
An online learning model based on episode mining for workload prediction in
cloud
Maryam Amiri a,*,1, Leyli Mohammad-Khanli a,2, Raffaela Mirandola b,2
a Faculty of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran
b Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Via Golgi 42, 20133 Milan, Italy

abstract

The resource provisioning is one of the challenging problems in the cloud environment. The resources should be allocated dynamically according to
the demand changes of the applications. Over-provisioning increases energy wasting and costs. On the other hand, under-provisioning causes Service
Level Agree-ments (SLA) violation and Quality of Service (QoS) dropping. Therefore the allocated resources should be close to the current demand
of applications as much as possible. Thus, the prediction of the future workload of applications is an essential step before the resource
provisioning. In our previous work, we proposed a Prediction mOdel based on SequentIal paTtern mINinG (POSITING), which considers the
correlation between different resources and extracts behavioural patterns of applications independently of the fixed pattern length explicitly.
Although POSITING provides reliable results, it is not able to adapt according to the workload variations. The application behaviour might
change and drift due to the dynamic nature of cloud. For this purpose, we investigate the capabilities of online learning for POSITING. This
paper proposes a Prediction mOdel based on epIsode miNing with the capabiliTy of onlIne learNinG (RELENTING) based on POSITING. Thus, in
addition to the accuracy, adaptability, one of the most important characteristics of the application prediction models, is fulfilled. The performance of
the proposed model is evaluated based on both real and synthetic workloads. The experimental results show that the proposed model adapts to the
behavioural changes of the application and learns the new behavioural patterns rapidly in comparison to the other state-of-the-art methods such as
moving average, linear regression, neural networks and hybrid prediction approaches.

1. Introduction

Elasticity is one of the prominent features of cloud comput-
ing [1,2] to deploy applications such as health care services [3] on it.
Elasticity is the degree of the system adaptability to the workload

* Corresponding author.
E-mail addresses: maryam.amiri@tabrizu.ac.ir (M. Amiri),

l-khanli@tabrizu.ac.ir (L. Mohammad-Khanli), raffaela.mirandola@polimi.it
(R. Mirandola).
1 PhD Student.
2 Associate Professor.

changes by provisioning and deprovisioning the resources auto-
matically in a way that the allocated resources match the current
demand [4]. Under-provisioning causes Service Level Agreements
(SLA) violation, Quality of Service (QoS) dropping and the customer
dissatisfaction. This may lead to the loss of customers and a de-
crease in revenue. On the other hand, Over-provisioning wastes
energy and resources and it even increases costs like network,
cooling and maintenance [5]. Thus, the resources allocated to the
application should be close to its demand in a way that SLA is
satisfied and resources wasting is minimized [5]. The future de-
mand prediction is the only practical and effective solution for the

©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at: https://doi.org/10.1016/j.future.2018.04.044

http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.04.044&domain=pdf
mailto:maryam.amiri@tabrizu.ac.ir
mailto:l-khanli@tabrizu.ac.ir
mailto:raffaela.mirandola@polimi.it
https://doi.org/10.1016/j.future.2018.04.044

fast resources provisioning and the rapid elasticity implementa-
tion [5,6]. If the sudden increase of the future demand is predicted,
the resource manager scales up the infrastructure and prepares
Virtual Machines (VMs) according to the predicted future demand
before the surge of demand occurs. In the same way, according
to the demand reduction, the allocated resources are released.
Indeed, allocated resources match the demand and the rapid elas-
ticity is accomplished. The most important characteristics of the
application prediction models are as follows [5]:

• Accuracy: The prediction models are evaluated by the ac-
curacy of the predicted results. The accuracy of the models
can be measured in different ways [5]. Generally, the models
whose outputs are closer to the actual values are more
reliable [7].
• Adaptability (online learning): The cloud environment is

dynamic and is changing continuously. Therefore, the pre-
diction model should be able to adapt to the changes. For this
purpose, the model should learn the behavioural changes of
the application.
• Proactive: The prediction should be proactive. It means that

before the workload burstiness occurs, the model should be
able to predict the future demand sooner in a way that the
resource manager has enough time to provide the appropri-
ate resources.
• Historic Data: The different types of resources are allocated

to cloud services [8]. So, the application behaviour is affected
by the different resources. An effective prediction model
should investigate all the resources. It should also consider
the correlation between them.

The newest and the most common proposed predictors are based
on machine learning techniques [5] such as Neural Network (NN)
[6,9–11], Moving Average (MA), regression based methods [12–14]
and Hybrid Prediction Approaches (HPAs) [6,9,15]. The machine
learning techniques usually model the application behaviour as a
time series. Most of the methods are based on a sliding window [5].
These models cannot extract all the useful patterns whose length
is less/more than the fixed length. Choosing the length of the
pattern (the length of the sliding window) for different regions
of workloads is one of the most important challenges in these
methods [5]. Moreover, when they are applied to bursty cloud
workloads, they have limited accuracy [16].

The common prediction models such as NN, Support Vector
Machine (SVM) and regression based methods are the discrimina-
tive learning approaches. The discriminative methods need much
training data. The behavioural changes of the application workload
might start after training the prediction model. To adapt to the
workload changes, the models should be retrained using new
data. Gathering the new data and retraining the models might
be very time consuming. Furthermore, the delay of the learning
phase might lead to drastic loss in cloud. Due to the cloud nature,
retraining and continuous updates of the prediction models should
not be time consuming and require the heavy computations [5].
Therefore, these predictors could not satisfy the essential charac-
teristics of the prediction models of cloud applications.

In our previous work [17], we proposed a prediction model
based on episode mining, called POSITING, which investigates
the correlation between different resources and extracts the be-
havioural patterns independently of the fixed pattern length ex-
plicitly. As the red dashed box in Fig. 1 shows, POSITING considers
the application behaviour in the past, extracts the behavioural
patterns and stores them in the off-line pattern base. Based on
the extracted patterns and the recent behaviour of the applica-
tion, POSITING predicts the future demand of different resources.
POSITING alleviates the shortcomings of the prior predictors with
its ability to extract the patterns of different length explicitly.

However, the application behaviour can change and drift due to
the dynamic nature of cloud. So, since the off-line learned patterns
are extracted from the past behaviour of the application, they
might not be useful to predict the current behaviour. It means that
POSITING is not able to adapt to the workload changes. On the other
hand, the computation resources consumption of the prediction
model should be reasonable [5]. So, storing the entire data and then
processing them are impractical. For this purpose, in this paper,
we investigate the capability of online learning for POSITING. This
paper develops POSITING and proposes a pREdiction modeL based
on Episode miNing with the capabiliTy of onlIne learNinG (RELENT-
ING).

To measure the strength of off-line patterns to predict the cur-
rent behaviour of the application, we define a consistency criterion
for them. According to the blue dashed box in Fig. 1, RELENTING
compares the predicted results of POSITING with the observed
behaviour and updates the consistency criterion of the off-line
patterns. If there is no reliable off-line pattern for prediction,
based on the recent and the current observed behaviour of the
application, the online pattern mining engine extracts the new
behavioural patterns and stores them in the online pattern base.
Both of the online and the off-line pattern bases are used to predict
the behaviour of the application. Thus, in addition to leaning new
behavioural patterns, the reliable off-line patterns are recognized
and used for prediction. So, the contributions of this paper are as
follows:

• In this paper, for the first time, we define a new criterion,
called Consistency, for the patterns extracted in the off-line
mode. The consistency of each pattern is updated based on
its ability to predict the current behaviour of the application.
Thus, in addition to the patterns learned in the online-mode,
the reliable off-line patterns are identified and used for
prediction (Section 4.1).
• For the first time, this paper presents a comprehensive pre-

diction model based on the pattern mining with the capabil-
ity of online learning. While the model predicts the status of
all the allocated resources, it also learns the new behaviour
of the application rapidly without gathering the new data
and retraining the model. So, time and space complexities
of RELENTING are reasonable in a way that its deployment
is affordable (Sections 4.2 and 4.3).

The rest of the paper is organized as follows: Section 2 reviews
related works on the prediction of the workload in cloud. An
overview of POSITING is presented in Section 3. Section 4 intro-
duces RELENTING in detail. We present the experimental results
in Section 5. Finally, the paper is concluded with our future work
in Section 6.

2. Related work

In general, according to our previous work in [5], the prediction
models proposed for cloud applications are classified into three
main groups: control theory, queuing theory and machine learning
techniques. Furthermore, in [17], we propose a new type of the pre-
dictor based on Sequential Pattern Mining (SPM). In the following
subsections, each group is discussed briefly.

2.1. Control theory

In control models, the goal is to control resources shared be-
tween cloud applications [5]. In [18] a Single Input Single Output
(SISO) model maps the CPU share of the application to the inverse
of its response time. In [19], the resources usage of all VMs hosted
on a server is mapped to their performance by using a Multi
Input Multi Output (MIMO) model. The interference among VMs

Fig. 1. The scheme of POSITING and RELENTING.

hosted on a server is handled by using the dynamic adjustment of
resources allocated to applications. Wu et al. in [20] present a feed
back control algorithm whose goal is to maximize the profit rate.
The cost and the benefit are calculated for different combinations
of reconfiguration actions and VMs. A combination with the maxi-
mum profit and the minimum cost is selected.

Some controllers assume a restrictive constraint: the linear con-
trollers assume that the application behaviour is linear [21]. Thus,
there is potential of instability. Although the non-linear controllers
model the application behaviour accurately, their mathematical
computations are complex [5]. Some controllers such as fuzzy con-
trollers [22,23] are based on the rule based approaches. The ability
of the controllers depends on the defined rules. Furthermore, the
rule based approaches do not have the learning capability.

2.2. Queuing network

The Queuing Network (QN) models the relationship between
the workload and the performance criteria [20]. In QN, each server
allocated to the application is a queuing system [24]. These models
have parameters such as the requests arrival rate and the average
resources requirements of requests that should be specified [24].
The parameters can be estimated by solving some equations re-
sulted from the system evaluation.

In [25], the response time of the transactional workload and the
throughput of batch jobs are modelled by using the open QN and
the closed QN respectively. In [26], the CPU demand of different
types of transactions is estimated by using the regression based
methods. The estimated values are used to parameterize QN. QN
determines the resources requirements of multi-tier applications
according to the workload fluctuations.

Although QN needs no training phase, it is very sensitive to the
parameterization. The precise estimation of parameters such as
the arrival ratio and the service time of requests is expensive and
difficult. Assuming the specified probability distributions for some
parameters is not reasonable due to the dynamic nature of cloud.
Furthermore, some mechanisms are needed to adapt QN models to
incorporate the new behavioural patterns immediately [5].

2.3. Machine learning techniques

The newest proposed approaches are based on machine learn-
ing techniques [5]. Most of these methods need a training phase to
learn the application behaviour. The method proposed in [27] pre-
dicts the CPU utilization of transactional applications by NN. Chen

et al. in [15] propose a system to predict the resources demand. Due
to the workload dynamics in different periods, the base predictors
such as the Second Moving Average Model (SMAM), the Expo-
nential Moving Average method (EMA), the Auto-Regression (AR)
model and the Trend Seasonality Model (TSM) are selected. The
output of the base predictors is sent to a Fuzzy Neural Network
(FNN) which improves the accuracy of the prediction results. Yang
et al. in [12] propose a method based on LR to predict the number
of requests for each cloud service. According to the workload
fluctuations, the prediction method adjusts itself through the re-
computation of parameters of the regression model.

In general, the prediction accuracy of these methods is based on
the behavioural similarities of the application in the training and
the test phases. If the application behaviour in the test phase is not
correlated with one in the training phase, the predicted results are
not reliable and the training phase should be repeated so that the
model can adapt to the workload dynamics [5].

2.4. SPM

In [17], for the first time, we propose a predictor based on
SPM to predict the future demand of cloud applications. This pre-
dictor, POSITING, is able to extract all the behavioural patterns
of workloads independently of the fixed pattern length explic-
itly. POSITING investigates the correlation between resources and
extracts the corresponding patterns. So, the behavioural patterns
of workloads are readily interpretable by the resources manager.
Furthermore, it does not need to make any assumptions about the
workload behaviour. So, POSITING could be used for the different
types of workloads. As the experiment results in [17] show, POSIT-
ING outperforms the state-of-the-art predictors and provides reli-
able results. However, if the behavioural changes of the application
workload start after the pattern extraction, it is not able to adapt
to the workload changes. On the other hand, since consumption
of the computation resources of the prediction model should be
reasonable [5], storing the entire data and then processing them
are impractical.

