), IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science,
FSTTCS 2008, December 9-11, 2008, Bangalore, India, Vol. 2 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008, pp. 49–60.
doi:10.4230/LIPIcs.FSTTCS.2008.1740.
URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1740

[30] M. Montali, F. M. Maggi, F. Chesani, P. Mello, W. M. P. van der Aalst,
Monitoring business constraints with the event calculus, ACM TIST
5 (1) (2013) 17. doi:10.1145/2542182.2542199.
URL http://doi.acm.org/10.1145/2542182.2542199

40

[31] K. Namiri, N. Stojanovic, Pattern-based design and validation of busi-
ness process compliance, in: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS, OTM Confederated International Conferences CoopIS, DOA,
ODBASE, GADA, and IS 2007, Vilamoura, Portugal, November 25-30,
2007, Proceedings, Part I, Vol. 4803 of Lecture Notes in Computer Sci-
ence, Springer, 2007, pp. 59–76. doi:10.1007/978-3-540-76848-7 6.
URL http://dx.doi.org/10.1007/978-3-540-76848-7_6

[32] E. A. P. Santos, R. Francisco, A. D. Vieira, E. D. F. R. Loures, M. A. B.
de Paula, Modeling business rules for supervisory control of process-
aware information systems, in: F. Daniel, K. Barkaoui, S. Dustdar
(Eds.), Business Process Management Workshops - BPM 2011 Inter-
national Workshops, Clermont-Ferrand, France, August 29, 2011, Re-
vised Selected Papers, Part II, Vol. 100 of Lecture Notes in Business
Information Processing, Springer, 2011, pp. 447–458. doi:10.1007/978-
3-642-28115-0 42.
URL http://dx.doi.org/10.1007/978-3-642-28115-0_42

[33] F. M. Maggi, M. Montali, W. M. P. van der Aalst, An operational deci-
sion support framework for monitoring business constraints, in: de Lara
and Zisman [75], pp. 146–162. doi:10.1007/978-3-642-28872-2 11.
URL http://dx.doi.org/10.1007/978-3-642-28872-2_11

[34] M. Montali, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, Evaluating
compliance: from LTL to abductive logic programming, in: D. Ancona,
M. Maratea, V. Mascardi (Eds.), Proceedings of the 30th Italian Confer-
ence on Computational Logic, Genova, Italy, July 1-3, 2015., Vol. 1459
of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 101–116.
URL http://ceur-ws.org/Vol-1459/paper8.pdf

[35] D. A. Basin, M. Harvan, F. Klaedtke, E. Zalinescu, MONPOLY: mon-
itoring usage-control policies, in: Khurshid and Sen [76], pp. 360–364.
doi:10.1007/978-3-642-29860-8 27.
URL http://dx.doi.org/10.1007/978-3-642-29860-8_27

[36] A. Artikis, A. Skarlatidis, F. Portet, G. Paliouras, Logic-based
event recognition, Knowledge Eng. Review 27 (4) (2012) 469–506.
doi:10.1017/S0269888912000264.
URL http://dx.doi.org/10.1017/S0269888912000264

41

[37] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[38] S. Dreyer, D. Olivotti, B. Lebek, M. H. Breitner, Towards a smart
services enabling information architecture for installed base manage-
ment in manufacturing, in: J. M. Leimeister, W. Brenner (Eds.), To-
wards Thought Leadership in Digital Transformation: 13. Internationale
Tagung Wirtschaftsinformatik, WI 2017, St.Gallen, Switzerland, Febru-
ary 12-15, 2017., 2017.
URL http://aisel.aisnet.org/wi2017/track01/paper/3

[39] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona,
P. Wang, P. Zabback, A. Kirilov, A. Ananthanarayan, M. Lu, A. Raiz-
man, R. Krishnan, R. Schindlauer, T. Grabs, S. Bjeletich, B. Chan-
dramouli, J. Goldstein, S. Bhat, Y. Li, V. D. Nicola, X. Wang, D. Maier,
I. Santos, O. Nano, S. Grell, Microsoft CEP server and online behavioral
targeting, PVLDB 2 (2) (2009) 1558–1561.
URL http://www.vldb.org/pvldb/2/vldb09-1019.pdf

[40] E. Mulo, U. Zdun, S. Dustdar, Domain-specific language for event-based
compliance monitoring in process-driven soas, Service Oriented Comput-
ing and Applications 7 (1) (2013) 59–73. doi:10.1007/s11761-012-0121-3.
URL http://dx.doi.org/10.1007/s11761-012-0121-3

[41] EsperThech Esper: Event Processing for Java, http://www.espertech.
com/products/esper.php (accessed 06.08.2017).

