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Taming the IoT Data Deluge: An Innovative Information-Centric 
Service Model for Fog Computing Applications 

Abstract 

Fog Computing is a new computation paradigm, recently emerged from the convergence of IoT, WSN, 
mobile computing, edge computing, and Cloud Computing, which is particularly well suited for Smart City 
environments. Fog Computing aims at supporting the development of time-sensitive, location-, social-, and 
context-aware applications by using computational resources in close proximity of information producers 
and consumers, such as increasingly common cheap and powerful modern hardware platforms. However, 
realizing Fog Computing solutions for Smart Cities represents a very challenging task, because of the 
massive amount of data to process, the strict resource and time constraints, and the significant dynamicity 
and heterogeneity of computation and network resources. These formidable challenges suggest taking 
into consideration new information and service model solutions that explore several trade-offs between 
processing speed and accuracy. Along these guidelines, we designed the SPF Fog-as-a-Service platform, 
which proposes a new information-centric and utility-based service model and allows the definition of 
self-adaptive and composition-friendly services, which can execute either on edge devices or in the Cloud. 
In numerous evaluations, SPF proved to be a very effective platform for running Fog services on 
heterogeneous devices with significantly different computational capabilities while also demonstrating 
remarkable ease of development and management characteristics. 

Keywords: Fog Computing; Smart Cities; Information-Centric Networking; Internet-of-Things; Value of 
Information. 

1. Introduction 

Smart Cities represent massively heterogeneous, dynamic, and diverse environments, 
characterized by the ubiquitous presence of IoT devices producing a deluge of sensing data and 
by a myriad of IT applications that process this data in order to offer real-time and time-critical, 
location-, social-, and context-aware applications. Examples include emergency and health-care-
related services [1], surveillance [2], augmented reality, gaming, social-oriented services [3] [4], 
effective traffic management [5] [6], etc. We expect these environments to become more and 
more prevalent following the deployment of an increasing number of sensors, new Smart City 
platforms, and the first 5G communication infrastructures. 

In Smart Cities, traditional analytics solutions based on the transfer of all the data to the Cloud, 
processing using Big Data methodologies and tools, and returning the results to interested users 
[7] [8] are too slow for applications with strict latency constraints and too burdensome for the 
network infrastructure [9] [10]. Instead, the Smart City scenario is particularly well suited for the 
adoption of distributed processing approaches, such as Fog Computing. 

Fog Computing is a relatively recent paradigm (one of the first manuscripts mentioning it is 
Bonomi et. al's in 2012 [11]), emerged from the convergence of several innovative trends in 
computing and communications, such as Internet-of-Things (IoT), M2M communications, 
Wireless Sensor Networks (WSNs), mobile computing, edge computing, and Cloud Computing 
[12] [13] [14]. As of today, and despite several attempts having been made [15] [10] [16], there is 
still neither a clear cut and universally accepted definition of Fog Computing, nor any (either de 
iure or de facto) standard service and/or programming models. However, researchers seem to 



agree on the fundamental functions of the Fog as a computing platform to run information-
processing services at the edge of the network, that is, on top of edge devices in proximity of either 
raw data sources, information consumers, or both. 

However, the implementation of Fog Computing-based solutions for Smart Cities represents a 
very difficult task for three main reasons. First and foremost, processing a massive amount of 
data with scarce computational, bandwidth, and energy (IoT devices are often battery operated) 
resources available represents a formidable challenge. Cisco Systems Inc. recently predicted that 
by 2020 IoT devices will generate data at a rate as high as 600 ZB per year [17]. In addition, in 
this scenario users typically perform a dual role: not only do they access the information and 
services offered by the Smart City IT infrastructure, but the ever increasing number of smart 
personal devices (smartphones, tablets, and wearables) that they carry and the remarkable 
developments in their sensing capabilities means that citizens also effectively operate as 
information producers. In fact, on top of at least two cameras and a microphone, modern 
smartphones feature an iris scanner, a pressure sensor, a fingerprint reader, an accelerometer, a 
gyroscope, a barometer, a proximity sensor, a compass, a heart rate sensor, a light sensor, and a 
magnetometer. We can expect this to increase the burden on the network and on the computing 
infrastructures even more, and by a significant amount. 

Second, edge resources are very dynamic and heterogeneous. In Smart City environments, IoT 
devices are often deployed in groups, e.g., sensing systems, and connected to the Internet through 
one or more “IoT gateway” devices, that typically have significantly better computation, storage, 
and communication capabilities. In addition, the functions provided by IoT gateways are being 
increasingly complemented by the deployment of “support” hardware in their proximity based 
on heterogeneous computing platforms [18]. The remarkable capabilities and (relatively) low 
power consumption of these platforms enable the execution of sophisticated and 
computationally hungry services while remaining fairly energy efficient. Finally, the ad hoc 
deployment of micro-clouds as impromptu edge computing data centers paves the way to 
dynamic resource exploitation and interesting smart service development opportunities [19]. 

Third, communications are also very heterogeneous [20]. In addition to the multitude of short-
range and low-power wireless communications protocols, e.g., IEEE 802.15.4, Bluetooth LE, NFC, 
etc., used in IoT networks, a plethora of different medium-range wireless protocols, e.g., WiFi, 
WiFi-direct, LTE/4G, LTE-direct, etc., are commonly adopted for connecting personal devices to 
the network infrastructure, IoT gateways, or other personal devices. On top of that, significant 
mobility of users and terminals causes frequent communication disruptions and wide variability 
in channel performance. 

To address these challenges and enable matching the low latency requirements of a new 
generation of deeply immersive and high-value-added services designed for the citizens of the 
Smart Cities of the future, Fog Computing based solutions require smart information and 
resource management methodologies and tools. More specifically, there is a need for solutions 
that can exploit the heterogeneous and ever changing pool of edge devices for service execution 
in a dynamic and efficient fashion and prioritize the allocation of resources for (raw) data 
analysis and (processed) data dissemination to highly important information, even at the cost of 
ignoring or discarding lesser important information. At the same time, there is a need to 
coordinate information and resource management tools between Fog and Cloud in order to 



transfer to the Cloud (the portions of) information that would be too computationally expensive 
to process in the Fog. 

2. Fog Computing in Smart Cities 

The peculiar characteristics and requirements of the Smart City scenario raise significant 
opportunities and challenges for the design of Fog Computing platforms [21]. In fact, the 
realization of real-time and time-critical, location-, social-, and context-aware applications 
capable of fully reaping the enormous potential of Fog Computing requires innovative 
methodologies and tools for service development, management, and deployment that go well 
beyond the limits of current state-of-the-art solutions, often designed for Big Data analytics in 
Cloud computing environments. 

First of all, the formidable deluge of raw data to analyze and the strict resource and time 
constraints suggest the opportunity to consider new solutions at the information and service 
model level that explore several trade-offs between processing speed and accuracy [22]. To this 
end, a first step lies in the adoption of an information model that explicitly considers the 
differences between the many types of data that are processed and exchanged in this scenario, 
e.g., raw data generated by sensors, aggregated raw data, processed information ready for 
consumption from a human or software component, and so on. Additionally, such model could be 
enriched by taking into account the specific characteristics of each information object in terms of 
generation time, redundancy, relevance, set of recipients, and so forth. 