In this paper, we investigate the problem of online learning
for POSITING. We develop POSITING and propose RELENTING. RE-
LENTING updates the consistency criterion of the off-line patterns
and learns the new behavioural patterns. Both online and off-
line learned patterns are used for prediction. So, in addition to
providing the accurate prediction results, RELENTING is able to
adapt to the workload changes rapidly. In the next section, the
foundation of POSITING is discussed in more detail.

Fig. 2. Converting a time series into a symbolic (discretized) time series by the value
abstraction that

∑
= {Very Low, Low,Medium,High} and blue dashed lines show

the border of the values [17]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

3. An overview of POSITING

se

In this section, POSITING is described briefly. Firstly, the back-
ground concepts such as event, stream and observation are in-
troduced. Then, the core of POSITING, the pattern extraction in the
off-line mode, is explained concisely. We recommend that readers
refer to [17] for a more detailed description of POSITING.

3.1. Background concepts

As Fig. 2 shows, POSITING converts the numeric time series of all
the resources allocated to the application into a quence of

abstractions ⟨S1[st1, et1], . . . , Sn[stn, etn]⟩ where Si ∈
∑

, 1 ≤ i ≤
n is an abstraction that holds from time sti to time eti and

∑
is

the abstraction alphabet. Let Status = {S1, . . . , SM } be a set of
the abstract values (the abstraction alphabet) and ResourceType =
{R1, . . . , RN } be a set of all the resources allocated to the applica-
tion. Without loss of generality, we define an arbitrary order on
ResourceType, for example R1 < R2 < · · · < RN .

Definition 1. An event ei is defined as a 4-tuple ⟨ri, si, sti, eti⟩
that means the abstract value of ri ∈ ResourceType is si ∈ Status
from the start time sti to the end time eti. The span of the event
ei = ⟨ri, si, sti, eti⟩ is ∆ei = eti − sti > ϵ ≥ 0.

All the discretized time series of the resources are represented
as a multivariate stream. Note that the value of ϵ depends on the
length of sampling intervals. In coarse grained sampling, ϵ is set
to small values. For fine grained sampling, ϵ could be set to larger
values.

Definition 2. A multivariate stream E = ⟨e1, e2, . . . , en⟩, where
n is the index of the latest observed event, is a sequence of events
that are ordered according to their start time:

∀ei, ej ∈ E that 1 ≤ i < j ≤ n : (sti < stj) or (sti = stj and ri < rj).

Definition 3. A state is an ordered pair of (r, s), where r ∈
ResourceType and s ∈ Status. The Resource-Status (RS) is a set of all
the possible states: RS = {(r, s)|∀r ∈ ResourceType, ∀s ∈ Status}.

If the span of events is large, they are decomposed based on the
decomposition unit µ. For example the event (Disk, Medium, 3, 7)
with µ = 3 is decomposed into two events (Disk, Medium, 3, 6)
and (Disk, Medium, 6, 7). However, after decomposing the event e,
the span of the last decomposed event might be less than ϵ. Here,
to satisfy Definition 1, the latest and penultimate decomposed
events merge together.

Fig. 3. The graphical representation of the episode α =

(CPU,High)(Memory,Medium)→ (CPU, Low)(Disk, Low) [17].

Inspired by the temporal relations defined in [28], we define
two types of relations between events: concurrent and consec-
utive.

Definition 4. Given the stream E = ⟨e1, . . . , en⟩, two events ei and
ej, 1 ≤ i, j ≤ n, are concurrent iff |sti−stj| ≤ ϵ and are consecutive
iff |sti − stj| > ϵ.

An episode is a partially ordered collection of events that occur
together [29]. Note that we use terms ‘‘pattern’’ and ‘‘episode’’
interchangeably in this paper.

Definition 5. A Concurrent Nodes Group (CNG) G = A1A2 . . . Al is
a group of nodes that ∀Aj, Am ∈ G, 1 ≤ j,m ≤ l, there is no partial
order between Aj and Am.

Definition 6. The episode α is defined as a directed acyclic
graph α = (Vα,≺α, gα), where Vα is a set of nodes, ≺α is a partial
order on Vα and gα : Vα → RS is a function that maps each node
into one state. The episodeα is composed of k(>1)CNGs in the form
of G1 = A1

1, A
1
2, . . . , A

1
l1
, . . ., Gk = Ak

1, A
k
2, . . . , A

k
lk
that:

1. |Gi| = li
2. Vα = {A1

1, . . . , A
1
l1
, A2

1, . . . , A
2
l2
, . . . , Ak

1, . . . , A
k
lk
}

3. ∀Ai
j ∈ Gi,∀Am

n ∈ Gm, 1 ≤ i < m ≤ k, j ∈ {1, . . . , li}, n ∈
{1, . . . , lm} : Ai

j≺αAm
n

4. |CNGα| = k
5. G′i = {(r, s) ∈ RS|gα(v) = (r, s), ∀v ∈ Gi}.

The episodeα could be represented as a general formα = G′1 →
G′2 → · · · → G′k.

Example 1. Consider the episode α = (Vα , ≺α , gα) in Fig. 3. The
set Vα contains four nodes. As it is shown, the function gα maps the
nodes into the states and A1

1≺αA2
1, A

1
1≺αA2

2, A
1
2≺αA2

1 and A1
2≺αA2

2. As
a simple graphical notation, this episode is represented as α =
(CPU, High)(Memory, Medium) → (CPU, Low)(Disk, Low).

Informally, the occurrence of an episode in the stream means
that the nodes of the episode have the corresponding events in the
stream such that the partial order of the episode is preserved [29].
We define freq(α) as the number of the Non-Overlapped (NO)
minimal occurrences [30] of the episode α.

Example 2. Consider the stream E = ⟨e1 = (CPU, High, 0, 3), e2 =

(Memory,Medium, 0, 4), e3 = (Network, Low, 0, 2), e4 =

(Disk,Medium, 0, 3), e5 = (Network,Medium, 2, 5), e6 =

k

(CPU, 3, 5, Low), e7 = (Disk, Low, 3, 5), e8 = (Memory, Very Low,
4, 5)⟩. For ϵ = 0, there is an occurrence of the episode α given in
Example 1 in the stream E.

Definition 7. Given the episode α that |CNGα | = k, each occur-
rence O of α is determined as a sequence of the starting intervals
of CNGs: O = (([t i1, t

i
2])i=1).

Example 3. Consider Example 2. The starting intervals of the
occurrence of G1 and G2 are [t1

1, t2
1
] = [0, 0] and [t1

2, t2
2
] = [3, 3]

respectively. The span of the occurrence is [0, 3].

Dynamic resources allocation is based on the virtualization
techniques [31,32]. Based on time spent on booting VMs, patterns
should be extracted from the application behaviour in a way that
SLA is satisfied and energy wasting is avoided. Given the episode
α = G′1 → G′2 → · · · → G′k and an occurrence O = ([wi

1, w
i
2]

k
i=1)

of α, if the time it takes to instantiate a new VM instance is δ(>ϵ)
time slots and the gap constraint∆(≥δ) determines that resources
might be allocated at most ∆ − δ time slots before occurring the
workload burstiness, then the valid interval of wi

1, 1 < i ≤ k is
[wi−1

2 + δ, wi−1
2 + ∆] to satisfy QoS and SLA and avoid wasting

energy. δ and∆ are called theminimum internal gap and themax-
imum internal gap respectively. As we explained in [17], ∆ should
be in the interval of [δ, δ + ϵ] to provide the precise prediction
results.

As Fig. 1 shows, the recent behaviour of the application should
be determined to predict the future behaviour based on extracted
episodes.

Definition 8. An observation OB is a list of states which describe
the recent status of resources allocated to the application. It satis-
fies three conditions below:

• The states of each entry of the list OB, OB[i], 1 ≤ i ≤ |OB| are
corresponding to events that are concurrent.
• The states of each entry are in ascending order based on the

start time of their corresponding events. The entries are in
ascending order based on the minimum start time of their
events.
• There are at least two states in each two consecutive entries

whose corresponding events are not concurrent. The corre-
sponding events of states of each two consecutive entries
satisfy the gap constraint ∆.

Definition 9. Given the observation OB, an observation OB′ that
OB′ ⊆ OB is a consistent observation of OB iff there is a serial
relation under the gap constraints between each two consecutive
entries.

Definition 10. If OB′ is a consistent observation of OB and there is
no other consistent observation of OB such as OB′′ that OB′ ⊂ OB′′,
then OB′ is the Longest Consistent Observation (LCO) of OB.

Example 4. Assume∆ = δ = 3, the current time slot is 21 and the
recent events of the stream are as follows:

⟨. . . ,(CPU, Low, 16, 19), (Disk, Low, 17, 21),
(Memory,High, 18, 21),
(CPU,High, 19, 21), (Network,Medium, 20, 21)⟩.

Fig. 4 shows OBs and LCOs that are extracted from the stream
for different values of ϵ. Note that since the span of the event
(CPU, Low, 16, 19) is 3, then ϵ + 1 ≤ 3.

3.2. The pattern extraction in the off-line mode

The main step of POSITING is to extract the frequent patterns.
For this purpose, the pattern tree is constructed and the frequent
patterns are extracted [33].

Definition 11. Given the episode α = G′1 → G′2 → · · · → G′k and
(r, s) ∈ RS, the serial extension of α with (r, s) is:

α ⊕ (r, s) = G′1 → G′2 → · · · → G′k → (r, s). (3.1)

Definition 12. Given the episode α = G′1 → G′2 → · · · → G′k−1 →
G′k and (r, s) ∈ RS, the concurrent extension of α with (r, s) is:

α ⊙ (r, s) = G′1 → G′2 → · · · → G′k−1 → G′′ that
G′′ = G′k ∪ (r, s). (3.2)

Mining frequent episodes might lead to extract a huge number
of patterns. To improve the mining efficiency and avoid informa-
tion loss, a compressed set of episodes, called closed episodes,
is extracted [34]. Under gap constraints δ and ∆, if there is no
other episode such as β that α is its prefix or suffix and freq(α) =
freq(β), then α is a closed episode. The pattern tree is constructed
based on the serial and concurrent extensions. Firstly, POSITING
extracts candidate closed episodes by the complete traverse of the
pattern tree in a depth-first way. In the next step, candidate closed
episodes are considered and closed episodes are determined by
using a hashing procedure with the frequency as the key. To avoid
enlarging the pattern tree, we could limit the number of CNGs of
episodes. We define Level as the maximum number of CNGs of
episodes.

4. RELENTING

When the stream continuously grows, old episodes might be-
come obsolete while new episodes might emerge [35]. To identify
the new episodes, storing data and then processing them are
not practical due to the real time nature of the cloud environ-
ment [36,37] and the consumption of the computation resources.
Furthermore, the delay of the learning phase might lead to drastic
loss in cloud [5]. So the efficient online approaches are required
to identify the new behaviour of the application from the growing
stream. Briefly, the online mining process should be fast and re-
sponsive along with reasonable time and space complexities. For
this purpose, we propose RELENTING, which is inspired by the
types of the human memory. There are two major categories of
the memory: the long-term memory and the short-term memory.
The long-term memory holds information that is related to the
past happenings. On the contrary, the short-term memory is re-
sponsible for storing new information temporarily [38]. As Fig. 1
shows there are two pattern bases. The off-line pattern base is
corresponding to the long-termmemory and it stores the episodes
extracted from the application behaviour observed in a longperiod.
The online pattern base is corresponding to the short-term mem-
ory and it stores the episodes extracted from the new behaviour of
the application. As long-term memories are much more complex
than short-term ones, the off-line pattern base also includes the
closed episodes and their NO frequency. On the contrary, the online
pattern base includes the episodes and approximate information
about their occurrences.

RELENTING is composed of two main steps: (1) Updating the
off-line pattern base (2) Extracting the episodes from the new
behaviour. In Section 4.1, the update of the off-line pattern base
is explained. The main procedure of online learning is described
in Section 4.2. Finally, the prediction module of RELENTING is
presented in Section 4.3.

4.1. The update of the off-line pattern base

We should measure the strength of the episodes to predict the
future behaviour of the application, in terms of appropriate criteria.
Given the episode α = G′1 → G′2 → · · · → G′k, POSITING employs
two criteria to evaluate it:

1. MatchScore: It determines that how much the episode α
matches the longest consistent observation LCO. If the
episode includes more states of LCO, it receives higher
MatchScore. The criterion MatchScore is defined in (4.1)

Fig. 4. The observations (OB) and the longest consistent observations (LCOs) extracted from the stream in the Example 4 for ϵ = 0, 1, 2 [17].

where Index is the index of the start of LCO in α. According
to the procedure of the episode selection proposed in [17],
we have Index ≥ 1. If α is also consistent with the recent
history before LCO, then Index > 1 and α receives higher
MatchScore.