[42] V. Gulisano, R. Jiménez-Peris, M. Patiño-Mart́ınez, C. Soriente, P. Val-
duriez, Streamcloud: An elastic and scalable data streaming sys-
tem, IEEE Trans. Parallel Distrib. Syst. 23 (12) (2012) 2351–2365.
doi:10.1109/TPDS.2012.24.
URL http://dx.doi.org/10.1109/TPDS.2012.24

[43] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J. Pineau, M. Pasin,
E. Rivière, S. Weigert, Streamhub: a massively parallel architecture for
high-performance content-based publish/subscribe, in: S. Chakravarthy,
S. D. Urban, P. R. Pietzuch, E. A. Rundensteiner (Eds.), The 7th ACM
International Conference on Distributed Event-Based Systems, DEBS
’13, Arlington, TX, USA - June 29 - July 03, 2013, ACM, 2013, pp.

42

63–74. doi:10.1145/2488222.2488260.
URL http://doi.acm.org/10.1145/2488222.2488260

[44] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
Z. Zhang, Timestream: reliable stream computation in the cloud, in:
Z. Hanzálek, H. Härtig, M. Castro, M. F. Kaashoek (Eds.), Eighth Eu-
rosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-
17, 2013, ACM, 2013, pp. 1–14. doi:10.1145/2465351.2465353.
URL http://doi.acm.org/10.1145/2465351.2465353

[45] W. A. Higashino, CEPSim: A Simulator for Cloud-
Based Complex Event Processing.; BigData Congress, 2015.
doi:10.1109/BigDataCongress.2015.34.

[46] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining:
Discovering process models from event logs, IEEE Trans. Knowl. Data
Eng. 16 (9) (2004) 1128–1142. doi:10.1109/TKDE.2004.47.
URL http://dx.doi.org/10.1109/TKDE.2004.47

[47] J. Evermann, G. Assadipour, Big data meets process mining: imple-
menting the alpha algorithm with map-reduce, in: Y. Cho, S. Y. Shin,
S. Kim, C. Hung, J. Hong (Eds.), Symposium on Applied Computing,
SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, ACM,
2014, pp. 1414–1416. doi:10.1145/2554850.2555076.
URL http://doi.acm.org/10.1145/2554850.2555076

[48] J. Evermann, Scalable process discovery using map-reduce,
IEEE Trans. Services Computing 9 (3) (2016) 469–481.
doi:10.1109/TSC.2014.2367525.
URL http://dx.doi.org/10.1109/TSC.2014.2367525

[49] S. Hernández, S. J. van Zelst, J. Ezpeleta, W. M. P. van der Aalst, Han-
dling big(ger) logs: Connecting prom 6 to apache hadoop, in: F. Daniel,
S. Zugal (Eds.), Proceedings of the BPM Demo Session 2015 Co-located
with the 13th International Conference on Business Process Manage-
ment (BPM 2015), Innsbruck, Austria, September 2, 2015., Vol. 1418 of
CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 80–84.
URL http://ceur-ws.org/Vol-1418/paper17.pdf

43

[50] H. Ossher, R. K. E. Bellamy, D. Amid, A. Anaby-Tavor, M. Callery,
M. Desmond, J. de Vries, A. Fisher, T. Frauenhofer, S. Krasikov,
I. Simmonds, C. Swart, Business insight toolkit: Flexible pre-
requirements modeling, in: 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Companion Volume, IEEE, 2009, pp. 423–424. doi:10.1109/ICSE-
COMPANION.2009.5071043.
URL http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071043

[51] Apache Hadoop, https://hadoop.apache.org/ (accessed 06.08.2017).