In this context, Value-of-Information (VoI) represents a particularly attractive metric. The birth of 
the VoI concept, which measures the utility of information according to a subjective and 
consumer-centric perspective, can ultimately be traced back to the seminal work by Howard [23]. 
His study attempted to extend Shannon’s information theory to consider “the probabilistic nature 
of the uncertainties that surround us, but also with the economic impact that these uncertainties 
will have on us”. The investigation of the utility that each discrete element of information 
provides to its consumer(s), which has been an active research topic in economic and decision 
making theories for the last 50 years and is still receiving a considerable amount of attention [24] 
[25], holds interesting promises for several application scenarios, including Fog and Cloud 
computing [26] [27].  

In fact, classifying information according to the value it provides to its recipients represents a 
very natural and effective criterion for “pruning” the share of data whose processing is not 
allowed by the limited amount of Fog resources available. For instance, sensing data that do not 
add significant value to the knowledge already built from the analysis of previous sensor 
readings would be characterized by a low and quickly decreasing VoI, and thus have very low 
probability of being selected for processing in (the very likely) case of resource shortages.  

The systematic adoption of solutions to discard data with lesser importance also allows to 
consider self-adaptive models for Fog Computing services. Services could be designed to be 
constantly aware of the resources available in their current location of execution and in the 
surrounding environment and capable of prioritizing the processing and delivery of essential 
information, possibly at the expense of non-essential information, in case of shortages. This 



approach provides significant advantages in terms of QoS tailoring in light of the highly varying 
(bandwidth and computational) resource availability in Smart City scenarios. 

The information-centric perspective would also allow the system to better cope with the non-
trivial communication challenges that Fog Computing applications need to address in these 
scenarios [20]. In fact, the communication requirements of Smart City environments call for 
resilient information dissemination solutions that can withstand network disruptions and 
performance issues while, at the same time, leveraging multiple interfaces and user mobility to 
support communications [28]. The adoption of Information-Centric Networking (ICN) inspired 
solutions in place of more traditional end-to-end communications would naturally enable taking 
advantage of multiple network interfaces in a heterogeneous environment, to withstand channel 
disruptions and network partitions, and to leverage mobile users as “message ferries” to improve 
communications. Their high effectiveness in disseminating transient information and 
dynamically generated content makes ICN solutions with publish-subscribe semantics 
particularly appealing for supporting Smart City applications and the time sensitive, location-
aware, and social-aware services they build on top of. 

At the same time, the adoption of utility-based prioritization solutions would also bring 
significant benefits to the dissemination of processed information, a topic that has unfortunately 
received less attention from scientific literature so far. In fact, the prioritization of highly valuable 
information in data dissemination represents a natural and very effective criterion for optimal 
bandwidth exploitation [26]. 

Finally, the information-centric perspective also provides substantial advantages in service 
composition, which is another very challenging and often overlooked problem in Fog Computing. 
In fact, many IoT applications and services allow the simultaneous processing of the same 
information in different ways, according to the current application and user contexts [29]. In 
Smart City environments, the composition of Fog Computing services is further challenged by the 
limited bandwidth resources and connectivity issues and by the mobility of services that could be 
dynamically migrated (for example from the Fog to the Cloud in case more processing power is 
required). The definition of composed services based on the kind of information they consume 
and produce, as opposed to solutions such as WSDL and BPEL that consider the service API and 
location instead, represents an approach that is more resilient to communication problems and 
service migrations. 

At the resource management level, there is the need for Fog Computing solutions to consider 
many different devices and platforms as possible locations for service execution. IoT gateways, 
heterogeneous computing platforms, and micro-Clouds are all very interesting candidates for the 
execution of information processing tasks. Unfortunately, all these options come with significant 
trade-offs: IoT gateways present non-trivial constraints in terms of computation, energy, and 
communication resources, heterogeneous platforms present an increased programming 
complexity that requires the extensive and time-consuming rewrite of applications using 
specialized programming paradigms, and micro-Clouds need to be supported by robust and 
dynamic resource discovery and management solutions. 

In addition, there is a need to consider solutions that can manage the ever-changing pool of 
resources in Fog Computing environments, discovering information sources, monitoring 
resource availability, and reacting to changes according to the service requirements and the 
users’ preferences. Also, we can envision that most of these resources will be available in the 



context of a public platform operated by a Fog provider – a new kind of player that will likely 
emerge as a key role in the Smart City environments of the near future – offering pay-per-use 
computing functions on top of a wide variety of different edge devices or in the Cloud through a 
proprietary API. This means that Fog Computing solutions for Smart City environments will be a 
heavily heterogeneous and fragmented scenario not just from the hardware perspective, but also 
from the administrative one. 

These considerations call for comprehensive Fog Computing solutions capable of implementing 
coherent and homogeneous management functions for a plethora of different services running on 
diverse but federated Cloud and Fog environments. These solutions should support the allocation 
of services on either a suited edge device or the Cloud, according to the service requirements and 
the current network conditions. An even more ambitious goal would be to dynamically and 
automatically implement the migration of services between the Cloud and the Fog, possibly in 
reaction to the detection of an unexpected activation of new resources or to the impromptu 
increase in request workload, thus realizing a service continuum that has being recently 
proposed as a pillar of future Fog and IoT research [14]. 

The resource scarcity of the Fog suggests considering different models for running services. In 
addition to "resident" (i.e., long-time running, services), there is a need to develop services that 
can be activated on demand and for a short amount of time, automatically being deactivated 
when not needed [4]. We call these services "normally-off", as they respond to the same issues 
raised by researchers working on normally-off computing [30], and represents a similar trend at 
the software engineering level. 

3. The SPF Information-Centric and VoI-based Information Model and 
Management 

We realized a Fog-as-a-Service platform, called SPF (as in “Sieve, Process, and Forward”), to 
address the issues of Smart City environments. SPF proposes an innovative information model 
and a corresponding information-centric and value-based service model to deal with the main 
challenge of Smart City environments, i.e., processing the deluge of raw data generated. 

To illustrate the SPF information and service models, let us consider how our platform could 
enable the development, deployment, and management of Fog services in support of citizens’ 
during a holiday celebration in a Smart City environment. In this scenario, a section of the city 
center will be closed to automobile traffic and will be accessible only to pedestrians. In response 
to the gathering of a large crowd, Police forces and EMS personnel will be deployed to guarantee 
order and safety for the citizens. Information sources, such as traffic cameras, usually dedicated 
to day-to-day monitoring of the city, will capture data feeds that will be funneled into Fog 
Computing platforms for analysis. 

Several applications will run concurrently in the Smart City Fog Computing platform, each one 
leveraging a set of information processing services. First of all, a logistics / organization support 
application will leverage a crowd monitoring service to analyze the number of personal devices 
connected to the network and video camera feeds to provide a relatively accurate and up-to-date 
estimate of the number of people present in the city center. This information will help to right 



size the team of EMS personnel and resources (public water services, hygiene spots, ambulances, 
etc.). 

In addition, a security check application, running with the highest possible priority and with no 
associated resource consumption policies / limits, will continuously scan video feeds collected 
from, e.g., traffic cameras, for anomalies. Such an application might be developed to take 
advantage of both the low latency processing allowed by the Fog and the computational 
capabilities of the Cloud. More specifically, the application will implement a first-order security 
control service in the Fog that runs coarse-grained anomaly detection algorithms with relatively 
light computational requirements on the data collected by IoT devices. Its goal is to help police 
forces to identify as quickly as possible obvious and/or evident security threats such as a person 
wielding a weapon or a group of people starting a brawl. At the same time, the application might 
implement a second order security control service in the Cloud, running fine grained face 
recognition algorithms against a database of known people, in order to help police forces to 
identify less evident and potentially more dangerous security risks, e.g., for counter-terrorism 
purposes. 