MatchScore(α) =
|state ∈ (LCO ∩ α)|
|state ∈ LCO|

+
Index− 1
|CNGα|

. (4.1)

2. Confidence: it measures the reliability of the inference made
by the episode. For two sub-episodes γ = G′1 → · · · → G′i
and β = G′i+1 → · · · → G′k where 1 ≤ i < k, Confidence
could be interpreted as the conditional probability of oc-
curring β , having occurred γ . Confidence(α) is computed
as (4.2) [29]. It is clear that freq(α) ≤ freq(γ). So higher
Confidence implies that occurringβ after γ ismore probable.

Confidence(α) =
freq(α)
freq(γ)

. (4.2)

The criterion MatchScore considers only the recent observation of
the application and the criterion Confidence is computed based on
the application behaviour in the past. None of the criteria investi-
gates whether the episode could appropriately reflect the current
behaviour of the application or not. For this purpose, RELENTING
employs a new criterion for the episode, called Consistency, which
is computed based on the results predicted by the episode.

Definition 13. Given the longest consistent observation LCO and
the episode α = G′1 → G′2 → · · · → G′k, if Prefix(α, i) = G′1 →
· · · → G′i, 1 ≤ i ≤ k, matches LCO, then Antecedent(α, LCO) is
Prefix(α, i) and Consequent(α, LCO) is Suffix(α, i + 1) = G′i+1 →
· · · → G′k.

For each G′i, 1 ≤ i ≤ k, of the episode α = G′1 → · · · → G′k
extracted in the off-line mode, two counters Consi and Inconsi are
defined. Given the longest consistent observation LCO, ifα matches
LCO, the counters are updated as follows:

• For all CNGs of Antecedent(α, LCO), the counter Cons in-
creases by+1.
• If Consequent(α, LCO) = G′p → · · · → G′k, 1 < p ≤ k, for

each G′j, p ≤ j ≤ k, the counter Consj increases by +1 if
G′p → · · · → G′j is consistent with the future behaviour of
the application. Otherwise, the counter Inconsj increases by
+1.

Now, we could define the criterion Consistency. For each G′i, 1 ≤
i ≤ k, of the episode α = G′1 → · · · → G′k extracted in the
off-line mode, Consistency(G′i) measures howmuch G′i matches the
application behaviour after the sub-episodeβ = G′1 → · · · → G′i−1
is observed.

Definition 14. Given the episodeα = G′1 → · · · → G′k extracted in
the off-line mode, Consistency(G′i), 1 ≤ i ≤ k, is defined as follows:

Consistency
(
G′i

)
=

{ Consi
Consi+Inconsi

if Consi + Inconsi ̸= 0
−1 if Consi + Inconsi = 0

. (4.3)

Lemma 1. Given the episode α = G′1 → · · · → G′k extracted in the
off-line mode and 1 ≤ i < k, Consistency(G′i) ≥ Consistency(G′i+1).

1

Lemma 2. Given the episode α = G′1 → · · · → G′k extracted in the
off-line mode, Incons1 = 0.

Example 5. Fig. 5(a) shows LCO and the episodes extracted to
predict the future behaviour in the interval of [t + δ, t + ∆]

where t is the current time slot. LCO is in the first part of β
and in the middle part of α. As the figure shows Antecedent and
Consequent of episodes are determined based on LCO (red and
blue boxes). As it is shown in Fig. 5(b)(A) the counters Cons of
Antecedent(α, LCO) and Antecedent(β, LCO) increase by +1. If the
future behaviour of resources in the interval of [t + δ, t + ∆]

is (Disk, Low), the counter Incons of Consequent(α, LCO) and the
counter Cons of Consequent(β, LCO) increase by +1 according to
Fig. 5(b)(B).

4.2. The procedure of the online learning

One of the most important advantages of the episode mining
is to model online learning. A straight algorithm to learn the new
behaviour of the application is based on the approach proposed
in [35]. Ao et al. in [35] propose MESELO (Mining frEquent Serial
Episode via Last Occurrence) for online frequent episode mining.
It stores all the minimal occurrences of episodes [29]. As a new
event emerges, all the new minimal occurrences of episodes are
determined by appending the new event to the last occurrence of
episodes. In the following example, we show how this approach
could be employed to model the online learning for POSITING.

Example 6. Assume the online learning starts from the time slot
20, A, B, C ∈ RS and δ = 2, ∆ = 3, ϵ = 1. Fig. 6(a) shows a time
series and the corresponding events of A, B and C . Fig. 6(b) shows
the constructed episodes and their occurrences [17]. Note that each
occurrence of the episode α is summarized in a 4-tuple (x, t, t ′, t ′′),
where x is the end of the starting interval of the penultimate CNG
of α, [t, t ′] is the starting interval of the last CNG and t ′′ is the
start time of the occurrence. As Fig. 6(b) shows, when the event
(A, 20, 23) emerges, the episode A is constructed. With coming
(B, 22, 24), the episode A → B and its corresponding occurrence
are created. Furthermore, the episode B is created. When the event

1 The proof of lemmas and theorems could be found in Appendix C.

(a) LCO and the episodes extracted for prediction.

(b) The update of counters Cons and Incons of the episodes.

Fig. 5. An example of the episode selection and the update of counters Cons and Incons based on LCO and the future behaviour. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

(a) The time series and the corresponding events.

(b) The new episodes constructed by appending the new events to the occurrences of the previous episodes.

Fig. 6. An example of the online learning of the episodes based on the method proposed in [35].

(C, 25, 28) comes, three episodes A → B → C , B → C and C are
constructed. With coming (B, 29, 30), none of the episodes could
be extended with it. The new occurrence of B is inserted in its
occurrence list.

Although MESELO is able to identify the frequent episodes by
online learning, the memory consumption for storing all of the
episodes and their occurrences is a critical challenge. Since, time
and space complexities of the prediction model should be reason-
able in cloud [39], this approach is not appropriate.

Theorem 1. The number of the episodes constructed by appending
the coming events to the existing episodes, grows exponentially.

In addition to the exponential growth of constructed episodes,
this method learns the application behaviour completely even if
the application behaviour has not changed significantly. On the
contrary, according to the real time nature of cloud, the predictor
should learn the newbehaviour of the application quicklywith rea-
sonable consumption of the resources. To learn the new behaviour
of the application and avoid generating repetitious episodes, RE-
LENTING only focuses on learning the new behaviour of the appli-
cation. The procedure of online learning in RELENTING is composed

of two steps: (1) generating episodes implying the new behaviour
of the application and (2) extending the generated episodes based
on the observed behaviour. These steps are explained in more
detail in the following subsections.

4.2.1. Generating episodes in the online mode
To provide the reliable prediction, the selected episodes, in

addition to having high Confidence, should cover the current be-
haviour of the application. When there is not such an episode for
prediction, it means that there is no confident consistent episode:

Definition 15. Given the episode α = G′1 → G′2 → · · · → G′k and
the longest consistent observation LCO, if Consequent(α, LCO) =
Suffix(α, i), 2 ≤ i ≤ k and Confidence(α)×

√
|Consistency(G′i)| ≥ ω,

whereω ∈ [0, 1] is a user-defined threshold, then α is a coNsIstent
ConfidEnt (NICE) episode.

If there is no NICE episode, RELENTING notices that the cur-
rent behaviour of the application does not match the extracted
episodes. So the episodes describing the new behaviour should
be identified. RELENTING learns the new behaviour from LCO. It
extracts the continuous sub-episodes from LCO and extends them
with the events observed in the valid interval of the sub-episodes.

(a) The data
structure of
LearnedEpisode.

(b) The data
structure of
LCO.

Fig. 7. The data structures used by RELENTING to extract new episodes.

Fig. 7a shows the data structure LearnedEpisode, which includes
the new learned episode and information about it:

• Episode: The episode learned in the online mode
• Ref : The number of references to Episode
• [I1, I2]: The valid interval of the next CNG of Episode for the

serial extension
• Last: The time of the latest occurrence of Episode.

The data structure ListLearnedEpisodes is a list of all the
LearnedEpisodes. As it was mentioned in Definition 10, an LCO is the
longest observation that satisfies the gap constraints. Fig. 7b shows
the data structure of LCO. Since online learning is based on LCO,
the data structure LCO includes Episode and Time, whose Episode
is the longest consistent observation and Time is the last time of
the starting interval of the last group of Episode. The data structure
LCOList is a list of all LCOs extracted from the observation.

RELENTING extracts all of the continuous sub-episodes of LCOs
by the algorithm ExtractEpisodeFromLCO (see Algorithm 1). The
function receives LCOList , extracts the continues sub-episodes
from each LCO of LCOList and adds them to ListLearnedEpisodes. In
line 4, it is checked whether a continues sub-episode of LCO.Episode
exists in ListLearnedEpisodes or not. If it does, in lines 6 to 11,
the corresponding entry of the sub-episode is updated: Ref in-
creases by +1, if the sub-episode is finished by the last group
of LCO.Episode, then the interval of [I1, I2] is updated based on
LCO.Time and Last is set to LCO.Time. If the sub-episode does not
exist in ListLearnedEpisodes, then a new entry is created for it and
added to ListLearnedEpisodes in lines 13 to 21. Note that since
LCO.Time is the last time of the starting interval of the last group of
LCO.Episode, [I1, I2] is only updated for the sup-episodes finished
by the last group of LCO.Episode.

Algorithm 1 ExtractEpisodeFromLCO

Input: LCOList % LCOList is a list of LCOs extracted from the obser-
vation

Output: % The function adds the new episodes
to ListLearnedEpisodes

1: for (LCO in LCOList) do
2: for (i = 1; i ≤ |LCO.Episode|; i++) do
3: for (j = min(i+ 1, |LCO.Episode|); j ≤ |LCO.Episode|; j++) do
4: index← IndexOf (LCO.Episode[i..j], ListLearnedEpisodes);
5: if (index > 0) then
6: ListLearnedEpisodes[index].Ref ++;
7: if (j = |LCO.Episode|) then
8: ListLearnedEpisodes[index].I1 ← LCO.Time+ δ;
9: ListLearnedEpisodes[index].I2 ← LCO.Time+∆;
10: end if
11: ListLearnedEpisodes[index].Last ← LCO.Time;
12: else
13: define new LearnedEpisode R;
14: R.Episode← LCO.Episode[i..j];
15: if (j = |LCO.Episode|) then
16: R.I1 ← LCO.Time+ δ;
17: R.I2 ← LCO.Time+∆;
18: end if
19: R.Last ← LCO.Time;
20: R.Ref ++;

21: add(R, ListLearnedEpisodes);
% add R to ListLearnedEpisodes

22: end if
23: end for
24: end for
25: end for

Example 7. Assume LCO.Episode = (CPU, Low)→ (Memory,High)
→ (Disk,Medium) → (Memory, Low) and LCO.Time = t ′. Table 1
shows the continuous sub-episodes extracted from LCO. These sub-
episodes are inserted in ListLearnedEpisodes. Note that Last of all
the sub-episodes is set to t ′ and [I1, I2] of sub-episodes 3, 5, 6
and 7 is set to [t ′ + δ, t ′ + ∆]. It means that sub-episodes 3, 5,
6 and 7 are extended serially by events observed in the interval of
[t ′ + δ, t ′ +∆].

Lemma 3. The number of continuous sub-episodes extracted from
each LCO is O(Level2).

4.2.2. Extending the episodes learned in the online mode
After extracting the new episodes by the algorithm Extract

EpisodeFromLCO, these episodes are serially extended by the events
observed in their valid intervals. For this purpose, all of the valid
combinations of concurrent events are extracted from the concur-
rent events group.

Lemma 4. The number of the possible combinations of each concur-
rent events group is O(2|ResourceType|).

The algorithm LearningProcedure (see Algorithm 2) serially ex-
tends the learned episodes with the concurrent events observed in
their time intervals. The function receives a list of all the valid com-
binations of the concurrent events, called CombList . In line 1, all
episodes that could be extended serially in the current time slot are
determined. In lines 3 to 20, the serial extensions of the episodes
with the concurrent events groups are considered. In lines 5, the
episode R is extended with the concurrent events group Comb. In
line 6, the extended episode is searched in ListLearnedEpisodes. If
this episode exists in ListLearnedEpisodes, its corresponding entry
is updated in lines 8 to 10. Otherwise, in lines 12 to 17, a new
LearnedEpisode is constructed and added to a temporary list, Bag ,
which is later emptied into ListLearnedEpisodes on coming out of
the loop [30]. Note that Last is the time of the latest occurrence
of the episode. So it is set to t . Furthermore, since the procedure
of online learning should be rapid and its resources consumption
should be reasonable , the episodes are serially extended once. So
the valid interval of the extended episodes is set to [−1,−1].