[52] D. Bianculli, C. Ghezzi, S. Krstic, Trace checking of metric tempo-
ral logic with aggregating modalities using mapreduce, in: D. Gian-
nakopoulou, G. Salaün (Eds.), Software Engineering and Formal Meth-
ods - 12th International Conference, SEFM 2014, Grenoble, France,
September 1-5, 2014. Proceedings, Vol. 8702 of Lecture Notes in Com-
puter Science, Springer, 2014, pp. 144–158. doi:10.1007/978-3-319-
10431-7 11.
URL http://dx.doi.org/10.1007/978-3-319-10431-7_11

[53] F. Chesani, A. Ciampolini, D. Loreti, P. Mello, Process mining mon-
itoring for map reduce applications in the cloud, in: J. S. Cardoso,
D. Ferguson, V. M. Muñoz, M. Helfert (Eds.), CLOSER 2016 - Pro-
ceedings of the 6th International Conference on Cloud Computing and
Services Science, Volume 1, Rome, Italy, April 23-25, 2016., SciTePress,
2016, pp. 95–105. doi:10.5220/0005864000950105.
URL http://dx.doi.org/10.5220/0005864000950105

[54] F. Chesani, A. Ciampolini, D. Loreti, P. Mello, Map Reduce Autoscaling
over the Cloud with Process Mining Monitoring, Springer International
Publishing, Cham, 2017, pp. 109–130. doi:10.1007/978-3-319-62594-2 6.
URL https://doi.org/10.1007/978-3-319-62594-2_6

[55] M. C. S. Filho, C. C. Monteiro, P. R. M. Inácio, M. M. Freire, Ap-
proaches for optimizing virtual machine placement and migration in
cloud environments: A survey, J. Parallel Distrib. Comput. 111 (2018)
222–250. doi:10.1016/j.jpdc.2017.08.010.
URL https://doi.org/10.1016/j.jpdc.2017.08.010

44

[56] D. Loreti, A. Ciampolini, A distributed self-balancing policy for vir-
tual machine management in cloud datacenters, in: International Con-
ference on High Performance Computing & Simulation, HPCS
2014, Bologna, Italy, 21-25 July, 2014, IEEE, 2014, pp. 391–398.
doi:10.1109/HPCSim.2014.6903712.
URL https://doi.org/10.1109/HPCSim.2014.6903712

[57] D. Loreti, A. Ciampolini, Mapreduce over the hybrid cloud: A novel
infrastructure management policy, in: I. Raicu, O. F. Rana, R. Buyya
(Eds.), 8th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC 2015, Limassol, Cyprus, December 7-10, 2015, IEEE
Computer Society, 2015, pp. 174–178. doi:10.1109/UCC.2015.33.
URL http://doi.ieeecomputersociety.org/10.1109/UCC.2015.33

[58] T. Baker, O. F. Rana, R. Calinescu, R. Tolosana-Calasanz, J. Á.
Bañares, Towards Autonomic Cloud Services Engineering via Intention
Workflow Model, Springer International Publishing, Cham, 2013, pp.
212–227. doi:10.1007/978-3-319-02414-1 16.
URL https://doi.org/10.1007/978-3-319-02414-1_16

[59] T. Baker, M. Mackay, M. Randles, A. Taleb-Bendiab, Intention-oriented
programming support for runtime adaptive autonomic cloud-based
applications, Computers & Electrical Engineering 39 (7) (2013) 2400 –
2412. doi:https://doi.org/10.1016/j.compeleceng.2013.04.019.
URL http://www.sciencedirect.com/science/article/pii/

S0045790613001158

[60] Y. Karam, T. Baker, A. Taleb-Bendiab, Security support for inten-
tion driven elastic cloud computing, in: Sixth UKSim/AMSS Eu-
ropean Symposium on Computer Modeling and Simulation, EMS
2012, Malta, November 14-16, 2012, IEEE, 2012, pp. 67–73.
doi:10.1109/EMS.2012.17.
URL https://doi.org/10.1109/EMS.2012.17