Other applications might leverage Fog Computing environments to support EMS personnel in 
delivering medical services. For instance, an e-health application might try to identify possible 
health emergencies, such as heat strokes and dehydration, through the fusion of data collected 
from IoT (video feeds, temperature sensors, etc.), from wearable devices (heartbeat, sweat, and 
other physiological sensors), and from mobile devices (pace monitors, fall detector apps, and so 
forth). 

Finally, public service applications and commercial applications can be run on the Fog Computing 
platform. Public service applications can provide useful information to citizens by facilitating the 
dissemination of traffic information or suggesting which metro train to get quickly outside of the 
city center. Other applications can provide services that integrate with IoT sensors, identifying 
impromptu performances from street artists or particularly interesting shopping sales, and 
directing users to their locations. 

These applications operate on a wide variety of data types and present different requirements for 
the information processing tasks. In the rest of this Section, we will describe how the SPF 
information and service model can facilitate the development of these applications on top of a 
very heterogeneous and resource constrained scenario. 

3.1. Information and Service Model 

SPF proposes an information model that divides data in three different categories, according to 
the corresponding processing stage. First, there are raw data: input feeds of (typically sensing) 
data collected from WSNs or personal devices such as smartphones and wearables. Then, there 
are Information Objects (IOs): higher-order constructs produced from a first level analysis of raw 
data, typically implementing some basic and/or generic processing function. IOs contain sensing 
information aggregated, “fused”, or distilled in smaller portions, which is typically much more 
valuable than raw data but not quite ready for consumption by end users. Finally, there are 
Consumption Ready Information Objects (CRIOs): objects that contain fully-processed information 
in a format suitable to be returned to users as a response to their requests. 



The SPF service model is also heavily information-centric and based on many different and 
composable processing layers. As illustrated in Fig. 1, Fog services take as input raw data 
generated by sensors and implement the analytics required to return a service response to users 
in terms of a CRIO. The processing function of a Fog service is implemented through the 
coordinated efforts of (at least) two different processing layers: pipelines and services. Pipelines 
analyze raw data to produce IOs. Services further analyze the pipeline-generated IOs by 
implementing application-specific processing, thus generating CRIOs. 

This architecture maximizes the opportunities for reuse of processing components and of 
generated results. In fact, pipelines can (and are typically designed to) be used by many different 
services. They will typically implement basic functions, e.g., OCR processing, designed to be 
preinstalled by Fog providers in most or even all possible locations for service instantiation, i.e., 
either in edge devices or in the Cloud. Instead, services will typically implement application-
specific tasks and will thus need to be purposely implemented by Fog application developers. 

The relation between pipelines and services in our model can change dynamically to adapt to 
changes in the number and type of requests received, the services requested, the 
addition/removal of new resources or processing elements (Fog services, services, and 
pipelines), and so on. This gives SPF enough degrees of freedom to implement flexible dynamic 
service composition functions. 

Note that not every raw data message leads to the generation of an IO, nor every IO generates a 
CRIO. In fact, IOs can emerge from the fusion of many raw data objects, and CRIOs can be the 
result of the composite/sequential execution of many different services. Clearly, our model can 
accommodate higher-order abstractions in scenarios, such as situation awareness applications, 
that call for the creation of actionable knowledge from the analysis of both raw data and 
processed information generated by a multitude of sensors and services. On the other hand, it is 
also possible that different user requests trigger the creation of different CRIOs starting from the 
same IOs. 

To address the challenging communication issues of Smart City environments, CRIOs will be 
delivered as responses to users’ requests through an Information-Centric Networking (ICN) 
inspired dissemination solution [28] [20]. ICN is a networking paradigm that moves the focus of 
communications from the source and destination to information itself. Thus, it can naturally take 
advantage of spontaneous networking opportunities to improve latency and delivery ratio in 
spite of disrupted communications, as well as seamlessly exploiting innovative functions 
provided by future cellular communications, such as LTE direct and 5G content caching [31]. 
However, while ICN solutions are typically based on content-centric networking, the SPF 
information dissemination adopts content-based publish/subscribe communication semantics 
that, by allowing nodes to express interests in any IO disseminated by a given service, is much 
better suited for dynamic networking and computing environments such as Smart Cities [53]. 

For an illustrative example, let us consider how the security check and logistics support 
applications illustrated in Section 3.0 could be implemented in the SPF service model. As 
depicted in Fig. 1, the first application would use two Fog services: a 1st order Security Control one 
running on edge devices and a 2nd order Security Control one running in the Cloud. The second 
application would use a Crowd Monitoring Fog service running on edge devices. In turn, those Fog 
services would be built on top of different sets of pipelines and services. 



An Anomaly recognition pipeline running on an IoT gateway could process raw data consisting of 
image frames collected from video cameras in the device’s proximity in the attempt to detect 
potentially hazardous situations, e.g., a man wielding a weapon. For each anomaly detected, the 
pipeline would generate an IO containing the anomalous portion of image. A Face detection 
pipeline could simultaneously process the same raw data frames and produce a set of IOs 
containing the portion of images that have been identified as a human face.  

Both pipelines could send their output IOs to a Security alert service, which could further analyze 
and cross-correlate that information in order to reduce false positives, compare the faces 
detected against a reduced size database of local persons of interest, and generate geotagged 
security alert CRIOs to quickly alert police forces when necessary.  

The Face detection pipeline could also send its output IOs to a Logistics support service that in 
turn could process that information, cross-correlating it with data on the number of smartphones 
currently active in the area, to generate CRIOs containing an updated estimate on the number of 
people in the area for the EMS teams’ benefit. In addition, the same IOs could be forwarded to a 
Police database comparison service running in the Cloud that could compare the detected faces 
against a worldwide database of known subjects for a more accurate but slow search, and 
produce security alert CRIOs for police forces. 

The Police database comparison service could also process the IOs produced by a Face recognition 
pipeline running in the Cloud and performing more computationally expensive analysis of raw 
data video feeds to produce IOs containing face identification points, which are much more 
effective to use for person of interest identification purposes. 

 

Fig. 1. The SPF information and service models. 



3.2. Evaluating Value-of-Information for CRIOs 

The SPF service model adopts techniques based on the Value-of-Information (VoI) concept to 
prioritize the processing and dissemination of important information [26]. VoI is an innovative 
concept that aims at estimating the usefulness of CRIOs according to their final recipient(s). More 
specifically, the CRIOs produced by a service are placed in a dissemination queue and ordered by 
their corresponding VoI. Additionally, the information dissemination strategy adopted by nodes 
promotes the dissemination of CRIOs with higher VoI values. 

As it represents the level of interest that a user has on a specific CRIO, VoI is a dynamic value 
(typically decreasing over time) that does not depend only on the IO itself, but also on other 
factors concerning the user and the current context. Therefore, the VoI of a CRIO cannot be 
inferred only from its content: other contextual information is necessary for its computation. 

VoI is calculated as a function of five factors: 

𝑉𝑜𝐼𝐶𝑅𝐼𝑂𝑛
(𝐼𝑂𝑛, 𝑓𝑠, 𝑟, 𝑡) =  𝑆𝑆(𝐼𝑂𝑛) ∗  𝐹𝑆𝑃(𝑓𝑠) ∗  𝑅𝑁(𝑟) ∗ 

 𝑇𝑅𝐷(𝑡,   𝑂𝑇(𝑟)) ∗  𝑃𝑅𝐷(𝑂𝐿(𝑟), 𝑂𝐿(𝐼𝑂𝑛))) (1) 

where 𝐼𝑂𝑛 is the IO from which CRIOn was built, 𝑓𝑠 is the Fog service responding to the users’ 
requests, 𝑟 is the (set of) recipient(s) for which 𝐼𝑂𝑛 can satisfy the requests, and 𝑡 is the current 
time. 