Example 8. Consider Example 7 again. Assume t ′ = 20, δ = ∆ =

3, ϵ = 0 and t = 24. So sub-episodes 3, 5, 6 and 7 in Table 1
are extended by the concurrent events group. If the observed
concurrent events group is G′ = (CPU,Medium)(Network,High),
there are three combinations (CPU,Medium), (Network,High) and
(CPU,Medium)(Network,High). Table 2 shows the serial extension
of the sub-episodes by all the combinations of G′.

Algorithm 2 LearningProcedure

Input: CombList % CombList is a list of all the valid combinations of
the event group

Output: % The function extends the episodes of ListLearnedEpisodes
serially

1: UpdatingEpisodes ← {R|R ∈ ListLearnedEpisodes that R.I1 + 1 ≤ t ≤
R.I2 + 1}; % t is the current time

2: Bag ← ∅;
3: for each (Comb ∈ CombList) do
4: for each (R ∈ UpdatingEpisodes) do

Table 1
The continuous sub-episodes extracted from LCO of Example 7.

No Sub-episode No Sub-episode

1 (CPU, Low)→ (Memory,High) 4 (Memory,High)→ (Disk,Medium)
2 (CPU, Low)→ (Memory,High)→ (Disk,Medium) 5 (Memory,High)→ (Disk,Medium)→ (Memory, Low)
3 (CPU, Low)→ (Memory,High)→ (Disk,Medium)→ (Memory, Low) 6 (Disk,Medium)→ (Memory, Low)
7 (Memory, Low) – –

Table 2
The serial extension of sub-episodes in Example 7 by the concurrent events group
G′ = (CPU,Medium)(Network,High).

No Episode

1 (CPU, Low)→ (Memory,High)→ (Disk,Medium)→
(Memory, Low)→ (CPU,Medium)

2 (CPU, Low)→ (Memory,High)→ (Disk,Medium)→
(Memory, Low)→ (Network,High)

3 (CPU, Low)→ (Memory,High)→ (Disk,Medium)→
(Memory, Low)→ (CPU,Medium)(Network,High)

4 (Memory,High)→ (Disk,Medium)→ (Memory, Low)→
(CPU,Medium)

5 (Memory,High)→ (Disk,Medium)→ (Memory, Low)→
(Network,High)

6 (Memory,High)→ (Disk,Medium)→ (Memory, Low)→
(CPU,Medium)(Network,High)

7 (Disk,Medium)→ (Memory, Low)→ (CPU,Medium)
8 (Disk,Medium)→ (Memory, Low)→ (Network,High)

9 (Disk,Medium)→ (Memory, Low)→ (CPU,Medium)(Network,High)
10 (Memory, Low)→ (CPU,Medium)
11 (Memory, Low)→ (Network,High)
12 (Memory, Low)→ (CPU,Medium)(Network,High)

5: r ′ ← R.Episode⊕ Comb;
6: Index← IndexOf (r ′, listLearnedEpisodes);
7: if (Index ̸= 0) then
8: ListLearnedEpisodes[Index].Ref ++;
9: ListLearnedEpisodes[Index].Last ← t;
10: ListLearnedEpisodes[Index].[I1, I2] ← [−1,−1];
11: else
12: define new LearnedEpisode R′′;
13: R′′.Episode← r ′;
14: R′′.Ref ++;
15: R′′.Interval← [−1,−1];
16: R′′.Last ← t;
17: add(R′′, Bag); % add R′′ to Bag
18: end if
19: end for
20: end for
21: ListLearnedEpisodes← ListLearnedEpisodes ∪ Bag;

4.3. The prediction model

Since RELENTING is based on POSITING, the algorithm Main
of RELENTING is similar to POSITING’s. It (see Algorithm 3)
predicts the future status of resources. The algorithm has
six global variables t , PredictionCount , CorrectCount , ResultTable,
ListLearnedEpisodes and OffLinePatternBase. t is the current time.
PredictionCount counts the number of predictions andCorrectCount
counts the percentage of resources that have been predicted
correctly in each prediction slot. ResultTable is a list of the
data structure Result , which includes the prediction results [17].
ListLearnedEpisodes is a list of LearnedEpisodes. The function re-
ceives four threshold values θ , Level, ω and Ω (to select episodes)
and four parameters δ, ∆, ϵ and µ. T is the time slot in which the
future behaviour of the application is predicted for the first time. In
line 3, t is set to the time slot in which prediction is performed for
the first time. history defined in line 4 includes the recent history
of the stream of the application. In each repeat of the while loop
(lines 7 to 28) the future behaviour of the resources is predicted.
In line 8, history is updated based on the new observed events.

In line 9, LastObservation includes the most recent events of all
the resources. LastPredicting determines the time slot in which the
latest prediction has been performed. Observation is found in line
12 and LCOs are extracted in line 13. In lines 14 to 18, for extracted
LCOs, themost appropriate episodes are selected for the prediction.
Note that MatchedCons and MatchedAnt maintain Consequent and
Antecedent of the matched episodes respectively. The function
Evaluating in line 19, evaluates the matched episodes and predicts
the future behaviour. In lines 20 to 27, based on observed events,
the matched episodes are pruned and the precision of the predic-
tion is computed. If the prediction results derived by a matched
episode is consistent with the future behaviour, the corresponding
entry of the episode is fill with ❋. Otherwise, the episode is omit-
ted. Since the functions EpisodeSelection, Evaluating , CreateLEG and
UpdateMatchedEpisodes have beenmodified, we only present these
functions in detail. The readers could refer to [17] for more detail
of the other functions.

Algorithm 3 Main Algorithm

Global Variables: t; OffLinePatternBase; PredictionCount ← 0;
CorrectCount ← 0; ResultTable: a list of Results; ListLearnedEpisodes:
a list of LearnedEpisodes;

Input: θ, Level, ω, Ω, δ, ∆, ϵ, µ;
1: OffLinePatternBase← AllEpisodes(ϵ, δ, ∆, θ, Level);
2: LEG← ∅
3: t ← T −δ; % T is the first time slot that is predicted, t is the first

time in which prediction is performed (the current time)
4: history← ∅;
5: MatchedCons← ∅,MatchedAnt ← ∅;
6: ResultTable← ∅
7: while (1) do
8: history ← UpdateHistory(history, LEG); % Observed events

are added into history
9: LastObservation ← FindLastObservation(history); % It finds

the most recent events of resources in history
10: LastPredicting ← t; % It is the time in which the latest

prediction has been performed
11: Set ← ∅, Prefix← ∅;
12: Suffix← ExtractObservation(ϵ, ∆, history, Level);
13: ExtractLCO(ϵ, δ, ∆, Set, Prefix, Suffix);
14: for each (LCO in Set) do
15: A, C ← EpisodeSelection(LCO,OffLinePatternBase)
16: MatchedCons← MatchedCons ∪ C;
17: MatchedAnt ← MatchedAnt ∪ A;
18: end for
19: Evaluating(LastObservation,MatchedCons,MatchedAnt, history,

δ, ∆, ω, Ω, Set);
20: LEG ← CreateLEG(µ, ϵ, LastObservation, LEG, LastPredicting,

history);
21: while (LEG.I1 ≤ LastPredicting) do
22: ComputePrecision(LEG);
23: UpdateMatchedEpisodes(LEG,MatchedAnt,MatchedCons);
24: LEG ← CreateLEG(µ, ϵ, LastObservation, LEG,

LastPredicting, history);
25: end while
26: ComputePrecision(LEG);
27: UpdateMatchedEpisodes(LEG,MatchedAnt,MatchedCons);
28: end while

1. Function EpisodeSelection: episodes that match LCO are selected
for prediction. Since the main goal is to predict the future be-
haviour, two groups of episodes are selected: (1) the episodes that

92 M. Amiri et al. / Future Generation Computer Systems 87 (2018) 83–101

LCO is in their first part and (2) the episodes that LCO is in theirmid-
dle part and their first part is consistent with the events observed
before LCO. The function EpisodeSelection proposed in [17] is used
to select these episodes. According to line 15 in algorithmMain, the
function EpisodeSelection splits the matched episodes and returns
their Antecedent and Consequent separately.

Example 9. Consider Example 5 again. If α and β are the only
episodes that match LCO, the function EpisodeSelection splits them
and returns their Antecedent (A) and Consequent (C) as follows:

A = {(Disk,Medium)→ (CPU, Low)(Memory, VeryLow),
(CPU, Low)(Memory, Very Low)}

C = {(Disk,High)(Network,Medium), (Disk, Low)}.

2. Function Evaluating: The function Evaluating evaluates the
matched episodes and predicts the future behaviour of the applica-
tion. It receives the LastObservation,MatchedCons andMatchedAnt ,
history, the parameters δ and ∆, the threshold values ω and Ω that
are used to select NICE episodes and online episodes respectively
and Set that is a set of LCOs. If the future status of resources cannot
be predicted by NICE episodes extracted in the off-line mode, the
prediction is performed by the episodes extracted in the online
mode. In addition, the new episodes are identified and added to
the online pattern base (see Algorithm 5 in Appendix A.1).

Example 10. Consider Example 5 again. Assume α and β are
the only episodes that match LCO. So the function Evaluating
investigates them to predict the future behaviour. Fig. 8(A) shows
the counters Cons and Incons of the episodes before calling the
function Evaluating . According to Fig. 8(B), when the function
Evaluating is called, the counters Cons of Antecedent(α, LCO) and
Antecedent(β, LCO) increase by +1. Note that the counters of
Consequent(α, LCO) and Consequent(β, LCO) are updated after the
future behaviour of resources is observed. Based on the frequencies
of episodes, ListFreq and freq (each entry freq[i], 1 ≤ i ≤ |LCO|
includes the frequency of LCO[i..|LCO|]) in Fig. 8(C), the criteria
Consistency, Confidence and MatchScore are computed for states
predicted by the episodes. Fig. 8(D) shows the data structure
PredictionStep, which is a list of all the states that could occur in
the next time slot and information about them [17]. It is clear that
although α matches the past behaviour of the application (high
Confidence), it is not consistent with the current behaviour (low
Consistency). On the contrary, the episode β is more consistent
with the current behaviour compared to the past behaviour. These
imply that the application behaviour has changed after extracting
the off-line pattern base. If ω = 0.8, there is no NICE episode for
prediction. So prediction is performed by the episodes extracted in
the online mode.

3. Function PredictionByOnlineLearning: To predict the future be-
haviour of the application using the online learned episodes, the
most credible episodes that match LCO are selected. For this pur-
pose, we define a criterion that measures credibiliTy of the online
episodes fOr Prediction (TOP). To define TOP , two important factors
Ref and Last of LearnedEpisode are investigated. It is clear that the
episodes with higher Ref and Last closer to the current time slot
are more credible. The criterion TOP is defined as follows:

Definition 16. Given the online episode α = G′1 → G′2 → · · · →
G′k and the current time slot t , TOP(α, t) is defined as follows:

TOP(α, t) = 1−
1

1+ α.Ref (0.9)t−α.Last . (4.4)

The algorithm PredictionByOnlineLearning (Algorithm 4) pre-
dicts the future status of resources based on the online learned
episodes. It receives LastObservation, history, LCOList , which is a list

of LCOs extracted from the observation andΩ , which is a threshold
value to select episodes based on their TOP . The function predicts
the future status of resources based on the online learned episodes.
In lines 2 to 19, all the extracted LCOs are processed. In lines 4 to
6, it is checked whether LCO could be used to predict the status of
the resources in the time slot t or not. In lines 8 to 9, all the suffixes
of LCO.Episode are determined and the learned episodes including
them are found by calling the function SearchOnlineEpisodes (see
algorithm 6 in Appendix A.2). In lines 10 to 17 of Algorithm 4,
PredictionList is filled with the future status of resources and the
maximum values of Ref and Last . In lines 20 and 21, based on the
thresholdΩ , themost credible episodes aremaintained and sorted
in PredictionList . In line 24, the most credible status of resources is
considered as prediction results. In lines 26 to 28, for resources that
are not in PredictionList , the future status is predicted based onMRE
(Most Recent Event) [17]. IfMRE is not found, according to line 30,
the latest observed status of resources is considered as the future
status.
Algorithm 4 PredictionByOnlineLearning

Input: LCOList, Ω, LastObservation, history;
Output: Outcome; % Outcome includes the future status of re-

sources
1: PredictionList ← ∅; % PredictionList is a list of LearnedEpisodes
2: for (k = 1; k ≤ |LCOList|; k++) do
3: LCO← LCOList[k];
4: if (LCO.Time+ 1 ̸= t) then
5: Continue;
6: end if
7: for (i = 1; i ≤ |LCO.Episode|; i++) do
8: S ← LCO.Episode[i..|LCO.Episode|];
9: L← SearchOnlineEpisodes(S);
10: for (h = 1; h ≤ |L|; h++) do
11: Index← IndexOf (L[h], PredictionList);
12: if (Index = 0) then
13: add((L[h].FirstGroup(), L[h].Ref , [−1,−1], L[h].Last),