[61] A. Kumar, S. R. Sabbella, R. R. Barton, Managing controlled violation
of temporal process constraints, in: H. R. Motahari-Nezhad, J. Recker,
M. Weidlich (Eds.), Business Process Management - 13th International
Conference, BPM 2015, Innsbruck, Austria, August 31 - September 3,
2015, Proceedings, Vol. 9253 of Lecture Notes in Computer Science,

45

Springer, 2015, pp. 280–296. doi:10.1007/978-3-319-23063-4 20.
URL http://dx.doi.org/10.1007/978-3-319-23063-4_20

[62] T. H. Fung, R. A. Kowalski, The Iff Proof Procedure for Abductive
Logic Programming, Logic Programming 33 (2) (1997) 151–165.

[63] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer,
1987.

[64] D. Singh, C. K. Reddy, A survey on platforms for big data analytics,
Journal of Big Data 2 (1) (2015) 8. doi:10.1186/s40537-014-0008-6.
URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505391/

[65] T. Eiter, G. Gottlob, The complexity of logic-based abduction, J. ACM
42 (1) (1995) 3–42. doi:10.1145/200836.200838.
URL http://doi.acm.org/10.1145/200836.200838

[66] M. Montali, Specification and Verification of Declarative Open Inter-
action Models - A Logic-Based Approach, Vol. 56 of Lecture Notes in
Business Information Processing, Springer, 2010. doi:10.1007/978-3-642-
14538-4.
URL http://dx.doi.org/10.1007/978-3-642-14538-4

[67] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
S. Storari, Declarative specification and verification of service choreogra-
phiess, TWEB 4 (1) (2010) 3:1–3:62. doi:10.1145/1658373.1658376.
URL http://doi.acm.org/10.1145/1658373.1658376

[68] Apache Samza, http://samza.apache.org (accessed 06.08.2017).

[69] Google Cloud Dataflow, https://cloud.google.com/dataflow/ (ac-
cessed 06.08.2017).

[70] J. Samosir, M. Indrawan-Santiago, P. D. Haghighi, An evaluation
of data stream processing systems for data driven applications, in:
M. Connolly (Ed.), International Conference on Computational Sci-
ence 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA,
Vol. 80 of Procedia Computer Science, Elsevier, 2016, pp. 439–449.
doi:10.1016/j.procs.2016.05.322.
URL http://dx.doi.org/10.1016/j.procs.2016.05.322

46

[71] F. Chesani, A. Ciampolini, D. Loreti, P. Mello, Abduction for gener-
ating synthetic traces, accepted for publication in First Workshop on
BP Innovations with Artificial Intelligence, @ Business Process Man-
agement Conference (BPM) 2017, 10 - 15 September 2017, Barcelona,
Spain (2017).

[72] IEEE Standard for eXtensible Event Stream (XES) for Achiev-
ing Interoperability in Event Logs and Event Streams (Nov 2016).
doi:10.1109/IEEESTD.2016.7740858.

[73] 8th international workshop on business process intelligence 2012 (2012).
URL http://www.win.tue.nl/bpi/doku.php?id=2012:challenge

[74] B. van Dongen, Bpi challenge 2012. eindhoven university of tech-
nology. dataset. (2012). doi:10.4121/uuid:3926db30-f712-4394-aebc-
75976070e91f.
URL https://doi.org/10.4121/uuid:

3926db30-f712-4394-aebc-75976070e91f

[75] J. de Lara, A. Zisman (Eds.), Fundamental Approaches to Software En-
gineering - 15th International Conference, FASE 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceed-
ings, Vol. 7212 of Lecture Notes in Computer Science, Springer, 2012.
doi:10.1007/978-3-642-28872-2.
URL http://dx.doi.org/10.1007/978-3-642-28872-2

[76] S. Khurshid, K. Sen (Eds.), Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011,
Revised Selected Papers, Vol. 7186 of Lecture Notes in Computer Sci-
ence, Springer, 2012. doi:10.1007/978-3-642-29860-8.
URL http://dx.doi.org/10.1007/978-3-642-29860-8

47