More specifically, 𝑆𝑆(𝐼𝑂𝑛) is a factor that allows to take into account service-specific 
considerations when assessing the value of the IOn extracted from the data. 𝐹𝑆𝑃(𝑓𝑠) is a factor 
that permits to assign higher VoIs to the CRIOs produced by higher priority Fog services. 𝑅𝑁(𝑟) 
accounts for the number of requests that 𝐶𝑅𝐼𝑂𝑛  can satisfy, normalized to the highest number of 
requests satisfied by a single CRIO within a recent time window. 𝑇𝑅𝐷(𝑡, 𝑂𝑇(𝑟)), which stands 
for Timeliness Relevance (of Request) Decay, takes into account the time passed between request 
reception, provided by 𝑂𝑇(𝑟), and response generation (the current time 𝑡). Finally, 𝑃𝑅𝐷(𝑂𝐿(𝑟),
𝑂𝐿(𝐶𝑅𝐼𝑂𝑛))), for Proximity Relevance (of Request) Decay, is similar to 𝑇𝑅𝐷(∙), but its impact on 
the final VoI score depends on the physical distance between the position of the requestor, given 
by 𝑂𝐿(𝑟), and that of the source of IOn, provided by 𝑂𝐿(𝐼𝑂𝑛) (in case 𝑟 was simultaneously issued 
by several requestors, 𝑂𝐿(𝑟) returns the location of the requestor closest to the IO source). For 
this purpose, service requests issued by applications will contain the current geographical 
position of the requestor node, e.g., obtained by means of a Global Positioning System (GPS). 

Note that, while every service implementation has to provide its own SS function, the FSP, RN, 
TRD, and PRD functions are not service specific and can be provided directly by SPF. For instance, 
SPF currently offers two generic linear and exponential decay functions that services can 
leverage as TRD and PRD simply by setting the desired mode, i.e., linear or exponential, and the 
values for the corresponding control parameters. Developers will also need to assign a priority 
value to their Fog services, which SFP will automatically consider when calculating FSP. 

For instance, both the security check Fog services in our running example would deal with very 
important CRIOs, having very high and slowly decaying VoIs. As a result, they would be 
configured with the highest priority and with control parameters that set a mild decay gradient 
for both the TRD and PRD functions. Instead, the Fog services used by the e-health application 



would deal with very important but location-dependent CRIOs, as health information of citizens 
in other areas of the city would be the concern of other EMS teams. So, they would likely be 
configured with high priority (possibly lower than the one assigned to the security check Fog 
services) and with control parameters that set a mild decay gradient for TRD function and a high 
decay gradient for PRD function. Finally, most of the Fog services deployed in the context of 
commercial applications would deal with non-critical and time- and location-sensitive CRIOs, and 
thus be configured with relatively low priority and with control parameters that set a steep decay 
gradient for both the TRD and PRD functions. 

4. The SPF Fog-as-a-Service Platform 

SPF1 is a Fog-as-a-Service platform that we developed in response to the peculiar needs and 
challenges raised by Smart City environments. SPF proposes a new information-centric and VoI-
based service model that provides a powerful set of concepts and tools for the development and 
deployment of Fog applications. The SPF model allows the definition of self-adaptive and 
composition-friendly Fog services, which can be implemented on top of software components 
that can execute either on edge devices or in the Cloud, migrate to different computing platforms, 
and automatically scale their computation and bandwidth requirements according to the current 
execution context. 

SPF provides a set of management concepts and tools to support the needs of the three groups of 
stakeholders that we envision will operate in Smart City scenarios: platform providers, service 
providers, and end users. Platform providers are the owners of a set (or platform) of Fog and/or 
Cloud resources that are publicly accessible, typically in a pay-per-use fashion. They are in charge 
of the administration and supervision aspects of the platform: installing, running, configuring, 
and maintaining SPF components and providing functions to federate with other platforms. 
Service providers develop IoT services, deploy them on Fog platforms, and take care of their 
initial configuration. Finally, end users access IoT services through client apps installed on their 
smart (phones or wearable) devices (service developers are also responsible for providing client 
applications for the users). 

SPF has two main component types: Programmable IoT Gateways (PIGs) and Controllers. PIGs 
provide the functions of data processing and information dissemination in response to users’ 
requests to the platform, and can be deployed either in the Fog (i.e., on edge devices) or in the 
Cloud. An instance of the PIG component must be deployed in each Fog or Cloud node that can 
run an SPF Fog service. 

The Controller component allows application developers to define Fog applications that provide 
a set of Fog services and deploy Fog applications and Fog services on the PIGs accordingly. In 
addition, the Controller manages users’ requests and forwards them to the relevant PIGs (i.e., 
those that have running instances of the corresponding Fog services) for processing. Finally, the 
Controller also implements sensor discovery functionalities and can connect PIGs to new data 

                                                      

1 We released SPF as open source (MIT license) on the https://github.com/DSG-UniFE/spf Web page. 



sources. By controlling service and application deployment, the Controller ensures that data 
processing on the PIGs occurs only when needed, such as in the presence of users’ requests. 

Fig. 2 presents an example deployment of SPF, which involves three different SPF platforms: two 
Fog-based ones (Platform A and Platform B) and a Cloud-based one (Platform C). The figure also 
displays how SPF processes a Fog service request issued by User 1 that involves the local Fog-
based processing of locally generated raw data. First, the SPF App on User 1’s mobile device 
sends the service request to the SPF Root Controller, that will typically be hosted in a Cloud 
environment. Service requests contain several information, including the service name, the 
timestamp of the request, the GPS position of the user issuing the request (used for VoI 
calculation purposes, as detailed in Section 3.2, and by the SPF Controller to select the closest 
Platform for request processing), service- and request-specific information (such as a query 
string), and so on. The SPF Root Controller then examines the request and forwards it to the 
Controller components managing the SPF platforms of interest: in the example case, Platform A. 
In turn, Platform A’s Controller handles the request by activating (or reconfiguring, in case they 
were already active and the current configuration needs an update) service components in the 
PIG locations within the platform. In the example case, Platform A’s Controller activates PIG P in 
proximity of WSN A, which will process the raw data collected from the WSN to produce CRIOs 
that will be disseminated to User 1 (for simplicity, Fig. 2 assumes that both the pipeline and the 
service components used to process raw data in response to User 1’s Fog service request are 
activated on the same PIG). 

SPF applications use traditional TCP/IP communications (depicted as dashed thin arrows in the 
Fig. 2) to send service requests to the SPF Controller. In turn, the CRIOs generated will be 
disseminated by an ICN-inspired solution that supports content-based publish/subscribe 
communications. This design choice enables SPF to tackle the communication issues that arise in 
highly dynamic mobile networks or when limited support from the network infrastructure is 
available, by leveraging ad hoc and device-to-device communication opportunities to implement 
multi-hop communications between nodes with no direct contact. More specifically, as detailed in 
Section 4.2, CRIOs are classified (or scoped, in ICN terminology) according to the Fog service(s) 
they were generated by and disseminated along service-specific “virtual channels”. For instance, 
in Fig. 2 the CRIOs produced by the Fog service instantiated in Platform A follow a multi-hop 
dissemination path (depicted with thick yellow arrows), with User 2 acting as a relay between 
PIG P and User 1, which have no direct communications. 