PredictionList) % add (L[h].FirstGroup(),
L[h].Ref , [−1,−1], L[h].Last) to PredictionList

14: else
15: PredictionList[Index] ← (L[h].F irstGroup(),max(Predic

tionList[Index].Ref , L[h].Ref), [−1,−1],max(PredictionList[Index].La
st, L[h].Last));

16: end if
17: end for
18: end for
19: end for
20: Sort(PredictionList,Descending, Top) % Sort PredictionList in de-

scending order based on the criterion TOP
21: DeleteEntriesTOP(PredictionList, Ω); % delete entries of

PredictionList with TOP < Ω

22: for each (Resource x ∈ Result.Outcome) do
23: if (x ∈ PredictionList) then
24: Outcome[x] ← FirstStatus(x, PredictionStep.Outcome) % It

returns the first status of x in PredictionList
25: else
26: MRE ← FindMRE(x, LastObservation, history) % It returns

themost recent event in history that it matches the status and the span
of the event of x in LastObservation;

27: if (MRE ̸= ∅) then
28: Outcome[x] ← NextObservedStatus(x,MRE, history) %

It returns the observed status of the resource x afterMRE
29: else
30: Outcome[x] ← FindStatus(x, LastObservation) % It

returns the status of the resource x in LastObservation
31: end if
32: end if
33: end for
34: return Outcome;

Example 11. Assume LCO.Episode = (CPU, Low) →

(Network,High), LCO.Time = 4999, the current time slot is 5000

Fig. 8. Evaluating the matched episodes in Example 5.

and there is no NICE episode for prediction (Fig. 9(A)). Fig. 9(B)
shows ListLearnedEpisodes. Since α matches Suffix(LCO.Episode, 2)
and β matches Suffix(LCO.Episode, 1), they are selected for predic-
tion. So the first groups of Consequent(α, LCO) and Consequent(β,
LCO) are inserted in PredictionList . As Fig. 9(C) shows, TOP(α, 5000)
= 0.9 and TOP(β, 5000) = 0.62. Note that since α.Last is closer to
the current time slot, it is more credible for prediction. If Ω = 0.8,
then the corresponding entry of β is omitted from PredictionList
and α determines the next status of CPU is Medium. The status of
the other resources is predicted byMRE.

4. Function CreateLEG: The data structure LEG includes the latest
event group of resources [17]. As it was mentioned, the episodes
learned in the onlinemode are serially extended by the concurrent
events group. So, at first, all of the valid combinations of concurrent
events of LEG are identified. In the next step, the episodes are
serially extended by these combinations. For this purpose, the
function CreateLEG proposed in [17] is modified as algorithm 7 in
Appendix A.3.

Example 12. Assume the current time slot is 19, ϵ = 0, δ = ∆ = 1
and µ = 3. So the next status of resources is predicted for the
time slot 20. LastObservation, which includes the latest events of
resources in the stream, is shown in Fig. 10. As Fig. 10 shows,
in the first call of the function CreateLEG, all the resources are
sampled. So the current time slot is 20 now. Based on the status
of sampled resources, LEG includes the latest updated events of
resources. LEG.EventSection includes events whose start time is
in the interval of [LEG.I1 − 1, LEG.I2 − 1] and LEG.PrevtSection
includes events whose start time is before LEG.I1− 1. As the figure
shows, CombList includes all the valid combinations of the events
of LEG.EventSection.

5. Function UpdateMatchedEpisodes: As it was mentioned, in RE-
LENTING, there are two counters Cons and Incons for episodes
extracted in the off-linemode.When an episode such as α matches
LCO, the counters Cons of Antecedent(α, LCO) increase by +1. The
counters Cons and Incons of Consequent(α, LCO) are updated based
on the correspondence between the predicted behaviour and the
observed behaviour. So the function UpdateMatchedEpisodes is
modified in a way that counters of Consequent of the selected
episodes are updated based on the observed behaviour of the
application (see Algorithm 8 in Appendix A.4).

Example 13. Assume ϵ = 0, ∆ = δ = 1 and Fig. 11(A)
and (B) show LCO and NICE episodes used to predict the time
slot 222. Fig. 11(C) and (D) show MatchedAnt and MatchedCons of
the selected episodes. It is clear that α and β predict the status
of CPU and Memory is Low and Medium respectively in the time
slot 222. Note that the counters Cons of Antecedent(α, LCO) and
Antecedent(β, LCO) increase by +1 (the red numbers). Assume
the status of CPU and Memory is Low and High respectively in
the time slot 222. It means that β does not predict the status of

Memory correctly. So the counter Cons of Consequent(α, LCO) and
the counters Incons of Consequent(β, LCO) increase by+1 (the red
numbers). Since the prediction result of α is consistent with LEG,
the first element after ❋ in Consequent of α ((CPU, Low)) is filled
with ❋ and the matching time of α (α.I) is set to 221 (Fig. 11(D)).
Furthermore, β is removed from MatchedAnt and MatchedCons in
the next call of the function UpdateMatchedEpisodes.

5. Evaluation

In [17], we evaluate POSITING on real and synthetic workloads
comprehensively and investigate the impact of different param-
eters on it. According to our evaluation results in [17], the real
workloads are smooth and there is no significant change in the
prediction precision for different parameters settings. So, in this
paper, the main focus of evaluation is on the synthetic workloads.
We generate complicated synthetic and real workloads to evaluate
the ability of RELENTING for online learning. Furthermore, the
effect of the important parameters such asω andΩ on RELENTING
is considered for synthetic workloads. There are some parameters
for RELENTING: δ,∆, ϵ,µ, Level, θ ,ω andΩ . The parameters setting
for the evaluation of RELENTING is as follows:

• ∆ and δ: RELENTING is compared to the state-of-the-art
predictors such as SMA (Simple Moving Average), AR, NN,
HPA and LV (Last Value). Since these methods predict the
status of resources in one certain time slot, we have to set
δ = ∆ to provide the comparable results. The values of δ

depend on the time spent on booting VMs.
• ϵ: As it was mentioned, ϵ should be determined based

on the length of sampling intervals. Since the real work-
loads [40,41] are coarse-grained and the synthetic work-
loads are also generated in a similar way to them, we set
ϵ = 0 in all the experiments.
• µ: We evaluate the impact of µ on the training phase of

POSITING for both real and synthetic workloads in [17].
According to the evaluation results, µ = 3 is a good choice
for synthetic and real workloads.
• θ : It is a threshold value that is used to extract the frequent

episodes. We evaluate the impact of θ on the training phase
of POSITING for both real and synthetic workloads in [17].
According to the evaluation results, for θ = 0.1 there
is a good trade-off between the processing time and the
prediction precision.
• Level: To avoid enlarging the pattern tree, Level limits the

length of episodes. However, a larger value of Level could
lead to extract more useful episodes. So we choose the
mediocre value 6 for it in all the experiments.
• ω: The NICE episodes learned in the off-line mode are se-

lected for prediction based onω. The small values ofω cause
many episodes with low confidence or low consistency to

Fig. 9. An example to predict the future status based on the online learned episodes.

Fig. 10. An example to create LEG and extract all the combinations of the concurrent events.

Fig. 11. Updating NICE episodes selected to predict the time slot 222.

be used for prediction. It could decrease the prediction pre-
cision. On the other hand, the large values of ω cause less
NICE episodes to be used for prediction. So the application
behaviour is learned frequently even if it has not changed
significantly. Therefore, an appropriate value for ω could
provide a good trade-off between the resources consump-
tion of online learning and the prediction precision. The
impact ofω on the number of online episodes is investigated
on synthetic workloads (see Appendix B).
• Ω: The online learned episodes are selected for prediction

based on Ω . The small values of Ω cause many online
episodes with low credibility to be used for prediction. It
could decrease the prediction precision. On the other hand,
the large values of Ω cause less online episodes to be used
for prediction and the future behaviour to be predicted
based on MRE frequently when there is no NICE episode.
Therefore, an appropriate value for Ω could provide more
reliable results. The impact of Ω on the prediction precision
is evaluated on synthetic workloads (see Appendix B).

According to the effective utilization reported for resources in
some literature such as [42,43], we define the abstraction alphabet

Table 3
The abstraction alphabet for the abstraction representation [17].

Abstract value Very low Low Medium High

Range [0, 20%) [20%, 50%) [50%, 80%) [80%, 1]

as Table 3 [17]. Note that this alphabet is not unique. In a similar
way to [17], RELENTING is also compared with the state-of-the-
art methods such as NN, SMA, LR, HPA and LV. These methods are
based on the sliding window. If the current time slot is t and the
length of the sliding window is h > 0, each entry xij, 1 ≤ i ≤
N, t − 1 ≤ j ≤ t − h of the window is the status of the resource
Ri in the time slot j. Based on the sliding window, each method is
implemented as follows:

• NN: In most of the literature such as [6,9,10], the typical
three-layer neural network is used for prediction. The neu-
rons of the input layer take the information of the sliding
window as input variables and nodes of the output layer
predict the future status of resources. So the number of
the nodes of the input and the output layers is h × N and
N respectively. The length of the sliding window (h) and

Table 4
The types of basic synthetic workloads and their embedded episodes.

Embedded episodes Type of the synthetic workload

α : (Memory, Low)(Disk, Verylow)→ (CPU, Low)(Network,High) SWT1
β : (CPU, Low)(Network, Low)→ (Memory,High)(Disk,Medium)→
(CPU,High), (Network,Medium)

SWT2

α : (Memory, Low)(Disk, Verylow)→ (CPU, Low)(Network,High) SWT3
β : (CPU, Low)(Network, Low)→ (Memory,High)(Disk,Medium)→
(CPU,High), (Network,Medium)

the number of nodes in the hidden layer (Nodes) are two
effective parameters of NNs that they should be selected
carefully [17]. To select the parameters, for each pair of
(h,Nodes), the average precision of 5 runs of NN is consid-
ered.
• SMA: In much literature such as [6,44], SMA is used as a

naive predictor for evaluation. For the current time slot t and
the resource Ri, 1 ≤ i ≤ N , SMA predicts the next status of

Ri based on the sliding window as xit =
∑h

j=1xi(t−j)
h .

• LR: Yang et al. in [12] propose a linear regression model
to predict the workload. According to the workload fluc-
tuations in the sliding window, their method adjusts itself
through the re-computation of parameters of the regression
model. It means that this method has the ability of online
learning. The authors show their method provides more
reliable results than common regression based methods.
• HPA: Jiang et al. in [6] propose a hybrid approach for the

future demand prediction of VMs and the capacity planning.
They use several prediction models to predict the future
workload. The results predicted by different methods are
merged by a weighted linear combination strategy. The
initial weights of predictors are equal. According to the
prediction error of the methods, the weights are updated.
Updating weights based on the prediction error implies
that the method adjusts itself according to the workload
variations. To implement this method, we use SMA, NN and
LR as predictors.
• LV: the LV predictor is perhaps the simplest prediction

method. The LV predictor assumes that the most recent ob-
served behaviour is representative of the future application
behaviour [45]. Indeed, LV is a type of SMA that h is set to 1.

Since the parameters have a significant effect on the prediction
results of the predictors [5], each method is evaluated by using
different values of its parameters and the best parameters are
determined to provide a fair comparison. For SMA and AR, the
length of the sliding window and for NN, the number of nodes in
the hidden layer and the length of the sliding window are consid-
ered. Note that these methods receive the numerical time series
and predict the future status of resources as numeral. To compare
RELENTING with these methods, the final results predicted by the
predictors are converted into the abstract values by using a simple
mapping function [17].

Without loss of generality, we assume that each application is
encapsulated inside one VM as it is reported in much literature
such as [6,27,46]. In a similar way to the real workloads used to
evaluate POSITING in [17], the trace of each VM is generated for
one month. For each VM, the stream is constructed on the first
15 days of the month. The closed episodes are extracted from the
stream by calling algorithm AllEpisodes [17]. In the last 15 days of
the month, the future behaviour of the application is predicted by
calling algorithm 3. Note that when the prediction is performed,
counters CorrectCount and PredictionCount are updated based on
the predicted results [17]. Finally, the final precision of POSITING
is computed as follows:

Precision =
CorrectCount

PredictionCount
. (5.1)

The time it takes to instantiate a new VM instance is about 5–
15 min [47]. On the other hand, in a similar way to the real
workloads used in [17], we assume VMs are sampled every 5 min.
So three values 1,2 and 3 are evaluated for δ. Section 5.1 explains
how the complicated synthetic and real workloads are generated.
Section 5.2 compares the precision of RELENTING with the other
methods’ on the synthetic and real workloads. Finally, the ability
of RELENTING to learn the new behaviour of the application is
considered in Section 5.3.