Note that other kinds of requests might instead involve the activation of service components in 
multiple SPF platforms. For instance, Fog services requiring computationally heavy, location 
independent, and/or time-insensitive processing might be performed in the Cloud-based 
Platform C. 

 



 

Fig. 2. An example of SPF deployment in a Smart City environment. 

4.1. Service Activation and Deactivation 

In SPF, Fog services are self-adaptive and can operate in two different modes according to the 
location of the corresponding PIG they run on top of: a “lossy” mode if the PIG is hosted on an 
edge device and a “full” mode if the PIG is hosted in the Cloud. When operating in lossy mode, SPF 
services automatically decrease their offered QoS, for example, by adopting less sophisticated 
analytics or analyzing only a part of the information they received. On the other hand, when 
operating in full mode, SPF services could run at the best QoS level, analyzing all available 
information with computationally expensive analytics and with the almost unlimited amount of 
resources available without strict latency requirements. In this way, SPF services seamlessly and 
autonomously adapt their resource demands for information processing to the current execution 
environment. 

In addition, SPF allows the definition of two different types of Fog services: on-demand and 
background, with significantly different (idle) behavior and lifetimes. In fact, according to a 
continuous processing and information-centric paradigm, we envision that in large part Fog 
services will be normally off, and be executed on-demand only upon reception of one or more 



corresponding user requests. A smaller number of Fog services will be always active, running 
continuously to provide mission-critical and/or background functions, such as those on which 
the security checks and e-health applications in our running example rely.  

SPF is also in charge of the automatic de-instantiation of Fog services when they are not needed 
anymore. In this regard, the behavior of the corresponding software components (services and 
pipelines) depends on the type of Fog services registered with them. If at least one registered IoT 
service is a background service, the corresponding components will remain active and process 
incoming data continuously; otherwise, data processing is performed only if there is at least one 
pending request on the edge (or Cloud) device. This allows reducing resource (CPU, memory, and 
battery) consumption by deactivating unnecessary services and pipelines when possible. 

Additionally, each background service has an associated maximum idle time, after whose 
expiration the IoT service (and the corresponding service components) will be automatically 
deactivated. If no value is assigned, the background service will run endlessly. Under certain 
circumstances, the platform might decide to change the configured idle lifetime for any Fog 
service running on an edge device, such as when many different Fog services are active, the 
remaining resources become scarce, or another application with higher priority is deployed. 

4.2. CRIO Dissemination and Service Composition  

Most ICN solutions implement content-centric networking, in which IO delivery is triggered by 
interest messages issued by content requestors. The networking infrastructure routes interest 
messages issued by consumers to the closest information holder, be it the source or another node 
that had previously cached the requested IO. Upon reception of an interest message that it can 
satisfy, an ICN node hands over the requested IO to the ICN infrastructure, which will forward the 
IO hop-by-hop to the requestor following the same path taken by the interest message in the 
opposite direction. 

This communication semantic works well for the delivery of persistent IOs whose name (or id) is 
known by requestor – the main reference scenario that the ICN paradigm was designed to 
address. However, several studies discussing ICN adoption for mobile and ad hoc scenarios [52] 
argue that the content-centric networking communication model is not well suited for the 
delivery of transient IOs, which are significantly more relevant for Smart City applications 
leveraging real-time information sensing and processing [32]. The same studies indicate that 
content-based publish/subscribe communications would instead represent a much more 
effective solution in these scenarios [53]. 

In addition, content-based publish/subscribe communications do not require the ICN network to 
maintain up-to-date Forwarding Information Base (FIB) tables on all nodes across the network to 
enable the routing of interest messages. In a network with highly mobile nodes, frequent link 
creation and disruption, and a continuously changing topology, content-centric networking 
would force nodes to consume a large part of their resources just to refresh FIB entries. Similarly, 
the effectiveness of Pending Interest Tables (PIT) in routing IOs back to the requesters also 
suffers in highly dynamic scenarios, where nodes’ mobility would often invalidate the paths from 
IO holders to the requestors established by interest messages. 

To exploit the advantages provided by content-based publish/subscribe ICN approaches while 
avoiding the drawbacks of content-centric networking, CRIO dissemination in SPF relies on 



DisService [28], an ICN-inspired dissemination middleware designed to provide efficient, 
thematic channel-based group communications in mobile ad hoc networks. DisService performs 
CRIO dissemination in an information-centric and content-based fashion, by assigning each CRIO 
a unique name and a service identifier (or scope, in ICN terminology) and disseminating it within 
a specific channel. DisService provides effective in-network caching capabilities by maintaining a 
cached CRIO database on each network node, a mechanism similar to the nodes’ Content Store 
(CS) in traditional ICN solutions. The middleware also allows to define cache eviction policies at 
the single service level, that it consults to decide whether to discard obsolete CRIOs in case new 
or more relevant CRIOs are received. This allows SPF Controllers to configure service-specific 
cache eviction policies in DisService according to service semantics and users’ preferences, a 
mechanism similar to the support for special name aliases such as “/sensor-
id/temperature/latest” implemented by some ICN solutions.  

DisService provides VoI-based prioritization to regulate the access to the network: CRIOs with 
higher VoI scores will be disseminated before responses with lower VoI scores. Additionally, 
during dissemination, DisService uses the VoI associated with each CRIO to regulate network 
resource sharing within each dissemination channel. The support for VoI-based information 
prioritization enables DisService to optimize critical tasks of ICN, namely forwarding and caching 
of the CRIOs produced by PIGs to promote the delivery and availability of most critical data to the 
interested recipients. Referring to the example in Fig. 1, this might include the delivery of CRIOs 
containing the approximate location of a person of interest that was spotted during a public 
event to police forces or of CRIOs that contain time-sensitive information that interest many 
users, such as the line-up of bands at a concert or the location of the least crowded food stands.  

Together with in-network caching, which takes advantage of storage capacity on the network 
nodes, the ICN-inspired solution implemented by DisService enables effective CRIO delivery in 
the presence of mobile ad hoc networks and effectively supports group communications [20] 
[32]. The thematic channel-based group communications provided by DisService also represent 
the basic communication functions that SPF adopts to connect services with remote pipelines and 
to compose Fog services. By joining or leaving a DisService channel dedicated to the 
dissemination of the corresponding IOs or CRIOs, services and Fog services can connect with a 
pool of information sources and recipients – either services, Fog services, or users. For instance, 
in the example of Fig. 1, the IOs produced by the Face detection pipeline will be forwarded to the 
Security check and Logistics support services running on the same PIG and disseminated over a 
DisService channel subscribed by the Police database comparison service running on a remote 
PIG hosted in the Cloud. 

In terms of network resource consumption, the SPF service and information dissemination 
models can tremendously reduce the amount of network traffic generated by processing raw 
data in the Fog. Additionally, the adoption of ICN-inspired content-based publish/subscribe 
solutions to convey responses to end users via spontaneous networking reduces the strain on the 
network infrastructure and allows applications to provide their services even when the 
infrastructure is overloaded, such as when too many people are connected to the same base 
stations (for example, during concerts or sport events). In fact, the dissemination mechanisms 
adopted by DisService have proved very effective in mobile and extremely dynamic networking 
scenarios, such as mobile ad-hoc and delay-tolerant networks [28]. 

 



4.3. Resource Management and Federation 

SPF adopts several mechanisms to contain the consumption of memory and processing resources 
on edge devices. One solution is a direct consequence of the service model, which allows the 
reuse of pipelines. This system permits multiple services to register to the same processing 
pipeline; when this happens, the pipeline will deliver a copy of the produced IOs to each 
registered service. This avoids different applications performing the same operations on the 
input data, thus effectively allowing the reuse of processing resources and functions on the edge 
device and contributing to saving significant computational and memory resources under certain 
circumstances. For instance, the IOs produced by the Face detection pipeline illustrated in Fig. 1 
are forwarded to 3 different services. 

In addition, Fog services leverage content-based filtering techniques to reduce the volume of 
processed raw data by restricting processing to only those data that contain potentially novel 
information, in accordance with the preferences of application developers and platform 
managers. The rationale behind content-based filtering is to avoid processing raw data that do 
not differ significantly from those analyzed in the past, as they would probably not add a 
significant value to the information already available.  

The amount of new content that a raw data message has to contain in order to pass the content-
based filtering phase, and thus be selected for processing, can be easily controlled. As a result, 
content-based filtering is a very effective way of modulating the consumption of computational 
resources for Fog services, i.e., their “lossiness”. To this purpose, each service has a threshold 𝜏 
that dictates how different new data need to be, compared to the last processed data, to trigger 
data processing on the pipelines. A threshold of 0.0 entails the processing of all input data, while 
a value of 1.0 will trigger data processing only of the first raw data message received by each 
sensor. When multiple services register with the same pipeline, such as in the case of the Face 
detection pipeline mentioned above, the PIG considers all the Fog services using that pipeline and 
adopts the lowest value among the corresponding thresholds for content-based filtering 
purposes. 

At the administrative level, SPF allows grouping resources in “platforms” that refer to a single 
provider and enables their federation, thus realizing a hierarchically distributed service 
management architecture. Each provider will deploy a Controller component that manages the 
resources available in its platform, and coordinates with a higher level Controller for service 
instantiation/de-instantiation and request dispatching. From the users’ perspective, all the 
service requests will be directed to a root Controller component, which will coordinate with the 
Controllers of each registered platform to overview the execution of Fog services and 
activate/deactivate the corresponding software components (pipelines and services) according 
to the users’ requests. 

From the perspective of information source discovery, SPF implements both a 
spontaneous/decentralized discovery and configured/centralized directory approaches. In the 
first case, a discovery component running on the PIG performs sensor discovery in their 
proximity using multicast Domain Name System (mDNS) and DNS-based Service Discovery (DNS-
SD). Discovery functions could be activated either in Controllers or in PIGs, respectively enabling 
providers to activate additional resources (e.g., a micro-Cloud) in a plug-and-play fashion and 



enabling PIGs to detect the presence of sensors in their proximity and immediately start 
receiving and processing the related raw data. 

On the other hand, providers could also manually add information sources and resources by 
configuring their Controller accordingly. This would be an effective way to integrate open data 
sources (street cameras, environmental monitoring systems like air pollution sensors, and so on) 
within SPF. The Controller will in turn notify the presence of those information sources to PIGs, 
which, in turn, will be able to connect with them. 

5. Experimental Results 

Fig. 3 illustrates the testbed scenario that we considered for the evaluation of SPF. To 
demonstrate the effectiveness of the SPF information and service model in enabling self-adaptive 
Fog services capable of automatically scaling their information processing functions to the 
particular hardware platform they run upon, we considered a simple but realistic scenario in 
which information processing tasks can be hosted either on edge and Cloud devices. 

More specifically, the testbed consists of a root Controller, 2 different SPF platforms (a “Fog 
platform” in which PIGs are only hosted on edge devices and a “Cloud platform” in which PIGs are 
hosted on a public Cloud data center), and a Wireless Sensor Network (WSN) that ‘feeds’ raw 
data as a sequence of JPG images to the interested Fog services. The root Controller is hosted in 
the Amazon Web Services (AWS) Cloud computing platform, executing in a t2.micro VM instance 
with 1 virtual CPU and 1 GB of RAM, running AMI Linux. The Cloud platform is also hosted by 
AWS, and the relative Programmable IoT Gateways (PIGs) are executed in m4.2xlarge VM 
instances with 2.3 GHz Intel Xeon processors, 8 virtual CPUs and 32GB of RAM, running Ubuntu 
Linux 16.04.2 LTS. The Fog platform runs PIGs on top of Raspberry Pi 3 Single Board Computers 
with 1.2 GHz ARM processor and 1GB of RAM, running Linux Raspbian 8.0.  



 

Fig. 3. Testbed architecture. 

For the experiments, we developed a Crowd monitoring Fog service, modeled after the Fog 
service that provides the EMS teams an estimate of the number of people present in the Smart 
City center in our running example. The Crowd monitoring Fog service is built on top of a Face 
detection pipeline that takes as input images produced by cameras scattered in the city and feeds 
the generated IOs into a Face count service. To limit the processing latency, we implemented a 
mechanism that saves PIG resources. More specifically, the Face detection pipeline has an 
internal queue with a maximum capacity of 50 input raw data messages. When the pipeline 
receives a frame, it checks if the queue is full: in the affirmative case, it removes the ‘oldest’ 
packet from the queue; otherwise, it adds the data to the queue. This prevents the pipelines to 
incur the risk of filling the hard drive and/or the memory available on the node. Note that this 
strategy is in line with the information-centric and utility-based philosophy of the SPF service 
model, as removing the old elements and focusing the processing on the most recent raw data 
clearly represents a VoI-conserving policy.  

The experiments have the objectives of evaluating the performance of the Crowd monitoring Fog 
service and understanding the tradeoffs and transition points between executing services on 
edge devices or in the Cloud. To this end, we deployed the Crowd monitoring Fog service 
alternatively on a PIG in the Cloud platform and on a PIG in the Fog platform, in both cases 
stressing the PIGs’ capabilities to fully evaluate the relative advantages and disadvantages of the 
two configurations. 

In order to provide the Fog service with reproducible input, we simulated the WSN sensors 
behavior with a Java application that always provides the same data set of raw images, of about 
1.5MB in size each, during the different executions. We obtained those images by fragmenting a 



video showing people walking in a city cross road. Finally, with respect to the pipeline 
processing, we implemented a simple face detection using the OpenCV open source library for 
computer vision. 

 

5.1. Test 1: Varying Input Workload 

In the first test we kept the content-filtering threshold constant to a value of 𝜏 = 0.03, while 
varying the load of the input raw data. To do so, we simulated nine different data sources, with 
different data generation rates. More specifically, the sources can have 1, 2, or 4 different sensors, 
each one providing 250 consecutive images, and a time step between the generation of 
consecutive images of either 0, 500, or 1000 ms. 

We executed the same tests on both platforms, measuring a set of significant parameters 
indicated with red arrows in Fig. 4. More specifically, we measured the number of raw data 
messages dropped because the incoming message queue filled up, the number of raw data 
messages discarded by the content-based filter, and the number of processed raw data messages. 
For data that pass the content-based filtering phase, i.e. data processed by pipelines, we 
measured the relative queue time into the PIG and the CPU time for the processing. 

 

 

Fig. 4. Measured parameters for each SPF platform. 

Fig. 5 and Fig. 6 plot the results we obtained by running the Crowd monitoring Fog service on top 
of a PIG respectively in the Fog platform and in the Cloud platform, for each of the 9 different input 
source configurations. To focus on the most significant results that characterize a real scenario, we 



show only the trends that, in temporal order, are included from the beginning of the execution to 
the point when a steady-state condition is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Results of the Fog platform with variable load. The graphs in the first, second, and third columns 
respectively depict the results obtained for a time step of 0ms, 500ms, and 1000ms. 