5.1. Complicated real and synthetic workloads

In this section we explain how the complicated workloads are
generated from the real and synthetic workloads.

The complicated real workloads: Since the workloads of the data
set GWA-T-122 Bitbrains are more dynamic than the other public
workloads [48], in a similar way to [17], we use these workloads
to generate the complicated real workloads. The complicated real
workloads are a combination of the different real workloads. To
generate a complicated real workload, three real workloads are
selected randomly, two cut-points are randomly chosen in the
interval of [2500, 3100] and [4200, 6500] respectively and the real
workloads merge together based on the cut-points. For each value
of δ, we generate three complicated real workloads.

The complicated syntheticworkloads: In a similarway to thedata
set GWA-T-12 Bitbrains, the synthetic workloads are generated
for one month with the sampling intervals of 5 min. So there are
8640 time slots for each generated trace. The synthetic workload
generator used in this paper is the same as the workload generator
employed in [17]. Table 4 shows the types of the generated basic
synthetic workloads and their corresponding embedded episodes.
In [17], we define σ as the gap between each two consecutive CNGs
and perform the comprehensive experiments on the different val-
ues of σ . Since the main focus of RELENTING is on online learning,
σ is set to 1 in all the synthetic workloads. We generate compli-
cated workloads, which are a combination of the different types of
the basic workloads. To generate the complicated workloads, the
basic workloads are generated, cut-points are randomly selected
in the interval of [4321, 7000] because we want to simulate a
situation that the application behaviour changes after the episode
extraction, and the basic workloads merge together based on the
cut-points. Table 5 describes the complicated synthetic workloads.
For example, VMComb1 is composed of the workload type SWT1
until the time slot 4360 and SWT2 after that. As the table shows,
eight complicated workloads are generated by using the basic
workloads. For each type of workloads, three experiments with
different values of δ are conducted.

5.2. Experimental results

In this section, the precision of RELENTING on the complicated
workloads is compared to the other methods’. According to the

2 These traces can be accessed at http://gwa.ewi.tudelft.nl/datasets/Bitbrains.

http://gwa.ewi.tudelft.nl/datasets/Bitbrains

Fig. 12. The average precision of RELENTING and the other methods for δ = 1, 2, 3 on the complicated real workloads.

Table 5
The complicated synthetic workloads generated to evaluate RELENTING.

Name Cut-point Description

VMComb1 4360 SWT1→ SWT2
VMComb2 4580 SWT1→ SWT3
VMComb3 5614 SWT2→ SWT1
VMComb4 5398 SWT2→ SWT3
VMComb5 6312 SWT3→ SWT1
VMComb6 6097 SWT3→ SWT2
VMComb7 5000,6800 SWT1→ SWT3→ SWT2
VMComb8 5200,6700 SWT2→ SWT3→ SWT1

experiment results reported in [17] and Appendix B, we set θ =
0.1, µ = 3, ω = 0.8 and Ω = 0.8 in all the experiments.

The complicated real workloads: For each value of δ, we generate
three complicated real workloads and report only the average pre-
cision due to space limitation. Fig. 12 shows the average precision
of RELENTING, NN, SMA, LR, HPA and LV on the predicted results
of the complicated real workloads for different values of δ. As it is
shown in the figure, the precision of all the methods is more than
0.7. RELENTING, SMA, LR and LV provide the most accurate results.
As the results show, since the real workloads are smooth [17],
the complicated real workloads are also almost smooth. So the
simple predictors such as SMA, LR and LV could also provide the
reliable results. NN has the smallest precision compared to the
other methods. It also causes the precision of HPA to decrease.
It implies that NN should be retrained to adapt to the workload
changes even if the changes are soft.

VMComb1: This trace is composed of two different workload
types SWT1 and SWT2. According to Table 5, the behavioural
pattern of this trace changes after the time slot 4360 completely.
Fig. 13 shows the prediction precision of RELENTING and the other
methods. Since data used to trainNNdoes not cover the application
behaviour after the training phase, NN could not provide reliable
results. LR, LV, SMA andHPA providemore reliable results thanNN.
As it is observed, RELENTING provides themost accurate results for
this sudden change of behavioural patterns.

VMComb2: This trace is composed of two different workload
types SWT1 and SWT3. According to Table 5, a new behavioural
pattern occurs after the time slot 4580. Fig. 14 shows the prediction
precision of RELENTING and the other methods. Unlike VMComb1,
the application behaviour after the training phase doest not change
completely. So NN provides more reliable results for VMComb2
compared to VMComb1. Like VMComb1, LR, LV, SMA and HPA pro-
vide better results compared to NN. The precision of RELENTING is
better than the other methods’.

VMComb3: This trace is composed of two different workload
types SWT2 and SWT1. According to Table 5, the behavioural
pattern β changes to the pattern α after the time slot 5614. Fig. 15
shows the prediction precision of RELENTING and the other meth-
ods. Since the behavioural pattern of VMComb3 in the training

phase changes to a simpler pattern, NN provides better results
compared to VMComb1. The other methods provide the similar
results and RELENTING outperforms them.

VMComb4: This trace is composed of two different workload
types SWT2 and SWT3. According to Table 5, in addition to the
behavioural pattern β , the pattern α occurs after the time slot
5398. Fig. 16 compares the prediction precision of RELENTING
with the other methods’. Compared to VMComb3, in this trace, the
behavioural pattern does not change completely. So NN provides
better results for VMComb4 compared to VMComb3. Furthermore,
the figure implies the predictors such as SMA, LV and LR, which
are based on the recent behaviour of the application, do not al-
ways provide more precise results than NN. As the figure shows,
RELENTING provides the most precise results for different values
of δ.

VMComb5: According to Table 5, in this trace, the behavioural
pattern β vanishes after the time slot 6312 and only the episode
α occurs. Fig. 17 shows the prediction precision of all the predic-
tors. Due to the smoothness of the workload in the test phase,
the predictors SMA, LR, LV and HPA provide more precise results
than NN. Since the application behaviour in the training phase
is different from the test phase’s, NN could not provide reliable
results. According to the figure, RELENTING outperforms all the
predictors.

VMComb6: This trace is composed of two different workload
types SWT3 and SWT2. As Table 5 shows, in this trace, the be-
havioural pattern α vanishes after the time slot 6097 and only the
episode β occurs. Fig. 18 shows the precision of RELENTING and
the other predictors. Since the workload variations of this trace are
more than VMComb5’s , the prediction precision of SMA, LR, LV and
HPA is less for this trace compared to VMComb5. Therefore, for this
trace, due to the similarity between the application behaviour in
the test and the training phases, NN provides more precise results
than SMA, LV, HPA and LR. RELENTING also outperforms all the
predictors.

VMComb7: This trace is composed of three workload types
SWT1, SWT3 and SWT2. As Table 5 shows, in addition to α, the
behavioural pattern β occurs after the time slot 5000. After the
time slot 6800, the episode α vanishes and only the episode β
occurs. Fig. 19 shows the prediction precision of the predictors.
Since the application behaviour in a short period of the test phase is
completely different from the application behaviour in the training
phase, NN provides the most precise results after RELENTING. Due
to high workload dynamics in the test phase, the predictors SMA,
LR, LV and HPA could not provide reliable results.

VMComb8: This trace is composed of three workload types
SWT2, SWT3 and SWT1. According to Table 5, in addition to β ,
the behavioural pattern α occurs after the time slot 5200. After
the time slot 6700, the episode β vanishes and only the episode α
occurs. Fig. 20 compares the prediction precision of the predictors.
Since the workload fluctuations in the test phase of this trace

Fig. 13. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb1.

Fig. 14. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb2.

Fig. 15. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb3.

Fig. 16. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb4.

are less than VMComb7’s , the predictors SMA, LR, LV and HPA
providemore reliable results. NN provides the same precise results
as VMComb7’s. Furthermore, RELENTING outperforms the other
predictors.

TheResults Summary:According to the experiment results, we
summarize the following points about the predictors:

• NN is a discriminative learning approach. So it needs much
training data [49]. As the experiment results show, if data

Fig. 17. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb5.

Fig. 18. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb6.

Fig. 19. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb7.

Fig. 20. The prediction precision of RELENTING and the other methods for δ = 1, 2, 3 on VMComb8.

used to train NN does not cover the application behaviour
after the training phase, NN could not provide the reliable
results. To adapt to the workload changes, NN should be

retrained using new data. For this purpose, sufficient train-
ing data should be gathered, which might be time con-
suming. Furthermore, the delays of the parameters setting

for NN and its learning phase might lead to drastic loss in
cloud.
• SMA and LV do not consider the application behaviour in the

past and only focus on the recent behaviour of the applica-
tion. According to the experiment results, SMA and LV pre-
dict the complicated real workloads accurately. However,
they do not provide reliable results for VMComb1, VMComb6
and VMComb7. All of these synthetic traces are composed
of SWT2 in their test phase. Since the episode β leads to
generatemore dynamicworkloads compared to the episode
α, it is evidence that these predictors are not appropriate for
dynamic workloads.
• LR adjusts itself through the re-computation of the param-

eters of the regression model according to the workload
fluctuations in the sliding window. Although LR has the
ability of learning, its reliance is based on the oversimplified
assumptions of the workload (the linear relationship). Fur-
thermore, LR considers only theworkload fluctuations in the
sliding window and ignores the correlation between differ-
ent resources. According to the experiment results, although
LR predicts the smooth workloads (complicated real work-
loads) reliably, it cannot capture the behavioural changes of
dynamicworkloads (complicated synthetic workloads) very
well.
• HPA Updates its weights based on the prediction error. It

implies that HPA adjusts itself according to the workload
variations. Since HPA is a hybrid approach, a weak predictor
could lead to unreliable results. According to the experiment
results, in the best case, the prediction results of HPA are the
same precise as its best predictor’s.
• In addition to the advantages of POSITING such as extracting

the behavioural patterns of workloads independently of the
fixed pattern length explicitly and considering the corre-
lation between different resources, RELENTING tackles the
inability of POSITING to adapt to the behavioural changes. As
the experiment results show, RELENTINGpredicts the future
behaviour of the resources reliably for both of the smooth
workloads (complicated real workloads) and the dynamic
workloads (complicated synthetic workloads). It learns the
new behavioural patterns and updates the closed episodes
extracted in the off-line mode.

5.3. The ability of RELENTING for online learning

To investigate the ability of RELENTING to learn the new be-
haviour of the application, the closed episodes describing the new
behaviour are extracted by calling the algorithm AllEpisodes in [17]
and compared with the episodes learned by RELENTING. Note that
the algorithm AllEpisodes extracts the closed episodes and RE-
LENTING learns both of the offline closed episodes and the online
episodes. We introduce a criterion, called Covering Percentage
(CP), to measure how much the episodes learned by RELENTING
cover the new behaviour of the application. A higher value of CP
indicates the more ability of RELENTING to learn the behavioural
patterns of the application.

Definition 17. Given the pattern base PB and the closed episode
α = G′1 → · · · → G′k, if the continuous sub-episode G′i → G′i+1 →
· · · → G′j, 1 ≤ i < j ≤ k, is an episode of PB, then eachG′t , i ≤ t ≤ j,
is absorbed by PB. Absorb(α, PB) implies the number of CNGs of α

that they are absorbed by PB.

Definition 18. If ClosedEpisodes is a set of closed episodes ex-
tracted from the test part of the trace, |ClosedEpisodes| = P and

OfflineOnlineEpisodes is a set of the offline and the online episodes
learned by RELENTING, then CP is defined as follows:

CP =

∑P
i=1

Absorb(ClosedEpisodes[i],OfflineOnlineEpisodes)
|CNGClosedEpisodes[i]|

P
. (5.2)

Table 6 shows the ability of RELENTING to learn the new
behaviour of the synthetic workloads (CP), the number of the
closed episodes extracted from the test part of the traces
(|ClosedEpisodes|), the number of the episodes extracted in the on-
linemode (|OnlineEpisodes|) and the number of the closed episodes
extracted in the offline mode (|OfflineEpisodes|). As it is observed,
for all the synthetic traces and all the values of δ, RELENTING
is able to learn the application behaviour very well. Since RE-
LENTING extracts the closed episodes in the offline mode and the
episodes in the online mode, it is clear that |ClosedEpisodes| is
much fewer than |OnlineEpisodes|+|OfflineEpisodes|. Furthermore,
ClosedEpisodes are extracted for θ = 0.1 meanwhile RELENTING
extracts OnlineEpisodes independently of their frequency. There-
fore, it might extract episodes with low frequencies.

According to the experiment results, RELENTING provides the
reliable prediction results and learns the new behavioural pat-
terns in reasonable time and space complexities. So, an efficient
resources management plan could fulfil SLA and prevent the re-
sources wasting [5]. Thus, the energy consumption and the opera-
tional cost decrease. It is clear that the reduction of the energy con-
sumption leads to decrease carbon emissions, which could facili-
tate green cloud computing [50]. Furthermore, based on the work-
load prediction and SLA, an energy optimization technique could
balance the energy efficiency and performance requirements [51].

6. Conclusion and future work

The future demand prediction is an indispensable step for the
rapid elasticity implementation and the effective resource pro-
visioning in cloud. Most of the prevalent predictors such as NN
and LR cannot extract all the useful patterns whose length is
less/more than the fixed length. Our previous predictor, POSIT-
ING, considers the correlation between different resources and
extracts behavioural patterns of applications independently of the
fixed pattern length explicitly. Although the cloud environment
is dynamic and is changing continuously, POSITING and the other
predictors are not able to adapt to the workload changes. To tackle
this issue, we develop POSITING and propose RELENTING, which
learns the behavioural changes of the application and improves
its knowledge about the application behaviour. Thus, in addition
to the advantages of POSITING such as accurate and interpretable
results, RELENTING fulfils adaptability. To model online learning,
RELENTING compares the predicted results with the observed be-
haviour and updates the criterion Consistency of episodes extracted
in the off-line mode. If there is no NICE episode for prediction,
based on the recent and the current observed behaviour of the
application, the new behavioural patterns are identified. RELENT-
ING employs both of the patterns learned in the online and the
off-line modes for prediction. The experiment results show that
RELENTING outperforms the state-of-the-art predictors and learns
the new behavioural patterns very well.

Although RELENTING identifies the new behavioural patterns,
it does not provide the precise information about episodes. For
example, RELENTING only determines the number of references
to episodes, not their NO frequency. Thus, recognizing the closed
episodes in the online mode is not possible. We plan to improve
RELENTING in away that it could providemore precise information
about the episodes. Furthermore, some criteria could be defined
to identify and prune the inefficient online episodes. Thus, time
and space complexities of RELENTING are improved. RELENTING
could also be customized for different fields due to its ability for

Table 6
The ability of RELENTING to learn the new behaviour of synthetic workloads for different values of δ.

δ Trace |ClosedEpisodes| |OnlineEpisodes| |OfflineEpisodes| CP

1

VMComb1 462 2421 363 1
VMComb2 636 5247 637 1
VMComb3 789 4201 979 1
VMComb4 195 2539 462 0.996
VMComb5 485 3234 330 1
VMComb6 570 2913 523 1
VMComb7 126 4267 637 1
VMComb8 340 2788 979 1

2

VMComb1 397 3559 523 1
VMComb2 539 5728 460 1
VMComb3 741 5022 1488 1
VMComb4 178 3564 408 0.966
VMComb5 351 4215 331 1
VMComb6 545 4426 430 1
VMComb7 131 4957 460 1
VMComb8 337 3802 1488 1

3

VMComb1 416 5258 294 1
VMComb2 656 7566 442 1
VMComb3 1620 8289 821 0.999
VMComb4 284 6209 452 0.933
VMComb5 447 7258 447 1
VMComb6 620 6779 691 1
VMComb7 921 7115 442 1
VMComb8 450 7590 821 1

online leaning and extracting the patterns explicitly. For example,
in [52], for the deployment of replica servers in virtual content
distribution networks, the correlations between the node pairs
could be extracted explicitly. Furthermore, the dynamic placement
problem for replica servers could be considered based on online
learning.

Acknowledgment

The GWA-T-12 Bitbrains traces are provided by Bitbrains IT Ser-
vices Inc., which is a service provider that specializes in managed
hosting and business computation for enterprises. We thank the
GWA team and all those who have graciously provided the data for
us.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.future.2018.04.044.

References

[1] D. Petcu, J.L. Vzquez-Poletti, European Research Activities in Cloud Com-
puting, Cambridge Scholars Publishing, 2012, p. 350. ISBN 1443835072,
9781443835077.

[2] B. Gupta, D.P. Agrawal, S. Yamaguchi, Handbook of Research on Modern
Cryptographic Solutions for Computer and Cyber Security, first ed., IGI Global,
Hershey, PA, USA, 2016. ISBN 1522501053, 9781522501053.

[3] M. Al-Ayyoub, S. AlZu’bi, Y. Jararweh, M.A. Shehab, B.B. Gupta, Accelerating 3d
medical volume segmentation using gpus, Multimedia Tools Appl. (ISSN:
1573-7721) 77 (4) (2018) 4939–4958. http://dx.doi.org/10.1007/
s11042-016-4218-0.

[4] N.R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud computing: what it
is, and what it is not, in: The 10th International Conference on Autonomic
Computing ICAC 2013, San Jose, CA, USA, 2013.

[5] M. Amiri, L. Mohammad-Khanli, Survey on prediction models of applications
for resources provisioning in cloud, J. Netw. Comput. Appl. (ISSN: 1084-8045)
82 (2017) 93–113. http://dx.doi.org/10.1016/j.jnca.2017.01.016.

[6] Y. Jiang, C.-S. Perng, T. Li, R.N. Chang, Cloud analytics for capacity planning and
instant VM provisioning, IEEE Trans. Network Serv. Manage. 10 (3) (2013) 312–
325.

[7] V. Chang, The business intelligence as a service in the cloud, Future Gener.
Comput. Syst. (ISSN: 0167-739X) 37 (2014) 512–534. http://dx.doi.org/10.
1016/j.future.2013.12.028.

[8] G. Sun, D. Liao, D. Zhao, Z. Sun, V. Chang, Towards provisioning hybrid vir-
tual networks in federated cloud data centers, Future Gener. Comput. Syst.
(ISSN: 0167-739X) (2017). http://dx.doi.org/10.1016/j.future.2017.09.065.

[9] K. Cetinski, M.B. Juric, AME-WPC: Advanced model for efficient workload
prediction in the cloud, J. Netw. Comput. Appl. 55 (2015) 191–201. http://dx.
doi.org/10.1016/j.jnca.2015.06.001.

[10] M. Amiri, M.R. Feizi-Derakhshi, L. Mohammad-Khanli, IDS fitted Q improve-
ment using fuzzy approach for resource provisioning in cloud, J. Intell. Fuzzy
Syst. 32 (1) (2017) 229–240. http://dx.doi.org/10.3233/JIFS-151445.

[11] P. Altevogt, W. Denzel, T. Kiss, Cloud modeling and simulation, in: Encyclopedia
of Cloud Computing, Wiley-IEEE Press, ISBN: 978-1-118-82197-8, 2016.

[12] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, J. Chen, A cost-aware
auto-scaling approach using the workload prediction in service clouds, Inf.
Syst. Front. (ISSN: 1387-3326) 16 (1) (2014) 7–18. http://dx.doi.org/10.1007/
s10796-013-9459-0.

[13] P. Shi, H. Wang, G. Yin, F. Lu, T. Wang, Prediction-based federated management
of multi-scale resources in cloud, Adv. Inf. Sci. Serv. Sci. 4 (6) (2012) 324–334.

[14] A. Matsunaga, J.A.B. Fortes, On the use of machine learning to predict the time
and resources consumed by applications, in: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
IEEE Computer Society, Melbourne, Victoria, Australia, 2010, pp. 495–504.
http://dx.doi.org/10.1109/CCGRID.2010.98.

[15] Z. Chen, Y. Zhu, Y. Di, S. Feng, Self-adaptive prediction of cloud resource
demands using ensemble model and subtractive-fuzzy clustering based fuzzy
neural network, Comput. Intell. Neurosci. (ISSN: 1687-5265) 2015 (2015).
http://dx.doi.org/10.1155/2015/919805.

[16] S. Di, D. Kondo, W. Cirne, Google hostload prediction based on Bayesian model
with optimized feature combination, J. Parallel Distrib. Comput. (ISSN:
0743-7315) 74 (1) (2014) 1820–1832. http://dx.doi.org/10.1016/
j.jpdc.2013.10.001.

[17] M. Amiri, L. Mohammad-Khanli, R. Mirandola, A sequential pattern mining
model for application workload prediction in cloud environment, J. Netw.
Comput. Appl. (ISSN: 1084-8045) 105 (2018) 21–62. http://dx.doi.org/10.
1016/j.jnca.2017.12.015.

[18] X. Liu, X. Zhu, S. Singhal, M. Arlitt, Adaptive entitlement control of resource
containers on shared servers, in: 2005 9th IFIP/IEEE International Symposium
on Integrated Network Management, 2005. IM 2005, Nice, France, 2005, pp.
163–176, http://dx.doi.org/10.1109/INM.2005.1440783.

[19] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance in-
terference effects for qos-aware clouds, in: Proceedings of the 5th European
Conference on Computer Systems, in: EuroSys ’10, ACM, Paris, France, 2010,
pp. 237–250. http://dx.doi.org/10.1145/1755913.1755938.

[20] H. Wu, W. Zhang, J. Zhang, J. Wei, T. Huang, A benefit-aware on-demand
provisioning approach for multi-tier applications in cloud computing, Front.
Comput. Sci. (ISSN: 2095-2228) 7 (4) (2013) 459–474. http://dx.doi.org/10.
1007/s11704-013-2201-8.

[21] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, K. Shin, What
does control theory bring to systems research?, SIGOPS - Oper. Syst. Rev.
(ISSN: 0163-5980) 43 (1) (2009) 62–69. http://dx.doi.org/10.1145/1496909.
1496922.

[22] J. Cao, W. Zhang, W. Tan, Dynamic control of data streaming and processing in
a virtualized environment, IEEE Trans. Autom. Sci. Eng. 9 (2) (2012) 365–376.

https://doi.org/10.1016/j.future.2018.04.044
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb2
http://dx.doi.org/10.1007/s11042-016-4218-0
http://dx.doi.org/10.1007/s11042-016-4218-0
http://dx.doi.org/10.1007/s11042-016-4218-0
http://dx.doi.org/10.1016/j.jnca.2017.01.016
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb6
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb6
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb6
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb6
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb6
http://dx.doi.org/10.1016/j.future.2013.12.028
http://dx.doi.org/10.1016/j.future.2013.12.028
http://dx.doi.org/10.1016/j.future.2013.12.028
http://dx.doi.org/10.1016/j.future.2017.09.065
http://dx.doi.org/10.1016/j.jnca.2015.06.001
http://dx.doi.org/10.1016/j.jnca.2015.06.001
http://dx.doi.org/10.1016/j.jnca.2015.06.001
http://dx.doi.org/10.3233/JIFS-151445
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb11
http://dx.doi.org/10.1007/s10796-013-9459-0
http://dx.doi.org/10.1007/s10796-013-9459-0
http://dx.doi.org/10.1007/s10796-013-9459-0
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb13
http://dx.doi.org/10.1109/CCGRID.2010.98
http://dx.doi.org/10.1155/2015/919805
http://dx.doi.org/10.1016/j.jpdc.2013.10.001
http://dx.doi.org/10.1016/j.jnca.2017.12.015
http://dx.doi.org/10.1016/j.jnca.2017.12.015
http://dx.doi.org/10.1016/j.jnca.2017.12.015
http://dx.doi.org/10.1109/INM.2005.1440783
http://dx.doi.org/10.1145/1755913.1755938
http://dx.doi.org/10.1007/s11704-013-2201-8
http://dx.doi.org/10.1007/s11704-013-2201-8
http://dx.doi.org/10.1007/s11704-013-2201-8
http://dx.doi.org/10.1145/1496909.1496922
http://dx.doi.org/10.1145/1496909.1496922
http://dx.doi.org/10.1145/1496909.1496922
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb22
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb22
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb22

[23] P. Lama, X. Zhou, Autonomic provisioning with self-adaptive neural fuzzy
control for end-to-end delay guarantee, in: Proceedings of IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and Telecommu-
nication Systems (MASCOTS), San Francisco, California, US, 2013.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, T. Wood, Agile dynamic
provisioning of multi-tier Internet applications, ACM Trans. Auton. Adapt.
Syst. (ISSN: 1556-4665) 3 (1) (2008) 1–39. http://dx.doi.org/10.1145/1342171.
1342172.

[25] M.N. Bennani, D.A. Menasce, Resource allocation for autonomic data centers
using analytic performance models, in: Proceedings of the Second Interna-
tional Conference on Automatic Computing, in: ICAC ’05, IEEE Computer Soci-
ety, Washington, DC, USA, 2005, pp. 229–240. http://dx.doi.org/10.1109/icac.
2005.50.