As shown in Fig. 5, the trend of the various parameters reflects the behavior that we expected: for 
each given number of WSN sensors (i.e. for each row of graphs in the figure), as the time step 
increases (i.e., the data rate decreases) we see a lower number of dropped packets but a higher 
queuing times for the processed data. This is due to the fact that the packets are dropped from 
the queue with a lower frequency, so the items that will be processed wait for longer times. With 
four WSN sensors (the last row of graphs in the figure) this trend is less evident and the number 
of removed raw data messages is substantially independent from the time step. This is due to the 
fact that the data received by four sources overloads the limited computational resources of the 
PIG in the Fog platform and cause congestion at the queue level. 

 

 

 

 

 

 

 

 



 

 

Fig. 6. Results of the Cloud platform with variable load. The graphs in the first, second, and third columns 
respectively depict the results obtained for a time step of 0ms, 500ms, and 1000ms. 

Unsurprisingly, Fig. 6 shows that the Cloud platform has significantly better capabilities that the 
Fog one. We see a general decrease of CPU times and a greater density of the elements, which 
means more processed data and faster processing speed. However, note that the queuing times 
observed in the Fog platform are comparable with those of the Cloud one, especially for the 4 
WSN sources case which represents the most computationally intensive one. This demonstrates 
that SPF’s information and service models are very effective in enabling the development of Fog 
services that can guarantee time-sensitive information processing by seamlessly discarding some 
information to adapt to the resource constraints of the devices in which they are hosted. 

In addition, while the PIG hosted in the Cloud platform is capable of processing almost the totality 
of the input raw data with one WSN sensor (first row of graphs in the figure), the amount of raw 
data to process in the configurations with two and four WSN sensors (second and third rows of 
graphs in the figure) is enough to overload the non-negligible capabilities of a Cloud-hosted PIG 
as well. This demonstrates that exploring trade-offs between processing speed and accuracy for 
information processing task can bring advantages not only for Fog services hosted in edge 
devices, but for those hosted in the Cloud as well. 

5.2. Test 2: Varying Content-filtering Threshold 

The strategy for the second test is to keep constant the input workload, produced by two WSN 
sensors with a time step of 0 milliseconds, and varying instead the content-filtering threshold 
parameter, with values ranging from 0.00 to 0.25. Fig. 7a and Fig. 7b show the means and 
variances of the CPU and queue time obtained, respectively, for the Fog and the Cloud SPF 
platform. 



 

Fig. 7. CPU mean time and queue mean time with constant input workload and variable content-based 
filtering threshold. The results for the Fog platform are shown in the first row, those for the Cloud 

platform on the second row. 

The results show a considerable performance difference between the Fog and the Cloud platform, 
especially in terms of CPU time, as expected. However, a significantly more interesting aspect to 
note is that the content-filtering phase is capable of containing CPU and queue times in a very 
effective way even in the resource-constrained PIG hosted in the Fog platform. 

Fig. 8 and 5.7 compare the number of raw data messages dropped from the queue (red), of raw 
data messages actually processed by pipelines (blue) and of raw data messages discarded by the 
content-based filtering phase (yellow).  

In general, the number of messages dropped from the queue is lower in the Cloud platform for 
each threshold. However, for very low (0.05 or less) threshold values, the difference is lower than 
one might expect. If we factor in the communication latencies involved, in those cases it could be 
convenient to execute the processing on the Fog platform, despite the loss of more packets. 
Instead, for threshold values in the range [0.10 - 0.25] the number of dropped packets decreases 
drastically in the Cloud.  



These results support once again the claim that, for information processing tasks, edge devices 
represent a valid alternative to Cloud in many cases, and that the lossy service model 
implemented by SPF presents interesting advantages not only for Fog services hosted on edge 
devices but for those hosted in Cloud as well.  

Finally, these results allow to draw some generally applicable conclusions about the development 
and deployment of Fog services. More specifically, they suggest considering the tradeoffs in Fog 
vs Cloud location of service components at design time, by defining VoI calculation factors that 
are suited for the Fog service semantics as well as a proper content-filtering threshold.  

 

Fig. 8. Report on removed/processed/not processed input raw data, on Fog platform. 



 Fig. 9. Removed/processed/not processed input data, on Cloud platform. 

6. Literature Review 

While Fog Computing is still a recent paradigm, it has received a considerable attention from 
scientific literature. In this Section, we provide a survey of the research contributions that, like 
the work presented in this paper, focus on the architectural and programming model aspects in 
Fog Computing solutions. 

6.1. Architectural Visions 

Three different visions emerge from studies on Fog Computing. Researchers adopting a Cloud-
centric perspective tend to perceive and present Fog Computing as an extension of the Cloud 
[10]. Under such vision, the Fog becomes an edge cloud approach that brings computation and 
storage resources closer to the consumer nodes and data sources [33] [34]. This enables highly 
responsive Cloud services, reducing ingress bandwidth into the Cloud through edge data 
analytics and preprocessing, and masking temporary Cloud outages [35].  

This kind of approach typically relies on virtualization to manage processing and storage 
resources at the edge, as well as to package, deploy, and orchestrate applications running on the 
edge nodes [36], and to provide the necessary network functionalities and abstractions to ensure 
data transfer between applications and nodes. From this point of view, proposals based on 
software-defined networking (SDN) have emerged [37]. 

On the other hand, researchers with an IoT-centric perspective tend to present Fog Computing as 
a service platform rather independent and often disconnected from the Cloud [19]. Under this 
vision, Fog Computing platforms implement a distributed system that does not rely on the Cloud 
to provide the necessary processing power, storage, or service orchestration [38]. 



Research efforts classified in this area focus on the efficient and dynamic deploy of applications 
across the Fog nodes, e.g., using Kubernetes to allocate containerized applications on the nodes 
[39]. The optimization of task scheduling is another fundamental aspect of IoT-centric visions of 
Fog Computing, a process that needs to take into account applications’ quality of service (QoS) 
requirements and variables such as nodes location, network latency, processing power available, 
and application characteristics [40]. 

Finally, other researchers highlight the potential benefits coming from the interaction of Fog and 
Cloud in a mutually supporting fashion [41] [42]. The idea is to create a service continuum 
between the Fog and the Cloud, potentially leading to a Fog-as-a-Service model [14], where Fog 
nodes can leverage the Cloud, e.g., to offload computation intensive tasks or store historical data, 
and the Cloud can also exploit the Fog, e.g., to support time-critical services with lower 
computational requirements [43]. Solutions in this area of Fog Computing include platforms 
based on smart gateways to deploy and connect multiple applications at the edge, enable 
application migration between different gateways, and provide communication and integration 
capabilities with the Cloud [44]. 

Research challenges involve both vertical integration, to provide device-Fog, device-Cloud, and 
Fog-Cloud communications mechanisms that are transparent to the applications, and horizontal 
integration, which deals with heterogeneous applications and systems and provides inter-
platform and cross-communication support so that resources from assorted devices can interact. 
In addition, the interplay between Fog and Cloud that arises from this vision calls for solutions to 
optimize task assignment and relocation from the Fog to the Cloud and vice-versa, in order to 
reduce costs and improve applications QoS [45]. 

SPF naturally belongs to this last class of solutions. While Cloud-centric approaches aim at 
reusing the same technologies and deployment platforms available on the Cloud at the edge of 
the network, they will suffer from performance and coordination issues due to the heavy use of 
network, system, and resource virtualization in a severely constrained and distributed 
environment. At the other end of the spectrum, IoT-based approaches to Fog Computing tend to 
present a very fragmented view of resources to the applications; in addition, they often do not 
rely on support from the Cloud, which make the processing of intense computational tasks a 
challenge. By exploiting both the Fog and the Cloud, distributing computation tasks between 
central and edge resources depending on their load, defining a common paradigm to provide 
applications with access to those resources, and supporting service and resource discovery, SPF 
tries to respond to many open research challenges in the area and provide an effective platform 
for Fog-enabled application development. 

 

6.2. Programming models 

In Cloud computing, Web services (usually adopting 3-tier architectures and delivered using 
either IaaS, PaaS, or SaaS models) have emerged as a standard, and well-known players such as 
Amazon provide customers with enterprise class platforms and a plethora of sophisticated and 
robust services. Fog Computing is not quite there yet. While the Fog Computing paradigm is being 
intensively investigated, there is no commonly adopted standard for programming models and 
service architecture, either de jure or de facto. 



Cloud computing programming models have been proposed for Fog Computing as well. Many 
research efforts focus on virtualization to manage resources on the Cloud and Fog nodes and to 
deploy applications [46] [33] [37] [36] [39]. OpenVolcano is a platform that exploits Network 
Function Virtualization (NFV) and SDN to provide scalable and sustainable smart services to end 
users. OpenVolcano implements an extension of the IaaS model for Fog Computing that can move 
computational and storage resources from the Cloud and user devices to the edge network [46]. 
Differently, Pahl et al. propose a platform to provide a PaaS environment at the network edge on 
clusters of single board PCs like the Raspberry Pi [33]. Their platform enables application 
deployment using Docker as the containerization technology and, in their study, they suggest 
using TOSCA (Topology and Orchestration Specification for Cloud Applications) to handle 
orchestration. [37] is another study that proposes the use of Docker containers to deploy 
applications on the network switches at the edge. Their framework leverages SDN concepts to 
automatically download, install, run, stop, and uninstall containerized applications on the 
network switches. Hong et al. also lean toward the use of containerized applications, e.g., Linux 
containers (LXC) or Docker, and a management system such as Kubernetes, OpenStack, or 
SaltStack [39] to deploy applications at the edge network. 

However, the IaaS programming models, based on VM activation and migration, is too 
computationally expensive for Fog Computing applications [19]. In addition, while the recent 
development of OS-based virtualization technologies, pioneered by FreeBSD jails and Solaris 
zones and later exploded with LCX, produced mature and comprehensive solutions like Docker, 
which allow the packaging and deployment of applications with unprecedentedly low overhead 
levels, these tools are still too computationally expensive for Fog Computing environments. 

In accordance with these observations, some researchers have proposed different approaches. 
Stack4Things is a Fog Computing platform for IoT applications that defines a Cyber-Physical 
System with Functions Virtualization (CPSFV) to manage smart objects (sensors and actuators), 
group them together, allow their mutual interaction, and enable the specialization of their 
behavior [21]. The last task is performed via contextualization, defined as the Cloud-controlled 
injection of code, in the form of plugins, into any smart object managed by the Stack4Things 
platform. Manzalini and Crespi [47] propose the Edge Operating System (EOS), a software 
architecture that leverages concepts and tools from SDN and NFV to exploit the processing power 
of network infrastructure elements. EOS is based on the Robot Operating System (ROS, 
http://www.ros.org), which defines the concept of nodes (processes that can potentially execute 
on different hosts), services that can be invoked by means of message exchange, and supports 
publish-subscribe communications between ROS nodes. EOS extends ROS mainly by adding the 
support for orchestrating task execution requests among EOS nodes capable of serving them, 
taking into account traffic congestion problems that might arise from un-optimized task 
allocations. 

At the data analytics level, the stream programming model, which has been popularized by Big 
Data analytics in Cloud Computing environments, is rather limited. Apache Storm, one of the 
most interesting Cloud based solutions for analytics, enables to define services as information 
sources (nuts) and processing points (bolts). However, the model does not provide any automatic 
way to scale-down service processing if, e.g., a bolt is run in an edge device. Furthermore, Storm 
does not consider the problem of disrupted communications in Fog environments. 



Giang et al. [48] present a Distributed Dataflow (DDF) programming model for the IoT that can 
take advantage of computing resources across the Fog and the Cloud. DDF enables the deploying 
of flows over multiple physical devices, which can process one or more nodes of the flow 
(namely, sub-flows). To ease application development, the authors extended Node-RED (NR, 
https://nodered.org), a visual flow-based programming language and runtime, to support the 
design of dataflows that run across edge devices and between the Fog and the Cloud. They named 
this new tool Distributed Node-RED (D-NR). Nodes use MQTT to exchange data and keep track of 
the status of the flows. Fog Computing Internet of Things (FC-IoT) is a paradigm that aims at 
improving the efficiency of solutions that leverage the Fog to perform tasks that are too 
computationally heavy to be carried out by smart objects [49]. The authors present a platform 
that manages resources organized into three tiers: IoT smart objects, Fog Computing, and Cloud 
Computing. Their platform provides communication capabilities to enable smart objects to 
communicate among each other, as well as to offload data and computation tasks to the upper 
layers (communication layer). In addition, the FC-IoT platform enables both runtime parameter 
reconfiguration and runtime code reconfiguration (that is, the remote update of the running 
code) on the Fog and Cloud nodes (computing layer). More specifically, code reconfiguration is 
made possible by the use of REEL, a lightweight VM specifically designed for data stream 
processing in IoT scenarios [50]. An intelligent processing layer provides energy management, 
input data quality assessment, and application adaptation to the dynamic environment.  

Compared with these solutions, that were designed to process the entire set of raw data available 
and/or leverage traditional TCP/IP communications, SPF represents a comprehensive solution 
that proposes information and service models specifically designed to favor service composition 
and to prioritize important information for processing and dissemination. SPF enables to realize 
Fog services that achieve effective trade-offs between information processing speed and accuracy 
by adopting user-centric and value-based criteria and by building on top of components which 
are naturally and seamlessly capable of adapting their resource consumption to their current 
execution context. 

Finally, let us note that the set of abstractions for development of IoT applications has just 
started being investigated [51] and that we expect research to increasingly focus on these aspects 
in the near future. 

7. Conclusions 

To address the challenges of the Smart City environments, Fog Computing solutions need to 
explore the opportunities involved in deploying a portion (or even the entirety) of the 
information processing tasks traditionally executed in Cloud data centers directly on edge 
devices, (re)configuring the task allocation in dynamical fashion according to the current 
environmental and operating conditions and service objectives. 

This paper demonstrated that the adoption of purposely designed information and service 
models presents significant advantages for the realization of self-adaptive and composition-
friendly Fog services. More specifically, the information-centric and value-based service model 
proposed by our SPF Fog-as-a-Service platform enables the streamlined development and 
management of Fog services that can be either in edge devices, i.e., in the Fog, or in the Cloud, 
migrate to different computing platforms, and automatically scale their computation and 



bandwidth requirements according to the current execution context. The approaches adopted by 
SPF to explore interesting trade-offs between information processing speed and accuracy, 
leveraging Value-of-Information based prioritization and content-based filtering, have proved to 
be very effective and capable of bringing important advantages not only for Fog services running 
on edge devices, but also for those running in the Cloud. 
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