[26] Q. Zhang, L. Cherkasova, E. Smirni, A regression-based analytic model for
dynamic resource provisioning of multi-tier applications, in: Proceedings of
the Fourth International Conference on Autonomic Computing, ICAC ’07, pp.
27–27, Jacksonville, Florida, USA, 2007. http://dx.doi.org/10.1109/ICAC.2007.
1.

[27] S.K. Garg, A.N. Toosi, S.K. Gopalaiyengar, R. Buyya, SLA-based virtual machine
management for heterogeneous workloads in a cloud datacenter, J. Netw.
Comput. Appl. (ISSN: 1084-8045) 45 (2014) 108–120. http://dx.doi.org/10.
1016/j.jnca.2014.07.030.

[28] I. Batal, G.F. Cooper, D. Fradkin, Jr., J. Harrison, F. Moerchen, M. Hauskrecht, An
efficient pattern mining approach for event detection in multivariate temporal
data, Knowl. Inf. Syst. (ISSN: 0219-1377) 46 (1) (2016) 115–150. http://dx.doi.
org/10.1007/s10115-015-0819-6.

[29] H. Mannila, H. Toivonen, A. Inkeri Verkamo, Discovery of frequent episodes
in event sequences, Data Min. Knowl. Discov. (ISSN: 1573-756X) 1 (3) (1997)
259–289. http://dx.doi.org/10.1023/A:1009748302351.

[30] S. Laxman, P.S. Sastry, K.P. Unnikrishnan, Discovering frequent episodes and
learning hidden markov models: A formal connection, IEEE Trans. Knowl. Data
Eng. (ISSN: 1041-4347) 17 (11) (2005) 1505–1517. http://dx.doi.org/10.1109/
TKDE.2005.181.

[31] K. Hwang, X. Bai, Y. Li, M. Shi, W.G. Chen, Y. Wu, Cloud performance modeling
and benchmark evaluation of elastic scaling strategies, IEEE Trans. Parallel
Distrib. Syst. 27 (1) (2016) 130–143. http://dx.doi.org/10.1109/TPDS.2015.
2398438.

[32] S. Gupta, B.B. Gupta, Xss-secure as a service for the platforms of online so-
cial network based multimedia web applications in cloud, Multimedia Tools
Appl. (ISSN: 1573-7721) 77 (4) (2018) 4829–4861. http://dx.doi.org/10.1007/
s11042-016-3735-1.

[33] X. Yan, J. Han, R. Afshar, CloSpan: Mining: Closed sequential patterns in large
datasets, in: Proceedings of the 2003 SIAM International Conference on Data
Mining, San Francisco, CA, USA, pp. 166–177, 2003. http://dx.doi.org/10.1137/
1.9781611972733.15.

[34] N. Tatti, B. Cule, Mining closed strict episodes, Data Min. Knowl. Discov.
(ISSN: 1384-5810) 25 (1) (2012) 34–66. http://dx.doi.org/10.1007/s10618-
11-0232-z.

[35] X. Ao, P. Luo, C. Li, F. Zhuang, Q. He, Online frequent episode mining, in: 2015
IEEE 31st International Conference on Data Engineering, pp. 891–902, 2015,
http://dx.doi.org/10.1109/ICDE.2015.7113342.

[36] M. Ibtihal, E.O. Driss, N. Hassan, Homomorphic encryption as a service
for outsourced images in mobile cloud computing environment, Internat.
J. Cloud Appl. Comput. 7 (2) (2017) 27–40. http://dx.doi.org/10.4018/IJCAC.
2017040103.

[37] M.A. Alsmirat, Y. Jararweh, I. Obaidat, B.B. Gupta, Internet of surveillance:
a cloud supported large-scale wireless surveillance system, J. Supercomput.
(ISSN: 1573-0484) 73 (3) (2017) 973–992. http://dx.doi.org/10.1007/s11227-
16-1857-x.

[38] D. Chiras, Human Biology, Jones & Bartlett Learning, ISBN: 9780763783457,
2011.

[39] R. Weingartner, G.B. Brascher, C.B. Westphall, Cloud resource management: A
survey on forecasting and profiling models, J. Netw. Comput. Appl. 47 (2015)
99–106.

[40] M. Alam, K.A. Shakil, S. Sethi, Analysis and clustering of workload in google
cluster trace based on resource usage, CoRR, abs/1501.01426, 2015.

[41] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D.H. Epema, The
grid workloads archive, Future Gener. Comput. Syst. (ISSN: 0167-739X) 24 (7)
(2008) 672–686. http://dx.doi.org/10.1016/j.future.2008.02.003.

[42] S. Xi, C. Li, C. Lu, C.D. Gill, M. Xu, L.T.X. Phan, I. Lee, O. Sokolsky, RT-open
stack: Cpu resource management for real-time cloud computing, in: 2015
IEEE 8th International Conference on Cloud Computing, pp. 179–186, 2015.
http://dx.doi.org/10.1109/CLOUD.2015.33.

[43] Utilization. http://dx.doi.org/h17007.www1.hpe.com/device_help/HPJ3298A/
utilization.htm (Accessed: 06-06-17).

[44] C. Vazquez, R. Krishnan, E. John, Time series forecasting of cloud data center
workloads for dynamic resource provisioning, J. Wirel. Mobile Netw. Ubiqui-
tous Comput. Dep. Appl. (JoWUA) 6 (3) (2015) 87–110.

[45] R. Sarikaya, C. Isci, A. Buyuktosunoglu, Runtime application behavior predic-
tion using a statistical metric model, IEEE Trans. Comput. (ISSN: 0018-9340)
62 (3) (2013) 575–588. http://dx.doi.org/10.1109/TC.2012.25.

[46] J. Jheng, F. Tseng, H. Chao, L. Chou, A novel vm workload prediction using
grey forecasting model in cloud data center, in: The International Conference
on Information Networking 2014 (ICOIN2014), 2014, pp. 40–45, http://dx.doi.
org/10.1109/ICOIN.2014.6799662.

[47] A. Li, X. Yang, S. Kandula, M. Zhang, CloudCmp: Comparing public cloud
providers, in: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, in: IMC ’10, ACM, Melbourne, Australia, ISBN:
978-1-4503-0483-2, 2010, pp. 1–14. http://
dx.doi.org/10.1145/1879141.1879143.

[48] S. Shen, V. v. Beek, A. Iosup, Statistical characterization of business-critical
workloads hosted in cloud datacenters, in: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 465–474,
http: //dx.doi.org/10.1109/CCGrid.2015.60.

[49] B. Liu, G.I. Webb, Generative and discriminative learning, in: C. Sammut, G.I.
Webb (Eds.), Encyclopedia of Machine Learning, Springer US, Boston, MA,
ISBN: 978-0-387-30164-8, 2010, pp. 454–455. http://dx.doi.org/10.1007/978-
1-387-30164-8_332.

[50] J. Shuja, R.W. Ahmad, A. Gani, A.I. Abdalla Ahmed, A. Siddiqa, K. Nisar, S.U. Khan,
A.Y. Zomaya, Greening emerging IT technologies: techniques and practices,
J. Internet Serv. Appl. (ISSN: 1869-0238) 8 (1) (2017) 9. http://dx.doi.org/10.
1186/s13174-017-0060-5.

[51] J. Shuja, K. Bilal, S.A. Madani, M. Othman, R. Ranjan, P. Balaji, S.U. Khan, Survey
of techniques and architectures for designing energy-efficient data centers,
IEEE Syst. J. (ISSN: 1932-8184) 10 (2) (2016) 507–519. http://dx.doi.org/10.
1109/JSYST.2014.2315823.

[52] G. Sun, V. Chang, G. Yang, D. Liao, The cost-efficient deployment of replica
servers in virtual content distribution networks for data fusion, Inform. Sci.
(ISSN: 0020-0255) 432 (2018) 495–515. http://dx.doi.org/10.1016/j.ins.2017.
08.021.

http://dx.doi.org/10.1145/1342171.1342172
http://dx.doi.org/10.1145/1342171.1342172
http://dx.doi.org/10.1145/1342171.1342172
http://dx.doi.org/10.1109/icac.2005.50
http://dx.doi.org/10.1109/icac.2005.50
http://dx.doi.org/10.1109/icac.2005.50
http://dx.doi.org/10.1109/ICAC.2007.1
http://dx.doi.org/10.1109/ICAC.2007.1
http://dx.doi.org/10.1109/ICAC.2007.1
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1007/s10115-015-0819-6
http://dx.doi.org/10.1007/s10115-015-0819-6
http://dx.doi.org/10.1007/s10115-015-0819-6
http://dx.doi.org/10.1023/A:1009748302351
http://dx.doi.org/10.1109/TKDE.2005.181
http://dx.doi.org/10.1109/TKDE.2005.181
http://dx.doi.org/10.1109/TKDE.2005.181
http://dx.doi.org/10.1109/TPDS.2015.2398438
http://dx.doi.org/10.1109/TPDS.2015.2398438
http://dx.doi.org/10.1109/TPDS.2015.2398438
http://dx.doi.org/10.1007/s11042-016-3735-1
http://dx.doi.org/10.1007/s11042-016-3735-1
http://dx.doi.org/10.1007/s11042-016-3735-1
http://dx.doi.org/10.1137/1.9781611972733.15
http://dx.doi.org/10.1137/1.9781611972733.15
http://dx.doi.org/10.1137/1.9781611972733.15
http://dx.doi.org/10.1007/s10618-011-0232-z
http://dx.doi.org/10.1007/s10618-011-0232-z
http://dx.doi.org/10.1007/s10618-011-0232-z
http://dx.doi.org/10.1109/ICDE.2015.7113342
http://dx.doi.org/10.4018/IJCAC.2017040103
http://dx.doi.org/10.4018/IJCAC.2017040103
http://dx.doi.org/10.4018/IJCAC.2017040103
http://dx.doi.org/10.1007/s11227-016-1857-x
http://dx.doi.org/10.1007/s11227-016-1857-x
http://dx.doi.org/10.1007/s11227-016-1857-x
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb38
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb38
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb38
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb39
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb39
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb39
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb39
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb39
http://arxiv.org/abs/1501.01426
http://dx.doi.org/10.1016/j.future.2008.02.003
http://dx.doi.org/10.1109/CLOUD.2015.33
http://dx.doi.org/h17007.www1.hpe.com/device_help/HPJ3298A/utilization.htm
http://dx.doi.org/h17007.www1.hpe.com/device_help/HPJ3298A/utilization.htm
http://dx.doi.org/h17007.www1.hpe.com/device_help/HPJ3298A/utilization.htm
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb44
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb44
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb44
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb44
http://refhub.elsevier.com/S0167-739X(18)30071-2/sb44
http://dx.doi.org/10.1109/TC.2012.25
http://dx.doi.org/10.1109/ICOIN.2014.6799662
http://dx.doi.org/10.1109/ICOIN.2014.6799662
http://dx.doi.org/10.1109/ICOIN.2014.6799662
http://dx.doi.org/10.1145/1879141.1879143
http://dx.doi.org/10.1109/CCGrid.2015.60
http://dx.doi.org/10.1109/CCGrid.2015.60
http://dx.doi.org/10.1109/CCGrid.2015.60
http://dx.doi.org/10.1007/978-0-387-30164-8_332
http://dx.doi.org/10.1007/978-0-387-30164-8_332
http://dx.doi.org/10.1007/978-0-387-30164-8_332
http://dx.doi.org/10.1186/s13174-017-0060-5
http://dx.doi.org/10.1186/s13174-017-0060-5
http://dx.doi.org/10.1186/s13174-017-0060-5
http://dx.doi.org/10.1109/JSYST.2014.2315823
http://dx.doi.org/10.1109/JSYST.2014.2315823
http://dx.doi.org/10.1109/JSYST.2014.2315823
http://dx.doi.org/10.1016/j.ins.2017.08.021
http://dx.doi.org/10.1016/j.ins.2017.08.021
http://dx.doi.org/10.1016/j.ins.2017.08.021

	An online learning model based on episode mining for workload prediction in cloud
	Introduction
	Related work
	Control theory
	Queuing network
	Machine learning techniques
	SPM

	An overview of POSITING
	Background concepts
	The pattern extraction in the off-line mode

	RELENTING
	The update of the off-line pattern base
	The procedure of the online learning
	Generating episodes in the online mode
	Extending the episodes learned in the online mode

	The prediction model

	Evaluation
	Complicated real and synthetic workloads
	Experimental results
	The ability of RELENTING for online learning

	Conclusion and future work
	Acknowledgment
	Supplementary data
	References

